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ENERGY STABLE AND CONSERVATIVE DYNAMICAL
LOW-RANK APPROXIMATION FOR THE SU–OLSON PROBLEM⇤

LENA BAUMANN†, LUKAS EINKEMMER‡, CHRISTIAN KLINGENBERG†, AND

JONAS KUSCH§

Abstract. Computational methods for thermal radiative transfer problems exhibit high com-
putational costs and a prohibitive memory footprint when the spatial and directional domains are
finely resolved. A strategy to reduce such computational costs is dynamical low-rank approximation
(DLRA), which represents and evolves the solution on a low-rank manifold, thereby significantly de-
creasing computational and memory requirements. E�cient discretizations for the DLRA evolution
equations need to be carefully constructed to guarantee stability while enabling mass conservation.
In this work, we focus on the Su–Olson closure leading to a linearized internal energy model and
derive a stable discretization through an implicit coupling of internal energy and particle density.
Moreover, we propose a rank-adaptive strategy to preserve local mass conservation. Numerical re-
sults are presented which showcase the accuracy and e�ciency of the proposed low-rank method
compared to the solution of the full system.
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1. Introduction. Numerically solving the radiative transfer equations is a chal-
lenging task, especially due to the high dimensionality of the solution’s phase space.
A common strategy to tackle this issue is to choose coarse numerical discretizations
and mitigate numerical artifacts [23, 27, 32] which arise due to the insu�cient reso-
lution; see, e.g., [3, 15, 1, 24, 39]. Despite the success of these approaches in a large
number of applications, the requirement of picking user-determined and problem de-
pendent tuning parameters can render them impracticable. Another approach to deal
with the problem’s high dimensionality is the use of model order reduction techniques.
A reduced order method which is gaining a considerable amount of attention in the
field of radiation transport is dynamical low-rank approximation (DLRA) [20] due to
its ability to yield accurate solutions while not requiring an expensive o✏ine train-
ing phase. DLRA’s core idea is to approximate the solution on a low-rank manifold
and evolve it accordingly. Past work in the area of radiative transfer has focused on
asymptotic-preserving schemes [10, 9], mass conservation [34], stable discretizations
[21], imposing boundary conditions [22, 18], and implicit time discretizations [35].
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B138 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

A discontinuous Galerkin discretization of the DLRA evolution equations for thermal
radiative transfer has been proposed in [5].

A key building block of e�cient, accurate, and stable methods for DLRA is the
construction of time integrators which are robust irrespective of small singular values
in the solution [19]. Three integrators that move on the low-rank manifold while not
being restricted by its curvature are the projector-splitting (PS) integrator [25], the
basis update & Galerkin (BUG) integrator [8], and the parallel integrator [7]. Since
the PS integrator evolves one of the required subflows backward in time, the BUG
and parallel integrators are preferable for di↵usive problems while facilitating the
construction of stable numerical discretization for hyperbolic problems [21]. Moreover,
the BUG integrator allows for a basis augmentation step [6], which can be used
to construct conservative schemes for the Schrödinger equation [6] and the Vlasov–
Poisson equations [14].

In this work we consider the thermal radiative transfer equations using the Su–
Olson closure. This leads to a linearized internal energy model for which we propose
an energy stable and mass conservative DLRA scheme. The main novelties of this
paper are as follows:

• A stable numerical scheme for thermal radiative transfer: We show that a
naive IMEX scheme fails to guarantee energy stability. To overcome this un-
physical behavior we propose a scheme which advances radiation and internal
energy implicitly in a coupled fashion. In addition, our novel analysis gives
a classic hyperbolic CFL condition that enables us to operate up to a time
step size of �t=CFL ·�x.

• A mass conservative and rank-adaptive integrator: We employ the basis aug-
mentation step from [6] as well as an adaptation of the conservative truncation
strategy from [14, 17] to guarantee local mass conservation and rank adap-
tivity. In contrast to [14, 17] we do not need to impose conservation through
a modified L-step equation but solely use the basis augmentation strategy
from [6].

Both of these properties are extremely important as they ensure key physical principles
and allow us to choose an optimal time step size which reduces the computational
e↵ort. Moreover, we demonstrate numerical experiments which underline the derived
stability and conservation properties of the proposed low-rank method while showing
significantly reduced computational costs and memory requirements compared to the
full-order system.

This paper is structured as follows: After the introduction in section 1, we review
the background on thermal radiative transfer and dynamical low-rank approximation
in section 2. In section 3 we present the evolution equations for the thermal radiative
transfer equations when using the rank-adaptive BUG integrator. Section 4 discretizes
the resulting equations in angle and space. The main method is presented in section 5,
where a stable time discretization is proposed. We discuss local mass conservation of
the scheme in section 6. Numerical experiments are demonstrated in section 7.

2. Background.

2.1. Thermal radiative transfer. In this work, we study radiation particles
moving through and interacting with a background material. By absorbing particles,
the material heats up and emits new particles which can in turn again interact with the
background. This process is described by the thermal radiative transport equations

1

c
@tf(t, x,µ) + µ@xf(t, x,µ) = �(B(t, x)� f(t, x,µ)),

@te(t, x) = �(hf(t, x, ·)iµ �B(t, x)),
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DYNAMICAL LOW-RANK APPROXIMATION FOR SU–OLSON B139

where we omit boundary and initial conditions for now. This system can be solved
for the particle density f(t, x,µ) and the internal energy e(t, x) of the background
medium. Here, x2D⇢R is the spatial variable and µ2 [�1,1] denotes the directional
(or velocity) variable. The opacity � encodes the rate at which particles are absorbed
by the medium, and we use brackets h·iµ, h·ix to indicate an integration over the
directional domain and the spatial domain, respectively. Moreover, the speed of light
is denoted by c, and the black body radiation at the material temperature T is denoted
by B(T ). It often is described by the Stefan–Boltzmann law

B(T ) = acT
4
,

where a = 4�SB

c
is the radiation density constant and �SB is the Stefan–Boltzmann

constant. Di↵erent closures exist to determine a relation between the temperature T

and the internal energy e. Following the ideas of Pomraning [37] and Su and Olson
[38], we assume e(T ) = ↵B(T ). Without loss of generality we set ↵= 1 and obtain

@tf(t, x,µ) + µ@xf(t, x,µ) = �(B(t, x)� f(t, x,µ)),(2.1a)

@tB(t, x) = �(hf(t, x, ·)iµ �B(t, x)).(2.1b)

We call this system the Su–Olson problem. It is a linear system for the particle
density f and the internal energy B that is analytically solvable and serves as a
common benchmark for numerical considerations [33, 30, 31, 28]. Note that we leave
out the speed of light by doing a rescaling of time ⌧ = t/c and in an abuse of notation
use t to denote ⌧ in the remainder. Constructing numerical schemes to solve the above
equation is challenging. First, the potentially sti↵ opacity term has to be treated by an
implicit time integration scheme. Second, for three-dimensional spatial domains the
computational costs and memory requirements of finely resolved spatial and angular
discretizations become prohibitive. To tackle the high dimensionality, we choose a
dynamical low-rank approximation which we introduce in the following.

2.2. Dynamical low-rank approximation. The core idea of DLRA is to ap-
proximate the solution of a given equation @tf(t, x,µ) = F (f(t, x,µ)) by a represen-
tation of the form

f(t, x,µ)⇡
rX

i,j=1

Xi(t, x)Sij(t)Vj(t, µ),(2.2)

where the orthonormal functions {Xi : i = 1, . . . , r} depend only on t and x and the
orthonormal functions {Vj : j = 1, . . . , r} depend only on t and µ. The number of basis
functions is set to r and we call r the rank of this approximation. This terminology
stems from the matrix setting for which the concept of DLRA has been introduced
[20]. Then, (2.2) can be interpreted as a continuous analogue to the singular value
decomposition for matrices. As representation (2.2) is not unique, we impose the
Gauge conditions hẊi,Xjix = 0 and hV̇i, Vjiµ = 0, from which we can conclude that
{Xi} and {Vj} are uniquely determined for invertible S = (Sij) 2 Rr⇥r [20, 10, 13].
That is, we seek an approximation of f that for each time t lies in the manifold

Mr =

(
f 2L

2(D⇥ [�1,1]) : f(·, x,µ) =
rX

i,j=1

Xi(·, x)Sij(·)Vj(·, µ) with invertible

S= (Sij)2Rr⇥r
,Xi 2L

2(D), Vj 2L
2([�1,1]) and hXi,Xjix = �ij ,

hVi, Vjiµ = �ij

)
.
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B140 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

Note that in the following we denote the full rank and the low-rank solutions as f .
Let f(t, ·, ·) be a path on Mr. A formal di↵erentiation of f with respect to t leads to

ḟ(t, ·, ·) =
rX

i,j=1

⇣
Ẋi(t, ·)Sij(t)Vj(t, ·) +Xi(t, ·)Ṡij(t)Vj(t, ·) +Xi(t, ·)Sij(t)V̇j(t, ·)

⌘
.

These functions restrict the solution dynamics onto the low-rank manifold Mr and
constitute the corresponding tangent space which under the Gauge conditions reads

TfMr =

(
ḟ 2L

2(D⇥ [�1,1]) : ḟ(·, x,µ) =
rX

i,j=1

⇣
Ẋi(·, x)Sij(·)Vj(·, µ)

+Xi(·, x)Ṡij(·)Vj(·, µ) +Xi(·, x)Sij(·)V̇j(·, µ)
⌘

with Ṡij 2R, Ẋi 2L
2(D), V̇j 2L

2([�1,1]) and hẊi,Xjix = 0,

hV̇i, Vjiµ = 0

)
.

Having defined the low-rank manifold and its corresponding tangent space, we now
wish to determine f(t, ·, ·) 2 Mr such that @tf(t, ·, ·) 2 TfMr and k@tf(t, ·, ·) �
F (f(t, ·, ·))kL2(D⇥[�1,1]) is minimized. That is, one wishes to determine f such that

h@tf(t, ·, ·)� F (f(t, ·, ·)), ḟ ix,µ = 0 for all ḟ 2 TfMr.(2.3)

The orthogonal projector onto the tangent plane TfMr can be explicitly given as

P (f)F (f) =
rX

j=1

hVj , F (f)iµVj �

rX

i,j=1

XihXiVj , F (f)ix,µVj +
rX

i=1

XihXi, F (f)ix.

With this definition at hand, we can reformulate (2.3) as

@tf(t, x,µ) = P (f(t, x,µ))F (f(t, x,µ)).

To evolve the approximation of the solution in time according to the above equation is
not trivial. Indeed standard time integration schemes su↵er from the curvature of the
low-rank manifold, which is proportional to the smallest singular value of the low-rank
solution [20]. Three integrators which move along the manifold without su↵ering from
its high curvature exist: the projector–splitting integrator [25], the BUG integrator
[8], and the parallel integrator [7]. In this work, we will use the basis-augmented
extension to the BUG integrator [6], which we explain in the following.

The rank-adaptive BUG integrator [6] updates and augments the bases {Xi},{Vj}

in parallel in the first two steps. In the third step, a Galerkin step is performed for the
augmented bases followed by a truncation step to a new rank r1. In detail, to evolve
the approximation of the distribution function from f(t0, x,µ) =

P
r

i,j=1X
0
i
(x)S0

ij
V

0
j
(µ)

at time t0 to f(t1, x,µ) =
P

r1

i,j=1X
1
i
(x)S1

ij
V

1
j
(µ) at time t1 = t0 +�t the integrator

performs the following steps.
K -step. WriteKj(t, x) =

P
r

i=1Xi(t, x)Sij(t). Then we obtain the representation
f(t, x,µ) =

P
r

j=1Kj(t, x)V 0
j
(µ) with {V

0
j
} kept fixed in this step. The basis functions

X
0
i
(x) with i= 1, . . . , r are updated by solving the partial di↵erential equation

@tKj(t, x) =

*
V

0
j
, F

 
rX

k=1

Kk(t, x)V
0
k

!+

µ

, Kj(t0, x) =
rX

i=1

X
0
i
(x)S0

ij
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DYNAMICAL LOW-RANK APPROXIMATION FOR SU–OLSON B141

and applying Gram–Schmidt to [Kj(t1, x),X0
i
] =
P2r

i=1
bX1
i
(x)R1

ij
. Then, the updated

and augmented basis in physical space consists of bX1
i
(x) with i= 1, . . . ,2r. Note that

R
1
ij

is discarded after this step. Compute cMki = h bX1
k
,X

0
i
ix.

L-step. Write Li(t, µ) =
P

r

j=1 Sij(t)Vj(t, µ). Then we obtain the representation
f(t, x,µ) =

P
r

i=1X
0
i
Li(t, µ) with {X

0
i
} kept fixed in this step. The basis functions

V
0
j
(µ) with j = 1, . . . , r are updated by solving the partial di↵erential equation

@tLi(t, µ) =

*
X

0
i
, F

 
rX

`=1

X
0
`
L`(t, µ)

!+

x

, Li(t0, µ) =
rX

j=1

S
0
ij
V

0
j
(µ),

and applying Gram–Schmidt to [Li(t1, µ), V 0
j
(µ)] =

P2r
j=1

bV 1
j
(µ)R2

ij
. Then, the up-

dated and augmented basis in velocity space consists of bV 1
j
(µ) with j = 1, . . . ,2r. Note

that R2
ij

is discarded after this step. Compute bN`j = hbV 1
`
, V

0
j
iµ.

S-step. Update S
0
ij

with i, j = 1, . . . , r to bS1
ij

with i, j = 1, . . . ,2r by solving the
ordinary di↵erential equation

ḃSij(t) =

*
bX1
i
bV 1
j
, F

0

@
2rX

`,k=1

bX1
`
bS`k(t)bV 1

k

1

A
+

x,µ

, bSij(t0) =
rX

k,`=1

cMikS
0
k`
bNj`.

Truncation. Let bS1
ij
be the entries of the matrix bS1. Compute the singular value

decomposition of bS1 = bPb⌃bQ> with ⌃ = diag(�j). Given a tolerance #, choose the
new rank r1  2r as the minimal number such that

0

@
2rX

j=r1+1

�
2
j

1

A
1/2

 #.

Let S1 with entries S
1
ij

be the r1 ⇥ r1 diagonal matrix with the r1 largest singular
values and let P1 with entries P 1

ij
and Q1 with entries Q1

ji
contain the first r1 columns

of bP and bQ, respectively. Set X
1
i
(x) =

P2r
i=1

bX1
i
(x)P 1

ij
for i = 1, . . . , r1 and V

1
j
(µ) =P2r

j=1
bV 1
j
(µ)Q1

ji
for j = 1, . . . , r1.

The updated approximation of the solution after one time step is then given by
f(t1, x,µ) =

P
r1

i,j=1X
1
i
(x)S1

ij
V

1
j
(µ). Note that we are not limited to augmenting with

the old basis, which we will use to construct our scheme.

3. Dynamical low-rank approximation for Su–Olson. Let us now derive
the evolution equations of the rank-adaptive BUG integrator for system (2.1), i.e.,
the partial di↵erential equations appearing in the K- and L-steps and the ordinary
di↵erential equation for the S-step. To simplify notation, all derivations are performed
for one spatial and one directional variable. However, the derivation trivially extends
to higher dimensions. We start with considering the evolution equations for the low-
rank approximation of the particle density (2.1a).

K-step. Write Kj(t, x) =
P

r

i=1Xi(t, x)Sij(t). Then we have the representation
f(t, x,µ) =

P
r

j=1Kj(t, x)V 0
j
(µ) for the low-rank approximation of the solution. Again

{V
0
j
} denotes the set of orthonormal basis functions for the velocity space that shall

be kept fixed in this step. Inserting this representation of f into (2.1a) and projecting
onto V

0
k
(µ) gives the partial di↵erential equation

@tKk(t, x) =�

rX

j=1

@xKj(t, x)hV
0
k
, µV

0
j
iµ + �

�
B(t, x)hV 0

k
iµ �Kk(t, x)

�
.(3.1)
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B142 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

L-step. Write Li(t, µ) =
P

r

j=1 Sij(t)Vj(t, µ). Then we have the representation
f(t, x,µ) =

P
r

i=1X
0
i
(x)Li(t, µ) for the low-rank approximation of the solution. Again

{X
0
i
} denotes the set of spatial orthonormal basis functions that shall be kept fixed

in this step. Inserting this representation of f into (2.1a) and projecting onto X
0
k
(x)

yields the partial di↵erential equation

@tLk(t, µ) =�µ

rX

i=1

⌧
X

0
k
,
d

dx
X

0
i

�

x

Li(t, µ) + �
�
hX

0
k
,B(t, ·)ix �Lk(t, µ)

�
.(3.2)

Lastly, we derive the augmented Galerkin step of the rank-adaptive BUG integrator.
We denote the time updated spatial basis augmented with X

0
i
as bX1

i
. The augmented

directional basis bV 1
i

is constructed in the corresponding way. Then, the augmented
Galerkin step is constructed according to the following step.

S-step. We use the initial condition bSij(t0) =
P

r

`,k=1h
bX1
i
X

0
`
ixS`k(t0)hbV 1

j
V

0
k
iµ

and approximate the solution f as f(t, x,µ) =
P2r

i,j=1
bX1
i
(x)bSij(t)bV 1

j
(µ). Inserting

this representation into (2.1a) and testing against bX1
k

and bV 1
`

gives the ordinary
di↵erential equation

ḃSk`(t) =�

2rX

i,j=1

⌧
bX1
k
,
d

dx
bX1
i

�

x

bSij(t)hbV 1
`
, µbV 1

j
iµ + �

⇣
h bX1

k
,B(t, ·)ixhbV 1

`
iµ � bSk`(t)

⌘
,

(3.3)

from which we get the augmented quantity bSij(t). Inserting all augmented low-rank
factors into (2.1b) leads to the partial di↵erential equation

@tB(t, x) = �

0

@
2rX

i,j=1

bX1
i
(x)bSij(t)hbV 1

j
iµ �B(t, x)

1

A .(3.4)

Before repeating this process and evolving the subequations further in time, we trun-
cate the augmented quantities to a new rank r1 using a suitable truncation strategy.

4. Angular and spatial discretization. Having derived the K-, L-, and S-
steps of the rank-adaptive BUG integrator, we can now proceed with discretizing in
angle and space. For the angular discretization, we use the modal representations

V
0
j
(µ)'

N�1X

n=0

V
0
nj
Pn(µ), bV 1

j
(µ)'

N�1X

n=0

bV 1
nj
Pn(µ), Li(t, µ)'

N�1X

n=0

Lni(t)Pn(µ),

where Pn are the normalized Legendre polynomials. Note that in the following, we
use Einstein’s sum convention when not stated otherwise to ensure compactness of
notation. Let us define the matrix A2RN⇥N with entries Amn := hPm, µPniµ. Then
we can rewrite hV

0
k
, µV

0
j
iµ = V

0
km

AmnV
0
jn
. The evolution equations with angular

discretization then read

@tKk(t, x) =�@xKj(t, x)V
0
nj
AmnV

0
mk

+ �
�
B(t, x)V 0

0k �Kk(t, x)
�
,

(4.1a)

L̇mk(t) =�

⌧
X

0
k
,
d

dx
X

0
i

�

x

Lni(t)Amn + �
�
hX

0
k
,B(t, ·)ix�m0 �Lmk(t)

�
,

(4.1b)

ḃSk`(t) =�

⌧
bX1
k
,
d

dx
bX1
i

�

x

Sij(t)bV 1
nj
Amn

bV 1
m`

+ �

⇣
h bX1

k
,B(t, ·)ix bV 1

0` �
bSk`(t)

⌘
.(4.1c)
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DYNAMICAL LOW-RANK APPROXIMATION FOR SU–OLSON B143

For the angular discretization of (3.4) we get

@tB(t, x) = �

⇣
bX1
i
(x)bSij(t)bV 1

0j �B(t, x)
⌘
.(4.1d)

To derive a spatial discretization we choose a spatial grid x1 < · · · < xnx with
equidistant spacing �x. The solution in a given cell p is then approximated by

Xpk(t)⇡
1

�x

Z
xp+1

xp

Xk(t, x)dx, Kpk(t)⇡
1

�x

Z
xp+1

xp

Kk(t, x)dx,

Bp(t)⇡
1

�x

Z
xp+1

xp

B(t, x)dx .

Spatial derivatives are approximated and stabilized through the tridiagonal stencil
matrices Dx

⇡ @x and Dxx
⇡

1
2�x@xx with entries

D
x

p,p±1 =
±1

2�x
, D

xx

p,p
=�

1

�x
, D

xx

p,p±1 =
1

2�x
.

Applying the matrix Dx
2 Rnx⇥nx corresponds to a first order and the stabilization

matrix Dxx
2Rnx⇥nx to a second order central di↵erencing scheme. Moreover, from

now on we assume periodic boundary conditions. Recall the symmetric matrixA. It is
diagonalizable in the form A=QMQ> with Q orthogonal and M=diag(�1, . . . ,�n).
We define matrix |A| as |A| = Q|M|Q>. We then obtain the spatially and angular
discretized matrix ODEs

K̇pk(t) =�D
x

qp
Kpj(t)V

0
nj
AmnV

0
mk

+D
xx

qp
Kpj(t)V

0
nj
|A|mnV

0
mk

(4.2a)

+ �
�
Bp(t)V

0
0k �Kpk(t)

�
,

L̇mk(t) =�AmnLni(t)X
0
pi
D

x

qp
X

0
qk

+ |A|mnLni(t)X
0
pi
D

xx

qp
X

0
qk

(4.2b)

+ �
�
�m0Bp(t)X

0
pk

�Lmk(t)
�
,

ḃSk`(t) =� bX1
pk
D

x

pq
bX1
qi
bSij(t)bV 1

nj
Amn

bV 1
m`

+ bX1
pk
D

xx

pq
bX1
qi
bSij(t)bV 1

nj
|A|mn

bV 1
m`

(4.2c)

+ �

⇣
bX1
pk
Bp(t)bV 1

0` �
bSk`(t)

⌘
.

Lastly, we obtain from (4.1d) for the internal energy B the spatially discretized equa-
tion

Ḃp(t) = �

⇣
bX1
pi
bSij(t)bV 1

0j �Bp(t)
⌘
= �

�
u
1
p0(t)�Bp(t)

�
,(4.2d)

where we use the notation bX1
pi
bSij(t)bV 1

mj
=: u1

pm
(t). We can now show that the semi-

discrete time-dependent system (4.2) is energy stable. For this, let us first give a
definition of the total energy of the system.

Definition 4.1 (total energy). Let the matrix u1(t) 2Rnx⇥N with low-rank en-
tries u1

pm
(t) = bX1

pi
bSij(t)bV 1

mj
denote the angularly and spatially discretized approxima-

tion of the solution of (2.1a) and B(t)2Rnx be the spatially discretized approximation
of the solution of (2.1b). Then we call

E(t) :=
1

2
ku1(t)k2

F
+

1

2
kB(t)k2

E
,

with k · kF denoting the Frobenius and k · kE denoting the Euclidean norm, the total
energy of the system (4.2).

Further, we note the following properties of the chosen spatial stencil matrices,
which we write down denoting all sums explicitly.
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B144 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

Lemma 4.2 (summation by parts). Let y, z 2 Rnx with indices p, q = 1, . . . , nx.
In addition, we set y0 = ynx and yn+1 = y1, for z respectively, due to the periodic
boundary conditions. Then the stencil matrices fulfill the following properties:

nxX

p,q=1

ypD
x

pq
zq =�

nxX

p,q=1

zpD
x

pq
yq,

nxX

p,q=1

zpD
x

pq
zq = 0,

nxX

p,q=1

ypD
xx

pq
zq =

nxX

p,q=1

zpD
xx

pq
yq.

Moreover, let D+
2Rnx⇥nx be defined as

D
+
p,p

=
�1

p
2�x

, D
+
p,p+1 =

1
p
2�x

.

Then,
P

nx

p,q=1 zpD
xx

pq
zq =�

P
nx

p=1(
P

nx

q=1D
+
pq
zq)2.

Proof. The assertions follow directly by plugging in the definitions of the stencil
matrices and rearranging the sums of the products in an adequate way:

nxX

p,q=1

ypD
x

pq
zq =

1

2�x

nxX

p=1

yp (zp+1 � zp�1) =�
1

2�x

nxX

p=1

zp (yp+1 � yp�1)

=�

nxX

p,q=1

zpD
x

pq
yq,

nxX

p,q=1

zpD
x

pq
zq =�

nxX

p,q=1

zpD
x

pq
zq = 0,

nxX

p,q=1

ypD
xx

pq
zq =�

1

�x

nxX

p=1

ypzp +
1

2�x

nxX

p=1

yp(zp+1 + zp�1)

=�
1

�x

nxX

p=1

zpyp +
1

2�x

nxX

p=1

zp(yp+1 + yp�1) =
nxX

p,q=1

zpD
xx

pq
yq,

nxX

p,q=1

zpD
xx

pq
zq =�

1

�x

nxX

p=1

z
2
p
+

1

2�x

nxX

p=1

zp(zp+1 + zp�1)

=�
1

2�x

nxX

p=1

�
z
2
p
� 2zpzp+1 + z

2
p+1

�
=�

1

2�x

nxX

p=1

(zp � zp+1)
2

=�

nxX

p=1

 
nxX

q=1

D
+
pq
zq

!2

.

With these properties at hand, we can now show dissipation of the total energy.

Theorem 4.3. The semidiscrete time-continuous system consisting of (4.2) is
energy stable; that is, Ė(t) 0.

Proof. Let us start from the S-step in (4.2c):

ḃSk`(t) =� bX1
pk
D

x

pq
bX1
qi
bSij(t)bV 1

nj
Amn

bV 1
m`

+ bX1
pk
D

xx

pq
bX1
qi
bSij(t)bV 1

nj
|A|mn

bV 1
m`

+ �

⇣
bX1
pk
(x)Bp(t)bV 1

0` �
bSk`(t)

⌘
.

We multiply with bX1
↵k
bV 1
�`
, where ↵= 1, . . . , nx and � = 0, . . . ,N�1, sum over k and `,

and introduce the projections PX,1
↵p

= bX1
↵k
bX1
pk

and P
V,1
m�

= bV 1
m`
bV 1
�`
. With the notation

bX1
qi
bSij(t)bV 1

nj
= u

1
qn
(t) we get
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u̇
1
↵�

(t) =� P
X,1
↵p

D
x

pq
u
1
qn
(t)AmnP

V,1
m�

+ P
X,1
↵p

D
xx

pq
u
1
qn
(t)|A|mnP

V,1
m�

+ �

⇣
P

X,1
↵p

Bp(t)�0mP
V,1
m�

� u
1
↵�

(t)
⌘
.

Next, we multiply with u
1
↵�

(t) and sum over ↵ and �. Note that

P
X,1
↵p

u
1
↵�

(t) = u
1
p�
(t) and P

V,1
m�

u
1
p�
(t) = u

1
pm

(t).

This leads to

1

2

d

dt
ku1(t)k2

F
=� u

1
pm

(t)Dx

pq
u
1
qn
(t)Amn + u

1
pm

(t)Dxx

pq
u
1
qn
(t)|A|mn

+ �
�
u
1
pm

(t)Bp(t)�0m � ku1(t)k2
�
.

Recall that we can write A = QMQ> with M = diag(�1, . . . ,�N ). Inserting this
representation gives

1

2

d

dt
ku1(t)k2

F
=� u

1
pm

(t)Dx

pq
u
1
qn
(t)Qnk�kQmk + u

1
pm

(t)Dxx

pq
u
1
qn
(t)Qnk|�k|Qmk

+
�
u
1
pm

(t)Bp(t)�0m � ku1(t)k2
�

=� �keu1
pk
(t)Dx

pq
eu1
qk
(t) + |�k|eu1

pk
(t)Dxx

pq
eu1
qk
(t)

+
�
u
1
pm

(t)Bp(t)�0m � ku1(t)k2
�
,

where eu1
pk
(t) = u

1
pm

(t)Qmk. With the properties of the stencil matrices we get

1

2

d

dt
ku1(t)k2

F
=�

⇣
D

+
pq
eu1
qm

(t)|A|
1/2
mn

⌘2
+ �

�
up0(t)Bp(t)� ku1(t)k2

F

�
.(4.3)

Next we consider (4.2d). Multiplication with Bp(t) and summation over p gives

1

2

d

dt
kB(t)k2

E
= �

�
up0(t)Bp(t)� kB(t)k2

E

�
.(4.4)

For the total energy of the system it holds that E(t) = 1
2ku

1(t)k2
F
+ 1

2kB(t)k2
E
. Adding

the evolution equations (4.3) and (4.4), we get

d

dt
E(t) =�

⇣
D

+
pq
eu1
qm

(t)|A|
1/2
mn

⌘2
+ �

�
u
1
p0(t)Bp(t)� ku1(t)k2

F

�

+ �
�
u
1
p0(t)Bp(t)� kB(t)k2

E

�

=�

⇣
D

+
pq
eu1
qm

(t)|A|
1/2
mn

⌘2
� �

�
(u1

p0(t)�Bp(t))
2 + (u1

pm
(t))2(1� �m0)

�
,

where we rewrote kB(t)k2
E

= Bp(t)2 and ku1(t)k2
F

= (u1
pm

(t))2. This expression is
strictly negative, which means that E is dissipated in time. Hence, the system is
energy stable.

5. Time discretization. Our goal is to construct a conservative DLRA scheme
which is energy stable under a sharp time step restriction. Constructing time dis-
cretization schemes which preserve the energy dissipation shown in Theorem 4.3 while
not su↵ering from the potentially sti↵ opacity term is not trivial. In fact a naive IMEX
time discretization potentially will increase the total energy, which we demonstrate
in the following.
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B146 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

5.1. Naive time discretization. We start from system (4.2), which still de-
pends continuously on the time t. For the time discretization we choose a naive IMEX
Euler scheme where we perform a splitting of the internal energy and radiation trans-
port equation. That is, we use an explicit Euler step for the transport part of the
evolution equations, treat the internal energy B explicitly, and use an implicit Euler
step for the radiation absorption term. Note that the scheme describes the evolution
from time t0 to time t1 = t0 +�t but holds for all further time steps equivalently.
This yields the fully discrete scheme

K
1
pk

=K
0
pk

��tD
x

qp
K

0
pj
V

0
nj
AmnV

0
mk

+�tD
xx

qp
K

0
pj
V

0
nj
|A|mnV

0
mk

(5.1a)

+ �
�
�tB

0
p
V

0
0k ��tK

1
pk

�
,

L
1
mk

=L
0
mk

��tX
0
qk
D

x

qp
X

0
pi
L
0
ni
Amn +�tX

0
qk
D

xx

qp
X

0
pi
L
0
ni
|A|mn(5.1b)

+ �
�
�tX

0
pk
B

0
p
�m0 ��tL

1
mk

�
.

We perform a QR-decomposition of the quantities [K1
pk
,X

0
pk
] and [L1

pk
, V

0
pk
] to obtain

the augmented and time updated bases bX1
pk

and bV 1
pk

according to the rank-adaptive
BUG integrator [6]. Lastly, we perform a Galerkin step for the augmented bases
according to

bS1
k`

= eS0
k`

��t bX1
pk
D

x

pq
bX1
qi
eS0
ij
bV 1
nj
Amn

bV 1
m`

+�t bX1
pk
D

xx

pq
bX1
qi
eS0
ij
bV 1
nj
|A|mn

bV 1
m`

(5.1c)

+ �

⇣
�t bX1

pk
B

0
p
bV 1
0` ��tbS1

k`

⌘
,

where eS0
k`

:= bX1
pk
X

0
pi
S
0
ij
V

0
nj

bV 1
n`
. The internal energy is then updated via

B
1
p
=B

0
p
+ ��t

⇣
bX1
pi
bS1
ij
bV 1
0j �B

1
p

⌘
.(5.1d)

However, this numerical method has the undesirable property that it can increase
the total energy during a time step. In Theorem 5.1 we show this analytically. This
behavior is, obviously, completely unphysical.

Theorem 5.1. Let u0
2Rnx⇥N with entries u

0
pm

=X
0
pk
S
0
k`
V

0
m`

denote the angu-
larly and spatially discretized low-rank approximation of the function f at time t= t0,
and let u1

2Rnx⇥N with entries u
1
↵�

= bX1
↵k

bS1
k`
bV 1
�`

denote the basis augmented angu-
larly and spatially discretized low-rank approximation at time t = t1 using the rank-
adaptive BUG integrator. Further, B0

2 Rnx shall denote the spatially discretized
low-rank approximation of B at time t= t0, and B1

2Rnx at time t= t1, respectively.
The total energy at time t = t0 is denoted by E

0 and E
1 at time t = t1, respectively.

Then, there exist initial value pairs (u0
,B0) and time step sizes �t such that the naive

scheme (5.1) results in (u1
,B1), for which the total energy increases, i.e., for which

E
1
>E

0.

Proof. Let us multiply the S-step (5.1c) with bX1
↵k

bV 1
�`

and sum over k and `.

Again we make use of the projections PX,1
↵p

= bX1
↵k

bX1
pk

and P
V,1
m�

= bV 1
m`

bV 1
�`
. With the

definition of eS0
k`

we obtain

u
1
↵�

= u
0
pm

� P
X,1
↵p

�tD
x

pq
u
0
qn
AmnP

V,1
m�

+ P
X,1
↵p

�tD
xx

pq
u
0
qn
|A|mnP

V,1
m�

(5.2)

+ �

⇣
�tP

X,1
↵p

B
0
p
�m0P

V,1
m�

��tu
1
↵�

⌘
.

Let us choose a constant solution in space, i.e., B1
p
= B

1 and u
1
↵�

= u
1
��0 for

all spatial indices p,↵= 1, . . . , nx. The scalar values B1 and u
1 are chosen such that

B
1 = u

1 + ↵, where
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0< ↵<
��t

1 + ��t+ �2�t2 + 1
2�

3�t3
u
1
.

We can now verify that we obtain our chosen values for B1
p
and u

1
↵�

after a single step
of (5.2) when using the initial condition

B
0
p
=B

1 + ��t↵= u
1 + ↵(1 + ��t),(5.3a)

u
0
pm

=
�
u
1 + ��t(u1

�B
0
p
)
�
�m0 =

�
u
1
� ��t↵(1 + ��t)

�
�m0.(5.3b)

To show this, note that since the solution is constant in space, all terms containing
the stencil matrices Dx and Dxx drop out, and we are left with

u
1
↵�

= u
0
pm

+ �

⇣
�tP

X,1
↵p

B
0
p
�m0P

V,1
m�

��tu
1
↵�

⌘
.(5.4)

Since B
0
p
is constant in space and �m0 lies in the span of our basis, we know that

all projections in the above equation are exact. Plugging the initial values (5.3) into
(5.4), we then directly obtain u

1
↵�

= u
1
��0. Similarly, by plugging (5.3) into (5.1d),

we obtain B
1
p
=B

1.
Then, we square both of the initial terms (5.3) to get

(B0
p
)2 = (B1)2 + 2��t↵B

1 + �
2�t

2
↵
2 = (B1)2 + 2��t↵(u1 + ↵) + �

2�t
2
↵
2
,

(u0
pm

)2 =
�
(u1)2 � 2��t↵u

1(1 + ��t) + �
2�t

2
↵
2(1 + ��t)2

�
�m0.

Summing over p and m, adding these two terms, and multiplying with 1
2 yields

E
1 =E

0 + �
2�t

2
↵u

1
� ��t↵

2
�

1

2
�
2�t

2
↵
2
�

1

2
�
2�t

2
↵
2(1 + ��t)2.

Note that E1
>E

0 if

��tu
1
� ↵�

1

2
��t↵�

1

2
��t↵(1 + ��t)2 > 0.

Rearranging gives

↵<
��t

1 + ��t+ �2�t2 + 1
2�

3�t3
u
1
.

This is exactly the domain ↵ is chosen from. Hence, we have E
1
> E

0, which is the
desired result.

5.2. Energy stable space-time discretization. We have seen that the naive
scheme presented in (5.1) can increase the total energy in one time step. The main
goal of this section is to construct a novel energy stable time integration scheme for
which the corresponding analysis leads to a classic hyperbolic CFL condition that
enables us to operate up to a time step size of �t=CFL ·�x. For constructing this
energy stable scheme, we write the original equations in two parts followed by a basis
augmentation and correction step.

In detail, we first solve

K
?

pk
=K

0
pk

��tD
x

qp
K

0
pj
V

0
nj
AmnV

0
mk

+�tD
xx

qp
K

0
pj
V

0
nj
|A|mnV

0
mk

,(5.5a)

L
?

mk
=L

0
mk

��tX
0
qk
D

x

qp
X

0
pi
L
0
ni
Amn +�tX

0
qk
D

xx

qp
X

0
pi
L
0
ni
|A|mn.(5.5b)
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B148 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

We perform a QR-decomposition of the augmented quantities X?R = [K?
,X0] and

V? eR= [L?
,V0] to obtain the augmented and time updated bases X? and V?. Note

that R and eR are discarded. With eS0
↵�

=X
?

j↵
X

0
j`
S
0
`m

V
0
km

V
?

k�
we then solve the S-step

equation

S
?

↵�
= eS0

↵�
��tX

?

p↵
D

x

pq
X

?

qi
eS0
ij
V

?

nj
AmnV

?

m�
+�tX

?

p↵
D

xx

pq
X

?

qi
eS0
ij
V

?

nj
|A|mnV

?

m�
.(5.5c)

Second, we solve the coupled equations for the internal energy B 2 Rnx and the
quantity bu1

0 = (bu1
j0)j 2 Rnx to which we refer as the zeroth order moment according

to

bu1
j0 =X

0
j`
S
0
`m

V
0
0m ��tD

x

ji
X

?

in
eS0
nm

V
?

`m
A0` +�tD

xx

ji
X

?

in
eS0
nm

V
?

`m
|A|0`(5.5d)

+ ��t(B1
j
� bu1

j0),

B
1
j
=B

0
j
+ ��t(bu1

j0 �B
1
j
).(5.5e)

Following [21, section 6] we perform the opacity update only on L=V?S? according
to

L
?,scat
mk

=
1

1+�t�
Lmk for k 6= 0(5.5f)

and perform a QR-decomposition V?,scatS?,scat,> = L?,scat to retrieve the factorized
basis V?,scat and the coe�cients from the matrix S?,scat. We then augment the basis
matrices according to

eX1 =qr([bu1
0,X

?]), eV1 =qr([e1,V
?,scat]).(5.5g)

Third, the coe�cient matrix is updated via

eS1 = eX1,>X?S?,scatV?,scat,>(I� e1e
>
1 )eV1 + eX1,>bu1

0e1,> eV1
2R(2r+1)⇥(2r+1)

.

(5.5h)

Then, we obtain the updated solution eX1eS1 eV1,>
2 Rnx⇥N . Lastly, we truncate this

rank 2r+1 solution to a new rank r1 using a suited truncation strategy such as that
proposed in [6] or the conservative truncation strategy of [14]. This finally gives the
low-rank factors X1

,S1, and V1. We show that the given scheme is energy stable and
start with the following lemma.

Lemma 5.2. Let us denote u
1
jk

:= eX1
j↵

eS1
↵�

eV 1
k�
. Under the time step restriction

�t�x it holds that

�t

2
(Dx

ji
u
1
jk
Ak` �D

xx

ji
u
1
jk
|A|k`)

2
�

⇣
D

+
ji
u
1
ik
|A|

1/2
k`

⌘2
 0.(5.6)

Proof. Following [21], we employ a Fourier analysis, which allows us to write the
stencil matrices Dx,xx,+ in diagonal form. Let us define E2Cnx⇥nx with entries

Ek↵ =
p

�x exp(i↵⇡xk), k,↵= 1, . . . , nx,

with i2C being the imaginary unit. Then, the matrix E is orthonormal, i.e., EEH =
EHE = I (the uppercase H denotes the complex transpose), and it diagonalizes the
stencil matrices:

Dx,xx,+E=E⇤x,xx,+
.(5.7)
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The matrices ⇤x,xx,+ are diagonal with entries

�
x

↵,↵
=

1

2�x
(ei↵⇡�x

� e
�i↵⇡�x) =

i

�x
sin(!↵) ,

�
xx

↵,↵
=

1

2�x

�
e
i↵⇡�x

� 2 + e
�i↵⇡�x

�
=

1

�x
(cos(!↵)� 1) ,

�
+
↵,↵

=
1

p
2�x

�
e
i↵⇡�x

� 1
�
=

1
p
2�x

(cos(!↵) + i sin(!↵)� 1) ,

where we use !↵ := ↵⇡�x. Moreover, recall that we can write A = QMQ>, where
M=diag(�1, . . . ,�N ). We then have with bujk =Ej`u`mQmk

�t

2
(Dx

ji
u
1
jk
Ak` �D

xx

ji
u
1
jk
|A|k`)

2
�

⇣
D

+
ji
u
1
ik
|A|

1/2
k`

⌘2

=
�t

2

���x

jj
bu1
jk
�k � �

xx

jj
bu1
jk
|�k|

��2 �
����+

jj
bu1
jk
|�k|

1/2
���
2




�t

✓
|�k|

2

�x2
· |1� cos(!j)|

◆
�

|�k|

�x
· |1� cos(!j)|

�
(bu1

jk
)2.

To ensure negativity, we must have

�t

✓
|�k|

2

�x2
· |1� cos(!j)|

◆


|�k|

�x
· |1� cos(!j)| .

Hence, for �t
�x

|�k| , (5.6) holds. Since |�k| 1, we have proven the lemma.

We can now show energy stability of the proposed scheme.

Theorem 5.3. Under the time step restriction �t  �x, the scheme (5.5) is
energy stable; i.e.,

1

2
kB1

k
2
E
+

1

2
kX1S1V1,>

k
2
F


1

2
kB0

k
2
E
+

1

2
kX0S0V0,>

k
2
F
.(5.8)

Proof. First, we multiply (5.5e) with B
1
j
and sum over j. Then,

�
B

1
j

�2
=B

0
j
B

1
j
+ ��t

⇣
u
1
j0B

1
j
�
�
B

1
j

�2⌘
.

Let us note that

B
0
j
B

1
j
=

�
B

1
j

�2

2
+

�
B

0
j

�2

2
�

1

2
(B1

j
�B

0
j
)2.

Hence,

1

2

�
B

1
j

�2
=
1

2

�
B

0
j

�2
�

1

2
(B1

j
�B

0
j
)2 + ��t

⇣
u
1
j0B

1
j
�
�
B

1
j

�2⌘
.(5.9)

To obtain a similar expression for (u1
jk
)2, we multiply (5.5c) with X

?

j↵
V

?

k�
and

sum over ↵ and �. For simplicity of notation, let us define u
?

jk
:= X

?

j↵
S
?

↵�
V

?

k�
and

u
0
jk

:= X
?

j↵
eS0
↵�

V
?

k�
as well as the projections P

X

jp
:= X

?

j↵
X

?

p↵
and P

V

km
:= V

?

k�
V

?

m�
.

Then, we obtain the system

u
?

jk
= u

0
jk

��tP
X

jp
D

x

pq
u
0
qn
AmnP

V

km
+�tP

X

jp
D

xx

pq
u
0
qn
|A|mnP

V

km
.(5.10)

Next, we define u
1
jk

:= eX1
j↵

eS1
↵�

eV 1
k�

and note that by construction we have that

u
1
jk

=
u
?

jk
(1� �k0)

1 + ��t
+ bu1

j0�k0.
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B150 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

Hence, plugging in the schemes for u?

jk
and bu1

j0, that is, (5.10) and (5.5d), we get

(1 + ��t)u1
jk

=
�
u
0
jk

��tP
X

jp
D

x

pq
u
0
qn
AmnP

V

km
+�tP

X

jp
D

xx

pq
u
0
qn
|A|mnP

V

km

�
(1� �k0)

+
⇣
X

0
j`
S
0
`m

V
0
0m ��tD

x

ji
X

?

in
eS0
nm

V
?

`m
A0` +�tD

xx

ji
X

?

in
eS0
nm

V
?

`m
|A|0`

+ ��tB
1
j

⌘
�k0.

Let us note that PV

km
P

X

jp
u
1
jk

= u
1
jk

for k 6= 0. Hence, multiplying the above equation
with u

1
jk

and summing over j and k gives

1

2

�
u
1
jk

�2
=

1

2

�
u
0
jk

�2
�

1

2
(u1

jk
� u

0
jk
)2 ��tu

1
jk
D

x

ji
u
0
i`
Ak` +�tu

1
jk
D

xx

ji
u
0
i`
|A|k`

+ ��tu
1
jk
(B1

j
�k0 � u

1
jk
).

Let us now add the zero term �tu
1
jk
D

x

ji
u
1
i`
Ak` and add and subtract the term

�tu
1
jk
D

xx

ji
u
1
i`
|A|k`. Then,

1

2

�
u
1
jk

�2
=

1

2

�
u
0
jk

�2
�

1

2
(u1

jk
� u

0
jk
)2 ��tu

1
jk
D

x

ji
(u0

i`
� u

1
i`
)Ak`

+�tu
1
jk
D

xx

ji
(u0

i`
� u

1
i`
)|A|k` +�tu

1
jk
D

xx

ji
u
1
i`
|A|k`

+ ��tu
1
jk
(B1

j
�k0 � u

1
jk
).

In the following, we use Young’s inequality, which states that for a, b 2 R we have
a · b

a
2

2 + b
2

2 . We now apply this to the term

��tu
1
jk
D

x

ji
(u0

i`
� u

1
i`
)Ak` +�tu

1
jk
D

xx

ji
(u0

i`
� u

1
i`
)|A|k`


1

2
(u0

i`
� u

1
i`
)2 +

�t
2

2
(Dx

ji
u
1
jk
Ak` �D

xx

ji
u
1
jk
|A|k`)

2
.

Hence, using u
1
jk
D

xx

ji
u
1
i`
|A|k` =�(D+

ji
u
1
ik
|A|

1/2
k`

)2, we get

1

2

�
u
1
jk

�2


1

2

�
u
0
jk

�2
+

�t
2

2
(Dx

ji
u
1
jk
Ak` �D

xx

ji
u
1
jk
|A|k`)

2
��t

⇣
D

+
ji
uik|A|

1/2
k`

⌘2

+ ��tu
1
jk
(B1

j
�k0 � u

1
jk
).(5.11)

As for the continuous case, we add (5.11) and (5.9) to obtain a time update equation
for E0 := 1

2 (u
0
jk
)2 + 1

2 (B
0
j
)2:

E
1
E

0 +
�t

2

2
(Dx

ji
u
1
jk
Ak` �D

xx

ji
u
1
jk
|A|k`)

2
��t

⇣
D

+
ji
u
1
ik
|A|

1/2
k`

⌘2

+ ��t(u1
j0B

1
j
� (u1

jk
)2)�

1

2
(B1

j
�B

0
j
)2 + ��t

⇣
u
1
j0B

1
j
�
�
B

1
j

�2⌘

E
0 +

�t
2

2
(Dx

ji
u
1
jk
Ak` �D

xx

ji
u
1
jk
|A|k`)

2
��t

⇣
D

+
ji
u
1
ik
|A|

1/2
k`

⌘2

� ��t(B1
j
� u

1
jk
)2 �

1

2
(B1

j
�B

0
j
)2.(5.12)

With Lemma 5.2 we have that

�t

2
(Dx

ji
u
1
jk
Ak` �D

xx

ji
u
1
jk
|A|k`)

2
�

⇣
D

+
ji
u
1
ik
|A|

1/2
k`

⌘2
 0

for�t�x. Since the truncation step is designed to not alter the zero order moments,
we conclude that E

1
 E

0 and the full scheme is energy stable under the time step
restriction �t�x.
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DYNAMICAL LOW-RANK APPROXIMATION FOR SU–OLSON B151

6. Mass conservation. A drawback of dynamical low-rank approximation us-
ing the classical integrators introduced in section 1 is that the method does not pre-
serve physical invariants. It has been shown in [12] that this problem can be overcome
when using a modified L-step equation. On this basis, [14, 17] have presented conser-
vative DLRA algorithms where they additionally introduced a conservative truncation
step. In contrast to [14, 17], we do not need to consider a modified L-step equation
due to the applied basis augmentation strategy from [6] but use the conservative trun-
cation step. Then we can show that besides being energy stable, our scheme ensures
local conservation of mass. The conservative truncation strategy works as follows:

1. Compute eK= eX1eS1 and split it into two parts eK=[ eKcons
, eKrem], where eKcons

corresponds to the first and eKrem consists of the remaining columns of eK.
Analogously, distribute eV1 = [eVcons

, eVrem], where eVcons corresponds to the
first and eVrem consists of the remaining columns of eV.

2. Derive Xcons = eKcons
/k eKcons

k and Scons = k eKcons
k.

3. Perform a QR-decomposition of eKrem to obtain eKrem = eXremeSrem.
4. Compute the singular value decomposition of eSrem = U⌃W> with ⌃ =

diag(�j). Given a tolerance #, choose the new rank r1  2r as the minimal
number such that

0

@
2rX

j=r1+1

�
2
j

1

A
1/2

 #.

Let Srem be the r1⇥r1 diagonal matrix with the r1 largest singular values, and
let Urem and Wrem contain the first r1 columns of U and W, respectively.
Set Xrem = eXremUrem and Vrem = eVremWrem.

5. Set bX = [Xcons
,Xrem] and bV = [e1,Vrem]. Perform a QR-decomposition of

bX=X1R1 and bV=V1R2.
6. Set

S1 =R1


Scons 0
0 Srem

�
R2,>

.

The updated solution at time t1 = t0 +�t is then given by u1 =X1S1V1,>.
Then, the scheme is conservative.

Theorem 6.1. The scheme (5.5) is locally conservative. That is, for the scalar
flux at time tn denoted by �n

j
=X

n

j`
S
n

`m
V

n

0m, where n 2 {0,1} and u
0
jk

=X
0
j`
S
0
`m

V
0
km

,
it fulfills the conservation law

�1
j
=�0

j
��tD

x

ji
u
0
i`
A0` +�tD

xx

ji
u
0
i`
|A|0` + ��t(B1

j
��1

j
),(6.1a)

B
1
j
=B

0
j
+ ��t(�1

j
�B

1
j
).(6.1b)

Proof. The conservative truncation step is designed such that it does not alter
the first column of eX1eS1 eV1,>. Together with the basis augmentation (5.5g) and
correction step (5.5f) we then know that

�1
j
=X

1
j`
S
1
`m

V
1
0m = eX1

j`
eS1
`m

eV 1
0m = bu1

j0.

Hence, with (5.5d) and (5.5e) we get that

�1
j
=X

0
j`
S
0
`m

V
0
0m ��tD

x

ji
X

?

in
eS0
nm

V
?

`m
A0` +�tD

xx

ji
X

?

in
eS0
nm

V
?

`m
|A|0`

+ ��t(B1
j
��1

j
),

B
1
j
=B

0
j
+ ��t(�1

j
�B

1
j
).
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B152 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

input
• internal energy at time t0: B0

j

• factored moments at time t0: X0
j`, S

0
`m, V 0

km
• rank at time t0: r

update basis according to (5.5a) and (5.5b).

augment basis with X0
j`, V

0
km

update coe�cient matrix according to (5.5c)

update scalar flux and internal energy according to (5.5d), (5.5e)

perform absorption step according to (5.5f)

augment basis according to (5.5g) with bu1
j0

correct coe�cient matrix S?
`m according to (5.5h)

truncate factors eX1
j`,

eS1
`m, eV 1

km

output
• internal energy at time t1: B1

j

• factored moments at time t1: X1
j`, S

1
`m, V 1

km
• rank at time t1: r1

B1
j , bu1

j0

X?
j`, V

?
km

S?
↵�

K?
j`, L

?
km

V ?,scat
km , S?,scat

↵�

eX1
j`

eS1
`m

Fig. 1. Flowchart of the stable and conservative method (5.5).

Since the basis augmentation with X0 and V0 ensures X
0
j`
S
0
`m

V
0
0m = X

?

in
eS0
nm

V
?

`m
=

u
0
i`
, the local conservation law (6.1) holds.

Hence, equipped with a conservative truncation step, the energy stable algorithm
presented in (5.5) conserves mass locally. To give an overview of the algorithm, we
visualize the main steps in Figure 1.

7. Numerical results. In this section we give numerical results to validate the
proposed DLRA algorithm. The source code to reproduce the presented numerical
results is openly available; see [2].

7.1. 1D plane source. We consider the thermal radiative transfer equations as
described in (2.1a) on the spatial domain D = [�10,10]. As initial distribution we
choose a cuto↵ Gausian
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u(t= 0, x) =max

 
10�4

,
1p

2⇡�2
IC

exp

✓
�
(x� 1)2

2�2
IC

◆!
,

with constant deviation �IC = 0.03. Particles are initially centered around x= 1 and
move into all directions µ 2 [�1,1]. The initial value for the internal energy is set to
B

0 = 1 and we start computations with a rank of r= 20. The opacity � is set to the
constant value of 1. Note that this setting is an extension of the so-called plane source
problem, which is a common test case for the radiative transfer equation [16]. In the
context of dynamical low-rank approximation it has been studied in [6, 21, 34, 36]. We
compare the solution of the full coupled-implicit system without DLRA, which reads

u
1
jk

= u
0
jk

��tD
x

ji
u
0
i`
Ak` +�tD

xx

ji
u
0
i`
|A|k` + ��t(B1

j
�k0 � u

1
jk
),(7.1a)

B
1
j
=B

0
j
+ ��t(u1

j0 �B
1
j
),(7.1b)

to the presented energy stable mass conservative DLRA solution from (5.5). We
refer to (7.1) as the full system. The total mass at any time tn shall be defined as
m

n =�x
P

j

�
u
n

j0 +B
n

j

�
. As computational parameters we use nx = 1000 cells in the

spatial domain and N = 500 moments to represent the directional variable. The time
step size is chosen as �t=CFL ·�x with a CFL number of CFL= 0.99. In Figure 2
we present computational results for the solution f(x,µ), the scalar flux � = hfiµ,
and the temperature T at the end time tend = 8. Further, the evolution of the rank
r in time, and the relative mass error |m0�m

n|
km0k are shown. One can observe that the

DLRA scheme captures well the behavior of the full system. For a chosen tolerance
of #= 10�1

k⌃k2 the rank increases up to r= 24 before it reduces again. The relative
mass error is of order O(10�14). Hence, our proposed scheme is mass conservative up
to machine precision.

7.2. 1D Su–Olson problem. For the next test problem we add a source term
Q(x) to the previously investigated equations leading to

@tf(t, x,µ) + µ@xf(t, x,µ) = �(B(t, x)� f(t, x,µ)) +Q(x),

@tB(t, x) = �(hf(t, x, ·)iµ �B(t, x)).

In our example we use the source function Q(x) = �[�0.5,0.5](x)/a with a = 4�SB

c

being the radiation constant. Again we consider the spatial domain D = [�10,10]
and choose the initial condition

u(t= 0, x) =max

 
10�4

,
1p

2⇡�2
IC

exp

✓
�
(x� 1)2

2�2
IC

◆!
,

with constant deviation �IC = 0.03 and particles moving into all directions µ2 [�1,1].
The initial value for the internal energy is set to B0 = 50, and the initial value for
the rank is set to r = 20. The opacity � is again chosen to have the constant value
of 1. As computational parameters we use nx = 1000 cells in the spatial domain
and N = 500 moments to represent the directional variable. The time step size is
chosen as �t = CFL ·�x with a CFL number of CFL = 0.99. The isotropic source
term generates radiation particles flying through and interacting with a background
material. The interaction is driven by the opacity �. In turn, particles heat up the
material leading to a traveling temperature front, also called a Marshak wave [26].
Again this traveling heat wave can lead to the emission of new particles from the
background material generating a particle wave. At a given time point tend = 3.16

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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B154 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

Fig. 2. Top row: Numerical results for the solution f(x,µ) of the plane source problem at time
tend = 8 computed with the full coupled-implicit system (left) and the DLRA system (right). Middle
row: Traveling particle (left) and heat wave (right) for both the full system and the DLRA system.
Bottom row: Evolution of the rank in time for the DLRA method (left) and relative mass error
compared for both methods (right).

this wave can be seen in Figure 3, where we display numerical results for the solution
f(x,µ), the scalar flux �= hfiµ, and the temperature T . We compare the solution of
the full coupled-implicit system di↵ering from (7.1) by an additional source term to the
presented energy stable mass conservative DLRA solution from (5.5), where we have
also added this source term. Further, the evolution of the rank in time is presented for
a tolerance parameter of #= 10�2

k⌃k2. Again we observe that the proposed DLRA
scheme approximates well the behavior of the full system. In addition, a very low
rank is su�cient to obtain accurate results. Note that due to the source term there
is no mass conservation in this example.

7.3. 2D beam. To approve the computational benefits of the presented method
we extend it to a two-dimensional setting. The set of equations becomes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DYNAMICAL LOW-RANK APPROXIMATION FOR SU–OLSON B155

Fig. 3. Top row: Numerical results for the solution f(x,µ) of the Su–Olson problem at time
tend = 3.16 computed with the full coupled-implicit system (left) and the DLRA system (right).
Middle row: Traveling particle (left) and heat wave (right) for both the full system and the DLRA
system. Bottom row: Evolution of the rank in time for the DLRA method.

@tf(t,x,⌦) +⌦ ·rxf(t,x,⌦) = �(B(t,x)� f(t,x,⌦)),

@tB(t,x) = �(hf(t,x, ·)i⌦ �B(t,x)).

For the numerical experiments let x= (x1, x2)2 [�1,1]⇥[�1,1],⌦= (⌦1,⌦2,⌦3)2 S
2,

and �= 0.5. The initial condition of the two-dimensional beam is given by

f(t= 0,x,⌦) = 106 ·
1

2⇡�2
x

exp

✓
�
kxk2

2�2
x

◆
·

1

2⇡�2
⌦

exp

✓
�
(⌦1 �⌦?)2 + (⌦3 �⌦?)2

2�2
⌦

◆
,

with ⌦? = 1p
2
, �x = �⌦ = 0.1. The initial value for the internal energy is set to B

0 = 1,
and the initial value for the rank is set to r = 100. The total mass at any time tn

shall be defined as m
n = �x1�x2

P
j

�
u
n

j0 +B
n

j

�
. We perform our computations on

a spatial grid with NCellsX = 500 points in x1 and NCellsY = 500 points in x2. For
the angular basis we use again a modal approach, namely the spherical harmonics

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

4/
24

 to
 1

32
.1

87
.2

47
.2

0 
. R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:/
/e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



B156 BAUMANN, EINKEMMER, KLINGENBERG, AND KUSCH

Fig. 4. Numerical results of the scalar flux and the temperature for the 2D beam example for
the full coupled-implicit system (left) and the DLRA system (right) at the time t= 0.5.

(PN ) method. Technical details can be found in [4, 31, 29], whereas [36, 22] relate
the method to dynamical low-rank approximation. The polynomial degree shall be
chosen large enough such that the behavior is captured correctly but small enough to
stay in a reasonable computational regime. An increasing order of unknowns usually
leads to an increasing complexity and therefore to the need of a higher polynomial
degree. For our example we use a polynomial degree of nPN = 29 corresponding to 900
expansion coe�cients in angle. The time step size is chosen as �t = CFL ·�x with
a CFL number of CFL = 0.7. We compare the solution of the two-dimensional full
system corresponding to (7.1) to the two-dimensional DLRA solution corresponding
to (5.5). The extension to two dimensions is straightforward. In Figure 4 we show
numerical results for the scalar flux �=

R
S2 f(t,x, ·)d⌦ and the temperature T at the

time t= 0.5. We again observe the accuracy of the proposed DLRA scheme. For this
setup the computational benefit of the DLRA method is significant as the run time
compared to the solution of the full problem is reduced by a factor of approximately
8 from 20023 seconds to 2509 seconds. For the evolution of the rank r in time and
the relative mass error |m0�m

n|
km0k we consider a time interval up to t= 1.5. In Figure 5

one can observe that for a chosen tolerance parameter of # = 5 · 10�4
k⌃k2 the rank

increases but does not approach its allowed maximal value of 100. Further, the relative
mass error stagnates and the DLRA method shows its mass conservation property.
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DYNAMICAL LOW-RANK APPROXIMATION FOR SU–OLSON B157

Fig. 5. Evolution of the rank in time for the 2D beam example for the DLRA method (left) and
relative mass error compared for both methods (right) until a time of t= 1.5.

8. Conclusion and outlook. We have introduced an energy stable and mass
conservative dynamical low-rank algorithm for the Su–Olson problem. The key points
leading to these properties consist in treating both equations in a coupled-implicit way
and using a mass conservative truncation strategy. Numerical examples both in 1D
and 2D validate the accuracy of the DLRA method. Its e�ciency compared to the so-
lution of the full system can especially be seen in the two-dimensional setting. For fu-
ture work, we propose to implement the parallel integrator of [7] to further enhance the
e�ciency of the DLRA method. Moreover, we expect to draw conclusions from this
Su–Olson system to the Boltzmann-BGK system and the DLRA algorithm presented
in [11] regarding stability and an appropriate choice of the size of the time step.
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