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MULTILEVEL MONTE CARLO FINITE VOLUME METHODS FOR RANDOM

CONSERVATION LAWS WITH DISCONTINUOUS FLUX

Jayesh Badwaik1, Nils Henrik Risebro2 and Christian Klingenberg1

Abstract. We consider a random scalar hyperbolic conservation law in one spatial dimension with
bounded random flux functions which are discontinuous in the spatial variable. We show that there
exists a unique random entropy solution to the conservation law for corresponding to the specific
entropy condition used to solve the deterministic case. Using the empirical convergence rates of the
underlying deterministic problem over a broad range of parameters, we present a convergence analysis
of a multilevel Monte Carlo Finite Volume Method (MLMC-FVM). It is based on a pathwise application
of the finite volume method for the deterministic conservation laws. We show that the work required
to compute the MLMC-FVM solutions is an order lower than the work required to compute the Monte
Carlo Finite Volume Method solutions with equal accuracy.
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1. Introduction

One dimensional scalar conservation laws with discontinuous flux in the space variables are often used to
model different phenomena such as traffic flow [12, 22, 28], two phase flow in a porous media [?, 10, 11, 13–15]
and sedimentation processes [5, 6, 9]. In one space dimension, a Cauchy problem for the model typically looks
like

∂u

∂t
+
∂f
(
k, u
)

∂x
= 0 x ∈ R, t > 0 (1a)

u(x, 0) = u0(x) (1b)

where k(x) is allowed to be discontinuous in x. Here u(x, t) is the unknown function while k(x) and the Cauchy
data u0(x) are assumed to be known.

Even for a differentiable k(x) and smooth initial conditions, the solutions are generally discontinuous. Hence,
we consider the weak form of the equations. Weak solutions are non-unique, and we require admissibility
conditions to select a unique solution. In the case of a differentiable k(x), admissibility conditions guaranteeing
uniqueness of solutions are well known [4,8, 16].
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For a discontinuous flux, the equation (1) has been studied extensively by [3,17,29] and different admissibility
conditions have been developed to select a unique solution. However, the different conditions, though yielding
uniqueness, give different unique solutions. Finite volume methods for (1) have been developed in [17,29]. The
stability of solutions with respect to the Cauchy data was examined and shown in [18].

However, often Cauchy data is not known exactly [21] and is only given with via certain statistical quantities
of interest like mean, variances and higher moments. The uncertainty in the Cauchy data is carried over to the
uncertainty in the solution of the equation. Uncertainty in the Cauchy data and the corresponding solution
is frequently modeled in a probabilistic manner. Here, we take the point of view that the Cauchy Data is a
random variable described by a probability distribution. Furthermore, we adopt a simplification of the problem,
wherein the flux function f is of the multiplicative form f(k, u) = k(x)f(u). The equation then reads

∂u

∂t
+
∂
(
k(ω;x)f(u)

)
∂x

= 0 x ∈ R, t > 0 (2a)

u(ω;x, 0) = u0(ω;x) (2b)

where k(ω; ·) and u0(ω, ·) are some functions from a probability space Ω into some relevant function space.
Development of efficient algorithms to quantify the uncertainty in the solutions of random conservation law

is an active field of research. The challenge is to efficiently resolve the discontinuities that propagate from the
physical space to the probability space in a robust manner. Also, the number of random sources driving the
uncertainty may be very large, and possibly countably infinite as well. The numerical method should be able
to deal with the corresponding possibly infinite dimensional spaces efficiently.

There are different methods to quantify the uncertainty in solutions of conservation laws, namely stochastic
Galerkin method [1, 7, 23, 27, 31] based on generalized polynomial chaos, stochastic collocation [24, 32] and
statistical sampling methods, especially Monte Carlo (MC) methods [25]. As was shown in [26], the MC
methods converge to the mean at rate 1/2 as the number of samples M increase. This rate is due to the central
limit theorem and hence, is optimal for these class of methods. This makes the MC methods computationally
expensive.

In order to address this drawback, a multilevel Monte Carlo (MLMC) algorithm was proposed in [25] for a
random initial condition u0 and flux of the form f = f(u) with differentiable f . Later, for the case of uncertainty
in a smooth flux, a Multilevel Monte Carlo method was developed in [26]. A optimized combination of sampling
sizes for different levels of spatial and temporal resolution were developed in the same paper to achieve the
maximum accuracy in the statistical estimates of the first and higher order moments of the random solution.
This analysis was vitally based on error analysis of the random conservation law.

Contrastingly, for the problems with discontinuous flux, Adimurthi et. al. [2] have demonstrated an example
where the total variation of the solution is unbounded near the discontinuous interface. This precludes a deter-
mination of convergence rates which are uniformly valid. In this paper, we empirically determine a convergence
rate and show that such an assumption is enough to derive an optimized combination of sample sizes to design
an efficient MLMC method. We show that the resultant MLMC methods are indeed computationally more
efficient than the Monte Carlo methods for the same problem. In specific, we show that the work required
to compute an approximation with a given error using a MLMC is an order lower than that required by MC
methods.

The remainder of this paper is organized as follows: We start by covering some preliminary background in
Section 2. In Section 3, we prove that a unique solution exists to (2) under certain conditions and in Section 4,
we analyze the Monte Carlo and the Multilevel Monte Carlo Methods. Finally, we test the method developed
in this section on some numerical examples in the Section 5 and describe the conclusions of our analysis in
Section 6.
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2. Preliminaries

We first introduce some preliminary concepts which are needed in the exposition. A large part of the
exposition has been adapted from [20, 30]. Let (Ω,F ,P) be a probability space and let (S,B(S)) be a Banach
space where B(S) is the Borel σ-algebra over S. A map G : Ω → S is called a P-simple function if it is of the
form

G(ω) =

J∑
j=1

gj1Aj
(ω), where 1A(ω) :=

{
1 if ω ∈ A ,

0 otherwise ,
(3)

gj ∈ S and Aj ∈ F for j = 1, 2, . . . , J . A map G : Ω→ S is strongly P-measurable if there exists a sequence of
simple functions Gn converging to G in the S-norm P-almost everywhere on Ω. A strongly P-measurable map
G : Ω→ S is called an S-valued random variable. We call two strongly P-measurable functions, Ga, Gb : Ω→ S,
P-versions of each other if they agree P-almost everywhere on Ω.

Lemma 2.1. Let (Ω,F ,P) be a probability space and S1 and S2 be two Banach spaces. Let f : Ω → S1 be a
strongly measurable function and g : S1 → S2 be a continuous function. Then the function g ◦ f : Ω → S2 is a
strongly measurable function.

Definition 2.2 (Integration on Banach Spaces). The integral of a simple function G : Ω→ S is defined as∫
Ω

GdP :=

N∑
j=1

gjP(Aj) . (4)

A strongly measurable map G : Ω → S is said to be Bochner integrable if there exists a sequence of simple
functions (Gn)n≥0 ,converging to G, P-almost everywhere such that

lim
n→∞

∫
Ω

‖G−Gn ‖S dP = 0 . (5)

The Bochner integral of a strongly measurable map G is then defined by∫
Ω

GdP := lim
n→∞

∫
Ω

Gn dP . (6)

Theorem 2.3. A strongly measurable map G : Ω→ S is Bochner integrable if and only if∫
Ω

‖G ‖S dP <∞ , (7)

in which case, we have ∥∥∥∥∥∥
∫
Ω

GdP

∥∥∥∥∥∥
S

≤
∫
Ω

‖G ‖S dP . (8)

Definition 2.4 (Lp Spaces on Banach Spaces). For each 1 ≤ p < ∞, we define the space Lp(Ω,S) to consist
of all strongly measurable functions G for which

∫
Ω
‖G ‖pE dP <∞. These spaces are Banach spaces under the

norm

‖G ‖Lp(Ω,S) :=

∫
Ω

‖G ‖pE dP .
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For p =∞, we define the space L∞(Ω,S) as the space of all strongly measurable functions G : Ω→ S for which
there exists a r ≥ 0 such that P(‖ f ‖S > r) = 0. This space is a Banach space under the norm

‖G ‖L∞(Ω,S) := inf
{
r ≥ 0 | P

(
‖G ‖S

)
> r) = 0

}
. (9)

Definition 2.5 (Banach Space of Type p [20, page 246]). Let Zi, i ∈ N be a sequence of independent Rademacher
random variables. A Banach space S is said to have the type 1 ≤ p ≤ 2 if there is a constant κ > 0 (known as
the type constant) such that for all finite sequences (xi)

M
i=1 ∈ S

∥∥∥∥∥
M∑
i=1

Zixi

∥∥∥∥∥
S

≤ κ

(
M∑
i=1

‖xi ‖pS

) 1
p

. (10)

Theorem 2.6 ( [20, page 246]). Let 1 ≤ q < ∞ and let (Ω,F ,P) be a measure space and let S be a Banach
space having the type p, then the space Lq(Ω,S) has the type min(q, p). In particular, the Banach space Lq(Rn)
has the type min{q, 2}.

Theorem 2.7 ( [20, Proposition 9.11]). Let S be a Banach space having the type p with the type constant κ.
Then, for every finite sequence (Xi)

M
i=1 of zero mean independent random variables in Lp(Ω,S), we have

E

[∥∥∥∥∥
M∑
i=1

Xi

∥∥∥∥∥
p

S

]
≤ (2κ)p

M∑
i=1

E [ ‖Xi ‖pS ] . (11)

Given a probability space (Ω,F ,P) and a Banach space S, let X : (Ω,F ,P)→ S be a random variable. Given

M independent, identically distributed samples (X̂i)
M
i=1 of X, the Monte Carlo estimator EM [X] of E[X] is

defined as the sample average

EM [X] :=
1

M

M∑
i=1

X̂i . (12)

Theorem 2.8 ( [19, Corollary 2.5]). Let the Banach space S have the type p with the type constant κ. Let
X ∈ Lp(Ω; S) be a zero mean random variable. Then for every finite sequence (Xi)

M
i=1 of independent, identically

distributed samples of X, we have

E [‖EM [X] ‖pS] ≤ (2κ)pM1−pE
[
‖X ‖pLp(Ω,S)

]
. (13)

Theorem 2.9 ( [19, Theorem 4.1]). Let X ∈ Lp(Ω;Lq(R)), then the Monte Carlo estimate EM (X) converges
in Lp(Ω;Lq(R)) for p := min{2, q} and we have the bound

‖E[X]− EM [X] ‖Lp(Ω;Lq(R)) ≤ 2κM
1−p
p ‖X ‖Lp(Ω,Lq(R)) . (14)

3. Random Conservation Laws with Discontinuous Flux

For a conservation law with a random flux and a random initial condition, we consider the Cauchy problem

∂u(ω;x, t)

∂t
+
∂
(
k(ω;x)f(u(ω;x, t))

)
∂x

= 0 , (x, t) ∈ R× [0,∞) (15a)

u(ω;x, 0) = u0(ω;x) . (15b)
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We want to study the case where the flux coefficient, k(ω;x), is allowed to be discontinuous in the x variable.
In this section, we review the results for the corresponding deterministic conservation laws, define the concept
of a random entropy solution for (15) and prove the existence and uniqueness of the random entropy solution.

3.1. The Deterministic Problem: Scalar Conservation Law

For a fixed ω, a deterministic realization of (15) is the Cauchy problem

∂u

∂t
+
∂
(
k(x)f(u)

)
∂x

= 0 , (16a)

u(x, 0) = u0(x) , (16b)

where the flux coefficient k(x) is allowed to be discontinuous in x variable. Even for a differentiable flux
coefficient, the solutions are known to be discontinuous. Hence, must we consider the framework of weak
solutions.

Definition 3.1 (Weak Solution). A weak solution to (16) is a bounded measurable function u : R× R+ → R,
u ∈ L∞(R), satisfying, for all ϕ ∈ C∞c

(
R× R+

)
,∫

R×R+

[
u(x, t)ϕt(x, t) + k(x)f(u)ϕx(x, t)

]
dxdt+

∫
R

u0(x)φ(x, 0) dx = 0 . (17)

Assume there is an interval [a, b] such that

f(a) = f(b) = 0 f ∈ C2[a, b] (18a)

There is a point u∗ ∈ (a, b) such that

f ′(u) > 0 for all a < u < u∗ f ′(u) < 0 for all u∗ < u < b (18b)

k(x) is a function such that

k(x) ∈ BV(R) ∪ L1
loc(R) (18c)

u0(x) is a function such that

u0(x) ∈ L1
loc(R) u0(x) ∈ L∞(R) (18d)

Theorem 3.2 (Existence of Weak Solution [16]). If the conditions (18) are satisfied, then there exists a weak
solution u(x, t) to (16), and we have the weak solution u ∈ L1(R) ∩ L∞(R) and hence by interpolation for all
1 ≤ q ≤ ∞, u ∈ Lq(R) and ‖u ‖L∞(R) ≤ c = max(|a| , |b|).

A weak solution is not unique, and in order to single out the relevant solution, we need to make use of a
suitable entropy condition. The classical Kruzkov entropy condition is not valid for discontinuous flux and hence
cannot be used in this situation. Instead, we use the modified Kruzkov entropy condition introduced in [29].

Definition 3.3 (Modified Kruzkov Entropy Condition [29]). Let (V, F ) be a convex entropy pair for (16), and
assume that V = C2[0, 1]. Let {ξ1, ξ2, · · · , ξM} be a finite set of points in R. A weak solution u for (16) is said
to be an entropy solution if for every smooth test function φ ≥ 0 with compact support in t > 0, x ∈ R \ D,
D = {ξ1, ξ2, · · · , ξM}, and every c ∈ R, u satisfies the inequality∫

R×R+

V (u)φt + kF (u)φxdxdt−
∫

R×R+

k′(x)
(
V ′(u)f(u)− F (u)

)
φdxdt ≥ 0 (19)
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Theorem 3.4 (Uniqueness of Entropy Solution [16]). In addition to (18), assume that

k(x) has discontinuities separated by a finite distance L (20a)

u0 ∈ L1(R) k(x) ∈ BV(R) (20b)

then, there exists a unique weak entropy solution to (16) satisfying the inequality

‖u ‖L1(R) ≤ e
Cd(k)t ‖u0 ‖L1(R) (21)

where

Cd(f, k) = ‖ k′ ‖L∞(R\D) ‖ f ‖L∞ (22)

Theorem 3.5 (L1 Stability Result [18]). Assume that the flux function f ∈ F, the flux coefficients k, l ∈ Ks

and the initial conditions u0, v0 satisfy (18) and (20) and additionally the following conditions,

k′ is bounded, whenever defined, and has one sided limits at points of discontinuity (23a)

There exists a constant α > 0(< 0) such that k(x) ≥ α(≤ α) for all x (23b)

Then, we have

‖u(·, t)− v(·, t) ‖L1(R) ≤ ‖u0 − v0 ‖L1(R) + t
(
‖ f ‖L∞(R) TV(k − l) + Cs(f, k, u0) ‖ k − l ‖L∞(R)

)
(24)

where

Cs(f, k, u0) := min
(
Ca(f, k, u0), Ca(f, l, v0)

)
(25a)

Ca(f, k, u0) :=
5 max(‖ k ‖L∞ , 1) ‖ f ‖L∞

min(α, α2)
(TV (Ψ(u0, k)) + TV (k)) (25b)

Ψ(u, k)(x) := k(x) sgn(u− u∗)f(u∗)− f(u)

f(u∗)
(25c)

3.2. Random Conservation Law

We are interested in solutions to (15) with random initial data u0(ω;x) and the random flux k(ω;x)f(u).
However, we need to set up a couple of things before we can prove the existence and uniqueness of the random
entropy solution.

Definition 3.6 (Random Data). Define a norm

‖ (u0, k) ‖D := ‖u0 ‖L1(R) + ‖u0 ‖L∞(R) + ‖ k ‖L∞(R) + ‖ k ‖BV (26)

where ‖ k ‖BV = ‖ k ‖L1 + ‖ k ‖TV. Let L > 0 be a fixed constant, then we assume that D is the the space of
functions (u0(x), k(x)) which satisfy the conditions in (18), (20) and (23) such that the discontinuities in k(x)
are located only at x = nL, n ∈ Z. We note that D is a Banach space under the given norm. Let B(D) be
the Borel σ-algebra on D and let M <∞ be some fixed constant. Then, we assume that the random data is a
strongly measurable map (u0, k) : (Ω,F)→ (D,B(D)) such that

‖ (u0, k) ‖L∞(Ω;D) < M (27)
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From the results for the deterministic conservation law, we would expect the random solution to be a random
variable taking values in C(R, L∞(R)∩Lq(R)) for 1 ≤ q <∞. Denote the space of solutions as S and write the
solution in terms of a mapping S : D→ S, whence we have,

S = C
(
R, L1(R)

)
∩ L∞

(
R, L∞(R)

)
u(·, t) = S(u0, k)(t) (28)

Definition 3.7 (Random Entropy Solution). Given a probability space (Ω,F ,P) 3 ω, a random variable
u : (Ω,F ,P)→ S is said to be a random entropy solution for (15) if the following conditions are satisfied:

(1) Weak Solution For P-a.e. ω ∈ Ω, u(ω; ·, ·) satisfies∫
I×R+

[
u(ω;x, t)ϕt(x, t) + k(ω;x)f(u)ϕx(x, t)

]
dxdt+

∫
I

u0(ω;x)φ(x, 0) dx = 0 . (29)

for all φ ∈ C∞c (I × R+).
(2) Entropy Condition For P-a.e. ω ∈ Ω, u(ω; ·, ·) satisfies the entropy condition as in Definition 3.3.∫
R×R+

V (u(ω))φt + k(ω)F (u(ω))φxdxdt−
∫

R×R+

k′(ω;x)
(
V ′(u(ω))f(u(ω))− F (u(ω))

)
φdxdt ≥ 0 (30)

Theorem 3.8 (Existence and ω-wise Uniqueness of a Random Entropy Solution). For each f satisfying (18),
and (u0, k) the random data as defined in Definition 3.6, then there exists a unique random entropy solution
u : Ω→ S to the random conservation law (15).

Proof. By (27) for almost all ω ∈ Ω, the random data (u0, k) is such that there exists a corresponding unique
entropy solution u(ω; ·, ·) ∈ S. By the assumptions of the theorem, the map (u0, k) : Ω → D is a strongly
measurable map. Further, by (24), the map u(x, t) : D→ S is continuous. Then Lemma 2.1 shows that the map
u(ω; ·, ·) : Ω→ S is strongly measurable. And hence, there exists a random entropy solution to (15).

Next, let the random variables (u0, k) ∈ D and (ũ0, k̃) ∈ D be P-versions of each other. For all times t, let
u(·; ·, t) be the random entropy solution corresponding to (u0, k) at time t and ũ(·; ·, t) be the random entropy

solution corresponding to (ũ0, k̃) at time t. Then by (24) and (26), for Cs = max(Ca(ω), Ca(ω)) and ω P-almost
everywhere we have

‖u(ω; ·, t)− ũ(ω; ·, t) ‖L1(R)

≤ ‖u0 − ũ0 ‖L1(R)

+ t

(
‖ f ‖L∞(R) TV(k − k̃) + Cs

∥∥∥ k − k̃ ∥∥∥
L∞(R)

)
= 0

This implies that for ω P-almost everywhere we have u(ω;x, t) = ũ(ω;x, t) almost everywhere in R. And hence,
for all 1 ≤ q <∞, the random entropy solution u is unique in L∞(Ω;L∞(R)∩Lq(R); dP) and therefore in S. �

Theorem 3.9. Let u(·; ·, ·) be a random entropy solution to (15) as per Definition 3.7. For any 1 ≤ k < ∞
and 1 ≤ q <∞, we have u(·; ·, ·) ∈ Lk

(
Ω;C([0, T ], Lq(R))

)
and

‖u(·; ·, ·) ‖
Lk
(

Ω,C([0,T ],Lq(R)
) ≤ eCT ‖u0 ‖Lk(Ω,Lq(R)) (31)
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where C = max
ω∈Ω

Cd(f, k(ω)) is a constant dependent only on M and ‖ f ‖L∞ . Given a bounded interval D, we

also have the estimate

‖u(·; ·, ·) ‖
Lk
(

Ω,C([0,T ],Lq(D)
) ≤ c |D|1/q (32)

where c is as defined in Theorem 3.2.

Proof. By Theorem 3.2, for any 1 ≤ k <∞, we have for P-almost everywhere ω ∈ Ω,

‖u(·; ·, ·) ‖
Lk
(

Ω,C([0,T ],Lq(R)
) ≤

 ∫
Ω

sup
t∈[0,T ]

‖u(ω; ·, t) ‖kLq(R) dP

1/k

≤

 ∫
Ω

eCd(f,k(ω)T ‖u(ω; ·, 0) ‖kLq(R) dP

1/k

≤ eCT

 ∫
Ω

‖u(ω; ·, 0) ‖kLq(R) dP

1/k

≤ eCT ‖u0 ‖Lk(Ω,Lq(R))

And hence, we have, for all 1 ≤ k < ∞, u ∈ Lk
(
Ω;C([0, T ], Lq(R))

)
. Also, by the fact that ‖u ‖L∞(R) ≤ c, we

have

‖u(·; ·, ·) ‖
Lk
(

Ω,C([0,T ],Lq(D)
) ≤

 ∫
Ω

sup
t∈[0,T ]

‖u(ω; ·, t) ‖kLq(D) dP

1/k

≤ c |D|1/q

�

4. Multilevel Monte Carlo Finite Volume Method

Monte Carlo methods are a class of methods where repeated random sampling is used to obtain the mean
value and the subsequent moments of the random variable. In our case, the samples are the entropy solution to
the deterministic Cauchy problem for the corresponding samples of Cauchy data. The exact solutions to those
deterministic problems are however unavailable and instead, we must use a numerical approximation. Here, we
use a finite volume method to compute the numerical approximation to the deterministic problem.

The error introduced by the Monte Carlo methods depends on the number of samples used, while the error
introduced by the finite volume methods depends on the resolution of the grid. Different combinations of grids
can be used to compute the finite volume approximations for different samples. In this section, we will describe
and analyze two such combinations, denoted by the Monte Carlo Finite Volume Method (MC-FVM) and the
Multilevel Monte Carlo Finite Volume Method (MLMC-FVM).
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We solve our random conservation law on a compact interval D = [xL, xR] and in the time interval [0, T ],
wherein, we can rewrite (15) as

∂u(ω;x, t)

∂t
+
∂ (k(ω;x)f(u(ω;x, t)))

∂x
= 0 , (x, t) ∈ D × [0, T ] (33)

u(ω;x, 0) = u0(ω;x) . (34)

Definition 4.1 (Cauchy Problem Sample, Solution Sample and FVM Solution Sample). In context of Monte
Carlo methods, given a sample (u0, k)(ω0) of the random variable (u0, k), the corresponding deterministic
Cauchy problem will be referred to as the Cauchy problem sample for ω0. Similarly, the unique entropy solution
and the finite volume solution for the Cauchy problem sample will be referred to as the solution sample u(ω0; ·, ·)
for ω0 and the FVM solution sample U(ω; ·, ·) for ω0 respectively.

Definition 4.2 (N -discretization). Let the domain D = [xL, xR]. Divide the domain D into N uniform cells
Dj , j = 0, 1, . . . , N − 1 with Dj = [xj−1/2, xj+1/2] where x1/2 = xL and xN+1/2 = xR. The N -discretization is

defined as ∪N−1
j=0 Dj . Additionally, the cell center xj and the cell length hj are given as

xj =
xj+ 1

2
+ xj− 1

2

2
, h =

|D|
N

(35)

4.1. Finite Volume Method For Conservation Law with Discontinuous Flux

Given a Cauchy problem sample and a N -discretization Σ of D containing N cells, we now describe a method
to compute the FVM solution U(x, t) to the solution of the given Cauchy problem. The initial conditions of the
Cauchy problem dictate that

U0
j =

1

hj

∫
Dj

u0(x)dx (36)

We denote the cell averages of the solution U(x, t) for the j-th cell at n-th time step as Un,j ,

Un
j =

1

|Dj |

∫
Dj

U(x, tn) dx j = 0, 1, . . . , N − 1 (37)

The function k(x) is computed at the face interfaces by considering the cell averages on the staggered grid as
shown below

kj+ 1
2

=

xj+1∫
xj

k(x)dx (38)

The finite volume scheme is then defined as

Un+1
j = Un

j −
∆tn
hj

[
Hj+ 1

2
−Hj− 1

2

]
j = 0, 1, . . . , N − 1 (39a)

where H is given by

Hj+ 1
2

= kj+ 1
2
F
(
Un
j+1, U

n
j

)
j = 0, 1, . . . , N − 1 (39b)

where F is an monotone numerical flux. There are a few different numerical fluxes that are appropriate in this
problem. We use the following numerical fluxes due to [29].
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(1) Godunov Flux

F (Ul, Ur) =


f(u∗) if Ul ≤ u∗ ≤ Ur

min
Ul≤q≤Ur

f(u) Ul ≤ Ur ≤ u∗ or u∗ ≤ Ul ≤ Ur

min
Ur≤q≤Ul

f(u) Ur ≤ Ul ≤ u∗ or u∗ ≤ Ur ≤ Ul

(40)

(2) Engquist-Osher Flux

F (Ul, Ur) =
f(Ul) + f(Ur)

2
− 1

2

Ur∫
Ul

|f ′(θ)|dθ (41)

Theorem 4.3 ( [29, Theorem 3.2]). Let u0, k, f satisfy the conditions in (18), (20) and (23). Additionally,
assume

f ′′(u) > 0 for all u ∈ [a, b] (42)

Then, the finite volume scheme (39) converges to the entropy solution of the Cauchy problem (16) on D provided
that the time step ∆t follows the CFL condition

∆t ≤ ∆x

‖ k ‖∞ ‖ f ′ ‖∞
(43)

Remark 4.4. The convergence rates for the numerical methods are yet unknown. However, we do need the
convergence rates to determine the optimal sample numbers for the analysis of MLMC method. Hence, we
assume that the convergence rate for the `q-error between the numerical solution and the exact solution is sq
Then, the `q-error can be written as

‖U(x, t)− u(x, t) ‖`q < Cb(q)∆x
sq (44)

4.2. Monte Carlo Finite Volume Methods

We now describe and analyze the MC-FVM to compute the numerical approximation to the random entropy
solution u for conservation law (33). The underlying idea of MC-FVM is to use identical uniform discretization
to solve each of the Cauchy problem sample.

Definition 4.5 (MC-FVM Approximation). Given M ∈ N, generate M independent, identically distributed

samples ((û0,i, k̂i))
M
i=1. Let Σ be a N -discretization of the spatial domain D. Let Ûi denoted the FVM solution

sample corresponding to (û0,i, k̂i) at time T . Then, the M -sample MC-FVM EMC(u) to E[u] is defined as

EMC(u) := EM [U ] :=
1

M

M∑
i=1

Ûi (45)

The variance is defined as

VarMC(u) := EM [U2]− EM [U ]2 (46)
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Theorem 4.6 (MC-FVM Error Bound). Assume that f ∈ Fn and (u0, k) is the random data as defined in
Definition 3.6, then for the random conservation law (33), for p = min(2, q) the MC-FVM approximation
converges to E[u] in Lp(Ω;Lq(D)) as M →∞ and ∆x→ 0. Furthermore, we have the bounds

EMC(u) := ‖E[u]− EMC(u) ‖Lp(Ω;Lq(D)) ≤ |D|
1
p + 1

q−
1
2 2κcM

−1
2 + Cb(q)∆x

sq (47)

where sq is the rate of convergence determined empirically from the numerical experiments.

Proof. For the first inequality, using the triangle inequality, we can write

‖E[u]− EMC(u) ‖Lp(Ω;Lq(D)) ≤ ‖E[u]− EM (u) ‖Lp(Ω;Lq(D)) + ‖EM [u]− EM (U) ‖Lp(Ω;Lq(D))

Using the fact that p ≤ 2 and applying Hölder inequality, Theorem 2.9 and (31) to the first term, we have

‖E[u]− EM (u) ‖Lp(Ω;Lq(D)) ≤ |D|
1
p−

1
2 ‖E[u]− EM (u) ‖L2(Ω;Lq(D))

≤ |D|
1
p−

1
2 2κM

−1
2 ‖u ‖L2(Ω,Lq(D))

≤ |D|
1
p + 1

q−
1
2 2κcM

−1
2

For the second term, by (44), we have

‖EM [u]− EMC(u) ‖Lp(Ω;Lq(D)) ≤ sup
i

∥∥∥(ûi − Ûi

)∥∥∥
Lq(D))

≤ Cb(q)∆x
sq

�

4.3. Multilevel Monte Carlo Finite Volume Methods

The underlying idea of the MLMC-FVM is to use a hierarchy of nested set of discretization and solve several
Cauchy problem samples on each of them.

Definition 4.7 (MLMC-FVM Approximation). Let (Σl)
L
l=0 be a sequence of nested 2lN discretization of the

spatial domain D. For each level l, define by Ul the random Finite Volume approximation on Σl with U−1 = 0.
Then, given (Ml)

L
l=0 ∈ N, the MLMC-FVM approximation EMLMC(u) to E[u] is then defined as

EMLMC(u) =

L∑
l=0

EMl
(Ul − Ul−1) (48a)

VarMLMC(u) =

L∑
l=0

∆Vl (48b)

∆Vl = VarMC(UL − UL−1) (48c)

= EMl

[
(ul − ul−1 − EMl

[ul − ul−1])2
]

(48d)

Theorem 4.8 (MLMC-FVM Error Bound). Assume that f ∈ Fn and (u0, k) is the random data as defined in
Definition 3.6, then for the random conservation law (33), for p = min{2, q}, the MLMC-FVM approximation
converges to E[u] as Ml →∞ for l = 0, 1, . . . , L and ∆x → 0. Further, we have the bound

EMLMC(u) := ‖E[u]− EMLMC(u) ‖Lp(Ω,Lq(D)) ≤ Cb(q) (∆x)
sq

(
2−Lsq + Cm(p, q)

L∑
l=0

M
− 1

2

l 2−lsq

)
(49)
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where Cm(p, q) = |D|
1
p−

1
2 2κ(1 + 2sq ).

Proof. We first derive the result for error in E. Using the triangle inequality, we can write

‖E[u]− EMLMC(u) ‖Lp(Ω,Lq(D)) ≤ ‖E[u]− E[UL] ‖Lp(Ω,Lq(D)) + ‖E[UL]− EMLMC(u) ‖Lp(Ω,Lq(D))

For the first term, we have

‖E[u]− E[UL] ‖pLp(Ω,Lq(D)) ≤ ‖u− UL ‖pL1(Ω,Lq(D))

≤ ‖u− UL ‖L∞(Ω,Lq(D))

≤ Cb(q)2
−Lsq (∆x)

sq

For the second term, using the fact that p ≤ 2, and by Hölder inequality, Theorem 2.9 and Theorem 4.3

‖E[UL]− EMLMC(u) ‖Lp(Ω,Lq(D)) =

∥∥∥∥∥
L∑

l=0

E[Ul − Ul−1]−
L∑

l=0

EMl
(Ul − Ul−1)

∥∥∥∥∥
Lp(Ω,Lq(D))

≤
L∑

l=0

‖E[Ul − Ul−1]− EMl
(Ul − Ul−1) ‖Lp(Ω,Lq(D))

≤
L∑

l=0

|D|
1
p−

1
2 ‖E[Ul − Ul−1]− EMl

(Ul − Ul−1) ‖L2(Ω,Lq(D))

≤
L∑

l=0

|D|
1
p−

1
2 2κM

− 1
2

l ‖Ul − Ul−1 ‖Lq(D)

≤
L∑

l=0

|D|
1
p−

1
2 2κM

− 1
2

l

(
‖Ul − u ‖Lq(D) + ‖Ul−1 − u ‖Lq(D)

)
≤

L∑
l=0

|D|
1
p−

1
2 2κM

− 1
2

l

(
Cb(q)

(
2−l∆x

)sq
+ Cb(q)

(
2−l+1∆x

)sq)
≤ |D|

1
p−

1
2 2κCb(q) (∆x)

sq (1 + 2sq )

L∑
l=0

M
− 1

2

l 2−lsq

≤ Cb(q)Cm(p, q) (∆x)
sq

L∑
l=0

M
− 1

2

l 2−lsq

�

4.4. Work Estimates and Sample Number Optimization

The work required to compute a MCFVM or a MLMC-FVM approximation and the corresponding error
depends on multiple factors, namely the grid resolution ∆x, number of levels L and the sample numbers at
each level Ml, l = 0, 1, . . . , L. In order to get optimal error rates, we need to select these parameters to either
minimize the work required to be done for a specified error or to minimize the error given the work needed.

In this section, we calculate the work required for MC and MLMC methods as a function of sample numbers
and then, we use those functions along with the error expressions previously derived to select the optimal
parameters. We assume that the time required to compute the finite volume method solution in a single cell
for a single time step is a constant, and we denote it as a unit work. For the purpose of optimization, we will
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assume that all parameters except for the sample numbers are fixed. In particular, we mandate that the number
of levels is not a parameter for optimization, and instead, is fixed.

4.4.1. Optimal Sample Numbers for MC-FVM

The error of an MC-FVM approximation for a grid resolution of ∆x and M samples is given by (47). We use
the fact that for a fixed domain N = |D| /∆x and incorporate terms independent of M and N into constants
A and B, when we rewrite the error term as below.

ε ≤ AM
−1
2 +BN−sq A = |D|

1
p + 1

q−
1
2 2κb , B = |D|sq Cb(q) (50)

The work required to compute the solution is given by

W = MN2 (51)

Assume that we have the fixed the error ε = ε0. Then, using (50), we can write

N =

(
ε0 −AM−

1
2

B

)− 1
sq

(52)

The work as a function of sample numbers can then be written as

W = M

(
ε0 −AM−

1
2

B

)− 2
sq

(53)

Quick analysis shows that for sq ≤ 1 and M ≥ 1, the attains a minimum at a single point at which the derivative
w.r.t M is 0. Performing the analysis gives us

M =

(
A

Bsq

)2

N2sq (54)

4.4.2. Optimal Sample Numbers for MLMC-FVM

Consider a L-level MLMC-FVM with N -cells at level 0. By (49), the error for the method can be written in
terms of the number of samples M0,M1, . . . .ML as

ε = A

(
1 +B

L∑
l=0

2−lsqM
− 1

2

l

)
A = Cb(q)N

−sq |D|sq 2−Lsq , B = Cm(p, q)2Lsq (55)

The work done to calculate the MLMC-FVM approximation can be written as

W =

L∑
l=0

MlN
222l (56)

We use the method of Lagrange multipliers in order to optimize the quantities of interest over multiple
variables. We will need the following expressions during optimization,

∂W

∂Ml
= N222l (57a)

∂ε

∂Ml
= −1

2
AB2−lsqM

− 3
2

l (57b)
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We fixed the error at ε0. The Lagrangian L is then given by

L = W + λ(ε− ε0) (58)

W will be minimum when Ml, l = 0, 1, . . . , L are such that the following condition is satisfied

∂L
∂Ml

∣∣∣∣
Ml

= 0 l = 0, 1, . . . , L (59)

which gives us

Ml =

(
AB

2

) 2
3

λ
2
3N−

4
3 2−

4l
3 2−

2lsq
3 (60)

Putting the value in the value for error, we can get the value of λ as

λ
2
3 =

(
1

B

)−2 (ε0
A
− 1
)−2

(
AB

2

)− 2
3

N
4
3C2 (61)

and the expression for Ml independent of λ is given by

Ml = 2−
4l
3 2−

2lsq
3 B2

(ε0
A
− 1
)−2

C2 (62)

5. Numerical Experiments

We now present some numerical experiments which validate the method developed over the previous sections1.
The numerical examples are motivated by the traffic flow problems. In particular, we consider the inhomogeneous
LWR model which can be written as show below, where the multiplying factor of k can represent space-dependent
factors in the equation like a change in the number of lanes and the speed limit.

∂u

∂t
+
∂k(x)f(u)

∂x
= 0 f(u) = 4u(1− u) (63)

The purpose of the numerical experiments is to verify that the multilevel Monte Carlo methods are computa-
tionally more efficient than simple Monte Carlo method. To that end, we have designed our setup in such a way,
that the errors produced by both the methods, the Monte Carlo and the Multi-Level Monte Carlo methods are
almost equal for a given grid. We then measure the computational effort required to compute the two solution
and we compare them. The computational effort is measured by calculating the CPU time required to run the
two different programs.

As noted in Remark 4.4, the convergence rates for the deterministic case are not theoretically known, and
instead, we have to use an empirical convergence rate for determination of optimal sample numbers. Experience
tells us that we should expect a convergence rate of at least 1/2. We verify that for the above problem, that
the convergence rates are at least 1/2.

We now describe the relation between the grid used for the multilevel Monte Carlo method and the grid
used for the Monte Carlo method. The base grid is with N cells, and then, for multilevel Monte Carlo method,
we use a total for 4 levels, resulting in 23N cells at the finest grid. For comparison with monte carlo method,
we have observed that the grid containing 2N cells produces an error that is of the same order as the one
produced using MLMC method of 4 levels. Hence, we can then compare the two methods purely on the basis
of computational work taken to calculate the two solutions.

1The code can be found at https://www.jayeshbadwaik.in/uq-conlaw/mlmc sconlaw 1d
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Cells 128 256 512 1024 2048 4096
Error 1.071e-2 6.090e-3 2.807e-3 1.376e-3 7.302e-4 3.513e-4
Rate 1.123 0.814 1.112 1.029 0.914 1.056
Table 1. Pulse Coefficient : Error Rates for Deterministic Case

Next, we consider the Monte Carlo and the multilevel Monte Carlo methods, wherein, we now calculate the
sample numbers as described before using the experimental convergence rates of 0.5 and calculate the optimal
sample numbers. We then verify that the deterministic convergence rates of the problem are above 1/2 as
required in our analysis and the results are shown in Table 5.2. We use a MCFVM solution calculated on 16384
cells as a reference solution to calculate the error rates. Next, we compute the MC-FVM and the MLMC-FVM
solutions. We make sure that the errors from both the computations are of the same order and then compare
the work done for the both the cases.

Let Ue be the reference solution as mentioned above and let Ul be the computed MC or MLMC solution for
a grid with 2l points, then the error is calculated as

errl =

2l−1∑
i=0

|Ul(i)− Ue(i)|
|Ue(i)|

(64)

where Ue(i) is calculated using linear interpolation. The error rates are computed as

rl =
log(errl−1/errl)

log(2)
(65)

5.1. Traffic Flow Problem with Pulse Coefficient

For the first case, we consider the traffic flow problem, where there are two discontinuities in the function
k. The discontinuities form a constant width pulse whose position is uncertain. We use periodic boundary
conditions for the problem.

∂u

∂t
+
∂k(ω;x)f(u)

∂x
= 0 (x, t) ∈ [−2, 2]×

[
0,

1

10

]
(66a)

u(x, 0) =
1

4
sin
(πx

2

)
+

1

2
f(u) = 4u(1− u) (66b)

where

k(ω, x) =


1 if x < −0.5 + ω

2 if − 0.5 + ω ≤ x < 0.5 + ω

1 if 0.5 + ω ≤ x
ω ∈ U(−1, 1) (66c)

Cells 64 128 256 512 1024
MC 6.2149e-2 3.60286e-1 2.4019e-1 1.7014e-1 1.2009e-1
Rate - 0.784 0.584 0.497 0.502

MLMC 7.1394e-1 3.7205e-1 2.4133e-1 1.5083e-1 1.106e-1
Rate - 0.940 0.624 0.678 0.44

Table 2. Pulse Coefficient : MC and MLMC Errors
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Figure 1. Traffic Flow Problem with Pulse Function Coefficient

Cells 64 128 256 512 1024
MC 4 18.52 135 1092 8490
Rate - 2.211 2.865 3.015 2.958

MLMC 5.5 15.02 40 132 489
Rate - 1.449 1.413 1.722 1.889

Table 3. Pulse Coefficient : MC and MLMC Work (in compute seconds)

5.2. Traffic Flow Problem with a Brownian Bridge with Jumps Coefficient

For the second example, we consider the case where the coefficient k is given by a Brownian Bridge with
Jumps. We construct such a bridge from a Brownian bridge pinned at both ends by adding discontinuities
at random points in the interval. Let b(x) be a Brownian bridge pinned at 2 at x = −2, 2. Next, we start
introducing jumps of random magnitude hj in the Brownian bridge b(x) at random points xj , j = 1, 2, . . . , n.
We ensure that the number of jumps are finite and that b(x) > 1 to fulfill the condition k(x) > 1. The resultant
function B(x) can be written as

B(x) = b(x) +

j∑
k=0

hk for xj < x < xj+1, x0 = −2, xn+1 = 2 (67)
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Cells 128 256 512 1024 2048 4096
Error 2.665e-2 1.423e-2 8.438e-3 4.855e-3 2.678e-3 1.325e-3
Rate 0.662 0.900 0.758 0.797 0.858 1.015

Table 4. Brownian Bridge with Jumps : Error Rates for Deterministic Case

∂u

∂t
+
∂k(ω;x)f(u)

∂x
= 0 (x, t) ∈ [−2, 2]×

[
0,

1

10

]
(68a)

u(x, 0) =
1

4
sin
(πx

2

)
+

1

2
f(u) = 4u(1− u) (68b)

Cells 64 128 256 512 1024
MC-FVM 2.132e-1 1.3872e-1 1.003e-1 7.6139e-2 5.7780e-2

Rate - 0.620 0.467 0.397 0.398
MLMC-FVM 2.3452e-1 1.3925e-1 9.8519e-2 6.6764e-2 5.299e-1

Rate - 0.752 0.499 0.561 0.335
Table 5. Brownian Bridge with Jumps : MC and MLMC Errors

Cells 64 128 256 512 1024
MC-FVM 6.7 31.58 254 2012 16380

Rate - 2.236 3.001 2.986 3.025
MLMC-FVM 10.82 30.85 64 252 922

Rate - 1.511 1.052 1.977 1.871

Table 6. Brownian Bridge with Jumps : MC and MLMC Work (in compute second)

6. Conclusion

In this paper, we have considered a scalar conservation law with discontinuous flux in space in one dimen-
sion. We have defined a random entropy solution for the conservation law and have proved its existence and
uniqueness. Further, we have adapted the Multilevel Monte Carlo Finite Volume Method for the problem and
have compared its performance with the Monte Carlo Finite Volume Method, wherein, we have shown that the
Multilevel Monte Carlo Method behaves as expected in the theoretical analysis. In particular, we show that
the Multilevel Monte Carlo method is a more efficient alternative to Monte Carlo methods.
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Risebro was performed while visiting University of Würzburg during Spring of 2017. During this time, he was supported
by Giovanni-Prodi Chair Position at Würzburg University. The work of Christian Klingenberg was supported by German
Academic Exchange Service and Research Council of Norway.
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