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Abstract
We propose an explicit, single-step discontinuous Galerkin method on moving grids using 
the arbitrary Lagrangian–Eulerian approach for one-dimensional Euler equations. The grid 
is moved with the local fluid velocity modified by some smoothing, which is found to con-
siderably reduce the numerical dissipation introduced by Riemann solvers. The scheme 
preserves constant states for any mesh motion and we also study its positivity preservation 
property. Local grid refinement and coarsening are performed to maintain the mesh qual-
ity and avoid the appearance of very small or large cells. Second, higher order methods are 
developed and several test cases are provided to demonstrate the accuracy of the proposed 
scheme.

Keywords Discontinuous Galerkin method · Moving meshes · Arbitrary Lagrangian–
Eulerian · Euler equations

Mathematics Subject Classification 65M60 · 35L04

1 Introduction

Finite volume schemes based on exact or approximate Riemann solvers are used for solv-
ing hyperbolic conservation laws like the Euler equations governing compressible flows. 
These schemes are able to compute discontinuous solutions in a stable manner since they 
have implicit dissipation built into them due to the upwind nature of the schemes. Higher 

Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s4296 
7-019-00054 -5) contains supplementary material, which is available to authorized users.

 * Christian Klingenberg 
 klingenberg@mathematik.uni-wuerzburg.de

 Jayesh Badwaik 
 badwaik.jayesh@gmail.com

 Praveen Chandrashekar 
 praveen@math.tifrbng.res.in

1 Department of Mathematics, University of Würzburg, Würzburg, Germany
2 TIFR Center for Applicable Mathematics, Bangalore, India

http://orcid.org/0000-0003-2033-8204
http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-019-00054-5&domain=pdf
https://doi.org/10.1007/s42967-019-00054-5
https://doi.org/10.1007/s42967-019-00054-5


542 Communications on Applied Mathematics and Computation (2020) 2:541–579

1 3

order schemes are constructed following a reconstruction approach combined with a high 
order time integration scheme. Discontinuous Galerkin methods can be considered as 
higher order generalizations of finite volume methods which also make use of Riemann 
solver technology but do not need a reconstruction step since they evolve a polynomial 
solution inside each cell. While these methods are formally high order accurate on smooth 
solutions, they can still introduce too much numerical dissipation in some situations. Sprin-
gel [1] gives the example of a Kelvin–Helmholtz instability in which adding a large con-
stant velocity to both states leads to suppression of the instability due to excessive numeri-
cal dissipation. This behaviour is attributed to the fact that fixed grid methods based on 
upwind schemes are not Galilean invariant. Upwind schemes, even when they are formally 
high order accurate, are found to be too dissipative when applied to turbulent flows  [2] 
since the numerical viscosity can overwhelm the physical viscosity.

For the linear convection equation ut + aux = 0 , the first-order upwind scheme has the 
modified partial differential equation

which shows that the numerical dissipation is proportional to |a| which is the wave speed. 
In case of Euler equations simulated with a Riemann solver, e.g., the Roe scheme, the wave 
speeds are related to the eigenvalues of the flux Jacobian and the numerical dissipation 
would be proportional to the absolute values of the eigenvalues, e.g., |v − c|, |v|, |v + c| 
where v is the fluid velocity and c is the sound speed. This type of the numerical viscosity 
is not Galilean invariant since the fluid velocity depends on the coordinate frame adopted 
for the description of the flow. Adding a large translational velocity to the coordinate frame 
will increase the numerical viscosity and reduce the accuracy of the numerical solution. 
Such high numerical viscosity can be eliminated or minimized if the grid moves along 
with the flow as in Lagrangian methods [3–5]. However, pure Lagrangian methods encoun-
ter the issue of large grid deformations that occur in highly sheared flows as in the Kel-
vin–Helmholtz problem requiring some form of re-meshing. A related approach is to use 
the arbitrary Lagrangian–Eulerian approach [6, 7] where the mesh velocity can be chosen 
to be close to the local fluid velocity but may be regularized to maintain the mesh qual-
ity. Even in the ALE approach, it may be necessary to perform some local remeshing to 
prevent the grid quality from degrading. In  [1], the mesh is regenerated after every time 
step based on a Delaunay triangulation, which allows it to maintain good mesh quality 
even when the fluid undergoes large shear deformation. However, these methods have been 
restricted to second-order accuracy as they rely on unstructured finite volume schemes on 
general polygonal/polyhedral cells, where achieving higher order accuracy is much more 
difficult compared to structured grids.

Traditionally, ALE methods have been used for problems involving moving boundaries 
as in wing flutter, store separation and other problems involving fluid structure interac-
tion [8–12]. In these applications, the main reason to use ALE is not to minimize the dissipa-
tion in upwind schemes but to account for the moving boundaries and, hence, the grid veloci-
ties are chosen based on boundary motion and with a view to maintain good mesh quality. 
Another class of methods solves the PDE on moving meshes where the mesh motion is deter-
mined based on a monitor function which is designed to detect regions of large gradients in 
the solution, see [13, 14] and the references therein. These methods achieve automatic clus-
tering of grid points in regions of large gradients. ALE schemes have been used to compute 
multi-material flows as in [15], since they are useful to accurately track the material interface. 

�u

�t
+ a

�u

�x
=

1

2
|a|h(1 − �)

�2u

�x2
+ O(h2), � =

|a|Δt
h

,
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The mesh velocity was chosen to be equal to the contact speed but away from the mate-
rial contact, the velocity was chosen by linear interpolation and was not close to Lagrangian. 
There are other methods for choosing the mesh velocity which have been studied in [16, 17]. 
Lax–Wendroff type ALE schemes for compressible flows have been developed in [18]. Finite 
volume schemes based on the ADER approach have been developed on unstructured grids 
[19–21]. The theoretical analysis of ALE-DG schemes in the framework of Runge–Kutta 
time stepping for conservation laws has been done in [22].

In the present work, we consider only the one-dimensional problem to set down the fun-
damental principles with which in an upcoming work, we shall solve the multi-dimensional 
problem. The numerical method developed here will be usable in the multiple dimensions, 
but additional work is required in multiple dimensions to maintain a good mesh quality 
under fluid flow deformation. We develop an explicit discontinuous Galerkin scheme that is 
conservative on moving meshes and automatically satisfies the geometric conservation law. 
The scheme is a single-step method which is achieved using a predictor computed from a 
Runge–Kutta scheme that is local to each cell in the sense that it does not require any data 
from neighbouring cells and belongs to the class of schemes called the ADER method. Due 
to the single-step nature of the scheme, the TVD limiter has to be applied only once in each 
time step unlike in multi-stage Runge–Kutta schemes where the limiter is applied after each 
stage update. This nature of the ADER scheme can reduce its computational expense, espe-
cially in multi-dimensional problems and while performing parallel computations. The mesh 
velocity is specified at each cell face as the local velocity with some smoothing. We analyze 
the positivity of the first-order scheme using the Rusanov flux and derive a CFL condition. 
The scheme is shown to be exact for steady moving contact waves and the solutions are invar-
iant to the motion of the coordinate frame. Due to the Lagrangian nature, the Roe scheme 
does not require any entropy fix. However, we identify the possibility of spurious contact 
waves arising in some situations. This is due to the vanishing of the eigenvalue correspond-
ing to the contact wave. While the cell averages are well predicted, the higher moments of the 
solution can be inaccurate. This behaviour of Lagrangian DG schemes does not seem to have 
been reported in the literature. We propose a fix for the eigenvalue in the spirit of the entropy 
fix of Harten [23] that prevents the spurious contact waves from occurring in the solution. 
The methodology developed here will be extended to multi-dimensional flows in a future 
work with a view towards handling complex sheared flows.

The rest of the paper is organized as follows. Section 2 introduces the Euler equation model 
that is used in the rest of the paper. In Sect. 3, we explain the derivation of the scheme on a 
moving mesh together with the quadrature approximations and computation of mesh velocity. 
The computation of the predicted solution is detailed in Sect. 4. The TVD type limiter is pre-
sented in Sect. 5 for a non-uniform mesh, Sect. 6 shows the positivity of the first-order scheme 
and Sect. 7 shows the preservation of constant states. The grid coarsening and refinement strat-
egy are explained in Sect. 8, while Sect. 9 presents a series of numerical results.

2  Euler Equations

The Euler equations model the conservation of mass, momentum and energy, and can be 
written as a system of coupled partial differential equations laws of the form

(1)�u

�t
+

�f (u)

�x
= 0,
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where u is called the vector of conserved variables and f (u) is the corresponding flux given 
by

In the above expressions, � is the density, v is the fluid velocity, p is the pressure and E is 
the total energy per unit volume, which for an ideal gas is given by E = p∕(� − 1) + �v2∕2 , 
with 𝛾 > 1 being the ratio of specific heats at constant pressure and volume, and 
H = (E + p)∕� is the enthalpy. The Euler equations form a hyperbolic system; the flux Jac-
obian A(u) = f �(u) has real eigenvalues and linearly independent eigenvectors. The eigen-
values are v − c, v, v + c where c =

√
�p∕� is the speed of sound and the corresponding 

right eigenvectors are given by

The hyperbolic property implies that A can be diagonalized as A = R�R−1 where R is the 
matrix formed by the right eigenvectors as the columns and � is the diagonal matrix of 
eigenvalues.

3  Discontinuous Galerkin Method

3.1  Mesh and Solution Space

Consider a partition of the domain into disjoint cells with the jth cell being denoted by 
Cj(t) = [x

j−
1

2

(t), x
j+

1

2

(t)] . As the notation shows, the cell boundaries are time dependent which 
means that the cell is moving in some specified manner. The time levels are denoted by tn with 
the time step Δtn = tn+1 − tn . The boundaries of the cells move with a constant velocity in the 
time interval (tn, tn+1) given by

which defines a cell in space–time as shown in Fig. 1. The algorithm to choose the mesh 
velocity wn

j+
1

2

 is explained in a later section. The location of the cell boundaries is given by

u =

⎡
⎢⎢⎣

�

�v

E

⎤
⎥⎥⎦
, f (u) =

⎡
⎢⎢⎣

�v

p + �v2

�Hv

⎤
⎥⎥⎦
.

(2)r1 =

⎡⎢⎢⎣

1

v − c

H − vc

⎤⎥⎥⎦
, r2 =

⎡⎢⎢⎣

1

v
1

2
v2

⎤⎥⎥⎦
, r3 =

⎡⎢⎢⎣

1

v + c

H + vc

⎤⎥⎥⎦
.

w
j+

1

2

(t) = wn

j+
1

2

, tn < t < tn+1,

Fig. 1  Example of a space–time 
cell in the time interval (t

n
, t
n+1)
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Let xj(t) and hj(t) denote the center of the cell Cj(t) and its length, i.e.,

Let w(x, t) be the continuous linear interpolation of the mesh velocity which is given by

We will approximate the solution of the conservation law by piecewise polynomials 
which are allowed to be discontinuous across the cell boundaries as shown in Fig. 2. For a 
given degree k ≥ 0 , the solution in the jth cell is given by

where {uj,m ∈ ℝ3, 0 ≤ m ≤ k} are the degrees of freedom associated with the jth cell. The 
basis functions �m are defined in terms of Legendre polynomials

where Pm ∶ [−1,+1] → ℝ is the Legendre polynomial of degree m. The above definition of 
the basis functions implies the following orthogonality property:

We will sometimes also write the solution in the jth cell in terms of the reference coordi-
nates � as

x
j+

1

2

(t) = xn
j+

1

2

+ (t − tn)w
n

j+
1

2

, tn ≤ t ≤ tn+1.

xj(t) =
1

2
(x

j−
1

2

(t) + x
j+

1

2

(t)), hj(t) = x
j+

1

2

(t) − x
j−

1

2

(t).

w(x, t) =
x
j+

1

2

(t) − x

hj(t)
wn

j−
1

2

+
x − x

j−
1

2

(t)

hj(t)
wn

j+
1

2

, x ∈ Cj(t), t ∈ (tn, tn+1).

uh(x, t) =

k∑
m=0

uj,m(t)�m(x, t), x ∈ Cj(t),

𝜑m(x, t) = �̂�m(𝜉) =
√
2m + 1Pm(𝜉), 𝜉 =

x − xj(t)

1

2
hj(t)

,

(3)�
x
j+

1
2

(t)

x
j−

1
2

(t)

�l(x, t)�m(x, t)dx = hj(t)�lm, 0 ≤ l,m ≤ k.

uh(𝜉, t) =

k∑
m=0

uj,m(t)�̂�m(𝜉),

Fig. 2  Example of a discon-
tinuous piecewise polynomial 
solution
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and we will use the same notation u to denote both functions.

3.2  Derivation of the Scheme

To derive the DG scheme on a moving mesh, let us introduce the change of variable 
(x, t) → (�, �) given by

For any 0 ≤ l ≤ k , we now calculate the rate of change of the lth moment of the solution 
starting from

wherein we used the change of variables given by  (4). But we also have the inverse 
transform

and hence

Using the above relations, we can easily show that

Moreover

since w(x, t) is linear in x and hence �w
�x

 is constant inside each cell. Hence, the lth moment 
evolves according to

(4)� = t, � =
x − xj(t)

1

2
hj(t)

.

d

dt ∫
x
j+

1
2

(t)

x
j−

1
2

(t)

u(x, t)𝜑l(x, t)dx =
d

d𝜏 ∫
+1

−1
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1

2
hj(𝜏)d𝜉

=
1

2 ∫
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−1

[
hj(𝜏)

𝜕u

𝜕𝜏
+ u

dhj

d𝜏

]
�̂�(𝜉)d𝜉,

t = �, x = xj(�) +
�

2
hj(�),

�t

��
= 1,
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��
=

dxj
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2
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2
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�
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(w
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1
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1

2
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��
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(x, t).

dhj
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2
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d

dt ∫
x
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1
2

(t)

x
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1
2
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u(x, t)𝜑l(x, t)dx = ∫
+1
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(
𝜕u
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𝜕x
+ u
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1

2
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x
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x
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+

𝜕

𝜕x
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𝜑l(x, t)dx,
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where we have transformed back to the physical coordinates and made use of the conserva-
tion law (1) to replace the time derivative of the solution with the flux derivative. Define 
the ALE flux

Performing an integration by parts in the x variable, we obtain

where we have introduced the numerical flux

which provides an approximation to the ALE flux, see Appendix A. Integrating over the 
time interval (tn, tn+1) and using (3), we obtain

The above scheme has an implicit nature since the unknown solution uh appears on the 
right-hand side integrals whereas we only know the solution at time tn . To obtain an 
explicit scheme, we assume that we have available with us a predicted solution Uh in the 
time interval (tn, tn+1) , which is used in the time integrals to obtain an explicit scheme. 
Moreover, the integrals are computed using quadrature in space and time leading to the 
fully discrete scheme

where �r is the weight for time quadrature and �q is the weight for spatial quadrature. For 
the spatial integral, we will use q = k + 1 point Gauss quadrature. For the time integral, we 
will use the mid-point rule for k = 1 and two-point Gauss quadrature for k = 2, 3 . Since the 
mesh is moving, the spatial quadrature points xq depend on the quadrature time �r though 
this is not clear from the notation. In practice, the integrals are computed by mapping the 
cell to the reference cell, and the basis functions and its derivatives are also evaluated on 
the reference cell. The quadrature points in the reference cell are independent of time due 
to the linear mesh evolution.

(5)g(u,w) = f (u) − wu.

d

dt ∫
x
j+

1
2

(t)

x
j−

1
2

(t)

uh(x, t)𝜑l(x, t)dx =∫
x
j+

1
2

(t)

x
j−

1
2

(t)

g(uh,w)
𝜕

𝜕x
𝜑l(x, t)dx

+ ĝ
j−

1

2

(uh(t))𝜑l(x
+

j−
1

2

, t) − ĝ
j+

1

2

(uh(t))𝜑l(x
−

j+
1

2

, t),

ĝ
j+

1

2

(uh(t)) = ĝ(u−
j+

1

2

(t),u+
j+

1

2

(t),w
j+

1

2

(t)),

hn+1
j

un+1
j,l

= hn
j
un
j,l
+ ∫

tn+1
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∫

x
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1
2

(t)

x
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1
2

(t)

g(uh,w)
𝜕

𝜕x
𝜑l(x, t)dxdt

+ ∫
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[ĝ
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1

2

(t)𝜑l(x
+
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1

2

, t) − ĝ
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−
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j
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+ Δtn
∑
r
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𝜂qg(Uh(xq, 𝜏r),w(xq, 𝜏r))
𝜕
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+ Δtn
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2
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1

2

(Uh(𝜏r))𝜑l(x
−
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1

2
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3.3  Mesh Velocity

The mesh velocity must be close to the local fluid velocity to have a Lagrangian charac-
ter to the scheme. Since the solution is discontinuous, there is no unique fluid velocity at 
the mesh boundaries. Some researchers, especially in the context of Lagrangian meth-
ods, solve a Riemann problem at the cell face to determine the face velocity. Since we 
use an ALE formulation, we do not require the exact fluid velocity which is anyway not 
available to use since we only have a predicted solution. Following the exact trajectory 
of the fluid would also lead to curved trajectories for the grid point, which is an unnec-
essary complication. In our work, we make two different choices for the mesh velocities.

 i. The first choice is to take an average of the two velocities at every face. In the numeri-
cal results, we refer to this as ADG 

 ii. The second choice is to solve a linearized Riemann problem at the face at time tn . In 
the numerical results, we refer to this as RDG. For simplicity of notation, let the solu-
tion to the left of the face x

j+
1

2

 be represented as u−
j+

1

2

 and the solution to the right be 

represented as u+
j+

1

2

 . Then, 

We will also perform some smoothing of the mesh velocity, e.g., the actual face velocity 
is computed from

Note that our algorithm to choose the mesh velocity is very local and hence easy and effi-
cient to implement as it does not require the solution of any global problems. In Springel 
[1], the mesh velocity is adjusted so that the cells remain nearly isotropic which leads to 
smoothly varying cell sizes. Such an approach leads to many parameters that need to be 
selected and we did not find a good way to make this choice that works well for a range of 
problems. Instead, we will make use of mesh refinement and coarsening to maintain the 
quality of cells, i.e., to prevent very small or large cells from occurring in the grid. The 
use of a DG scheme makes it easy to perform such local mesh adaptation without loss of 
accuracy.

Remark 1 Consider the application of the proposed ALE-DG scheme to the linear advection 
equation ut + aux = 0 . In this case, the mesh velocity is equal to the advection velocity 
w
j+

1

2

= a , i.e., the cells move along the characteristics. This implies that the ALE flux 
g(u,w) = au − wu = 0 and also the numerical flux ĝ

j+
1

2

= 0 . Thus, the DG scheme reduces to

w̃n

j+
1

2

=
1

2

[
v

(
x−
j+

1

2

, tn

)
+ v

(
x+
j+

1

2

, tn

)]
.

w̃n

j+
1

2

=
𝜌n
j
cn
j
vn
j
+ 𝜌n

j+1
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j+1
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j+1

𝜌n
j
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j
+ 𝜌n

j+1
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j+1

+
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j
− pn

j+1

𝜌n
j
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j
+ 𝜌n

j+1
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j+1

.

wn

j+
1

2

=
1

3

(
w̃n

j−
1

2

+ w̃n

j+
1

2

+ w̃n

j+
3

2

)
.

∫
xn+1

j+
1
2

xn+1

j−
1
2

uh(x, tn+1)�l(x, tn+1)dx = ∫
xn
j+

1
2

xn
j−

1
2

uh(x, tn)�l(x, tn)dx, l = 0, 1,⋯ , k,
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so that the solution at time tn has been advected exactly to the solution at time tn+1 . Note 
that there is no time step restriction involved in this case and the accuracy of the predicted 
solution is also not relevant. If the initial condition has a discontinuity coinciding with a 
cell face, then the scheme advects the discontinuity exactly without any diffusion.

4  Computing the Predictor

The predicted solution is used to approximate the flux integrals over the time interval (tn, tn+1) 
and the method to compute this must be local, i.e., it must not require solution from neigh-
bouring cells. Several methods for computing the predictor have been reviewed in [24]. The 
simplest approach is to use a Taylor expansion in space and time. Since the cells are moving, 
the Taylor expansion has to be performed along the trajectory of the mesh motion. For a sec-
ond-order scheme, an expansion retaining only linear terms in t and x is sufficient. Consider 
a quadrature point (xq, �r) , the Taylor expansion of the solution around the cell center xn

j
 and 

time level tn yields

and the predicted solution is given by truncating the Taylor expansion at linear terms, lead-
ing to

Using the conservation law, the time derivative is written as �u
�t

= −
�f

�x
= −A

�u

�x
 so that the 

predictor is given by

The above predictor is used for the case of polynomial degree k = 1 . This procedure can 
be extended to higher orders by including more terms in the Taylor expansion but the 
algebra becomes complicated. Instead we will adopt the approach of continuous explicit 
Runge–Kutta (CERK) schemes [25] to approximate the predictor.

Let us choose a set of (k + 1) distinct nodes, e.g., Gauss–Legendre or Gauss–Lobatto 
nodes, which uniquely define the polynomial of degree k. These nodes are moving with veloc-
ity w(x, t), so that the time evolution of the solution at node xm is governed by

uh(xq, �r) = uh(x
n
j
, tn) + (�r − tn)

�uh

�t
(xn

j
, tn) + (xq − xn

j
)
�uh

�x
(xn

j
, tn)

+ O(�r − tn)
2 + O(xq − xn

j
)2,

U(xq, �r) = uh(x
n
j
, tn) + (�r − tn)

�uh

�t
(xn

j
, tn) + (xq − xn

j
)
�uh

�x
(xn

j
, tn).

(7)Uh(xq, �r) = un
h
(xn

j
) − (�r − tn)

[
A(un

h
(xn

j
)) − wqI

]�un
h

�x
(xn

j
).

dUm

dt
=

�

�t
Uh(xm, t) + w(xm, t)

�

�x
Uh(xm, t)

= −
�

�x
f (Uh(xm, t)) + w(xm, t)

�

�x
Uh(xm, t)

= −[A(Um(t)) − wm(t)I]
�

�x
Uh(xm, t) =∶ Km(t),
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wherein we have made use of the PDE to write the time derivative in terms of spatial deriv-
ative of the flux. This equation is solved with the initial condition

Using a Runge–Kutta scheme of sufficient order (see Appendix B), we will approximate 
the solution at these nodes as

where Km,s = Km(tn + �sΔtn) , �sΔtn is the stage time and bs are certain polynomials related 
to the CERK scheme and given in Appendix B. Note that we are evolving the nodal values 
but the computation of Km,s requires the modal representation of the solution in order to 
calculate spatial derivative of the solution.

Once the predictor is computed as above, it must be evaluated at the quadrature point 
(xq, �r) as follows. For each time quadrature point �r ∈ (tn, tn+1),

 i. compute nodal values Um(�r) , m = 0, 1,⋯ , k;

 ii. for each r, convert the nodal values to modal coefficients um,r , m = 0, 1,⋯ , k;

 iii. evaluate predictor Uh(xq, �r) =
k∑

m=0

um,r�m(xq, �r).

The conversion from nodal to modal values is accomplished through a Vandermonde 
matrix of size (k + 1) × (k + 1) which is the same for every cell and can be inverted once 
before the iterations start. The predictor is also computed at the cell boundaries using the 
above procedure. Figures 3 and 4 show the quadrature points used in the second-, third- 
and fourth-order scheme. For the second-order scheme, the values at ∙ and □ points are 
obtained from the predictor based on Taylor expansion as given in (7). For third- and 

Um(tn) = uh(xm, tn).

Um(t) = uh(xm, tn) +

ns∑
s=1

bs((t − tn)∕Δtn)Km,s, t ∈ [tn, tn+1), m = 0, 1,⋯ , k,

Fig. 3  Quadrature points for 
second-order scheme

Fig. 4  Quadrature points for 
third-order scheme
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fourth-order schemes, the nodal values × are evolved forward in time by the CERK scheme 
and evaluated at the ∙ points. The ∙ point values are converted to modal coefficients using 
which the solution at the □ points is computed.

Remark 2 By looping over each cell in the mesh, the predicted solution is computed in 
each cell and the cell integral in (6) is evaluated. The trace values U−

j+
1

2

(�r) and U+

j−
1

2

(�r) at 

the □ points needed for quadrature in time are computed and stored. These are later used in 
a loop over the cell faces where the numerical flux is evaluated. Thus, the algorithm is eas-
ily parallelizable on multiple core machines and/or using threads.

5  Control of Oscillation by Limiting

High order schemes for hyperbolic equations suffer from spurious numerical oscillations 
when discontinuities or large gradients are present in the solution which cannot be accu-
rately resolved on the mesh. In the case of scalar problems, this is a manifestation of loss 
of TVD property and hence limiters are used to satisfy some form of TVD condition. In 
the case of DG schemes, the limiter is used as a post-processor which is applied on the 
solution after the time update has been performed. If the limiter detects that the solution 
is oscillatory, then the solution polynomial is reduced to at most a linear polynomial with 
a limited slope. In the present scheme, the limiter is applied after the solution is updated 
from time tn to time tn+1 , i.e., the solution un+1

h
 obtained from (6) is post-processed by the 

limiter. Since the mesh is inherently non-uniform due to it being moved with the flow, we 
modify the standard TVD limiter to account for this non-uniformity. Also, since we are 
solving a system of conservation laws, the limiter is applied on the local characteristic vari-
ables which gives better results than applying it directly on the conserved variables [26].

The solution in cell j can be written as1

where ūj is the cell average value and sj is proportional to the derivative of the solution at 
the cell center. Let Rj , Lj denote the matrix of right and left eigenvectors evaluated at the 
cell average value ūj which satisfy Lj = R−1

j
 , and the right eigenvectors are given in (2). The 

local characteristic variables are defined by ū∗ = Ljū and s∗ = Ljs . We first compute the 
limited slope of the characteristic variables from

where the minmod function is defined by

uh(x) = ūj +
x − xj
1

2
hj

sj + higher order terms,

s∗∗
j

= hj minmod

(
s∗
j

hj
,

ū∗
j
− ū∗

j−1

1

2
(hj−1 + hj)

,
ū∗
j+1

− ū∗
j

1

2
(hj + hj+1)

)
,

minmod(a, b, c) =

{
smin(|a|, |b|, |c|), if s = sign(a) = sign(b) = sign(c),

0, otherwise.

1 We suppress the time variable for clarity of notation.
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If s∗∗
j

= s∗
j
 , then we retain the solution as it is, and otherwise, the solution is modified to

This corresponds to a TVD limiter which is known to lose accuracy at smooth extrema [27] 
since the minmod function returns zero slope at local extrema. The TVB limiter corre-
sponds to replacing the minmod limiter function with the following function:

where the parameter M is an estimate of the second derivative of the solution at smooth 
extrema [27] and has to be chosen by the user.

6  Positivity Property

The solutions of Euler equations are well defined only if the density and pressure are pos-
itive quantities. This is not a priori guaranteed by the DG scheme even when the TVD 
limiter is applied. In the case of Runge–Kutta DG schemes, a positivity limiter has been 
developed in [28] which preserves accuracy in smooth regions. This scheme is built on a 
positive first-order finite volume scheme. Consider the first-order version of the ALE-DG 
scheme which is a finite volume scheme given by

The only degree of freedom is the cell average value and the solution is piecewise constant. 
We will analyze the positivity of this scheme for the case of the Rusanov flux which is 
given in 1. The update equation can be rewritten as

From the definition of the Rusanov flux formula, we can easily see that2

uh(x) = ūj +
x − xj
1

2
hj

Rjs
∗∗
j
.

(8)minmod(a, b, c) =

{
a, if |a| ≤ Mh2,

minmod(a, b, c), otherwise,

(9)hn+1
j

ūn+1
j

= hn
j
ūn
j
− Δtn[ĝ

n

j+
1

2

− ĝn
j−

1

2

].

hn+1
j

ūn+1
j

=

[
hn
j
−

Δtn

2

(
𝜆n
j−

1

2

+ wn

j−
1

2

+ 𝜆n
j+

1

2

− wn

j+
1

2

)]
ūn
j

+
Δtn

2

[(
𝜆n
j−

1

2

− wn

j−
1

2

)
ūn
j−1

+ f n
j−1

]

+
Δtn

2

[(
𝜆n
j+

1

2

+ wn

j+
1

2

)
ūn
j+1

− f n
j+1

]

= an
j
ūn
j
+

Δtn

2
Bn
j
+

Δtn

2
Cn
j
.

(
𝜆
j−

1

2

− w
j−

1

2

)
+ vj−1 ≥ cj−1 > 0,

(
𝜆
j+

1

2

+ w
j+

1

2

)
− vj+1 ≥ cj+1 > 0.

2 We drop the superscript n in some of these expressions.
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Consider the first component of Bn
j

Consider the first component of Cn
j

The pressure corresponding to Bn
j
 is

and similarly the pressure corresponding to Cn
j
 is non-negative. Hence, if the coefficient in 

term an
j
 is positive, then the scheme is positive. This requires the CFL condition

The time step will also be restricted to ensure that the cell size does not change too much 
in one time step. If we demand that the cell size does not change by more than a fraction 
� ∈ (0, 1) , then we need to ensure that the time step satisfies

Combining the previous two conditions, we obtain the following condition on the time 
step:

We can now state the following result on the positivity of the first-order finite volume 
scheme on moving meshes.

Theorem 1 The scheme (9) with the Rusanov flux is positivity preserving if the time step 
condition (10) is satisfied.

(
𝜆
j−

1

2

− w
j−

1

2

)
𝜌j−1 + 𝜌j−1vj−1 ≥

(
|vj−1 − w

j−
1

2

| + cj−1 − w
j−

1

2

+ vj−1

)
𝜌j−1

≥cj−1𝜌j−1 > 0.

(
𝜆
j+

1

2

+ w
j+

1

2

)
𝜌j+1 − 𝜌j+1vj+1 ≥(|vj − w

j+
1

2

| + cj+1 + wj−1 − vj+1)𝜌j+1

≥cj+1𝜌j+1 > 0.

pj−1

(
−pj−1 +

2�j−1(vj−1 + �
j−

1

2

− w
j−

1

2

)2

� − 1

)
≥ pj−1�j−1c

2
j−1

� + 1

� − 1
≥ 0,

Δtn ≤
2hn

j

�n
j−

1

2

+ wn

j−
1

2

+ �n
j+

1

2

− wn

j+
1

2

.

Δtn ≤
�hn

j

|wn

j+
1

2

− wn

j−
1

2

| .

(10)Δtn ≤ Δt(1)
n

∶= min
j

⎧
⎪⎪⎨⎪⎪⎩

�
1 −

1

2
�

�
hn
j

1

2

�
�n
j−

1

2

+ �n
j+

1

2

� ,
�hn

j

����w
n

j+
1

2

− wn

j−
1

2

����

⎫
⎪⎪⎬⎪⎪⎭

.
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Remark 3 In this work, we have not attempted to prove the positivity of the scheme for 
other numerical fluxes. We also do not have a proof of positivity for higher order version 
of the scheme. In the computations, we use the positivity preserving limiter of [28] which 
leads to robust schemes which preserve the positivity of the cell average value in all the test 
cases.

7  Preservation of Constant States

An important property of schemes on moving meshes is their ability to preserve constant 
states for any mesh motion. This is related to the conservation of cell volumes in relation 
to the mesh motion. In our scheme, if we start with a constant state un

h
= c , then the predic-

tor is also constant in the space–time interval, i.e., Uh = c . The space–time terms in (6) are 
polynomials with degree k + 1 in space and degree one in time and these are exactly inte-
grated by the chosen quadrature rule. The flux terms at cell boundaries in (6) are of degree 
one in time and these are also exactly integrated. Hence, the scheme (6) can be written as

where un
j,0

= c and un
j,l
= 0 for l = 1, 2,⋯ , k . Due to the constant predictor and by consist-

ency of the numerical flux

Moreover, for l = 1, 2,⋯ , k,

where we have used the property that w is an affine function of x and �l are orthogonal. 
This implies that un+1

j,l
= 0 for l = 1, 2,⋯ , k . For l = 0 , we get

hn+1
j

un+1
j,l

= hn
j
un
j,l
+ ∫

tn+1

tn
∫

x
j+

1
2

(t)

x
j−

1
2

(t)

g(c,w)
𝜕

𝜕x
𝜑l(x, t)dxdt

+ ∫
tn+1

tn

[
ĝ
j−

1

2

(t)𝜑l

(
x+
j−

1

2

, t

)
− ĝ

j+
1

2

(t)𝜑l

(
x−
j+

1

2

, t

)]
dt,

ĝ
j+

1

2

(t) = f (c) − wn

j+
1

2

c.

∫
tn+1

tn
∫

x
j+

1
2

(t)

x
j−

1
2

(t)

g(c,w)
𝜕

𝜕x
𝜑l(x, t)dxdt + ∫

tn+1

tn

�
ĝ
j−

1

2

(t)𝜑l

�
x+
j−

1

2

, t

�
− ĝ

j+
1

2

(t)𝜑l

�
x−
j+

1

2

, t

��
dt

= ∫
tn+1

tn
∫

x
j+

1
2

(t)

x
j−

1
2

(t)

𝜕

𝜕x
g(c,w)𝜑l(x, t)dxdt + ∫

tn+1

tn

�
ĝ
j−

1

2

(t)𝜑l

�
x+
j−

1

2

, t

�
− ĝ

j+
1

2

(t)𝜑l

�
x−
j+

1

2

, t

��
dt

− ∫
tn+1

tn
∫

x
j+

1
2

(t)

x
j−

1
2

(t)

𝜑l(x, t)
𝜕

𝜕x
g(c,w)dxdt

= −∫
tn+1

tn

𝜕

𝜕x
g(c,w)

⎛
⎜⎜⎝∫

x
j+

1
2

(t)

x
j−

1
2

(t)

𝜑l(x, t)dx

⎞⎟⎟⎠
dt = 0,

hn+1
j

un+1
j,0

= hn
j
c + ∫

tn+1

tn

[
ĝ
j−

1

2

(t) − ĝ
j+

1

2

(t)

]
dt =

[
hn
j
+

(
wn

j−
1

2

− wn

j+
1

2

)
Δt

]
c,
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and since hn+1
j

= hn
j
+

(
wn

j−
1

2

− wn

j+
1

2

)
Δt , we obtain uj,0 = c which implies that un+1

h
= c.

8  Grid Coarsening and Refinement

The size of the cells can change considerably during the time evolution process due to the near 
Lagrangian movement of the cell boundaries. Near shocks, the cells will be compressed to 
smaller sizes which will reduce the allowable time step since a CFL condition has to be satis-
fied. In some regions, e.g., inside expansion fans, the cell size can increase considerably which 
may lead to loss of accuracy. To avoid too small or too large cells from occurring in the grid, 
we implement cell merging and refinement into our scheme. If a cell becomes smaller than 
some specified size hmin , then it is merged with one of its neighbouring cells and the solution 
is transferred from the two cells to the new cell by performing an L2 projection. If a cell size 
becomes larger than some specified size hmax , then this cell is refined into two cells by division 
and the solution is again transferred by the L2 projection. The use of the L2 projection for solu-
tion transfer ensures the conservation of mass, momentum and energy and preserves the accu-
racy in smooth regions. We also ensure that the cell sizes do not change drastically between 
neighbouring cells. To keep a track of refinement of cells, each cell is assigned an initial level 
equal to 0. The daughter cells created during refinement are assigned a level incremented from 
the parent cell, while the coarsened cells are assigned a level decremented from the parent cell.

The algorithm for refinement and coarsening is carried out in three sweeps over all the 
active cells. In the first sweep, we mark the cells for refinement or coarsening based on their 
size and the level of neighboring cells. Cells are marked for coarsening if the size is less than 
a pre-specified minimum size. They are marked for refinement if either the size of the cell is 
larger than the maximum size or if the level of the cell is less than the level of the neighboring 
cells. If none of the conditions are satisfied, the cells are marked for no change. In the second 
sweep, a cell is marked for refinement if both the neighboring cells are marked for refinement. 
A cell is also marked for refinement if the size of the cell is larger than twice the size of either 
of the neighboring cells, and is also larger than twice the minimum size. The last condition is 
inserted to prevent a cell being alternately marked for refinement and coarsening in consecu-
tive adaptation cycles. In the third and final sweeps, we again mark cells for refinement if both 
the neighboring cells are marked for refinement. Further, we ensure that a cell marked for 
refinement does not have a neighboring cell marked for a coarsening, since this can lead to an 
inconsistent mesh.

9  Numerical Results

The numerical tests are performed with polynomials of degree one, two and three, together 
with the linear Taylor expansion, two stage CERK and four stage CERK, respectively, for the 
computation of the predictor. For the quadrature in time, we use the mid-point rule, two- and 
three-point Gauss–Legendre quadrature, respectively. The time step is chosen using the CFL 
condition,

Δtn =
CFL

2k + 1
Δt(1)

n
,
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where Δt(1)
n

 is given by (10), and the factor (2k + 1) comes from linear stability analysis 
[27]. In most of the computations, we use CFL = 0.9 unless stated otherwise. We observe 
that the results using the average or linearized Riemann velocity are quite similar. We use 
the average velocity for most of the results and show the comparison between the two 
velocities for some results. The main steps in the algorithm within one time step tn → tn+1 
are as follows:

 i. choose the mesh velocity w
j+

1

2

;

 ii. choose the time step Δtn;
 iii. compute the predictor Uh;

 iv. update the solution un
h
 to the next time level un+1

h
;

 v. apply the TVD/TVB limiter on un+1
h

;

 vi. apply the positivity limiter on un+1
h

 from [28];
 vii. perform grid refinement/coarsening.

In all the solution plots given below, symbols denote the cell average value.

9.1  Order of Accuracy

We study the convergence rate of the schemes by applying them to a problem with a known 
smooth solution. The initial condition is taken as

whose exact solution is �(x, t) = �(x − t, 0) , u(x, t) = 1 , p(x, t) = 1 . The initial domain 
is [−5,+5] and the final time is t = 1 units. The results are presented using Rusanov and 

�(x, 0) = 1 + exp(−10x2), u(x, 0) = 1, p(x, 0) = 1,

Table 1  Order of accuracy study 
on static mesh using Rusanov 
flux

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 4.370E−02 – 3.498E−03 – 3.883E−04 –
200 6.611E−03 2.725 4.766E−04 2.876 1.620E−05 4.583
400 1.332E−03 2.518 6.415E−05 2.885 9.376E−07 4.347
800 3.151E−04 2.372 8.246E−06 2.910 5.763E−08 4.239
1 600 7.846E−05 2.280 1.031E−06 2.932 3.595E−09 4.180

Table 2  Order of accuracy study 
on moving mesh using Rusanov 
flux

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 2.331E−02 – 3.979E−03 – 8.633E−04 –
200 6.139E−03 1.9250 4.058E−04 3.294 1.185E−05 6.186
400 1.406E−03 2.0258 5.250E−05 3.122 7.079E−07 5.126
800 3.375E−04 2.0366 6.626E−06 3.077 4.340E−08 4.760
1 600 8.278E−05 2.0344 8.304E−07 3.057 2.689E−09 4.573
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HLLC numerical fluxes. The L2 norm of the error in density is shown in Tables 1 and 3 for 
the static mesh and in Tables 2 and 4 for the moving mesh. In each case, we see that the 
error behaves as O(hk+1) which is the optimal rate we can expect for smooth solutions. In 
Table 5, we show that the ALE DG methods preserve its higher order in the presence of a 
limiter.

The mesh velocity is constant since the fluid velocity is constant. To study the effect 
of perturbations in mesh velocity, we add a random perturbation to each mesh velocity, 
w
j+

1

2

← (1 + �r
j+

1

2

)w
j+

1

2

 where r
j+

1

2

 is a uniform random variable in [−1,+1] and � = 0.05 
and a sample velocity distribution is shown in Fig.  5. Note that this randomization is 
performed in each time step with different random variables drawn for each face. For 
the moving mesh, there is no unique cell size and the convergence rate is computed 
based on initial mesh spacing which is inversely proportional to the number of cells. 
From Table  6 which shows results using HLLC flux, we again observe that the error 
reduces at the optional rate of k + 1 even when the mesh velocity is not very smooth.

Table 3  Order of accuracy study 
on static mesh using HLLC flux

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 4.582E−02 – 3.952E−03 – 3.464E−04 –
200 9.611E−03 2.253 4.048E−04 3.287 2.058E−05 4.073
400 2.052E−03 2.240 4.640E−05 3.206 1.287E−06 4.036
800 4.803E−04 2.192 5.623E−06 3.152 8.061E−08 4.023
1 600 1.184E−04 2.149 6.929E−07 3.119 5.050E−09 4.016

Table 4  Order of accuracy study 
on moving mesh using HLLC 
flux

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 1.590E−02 – 1.626E−03 – 1.962E−04 –
200 4.042E−03 1.977 2.072E−04 2.972 1.269E−05 3.950
400 1.014E−03 1.985 2.605E−05 2.982 7.983E−07 3.971
800 2.538E−04 1.990 3.261E−06 2.988 4.997E−08 3.980
1 600 6.349E−05 1.992 4.077E−07 2.991 3.124E−09 3.985

Table 5  Order of accuracy 
study on moving mesh using 
Rusanov flux using higher order 
limiter [29]

N k = 1 k = 2

Error Rate Error Rate

100 2.053E−02 – 2.277E−03 –
200 4.312E−03 2.251 3.425E−04 2.732
400 1.031E−03 2.064 4.565E−05 2.907
800 2.550E−04 2.015 5.812E−06 2.973
1 600 6.356E−05 2.004 7.315E−07 2.990
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9.2  Smooth Test Case with Non‑constant Velocity

We also test the accuracy of our schemes on a isentropic problem with smooth solutions. In 
the test case, the initial conditions are given by

with � = 3 and periodic boundary conditions. For this kind of special isentropic problem, 
the Euler equations are equivalent to the two Burgers equations in terms of their two Rie-
mann invariants which can then be used to derive the analytical solution. The errors are 
then computed with respect to the given analytical solution. In contrast to the previous test 

(11)�(x, 0) = 1 + 0.999 999 5 sin(�x), u(x, 0) = 0, p(x, 0) = �� (x, 0)

Fig. 5  Example of randomized 
velocity distribution for smooth 
test case

Table 6  Order of accuracy study 
on moving mesh using HLLC 
flux with randomly perturbed 
mesh velocity

N k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

100 1.735E−02 – 1.798E−03 – 2.351E−04 –
200 4.179E−03 2.051 2.848E−04 2.676 1.416E−05 4.069
400 1.054E−03 2.035 4.301E−05 2.703 8.578E−07 4.041
800 2.615E−04 1.943 6.012E−06 2.838 5.476E−08 3.958
1 600 7.279E−05 1.852 8.000E−07 2.909 3.505E−09 3.966

Table 7  Order of accuracy 
study on fixed mesh using Roe 
flux with non-constant velocity 
smooth test case

N k = 1 k = 2

Error Rate Error Rate

100 8.535E−03 – 1.033E−03 –
200 1.958E−03 2.124 1.221E−04 3.08
400 4.721E−04 2.052 1.581E−05 2.95
800 1.238E−04 1.931 2.14E−06 2.89
1 600 3.563E−05 1.796 2.63E−07 3.02
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case, the velocity and pressure are not constant which makes this a more challenging test 
case. We run the simulation with a WENO-type limiter from [28] and the positivity limiter 
enabled. As we can see from Tables 7 and 8, the rate of convergence is maintained for the 
moving mesh method with the moving mesh methods exhibiting much lower errors.

9.3  Single Contact Wave

In this example, we choose a Riemann problem which gives rise to a single contact 
wave in the solution that propagates with a constant speed. The initial condition is 
given by

and the contact wave moves with a constant speed of 1.0. The solutions on static and mov-
ing meshes are shown in Fig. 6 at time t = 0.5 using the Roe flux. The moving mesh is 
able to exactly resolve the contact wave while the static mesh scheme adds considerable 
numerical dissipation that smears the discontinuity over many cells. The accurate resolu-
tion of contact waves is a key advantage of such moving mesh methods, which are capable 
of giving very good resolution of the contact discontinuity even on coarse meshes.

(𝜌, v, p) =

{
(2.0, 1.0, 1.0), if x < 0.5,

(1.0, 1.0, 1.0), if x > 0.5,

Table 8  Order of accuracy study 
on moving mesh using Roe 
flux with non-constant velocity 
smooth test case

N k = 1 k = 2

Error Rate Error Rate

100 4.235E−03 – 2.238E−04 –
200 1.058E−03 2.001 3.255E−05 2.87
400 2.586E−04 2.035 4.301E−05 3.133
800 5.804E−05 2.155 5.762E−06 2.901
1 600 1.271E−05 2.192 7.401E−07 2.96

(a) (b)

Fig. 6  Single contact wave using Roe flux and 100 cells: a static mesh, b moving mesh
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9.4  Sod Problem

The initial condition for the Sod test case is given by [30]

and the solution is computed up to a final time of T = 0.2 with the computational domain 
being [0,  1]. Since the fluid velocity is zero at the boundary, the computational domain 
does not change with time for the chosen final time. The exact solution consists of a rare-
faction fan, a contact wave and a shock wave. In Fig. 7, we show the results obtained using 
the Roe flux with 100 cells and the TVD limiter on static and moving meshes. The contact 
wave is considerably well resolved on the moving mesh as compared to the static mesh due 
to reduced numerical dissipation on moving meshes (Figs. 8 and 9).

To study the Galilean invariance or the dependence of the solution on the choice 
of coordinate frame, we add a boost velocity of V = 10 or V = 100 to the coordinate 
frame, which implies that the initial fluid velocity is v(x, 0) = V  and the other quantities 
remain as before. Figure 10a shows that the accuracy of the static mesh results degrades 

(𝜌, v, p) =

{
(1.0, 0, 1.0), if x < 0.5,

(0.125, 0, 0.1), if x > 0.5,

(a) (b)

Fig. 7  Sod problem using Roe flux, 100 cells and TVD limiter: a static mesh, b moving mesh

(a) (b)

Fig. 8  Sod problem using Roe flux, 100 cells and TVD limiter: a static mesh, b moving mesh
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with increase in velocity of the coordinate frame, particularly the contact discontinuity 
is highly smeared. The results given in Fig. 10b clearly show the independence of the 
results on the moving mesh with respect to the coordinate frame velocity. The allowed 
time step from CFL condition decreases with increase in coordinate frame speed for the 
static mesh case, while in case of the moving mesh, it remains invariant. This means 
that in case of static mesh, we have to perform more time steps to reach the same final 
time as shown in Table  9, which increases the computational time. Thus, the moving 
mesh scheme has the additional advantage of allowing a larger time step compared to 
the fixed mesh scheme.

Finally, we compute the solutions using quadratic and cubic polynomials and the 
results are shown in Fig. 11. The solutions look similar to the case of linear polynomials 
and have the same sharp resolution of discontinuities.

Fig. 9  Sod problem using Roe 
flux, 100 cells and TVD limiter. 
ADG average velocity, RDG 
linearized riemann velocity

Table 9  Number of iterations 
required to reach time t = 0.2 
for Sod test for different boost 
velocity of the coordinate frame

V 0 10 100

Static mesh 144 810 6 807
Moving mesh 176 176 176

(a) (b)

Fig. 10  Effect of coordinate frame motion on Sod problem using Roe flux, 100 cells and TVD limiter: a 
static mesh, b moving mesh
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9.5  Lax Problem

The initial condition is given by

The computational domain is [−10,+10] and we compute the solution up to a final time 
of T = 1.3 . This problem has a strong shock and a contact wave that is difficult to resolve 
accurately. The zoomed view of density is shown at the final time in Fig.  12, and we 
observe that the moving mesh results are more accurate for the contact wave, which is the 
first discontinuity in the figure. The second discontinuity is a shock which is equally well 
resolved in both cases. We can observe that the grid is automatically clustered in the region 
between the contact and shock wave, but no explicit grid adaptation was used in this simu-
lation (Fig. 13).

(𝜌, v, p) =

{
(0.445, 0.698, 3.528), if x < 0,

(0.5, 0, 0.571), if x > 0.

(a) (b)

Fig. 11  Sod problem on moving mesh using Roe flux, 100 cells and TVD limiter: a Degree = 2, b Degree 
= 3

(a) (b)

Fig. 12  Lax problem using HLLC flux, 100 cells and TVD limiter: a static mesh, b moving mesh
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Fig. 13  Lax problem using 
HLLC flux, 100 cells and TVD 
limiter. ADG average veloc-
ity, RDG linearized Riemann 
velocity

(a) (b)

(c) (d)

Fig. 14  Shu–Osher problem using Roe flux: a static mesh, 200 cells, M = 0, b moving mesh, 200 cells, 
M = 0, c static mesh, 200 cells, M = 100, d static mesh, 300 cells, M = 100
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9.6  Shu–Osher Problem

The initial condition is given by [31]

which involves a smooth sinusoidal density wave which interacts with a shock. The domain 
is [−5,+5] and the solution is computed up to a final time of T = 1.8 . The solutions are 
shown in Fig. 14a, b on static and moving meshes using 200 cells and the TVD limiter. The 
moving mesh scheme is considerably more accurate in resolving the sinusoidal wave struc-
ture that arises after interaction with the shock. In Fig. 14c, we compute the solution on 
static mesh with the TVB limiter and the parameter M = 100 in (8). In this case, the solu-
tions on static mesh are more accurate compared to the case of the TVD limiter but still not 
as good as the moving mesh results. The moving mesh result has more than 200 cells in 
the interval [−5,+5] at the final time since cells enter the domain from the left side. Hence 
in Fig. 14d, we show the static mesh results with 300 cells and using the TVB limiter. The 
results are further improved for the static mesh case but still not as accurate as the moving 
mesh case. The choice of parameters in the TVB limiter is very critical but we do not have 
a rigorous algorithm to choose a good value for this. Hence, it is still advantageous to use 
the moving mesh scheme which gives improved solutions even with the TVD limiter.

The above results show that the ALE method is very accurate in terms of the cell aver-
ages. In Fig. 15, we show a zoomed view of density and pressure, where we also plot the 
linear polynomial solution. The slope of the solution is not accurately predicted with the 
Roe scheme and there are spurious contact discontinuities as the pressure and velocity 
are nearly continuous. This behaviour is observed with all contact preserving fluxes like 
Roe, HLLC and HLL-CPS but not with the Rusanov flux. Due to the almost Lagrangian 
character of the scheme, the eigenvalue corresponding to the contact wave, �2 = v − w , is 
nearly zero, which leads to the loss of dissipation in the corresponding characteristic field. 
If a spurious contact wave is generated during the violent dynamics, then this wave will be 
preserved by the scheme leading to wrong solutions. We modify the Roe scheme by pre-
venting this eigenvalue from becoming too small or zero, which is similar to the approach 

(𝜌, v, p) =

{
(3.857 143, 2.629 369, 10.333 333), if x < −4,

(1 + 0.2 sin(5x), 0, 1.0), if x > −4,

Fig. 15  Shu–Osher problem 
using Roe flux on moving mesh
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used for the entropy fix. The eigenvalue |�2| used in the dissipative part of the Roe flux is 
determined from

With this modification and using � = 0.1 , the solution on the moving mesh is shown in 
Fig. 16 and we do not observe the spurious contact discontinuities which arise with the 
standard Roe flux, while at the same time, the solution accuracy compares favourably with 
the previous results that did not use the eigenvalue fix.

We next compute the solutions using quadratic polynomials. Figure  17 shows the 
results obtained with the TVD limiter which shows the dramatically better accuracy that 
is achieved on the moving mesh compared to static mesh. In Fig.  18, we perform the 
same computation with a WENO limiter taken from [29]. The static mesh results are now 
improved over the case of the TVD limiter but still not as good as the moving mesh results 
in terms of capturing the extrema. In Fig. 19, we show a zoomed view of the results on the 

|𝜆2| =
{ |v − w|, if |v − w| > 𝛿 = 𝛼c,

1

2
(𝛿 + |v − w|2∕𝛿), otherwise.

Fig. 16  Shu–Osher problem 
using modified Roe flux on mov-
ing mesh

(a) (b)

Fig. 17  Shu–Osher problem using the modified Roe flux, the TVD limiter, quadratic polynomials and 150 
cells. a static mesh, b moving mesh
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moving mesh with TVD and WENO limiters. We see that the TVD limiter is also able to 
capture all the features and is almost comparable to the WENO limiter.

9.7  Titarev–Toro Problem

Titarev–Toro problem is an extension of the Shu–Osher problem [32] to test a severely 
oscillatory wave interacting with a shock wave. It aims to test the ability of higher order 
methods to capture the extremely high-frequency waves. The initial condition is given by

The computation is carried out on a mesh of 1 000 cells with the final time T = 5 and the 
density at this final time is shown in Figs. 20 and 21. The fixed mesh is not able to resolve 
the high-frequency oscillations due to dissipation in the fluxes and the TVD limiter, but the 
ALE scheme gives an excellent resolution of these high-frequency oscillations. Note that 

(12)(𝜌, v, p) =

{
(1.515 695, 0.523 346, 1.805), − 5 < x ≤ −4.5,

(1 + 0.1 sin(20𝜋x), 0, 1), − 4.5 < x ≤ 5.

(a) (b)

Fig. 18  Shu–Osher problem using modified Roe flux, WENO limiter, quadratic polynomials and 150 cells. 
a Static mesh, b moving mesh

(a) (b)

Fig. 19  Shu–Osher problem using modified Roe flux, moving mesh, quadratic polynomials and 150 cells. a 
TVD limiter, b WENO limiter
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the ALE scheme also uses the same TVD limiter but it is still able to resolve the solution 
to a very degree of accuracy. This result again demonstrates the superior accuracy that can 
be achieved using a nearly Lagrangian ALE scheme in problems involving interaction of 
shocks and smooth flow structures.

9.8  123 Problem

The initial condition is given by [33]

The computational domain is [0, 1] and the final time is T = 0.15 . The density using 100 
cells is shown in Fig. 22 with static and moving meshes. The mesh motion does not signifi-
cantly improve the solution compared to the static mesh case since the solution is smooth. 

(𝜌, v, p) =

{
(1.0,−2.0, 0.4), x < 0.5,

(1.0,+2.0, 0.4), x > 0.5.

Fig. 20  Titarev problem with 
HLLC flux, 1 000 cells and TVD 
limiter

mesh
mesh

Fig. 21  Titarev problem with 
HLLC flux, 1 000 cells and TVD 
limiter (zoomed version)

mesh
mesh
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On the contrary, the mesh becomes rather coarse in the expansion region, though the solu-
tion is still well resolved. However, severe expansion may lead to very coarse meshes 
which may be undesirable. To prevent very coarse cells, we switch on the mesh refinement 

(a) (b)

Fig. 22  123 problem using HLLC flux and 100 cells: a static mesh, b moving mesh

(a) (b)

Fig. 23  123 problem using HLLC flux and grid refinement: a static mesh, b moving mesh with mesh adap-
tation ( hmax = 0.05 ) leading to 108 cells at final time

Fig. 24  123 problem using 
HLLC flux, 100 cells and TVD 
limiter. ADG average veloc-
ity, RDG linearized Riemann 
velocity
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algorithm as described before and use the upper bound on the mesh size as hmax = 0.05 . 
The resulting solution is shown in Fig. 23 where the number of cells has increased to 108 
at the time shown. The central expansion region is now resolved by more uniformly sized 
cells compared to the case of no grid refinement (Fig. 24).

9.9  Blast Problem

The initial condition is given by [34]

(𝜌, v, p) =

⎧⎪⎨⎪⎩

(1.0, 0, 1 000.0), x < 0.1,

(1.0, 0, 0.01), 0.1 < x < 0.9,

(1.0, 0, 100.0), x > 0.9

(a) (b)

Fig. 25  Blast problem using HLLC flux and 400 cells. a Static mesh, b moving mesh with adaptation 
( hmin = 0.001 ) leading to 303 cells at final time

(a) (b)

Fig. 26  Blast problem using HLLC flux, quadratic polynomials and 400 cells. a Static mesh, b moving 
mesh with adaptation ( hmin = 0.001 ) leading to 293 cells at final time
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with a domain of [0, 1] and the final time is T = 0.038 . A reflective boundary condition 
is used at x = 0 and x = 1 . A mesh of 400 cells is used for this simulation and in case of 
the moving mesh, we perform grid adaptation with hmin = 0.001 since some cells become 
very small during the collision of the two shocks. The positivity preserving limiter of [28] 
is applied together with the TVD limiter and HLLC flux. The static mesh results shown in 
Fig. 25a indicate too much numerical viscosity in the contact wave around x = 0.6 . This 
wave is more accurately resolved in the moving mesh scheme as seen in Fig. 25b which 
is an advantage due to the ALE scheme and is a very good indicator of the scheme accu-
racy as this is a very challenging feature to compute accurately. We next compute the same 
problem using quadratic polynomials with all other parameters being as before. The solu-
tions are shown in Fig. 26 and indicate that the Lagrangian moving mesh scheme is more 
accurate in resolving the contact discontinuity. The higher polynomial degree does not 
show any major improvement in the solution compared to the linear case, which could be a 
consequence of the strong shock interactions present in this problem, see Fig. (4.11–4.12) 
in [29] and Fig. (3.7) in [35] in comparison to current results (Fig. 27).

9.10  Le Blanc Shock Tube Test Case

The Le Blanc shock tube test case is an extreme shock tube problem where the initial dis-
continuity separates a region of high energy and density from one of low energy and den-
sity. This is a much more severe test than the Sod problem and hence more challenging 
for numerical schemes. The computational domain is 0 ⩽ x ⩽ 9 and is filled with an ideal 
gas with � = 5∕3 . The gas is initially at rest and we perform the simulation up to a time of 
T = 6 units. The initial discontinuity is at x = 3 and the initial condition is given by

Note that both the density and pressure have a very large jump in the initial condition. The 
solution that develops from this initial condition consists of a rarefaction wave moving to 
the left and a contact discontinuity and a strong shock moving to the right. In Fig. 28, we 

(13)(𝜌, v, p) =

{
(1.0, 0, 0.1), if x < 3,

(0.001, 0, 10−7), if x > 3.

Fig. 27  Blast problem using 
HLLC flux, 100 cells and TVD 
limiter. ADG average veloc-
ity, RDG linearized Riemann 
velocity
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show the comparison of the internal energy profile at final time between a fixed mesh solu-
tion and moving mesh solutions with two different mesh velocities as described before. 
Most methods tend to generate a very large spike in the internal energy in the contact 
region, e.g., compare with Fig.  (11) in  [36], while the present ALE method here is able 
to give a better profile. We plot the pressure profile in Fig. 29 which shows that the ALE 
scheme is able to better represent the region around the contact wave as compared to fixed 
mesh method.

9.11  Two‑Dimensional Isentropic Vortex Test Case

The extension to two dimensions involves two aspects that need to be addressed. The first 
issue is how to handle the grid motion and the second is how to formulate the ALE-DG 
scheme. The second part is a natural generalization of the DG scheme we have described 

Fig. 28  Internal energy for Le Blanc shock tube with Rusanov flux, 1  400 cells and TVD limiter, ADG 
average velocity, RDG linearized Riemann velocity

Fig. 29  Pressure for Le Blanc 
shock tube with Rusanov flux, 
1 400 cells and TVD limiter, 
ADG average velocity, RDG 
linearized Riemann velocity
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for the 1-D case in this paper, except that we have to construct basis functions on triangles 
and perform some numerical quadrature. The first part involving grid movement is more 
complicated and we present only very preliminary results in this section to demonstrate 
that the idea has merit. We now consider the two-dimensional Euler equations written as

where

The test case we consider involves an isentropic vortex that is advecting with the constant 
velocity and is a smooth solution for which error norms can be calculated. The test is car-
ried out on a square domain [−10, 10] × [−10, 10] with periodic boundary conditions. The 
initial condition is an isentropic vortex (Table 10)

with u∞ = 1, v∞ = 0, � = 1.4, � = 10 . As the solution evolves in time, the mesh becomes 
quite deformed because the vortex is continually shearing the mesh, which can lead to 

(14)
�u

�t
+

�f (u)

�x
+

�g(u)

�y
= 0,

(15)u =

⎡⎢⎢⎢⎣

�

�u

�v

E

⎤⎥⎥⎥⎦
, f (u) =

⎡⎢⎢⎢⎣

�u

p + �u2

�uv

(E + p)u

⎤⎥⎥⎥⎦
, g(u) =

⎡⎢⎢⎢⎣

�v

�uv

p + �v2

(E + p)v

⎤⎥⎥⎥⎦
,

(16)p = (� − 1)
[
E −

1

2
�(u2 + v2)

]
.

(17)T = 1 −
(� − 1)�2

8��2
e1−r

2

,

(18)� = T
1

�−1 ,

(19)u = u∞ −
�

2�
ye

1−r2

2 ,

(20)v = v∞ −
�

2�
ye

1−r2

2 ,

(21)p = ��

Table 10  Isentropic vortex in 
2D: order of accuracy study on 
two-dimensional static mesh

N k = 1 k = 2

Error Rate Error Rate

50 × 50 2.230E−03 – 1.762E−04 –

100 × 100 5.987E−04 1.945 2.305E−05 2.934
200 × 200 1.498E−04 1.998 2.973E−06 2.955
400 × 400 3.786E−05 1.984 3.762E−07 2.982
800 × 800 9.617E−06 1.977 3.474E−08 2.991
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degenerate meshes, as shown in Fig. 30. We avoid the occurrence of badly shaped triangles 
using a combination of face swapping and mesh velocity smoothing algorithms [37, 38]. 
The mesh modification is a very local procedure and does not require global remeshing 
which is a costly process. With these techniques, we are able to maintain a good mesh 
quality even after the vortex has rotated 4 times around its center as shown in Fig. 31. As 
the vortex is translating, we plot the solution in a window centered at the vortex center. We 
can see that the method maintains its high order of accuracy from the convergence rates of 
the error shown in Table 11; using linear basis functions yields second-order convergence 
while quadratic basis functions lead to third-order convergence.

Table 11  Isentropic vortex in 
2D: order of accuracy study on 
two-dimensional moving mesh

N k = 1 k = 2

Error Rate Error Rate

50 × 50 2.230E−03 – 1.762E–04 –
100 × 100 5.987E−04 1.945 2.305E−05 2.934
200 × 200 1.498E−04 1.998 2.973E−06 2.955
400 × 400 3.786E−05 1.984 3.762E−07 2.982
800 × 800 9.617E−06 1.977 3.474E−08 2.991

Fig. 30  Isentropic vortex in 2-D: 
skewed mesh without remeshing 
t = 2.660 534
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10  Summary and Conclusions

We have developed an explicit DG scheme on moving meshes using ALE framework 
and space–time expansion of the solutions within each cell. The near Lagrangian nature 
of the mesh motion dramatically reduces the numerical dissipation, especially for con-
tact waves. Even moving contact waves can be exactly computed with a numerical flux 
that is exact for stationary contact waves. The scheme is shown to yield superior results 
even in the presence of the large boost velocity of the coordinate system indicating its 
Galilean invariance property. The standard Roe flux does not suffer from entropy viola-
tion when applied in the current nearly Lagrangian framework. However, in some prob-
lems with strong shocks, spurious contact waves can appear and we propose to fix the 
dissipation in Roe-type schemes that eliminates this issue. The method yields accurate 
solutions even in combination with standard TVD limiters, where fixed grid methods 

Fig. 31  Isentropic vortex in 2-D: mesh and pressure solution at various times a t = 0 , b t = 6 , c t = 12 , d 
t = 20
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perform poorly. The mesh motion provides automatic grid adaptation near shocks but 
may lead to very coarse cells inside expansion waves. A grid adaptation strategy is 
developed to handle the problem of very small or very large cells. The presence of the 
DG polynomials makes it easy to transfer the solution during grid adaptation without 
loss of accuracy. The proposed methodology is general enough to be applicable to other 
systems of conservation laws modelling fluid flows. The basic idea can be extended 
to multi-dimensions but additional considerations are required to maintain good mesh 
quality under fluid deformations. The preliminary results shown for the isentropic vor-
tex are very promising for the 2-D case.

Acknowledgements This work was started when Jayesh Badwaik was a project assistant at TIFR-CAM, 
Bangalore. The first two authors gratefully acknowledge the financial support received from the Airbus 
Foundation Chair on Mathematics of Complex Systems established in TIFR-CAM, Bangalore, for carrying 
out this work. Christian Klingenberg acknowledges the support of the Priority Program 1648: Software for 
Exascale Computing by the German Science Foundation. On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Appendix A: Numerical Flux

The ALE scheme requires a numerical flux ĝ(ul, ur,w) which is usually based on some 
approximate Riemann solver. The numerical flux function is assumed to be consistent in the 
sense that

Since the ALE versions of the numerical fluxes are not so well known, here we list the for-
mulae used in the present work.

Rusanov Flux

The Rusanov flux is a variant of the Lax–Friedrich flux and is given by

where �lr = �(ul, ur,w),

which is an estimate of the largest wave speed in the Riemann problem. Since the mesh 
velocity is close to the fluid velocity, the value of � is close to the local sound speed. Thus, 
the numerical dissipation is independent of the velocity scale.

Roe Flux

The Roe scheme  [39] is based on a local linearization of the conservation law and then 
exactly solving the Riemann problem for the linear approximation. The flux can be written as

ĝ(u,u,w) = g(u,w), ∀u ∈ ℝ
3
,w ∈ ℝ.

ĝ(ul, ur,w) =
1

2
[g(ul,w) + g(ur,w)] −

1

2
𝜆lr(ur − ul),

�(ul, ur,w) = max{|vl − w| + cl, |vr − w| + cr},

ĝ(ul, ur,w) =
1

2
[g(ul,w) + g(ur,w)] −

1

2
|Aw|(ur − ul),
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where the Roe average matrix Aw = Aw(ul, ur) satisfies

and we define |Aw| = R|� − wI|R−1 . This matrix is evaluated at the Roe average state u(q̄) , 
q̄ =

1

2
(ql + qr) , where q =

√
�[1, v, H]T is the parameter vector introduced by Roe.

HLLC Flux

This is based on a three wave approximate Riemann solver and the particular ALE version 
we use can also be found in [15]. Define the relative velocity q = v − w ; then, the numeri-
cal flux is given by

where the intermediate states are given by

and

where

which gives SM as

The signal velocities are defined as

where v̂ , ĉ are Roe’s average velocity and speed of sound.

Appendix B: Continuous Expansion Runge–Kutta (CERK) Schemes

We use a Runge–Kutta scheme to compute the predicted solution used to compute all the inte-
grals in the DG scheme. In this section, we list down the CERK scheme for the following 
ODE:

g(ur,w) − g(ul,w) = Aw(ur − ul),

ĝ(ul, ur,w) =

⎧⎪⎨⎪⎩

g(ul,w), Sl > 0,

g∗(u∗
l
,w), Sl ≤ 0 < SM ,

g∗(u∗
r
,w), SM ≤ 0 ≤ Sr,

g(ur,w), Sr < 0,

u∗
�
=

1

S� − SM

⎡⎢⎢⎣

(S� − q�)��
(S� − q�)(�v)� + p∗ − p�

(S� − q�)E� − p�q� + p∗SM

⎤⎥⎥⎦
, � = l, r,

g∗(u,w) = SMu +

⎡⎢⎢⎣

0

p∗

(SM + w)p∗

⎤⎥⎥⎦
,

p∗ = �l(ql − Sl)(ql − SM) + pl = �r(qr − Sr)(qr − SM) + pr,

SM =
�rqr(Sr − qr) − �lql(Sl − ql) + pl − pr

�r(Sr − qr) − �l(Sl − ql)
.

Sl = min{ql − cl, v̂ − w − ĉ}, Sr = max{qr + cr, v̂ − w + ĉ},
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Given the solution un at time tn , the CERK scheme gives a polynomial solution in the time 
interval [tn, tn+1) of the form

where ns is the number of stages and h denotes the time step.

Second Order (CERK2)

The number of stages is ns = 2 and

and

Third Order (CERK3)

The number of stages is ns = 4 and

and
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