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Introduction to Active Flux

Finite Volume schemes

Conservation law: ∂tq +∇ · f(q) = 0, q : R+
0 × Rd → Rn with IVP q(0,x) = q0(x).

The discrete degree of freedom qC in computational cell C is given the interpretation
qC = 1

|C|

∫
C dx q(t,x). Its time update is, by Gauss law

∂tqC +
1

|C|

∫
∂C

dxn · f(q) = 0 (1)

The numerical flux is obtained from a conservative and piecewise continuous
reconstruction:

Approximate Riemann solver Exact Riemann solver
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Introduction to Active Flux

Active Flux schemes

In this talk the following reconstructions are considered instead:

Disclaimer 1: Despite continuous reconstruction this is
not a Galerkin scheme (no stability issues!)

Disclaimer 2: This is also not a staggered
finite volume scheme (point values!)
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Introduction to Active Flux

Point values and cell averages

Design decision: Declare the point values at cell boundaries to be independent
degrees of freedom.

A number of consequences:

higher order

Reconstruction has to interpolate the point values and match the average:
compact stencil

The flux needed for the cell average can be evaluated immediately

How to update the pointwise degrees of freedom?
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Introduction to Active Flux

Evolution operator

The reconstruction can be used as initial data for an IVP at the location of the
pointwise degree of freedom.
The IVP can be solved exactly or approximately (compare: exact and approximate
Riemann Solvers).

Example: ∂tq + c∂xq = 0 (one-dimensional linear advection)

q(t, x) = qrecon(x− ct)
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Introduction to Active Flux

History

Published implementations of Active Flux:

1977: van Leer (one-dimensional advection)

2011: Eymann, Roe (Burgers’ equation; one-dimensional nonlinear systems)

2013: Eymann, Roe (multi-dimensional acoustics on triangular grids)

2017: Fan, Maeng, Roe (p-system and pressureless Euler on triangular grids)

2019: Helzel, Kerkmann, Scandurra (approximate evolution operator)

2019: [WB et al., 2019] (multi-dimensional acoustics on Cartesian grids)

2020: [WB et al., 2020, WB and Berberich, 2020] (nonlinear balance laws in
1D)

. . .
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Introduction to Active Flux

Recap: Active Flux

General algorithm of any Active Flux method:

1 cell averages and point values given

2 compute conservative reconstruction that also interpolates the point values

3 use reconstruction as initial data for point value update

4 perform quadrature to obtain fluxes: cell average update as in finite volume
methods

5 continue at 1.
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Multi-d systems (very briefly)

Multi-dimensionality

The Active Flux method is particularly suited for multiple spatial dimensions.

The acoustic equations are a prototypic hyperbolic system with non-trivial
behaviour in multi-d. They are contained in the Euler equations:

∂t%+ v · ∇%+ %∇ · v = 0

∂tv +∇p = 0 ∂tv + (v · ∇)v +
∇p
%

= 0

∂tp+ c2∇ · v = 0 ∂tp+ v · ∇p+ %c2∇ · v = 0

They capture the behaviour of acoustics and leave aside advection. They also govern
the (Lagrangian) evolution of a fluid element. In particular, consider linear
acoustics with c = const. Involution: ∂t(∇× v) = 0.

[Morton and Roe, 2001], [Lukacova-Medvidova et al., 2000], [Torrilhon and Fey, 2004],

[Jeltsch and Torrilhon, 2006], [Mishra and Tadmor, 2009], [Dellacherie, 2010], [Lung and Roe, 2014],

[Amadori and Gosse, 2015], [Franck and Gosse, 2018] and many others.
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Multi-d systems (very briefly)

Evolution operator

linear acoustics

∂tv + c∇p = 0

∂tp+ c∇ · v = 0

Theorem

p(t,x) = p0(x) +

ct∫
0

dr r ·M
[
div grad p0

]
(x, r)− ct ·M

[
div v0

]
(x, ct)

v(t,x) = v0(x) +

ct∫
0

dr r ·M
[
grad div v0

]
(x, r)− ct ·M

[
grad p0

]
(x, ct)

Spherical mean:

M [f ] (x, r) :=
1

4π

∮
S2

dy f(x + ry) =
1

4π

2π∫
0

dφ

π∫
0

dϑ sinϑf (x + r · n)

[WB and Klingenberg, 2018]
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Multi-d systems (very briefly)

Active Flux for acoustics on Cartesian grids

A particular implementation of the general idea:

Acoustic equations

Cartesian grid; point values located at vertices and edge midpoints (9 free
parameters)

Biparabolic reconstruction (9 equations )

Exact evolution operator

⇒ third order (one substep in time, fully explicit, Simpson rule for flux
quadrature)

x y

q

x y

t

Cij

WB, J. Hohm, C. Klingenberg and Ph.L. Roe: arXiv:1812.01612
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Multi-d systems (very briefly)

Active Flux for linear acoustics

Theorem ([WB et al., 2019])

If the initial data fulfill the following discretizations of div v = 0

{[uN]i+ 1
2
}j+ 1

2

∆x
+

[{vN}i+ 1
2
]j+ 1

2

∆y
= 0

〈[u]i±1〉(4)
j

∆x
+

[〈v〉(4)
i ]j±1

∆y
= 0 (2)

〈[uEH]i+ 1
2
〉(6)
j

∆x
+

[〈vEV〉(6)
i ]j+ 1

2

∆y
= 0

[uEV]i− 1
2
,j

∆x
+

[vEH
i ]j− 1

2

∆y
= 0 (3)

and if p = const then the numerical solution of the Active Flux method with the
exact evolution operator remains stationary for all times.

Corollary (Discrete involution)

There exists a discretization of ∇× v which remains stationary for any discrete
initial data.

Finite difference discretizations of div v = 0

Active Flux is vorticity preserving for linear acoustics.
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Nonlinear equations

Overview

When applying Active Flux to new systems of equations, an approximate
evolution operator q̃(t, x) is required, with at every x

q̃(t, x) = q(t, x) +O(t3) (4)

Approximate evolution operator

scalar conservation laws (e.g. Burgers’ equation)
systems of conservation laws in 1-d (e.g. Euler equations)
balance laws (e.g. Shallow water equations)

What happens if characteristics cross?

Entropy fix

Limiting
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Nonlinear equations

Approximate evolution operator

reconstruction globally continuous, but not globally C1.

there is always some finite time interval before the first pair of
characteristics will cross
short time evolution is often smooth (because often, ∆tCFL < ∆tcross)

but, sometimes, action is required (see later...)

shocks are not everywhere

discontinuities are localized at countably many points/along lines
it is perfectly sensible to reconstruct continuously in almost the entire
domain
almost everywhere in the domain an evolution operator that assumes
smoothness of the solution will be right!

how to choose approximate evolution operator?

Paradigm: Continuous reconstruction makes it possible not to use
Riemann solvers
Usage of Riemann solvers might even be preventing structure preservation
LW/CK/ADER not suited because derivatives of non-differentiable data
are required
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Nonlinear equations

Evolution operator (scalar equation)

Consider ∂tq + ∂x
(
q2

2

)
= 0 (Burgers’ equation) with initial data q(0, x) = q0(x).

Characteristics x = ξ(t) are straight lines with slope ξ′(t) = q(t, ξ(t)).

Denote by x1 some fixed location. (To distinguish it from the independent variable
x.)

Approximate evolution at x1 via local linearization means taking the slope q0(x1)
and tracing back the characteristic:

q0(x1 − q0(x1)t) = q(t, x1) +O(t2) (5)
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Nonlinear equations

Evolution operator (scalar equation)

Local linearization

q0(x1 − q0(x1)t) = q(t, x1) +O(t2) (6)

Higher order:

q0
(
x1 − q0(x1 − q0(x1)t)t

)
= q(t, x1) +O(t3) (7)

This is a fixpoint iteration on the characteristic equation [WB, 2019, subm.]

x∗ = x1 − q0(x∗)t (8)

Further approximate solution operators that yield
the correct order:

[Helzel et al., 2019], via LW/CK/ADER

[Roe, 2017]

However, both involve derivatives q′0(x1).
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Nonlinear equations

Approximate evolution operator

Counterparts to ODE evolution operators:
When solving y′ = f(y) for y(t) with y(0) = y0 we have:

Linearization:

y(t) = y0 + tf(y0) +O(t2) (9)

using LW/CK/ADER: y′′ = f ′(y)y′ = f ′(y)f(y) and thus

y(t) = y(0) + ty′(0) +
1

2
t2y′′(0) +O(t3) (10)

= y0 + tf(y0) +
1

2
t2f ′(y0)f(y0) +O(t3) (11)

using Runge-Kutta:

predictor: ỹ = y0 + tf(y0) (12)

y(t) = y0 + t
f(y0) + f(ỹ)

2
= y0 + t

f(y0) + f(y0 + tf(y0))

2
(13)

The evolution operators that are presented here are rather ”like Runge-Kutta“, than
LW/CK/ADER: They generate the higher order terms in the Taylor series through
convolution / predictor-corrector steps.
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Nonlinear equations

Approximate evolution operator

Burgers’ equation

Mind that this scheme is third order
and we do not use any limiter here!

[WB, 2019]
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Nonlinear equations

Approximate evolution operator

What happens if characteristics cross?

For scalar equations the selection of the correct characteristic can be achieved using
the Lax-Hopf formula (see [Qiu & Shu, 2008]).
Here, it is suggested to use the quickest characteristic, out of the two obtained by
initializing the fixpoint iteration at x1 ±∆x.
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Nonlinear equations

Approximate evolution operator

No modification concerning crossing characteristics
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Nonlinear equations

Approximate evolution operator

Modification from [WB, 2019]
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Nonlinear equations

Approximate evolution operator (systems)

How to generalize to systems? Consider characteristics.
Consider a nonlinear system which admits characteristic variables (e.g. for a 3× 3
system):

∂tQ1 + λ1(Q1, Q2, Q3)∂xQ1 = 0 (14)

∂tQ2 + λ2(Q1, Q2, Q3)∂xQ2 = 0 (15)

∂tQ3 + λ3(Q1, Q2, Q3)∂xQ3 = 0 (16)

Here, {λ1, . . . , λM} are the eigenvalues of the Jacobian f ′ in ∂tq + f(q) = 0.
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Nonlinear equations

Approximate evolution operator (systems)

Philosophy: When looking for q(t, x1), find an equivalent linear problem
(different for each x1). Observe that the last step of the evolution operator is

q(t, x1) ' q0(x1 − λ∗t) (17)

which is the solution to the IVP at x1 of{
∂tq + λ∗∂xq = 0

q(0, x) = q0(x)
(18)

mm ∂tq + ∂xf(q) = 0 ∂tq + λ∗∂xq = 0
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Nonlinear equations

Approximate evolution operator (systems)

Systems case:

Observe that neither the speed of the characteristic at the foot point, nor at the top
is correct. We need ”average“ speed of the characteristic – but only to
sufficient accuracy.
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Nonlinear equations

Approximate evolution operator (systems)

Consider the characteristic ξi associated with λi:

ξ′i(t) = λi(ξi(t)) (19)

If Qi(t, x1) = Qi,0(x1 − λ∗i t) then we must have

λ∗i =
ξ(t)− ξ(0)

t
=

1

t

∫ t

0

dτ ξ′(τ) =
1

t

∫ t

0

dτ λi
(
ξi(τ)

)
(20)

Of course, λi(ξi(τ)) ≡ λi
(
Q1(τ, ξi(τ), . . . , QM (τ, ξi(τ)))

)
.

This expression now needs to be approximated to first order only. Thus, it is natural
to use

λ∗i ' λi
(
ξi(t/2)

)
(21)

We have Qj
( t

2
, ξi
( t

2

))
' Qj

( t
2
, x1 −

t

2
λi(x1)

)
' Qj,0

(
x1 −

λi(x1) + λj(x1)

2
t
)

.
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Nonlinear equations

Approximate evolution operator (systems)
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Nonlinear equations

Approximate evolution operator (systems)

Characteristic variables exist e.g. for the isentropic Euler equations (= shallow
water equations). In general (e.g. for the full Euler equations) they do not. Then
both the eigenvalues and the transformation matrix R in f ′ = RΛR−1 need to be
predicted. In particular:

q
(i)
β :=

m∑
k,α=1

F
(k)
βα (x)qα,0

(
x− tλi(x) + λk(x)

2

)
(22)

where F (k) is the projector onto the k-th eigenspace.
Then use

λ∗i := λi(q
(i)) R∗ij := R(q(i)) (23)

The algorithm cannot be given the simple geometric interpretation any more, but
the idea remains the same.

[WB, 2019]
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Nonlinear equations

Approximate evolution operator

For linear problems,

the evolution operators presented here are exact after one step for any initial
data

LW/CK/ADER is exact after one step for linear initial data

Philosophy: We do not need to construct approximations for linear problems,
because they can be solved exactly straight away.
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Nonlinear equations

Euler equations

Figure: Left : Third order convergence of the numerical solution on both point
values and averages, for momentum %v, density % and energy e. The lines virtually
lie on top of each other indicating comparable error. Right : Setup and numerical
solution for ∆x = 1/100 showing point values.
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Nonlinear equations

Euler equations

Figure: Riemann problem setups for the full Euler equations. Left: Sod’s test
problem [Sod, 1978]. Right: Lax’s test problem [Lax, 1954]. Solid lines show the
exact solution.
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Nonlinear equations

Euler equations

Figure: Interaction between shock and sound wave [Shu & Osher, 1989] on grids
with ∆x = 1/30 (crosses) and 1/240 (solid line).Left: Density. Right: Pressure.
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Nonlinear equations

Approximate evolution operator (balance laws)

Consider

∂tQi + λi(Q1, . . . , QM )∂xQi = Si(x;Q1, . . . , QM ) i = 1, . . . ,M (24)

Then, similarly, an approximate evolution operator yielding a third order Active
Flux method is given by

Qi(t, x) ' Qi,0(x− λ∗i t) + tS∗i (25)

with

λ∗i := λi

(
Q1

(
t

2
, x− λi

t

2

)
, . . . , QM

(
t

2
, x− λi

t

2

))
+O(t2) (26)

S∗i := Si

(
x− λi

t

2
;Q1

(
t

2
, x− λi

t

2

)
, . . . , QM

(
t

2
, x− λi

t

2

))
+O(t2) (27)

and

Qj

(
t

2
, x− λi

t

2

)
' Qj,0

(
x− λi + λj

2
t

)
+

∆t

2
Sj (x;Q1,0 (x) , . . . , QM,0 (x))
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Nonlinear equations

Limiting

Several suggestions exist in the litera-
ture:

Modifying the point

values/introducing discontinuities:

Eymann, Roe, 2011
Eymann, 2013: modify point
values (Burgers’ equation)
Helzel et al., 2019: extremum
at cell boundary
. . .

Continuous reconstructions:

Roe et al. 2015/Maeng 2017:
joining several parabolas
Helzel et al. 2019: hyperbola
. . .
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Nonlinear equations

Limiting

Parabolic: Power law limiting: [WB, 2019]
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Nonlinear equations

Limiting
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Nonlinear equations

Non-negativity preserving reconstruction

[WB and Berberich, 2020]

Preserving non-negative water height
for the shallow water equations:
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Well-balanced methods

Well-balanced methods
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Well-balanced methods

Acoustics with gravity

∂t%+ ∂xv = 0 (28)

∂tv + ∂xp = %g g ∈ R (29)

∂tp+ c2∂xv = 0 c ∈ R+ (30)

Theorem (Stationarity preservation with exact evolution)

If the discrete data fulfill

%̄i =
%i+ 1

2
+ %i− 1

2

2

pi+ 1
2
− pi− 1

2

∆x
= g

%i− 1
2

+ %i+ 1
2

2
(31)

p̄i+ 3
2
− p̄i+ 1

2

∆x
= g

%i+ 3
2

+ 4%i+ 1
2

+ %i− 1
2

6
(32)

and Active Flux with the exact evolution operator for (28)–(30) is used, then the
numerical solution remains stationary.

The proof involves the discrete Fourier transform for showing the stationarity of
point values. Then, stationarity of averages is checked.

[WB et al., 2020]
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Well-balanced methods

Acoustics with gravity

Make sure that, if the data fulfill those discrete relations, the point values remain
stationary for the approximate evolution operator as well!

Theorem (Stationarity preservation with approximate evolution)

If the approximate evolution operator is modified by adding the term

αg2

4

%i+ 1
2
− %i− 1

2

∆x
t3 (33)

to the velocity evolution, then

i) its accuracy is not changed

ii) it becomes stationarity preserving / well-balanced with the same discrete
stationary states as the exact evolution operator.

[WB et al., 2020]
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Well-balanced methods

Shallow water equations

∂th+ ∂xm = 0 h : R+
0 × R→ R+ (34)

∂tm+ ∂x

(
m2

h
+

1

2
gh2

)
= −gh∂xb m : R+

0 × R→ R, g ∈ R (35)

The exact evolution operator is well-balanced if the lake at rest
(h+ b = const) is reconstructed exactly.
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Well-balanced methods

Shallow water equations

Well-balancing strategy for an approximate solution operator: Assume an
approximate evolution at x1 to be q1(t, x1) = (h1(t, x1),m1(t, x1)).

1. Compute

W := h(0, x1) + b(x1) (36)

(If the data are actually a lake at rest, W is the constant water level.)

2. Apply the approximate evolution operator to initial data h0(x) = W − b(x),
v0(x) = 0 and denote the solution at x1 by h̃(t, x1), m̃(t, x1). (Clearly, any
actual time evolution is entirely spurious.)

3. The well-balanced approximate solution (hwb(t, x1),mwb(t, x1)) at x1 is
obtained by subtracting the spurious evolution

mwb(t, x1) := m1(t, x1)− h1(t, x1)
m̃(t, x1)

h̃(t, x1)
(37)

hwb(t, x1) := h1(t, x1)−
(
h̃(t, x1)− h(0, x1)

)
(38)

[WB and Berberich, 2020]
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Well-balanced methods

Shallow water equations
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Figure: Demonstration of the well-balanced property in presence of partially
dry cells. Left: Setup with four lakes at rest. Point values of h+ b are shown.
Right: Errors of the point values of the numerical solution at t = 10.
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Well-balanced methods

Shallow water equations
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Figure: Convergence of a Gaussian wave on cosine-shaped bottom. The L1 error
of the point values is shown.
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Well-balanced methods

Shallow water equations
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Figure: Sloshing water in a parabolic bowl. Point values of h+ b are shown at
t = 0, 1000, . . . , 5000.
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Well-balanced methods

Shallow water equations

Tsunami run-up onto a plane beach
(benchmark problem 1 from the 3rd International Workshop on Long-Wave Runup Models,

2004, Wrigley Marine Science Center
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bottom b h + b numerical h + b exact

Figure: Point values of h+ b are shown together with the analytical solution (solid
line).
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Summary

Summary

Active Flux:

high order
compact stencil
continuous reconstruction
structure preserving in many cases

Approximate evolution operators for nonlinear problems with characteristics

high order achieved without using derivatives of initial data
”tree“ structure to approximate curved characteristics
accounting for crossing characteristics, entropy fix

Applications

linear acoustics (vorticity/stationarity preserving)
linear acoustics with gravity (well-balanced)
full Euler equations (1D)
Shallow water equations (with wetting/drying, well-balanced, 1D)

Future work:

extension to multi-d systems of nonlinear equations (characteristic cones!)
and further study of structure preservation
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Summary

Thank You!

wasilij.barsukow@math.uzh.ch

http://user.math.uzh.ch/barsukow

WB, Jonathan Hohm, Christian Klingenberg, Philip L. Roe: The active flux scheme
on Cartesian grids and its low Mach number limit, 2019, J. Sci. Comp. 81(1):
594-622 (arXiv:1812.01612)

WB: Stationarity preserving schemes for multi-dimensional linear systems,
Math.Comp. (2019) 88(318): 1621-1645 (arXiv:1811.11766)

WB: The active flux scheme for nonlinear problems, 2019 submitted

WB, Jonas P. Berberich, Christian Klingenberg: On the active flux scheme for
hyperbolic PDEs with source terms, 2020 submitted

WB, Jonas P. Berberich: A well-balanced Active Flux scheme for the shallow water
equations with wetting and drying, 2020 submitted
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