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Abstract. We develop a second order well-balanced finite volume scheme for com-
pressible Euler equations with a gravitational source term. The well-balanced property
holds for arbitrary hydrostatic solutions of the corresponding Euler equations without
any restriction on the equation of state. The hydrostatic solution must be known a
priori either as an analytical formula or as a discrete solution at the grid points. The
scheme can be applied on curvilinear meshes and in combination with any consis-
tent numerical flux function and time stepping routines. These properties are demon-
strated on a range of numerical tests.
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1 Introduction

The Euler equations with gravitational source term are used to model the flow of gases
in different fields of physical sciences. Examples include weather prediction, climate
modeling, and several astrophysical application such as the modeling of stellar interiors.
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In many of these applications, the gas state is close to a hydrostatic solution. Hydrostatic
solutions are non-trivial steady state solutions of the Euler equations with gravity which
can be described using the differential equation ∇p(x)=−ρ(x)∇(φ(x)), where p is the
gas pressure, ρ is the gas density and φ is a given external gravitational potential. In order
to resolve the flow dynamics, which can be seen as small perturbations of the hydrostatic
solution, one has to be able to maintain the corresponding hydrostatic solution with a
sufficiently small error. Conventional methods introduce a significant discretization error
when trying to compute small perturbations of the hydrostatic solution, especially on
coarse meshes. Since the computational effort using sufficiently fine meshes can be too
high, especially in three-dimensional simulations, special numerical techniques for this
problem have been developed called well-balanced schemes. Well-balanced schemes are
able to maintain hydrostatic solutions close to machine precision even on coarse meshes.

Well-balanced schemes have been developed for the well-known shallow water equa-
tions with non-flat bottom topography. The equation describing steady state solutions
in the shallow water equations is given in an explicit algebraic form which favors the
development of well-balanced schemes. Some examples are [1, 31]. There are also well-
balanced schemes for related models, like e.g. the Ripa model [13, 37]. More recently,
well-balanced schemes for Euler equations with gravitational source term have been de-
veloped. This is more delicate than for shallow water equations since the hydrostatic
solutions are given implicitly via a differential equation. For different equations of state
(EoS) different hydrostatic solutions can be found. This led to the development of well-
balanced schemes which are restricted to certain EoS and classes of hydrostatic solu-
tions. Early work on this topic has been conducted by Cargo and Le Roux [5]. LeVeque
and Bale [23] applied a quasi-steady wave-propagation algorithm on the Euler equa-
tions with gravitational source term to maintain isothermal hydrostatic solutions numer-
ically. This method has been expanded to isentropic solutions in [24]. Even for high order
schemes well-balancing is necessary if solutions close to a hydrostatic solution are com-
puted [40]. A high order well-balanced scheme for isothermal hydrostatic solutions is
introduced in [40]. The scheme includes a modified weighted essentially non-oscillatory
(WENO) reconstruction and a suitable way to discretize the source term. Based on this
idea, a non-staggered central scheme for the same class of hydrostatic solutions has been
proposed in [38]. Compact reconstruction WENO methods are applied to achieve well-
balancing in [17]. Discontinuous Galerkin (DG) well-balanced methods have been devel-
oped in [8,25,26]. The well-balanced method proposed in [9] is based on a reformulation
of the Euler equations with gravity discretized using a central scheme.

Another approach to achieve well-balancing for Euler with gravitational source term
is the development of well-balanced relaxation schemes, see [11, 12, 35] and references
therein. Here stable approximate Riemann solvers are constructed for well-balancing.
Methods based on hydrostatic reconstruction were first developed by Audusse et al. [1]
for the shallow water equations. Later they have been adapted for the Euler equations
with gravitational source term, see e.g. [7]. Early applications for weather prediction can
be seen in [3].
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Most of the above mentioned well-balanced schemes for the Euler equations with
gravitational source term are developed to balance a certain class of hydrostatic solu-
tions, typically isothermal or polytropic (including isentropic) solutions. Many of these
schemes also require the use of specific numerical flux functions. They can also only be
successfully applied if a certain equation of state (EoS) is used, in most cases an isentropic
or ideal gas EoS. Especially for astrophysical applications this limitation is too strict. As-
trophysical EoS are very complex since they take into account a wide range of physical
effects. Typically, there are no closed form expressions for these EoS. Hence, one cannot
hope to calculate the hydrostatic solutions analytically. An approximately well-balanced
scheme for general EoS has been developed in [18] for the isentropic hydrostatic solution
which is independent of the EoS. In [19] Käppeli and Mishra generalized their scheme. It
admits discrete hydrostatic solutions for arbitrary EoS, which are a second order approx-
imation of the continuous hydrostatic solution.

In physical and especially astrophysical applications certain properties are required.
With the well-balanced method we present in this paper we can satisfy the following
requirements:

• The method can be applied in the finite volume framework, which is suitable for
solving the Euler equations due to their conservation property.

• The method can be used to balance any arbitrary hydrostatic solution satisfying
any EoS. This includes EoS which are not given in closed form but in a table as is
common for example in astrophysical simulations.

• The method can be combined with any numerical flux function.

• The method can be combined with any time-stepping routine including implicit
ones.†

• The method can be combined with any reconstruction routine.

• The method can be applied on arbitrary curvilinear grid geometries.

• The method can be implemented in a straight forward way which does not need
restructuring of the code for classical finite volume codes.

This makes our method attractive for applications, in which for example specially de-
signed numerical flux functions or other routines have to be used. Following ideas
from [16] and [7], the scheme is based on a hydrostatic reconstruction and a certain sec-
ond order discretization of the gravitational source term.

To apply our method, the considered hydrostatic solution has to be known a priori ei-
ther as an analytical formula or as a discrete solution at the grid points. In many relevant

†By the term time-stepping routines we refer to ODE solvers which are applied to evolve the semi-discrete
scheme obtained after spatial discretization by a finite volume method.
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applications this is the case, since small dynamics on a hydrostatic background is exam-
ined in simulations. In these cases the underlying hydrostatic solution is known or can
be integrated from the data numerically. The scheme can be implemented in a manner
that the source code can be used to study any hydrostatic solution. The user has to only
supply a subroutine that gives the hydrostatic solution either as a function of the spatial
coordinates or as discrete solution at the grid points. The latter can be realized by a rou-
tine reading discrete data from a table. Especially for astrophysical applications, where
hydrostatic solutions to complex EoS appear, our scheme is useful. To resolve the small
dynamics on the hydrostatic background it can be necessary to use so-called low Mach
number numerical flux functions (e.g. [2, 30]). These can be used in combination with
our well-balanced method to obtain a finite volume scheme which is both well-balanced
and capable of resolving low Mach number fluxes. An example of such an application
can be a simulation of a star with convective and non-convective regions. Convective
stability of hydrostatic solutions is discussed in Section 3.1. The capability of our method
to correctly represent convective stability is demonstrated in Section 5.

The rest of the paper is structured as follows: In Section 2 the Euler equations with
gravitational source term are introduced for curvilinear coordinates. A few examples of
EoS are presented in Section 2.1. Hydrostatic solutions of the Euler equations with gravi-
tational source term are discussed in Section 3 in general. Particular hydrostatic solutions
are presented together with a method to determine stability properties of several equilib-
ria. In Section 4 the well-balanced scheme is introduced and the well-balanced property is
shown analytically. Various numerical experiments confirming the well-balanced prop-
erty follow in Section 5. Also, the ability of the scheme to resolve small perturbations on
the hydrostatic solution is shown using numerical tests and the accuracy of the scheme
is tested. Finally, conclusions of the paper are drawn in Section 6.

2 2D Euler equations with gravitational source term

The 2D Euler equations which model the balance laws of mass, momentum, and energy
under the influence of gravity in Cartesian coordinates are given by

∂q

∂t
+

∂ f

∂x
+

∂g

∂y
= s, (2.1)

where the conserved variables, fluxes and source terms are

q=









ρ
ρu
ρv
E









, f =









ρu
p+ρu2

ρuv
(E+p)u









, g=









ρv
ρuv

p+ρv2

(E+p)v









, s=











0

−ρ
∂φ
∂x

−ρ
∂φ
∂y

0











,

with ρ,p > 0. Moreover, E = ρε+ 1
2 ρ|v|2+ρφ is the total energy per unit volume with

v=(u,v)T being the velocity and ε the specific internal energy. The scalar function φ is
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a given gravitational potential. If the computational domain has curved boundaries, we
can use body-fitted coordinates ξ=(ξ,η) which we refer to as curvilinear coordinates. We
map the physical domain in x-space by a smooth mapping to a unit square in the ξ-space
in a bijective way. The Euler equations can be transformed to curvilinear coordinates and
written as

∂

∂t
(Jq)+

∂

∂ξ
[(x2

η+y2
η)

1
2 F]+

∂

∂η
[(x2

ξ+y2
ξ)

1
2 G]=S, (2.2)

where F= ℓ1 f+ℓ2g, G=m1 f+m2g, S= Js.
For details see Appendix A. The subscripts (·)ξ , (·)η denote partial derivatives. In the

above equations (ℓ1,ℓ2) and (m1,m2) are unit vectors defined as (ℓ1,ℓ2)= (yη,−xη)(x2
η+

y2
η)

− 1
2 and (m1,m2)=(−yξ ,xξ)(x2

ξ+y2
ξ)

− 1
2 . J is the Jacobian of the transformation (ξ,η)→

(x,y) given by J= xξyη−xηyξ . The transformed fluxes can be written as

F=









ρU
pℓ1+ρuU
pℓ2+ρvU
(E+p)U









, G=









ρV
pm1+ρuV
pm2+ρvV
(E+p)V









,

where U=uℓ1+vℓ2 and V=um1+vm2.

2.1 Equations of state

In the Euler equations (2.2), there are five independent scalar unknowns: ρ, ρu, ρv, ρE,
p. Yet, the system consists of only four scalar equations. In order to close the system, we
need one more equation relating at least two of the above quantities. The common choice
to close the system is using an EoS.

Definition 2.1. A relation between the quantities ρ, p, and ε, given in an explicit or im-
plicit form, is called equation of state (EoS).

We proceed with giving two examples of EoS.

2.1.1 Ideal gas

A widely applicable EoS derives from considering an ideal classical gas. The pressure for
the ideal gas EoS is given by

p(ρ,ε) := p(ρ,T(ρ,ε)) :=
R

µ
ρT(ρ,ε), where T(ρ,ε) :=

(γ−1)µ

R
ε. (2.3)

We set the gas constant R and the mean molecular weight µ to R= µ= 1. For the tests
presented in Section 5, the specific heat ratio γ is set to γ=1.4, which is suitable to describe
a diatomic gas (e.g. air). For this paper, it is convenient to write the ideal gas EoS in the
form Eq. (2.3) depending on the temperature T instead of the explicit dependence of ε.
We use this form of the EoS to formulate hydrostatic solutions with certain temperature
profiles in Section 5.
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2.1.2 Ideal gas with radiation pressure

At very high temperatures, such as in stellar interiors, radiation pressure can be relevant.
For this case, we add a term corresponding to the Stefan-Boltzmann law to the gas pres-
sure given in Eq. (2.3). Again, let us set all physical constants except γ to such values that
all prefactors vanish. The EoS for an ideal gas with radiation pressure is then given by

p(ρ,ε) := p(ρ,T(ρ,ε)) :=ρT(ρ,ε)+T4(ρ,ε) (2.4)

(e.g. [6]), where the temperature T is defined implicitly via

ε=
T(ρ,ε)

γ−1
+

3

ρ
T4(ρ,ε). (2.5)

The relation Eq. (2.5) cannot be rewritten to express T explicitly. It has to be solved nu-
merically, e.g. using Newton’s method. The radiation constant a that is present in the
source [6] is set to 3 to obtain these equations.

3 Hydrostatic solutions

A hydrostatic solution of Eq. (2.2) is a solution in which the fluid is at rest and the density
and pressure are independent of time; we will denote the hydrostatic solution using ¯(·).
Since the velocity is zero, the continuity and energy equations are automatically satisfied,
and the momentum equation reduces to

∇ p̄=−ρ̄∇φ. (3.1)

This relation is called hydrostatic equation. In order to solve this equation we will assume
an EoS to relate pressure and density. Moreover, since an equation of state can depend on
the internal energy, we need to make additional assumptions in order to be able to solve
the above hydrostatic equation. Examples of such assumptions are given in Section 3.2.

We intent to test our well-balanced numerical method on stable hydrostatic equilibria.
Thus in the next subsection we introduce the notion of stability we shall be using.

3.1 Brunt-Väisälä frequency

Consider a hydrostatic solution of the Euler equations with a gravitational source term
given via functions ρ :=ρext(χ) and p := pext(χ). Hypothetically, we take a fluid element
from a position χ=χ0 and displace it adiabatically, i.e. without an exchange of heat with
the surrounding fluid. According to [27] the equation of motion for a fluid element is

ρint
d2χ

dt2
+g

(

∂ρint

∂χ
−ρ′ext(χ)

)∣

∣

∣

∣

χ0

(χ−χ0)=0
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for a small displacement (χ−χ0). ρint is the density of the displaced fluid element, g=
φ′(χ) is the gravity in χ-direction. The solution of this ordinary differential equation is of
the form

χ−χ0= aeiNt (3.2)

with the initial χ-displacement being equal to a and the Brunt-Väisälä frequency N given
by

N2 =
g

ρext

(

∂ρint

∂χ
−ρ′ext(χ)

)∣

∣

∣

∣

χ0

. (3.3)

A form which is more practical in some situations is derived e.g. in [27]:

N2 =
g

Hp
(∇ad−∇ext). (3.4)

The pressure height scale is defined as

Hp :=− pext(χ)

p′ext(χ)
=

pext(χ)

ρextφ′(χ)
(3.5)

for a hydrostatic solution and the temperature gradients are

∇ad :=
pint

Tint

∂Tint

∂pint

∣

∣

∣

∣

s

, ∇ext :=
pextT

′
ext(χ)

Text p
′
ext(χ)

. (3.6)

The derivative in the adiabatic temperature gradient ∇ad is taken at constant entropy.
Note that ∇ad depends on the EoS, while ∇ext depends on the stratification of the data.

Assuming an ideal gas EoS, one can find (e.g. [27])

∇ad=
γ−1

γ
. (3.7)

According to [21] (their Eqs. (13.2), (13.3), and (13.12)), for an ideal gas with radiation
pressure the adiabatic temperature gradient can be given as

∇ad =
2p(4p−3ρT)

32p2−24pρT−3ρ2T2
. (3.8)

Definition 3.1. We call a hydrostatic solution of the Euler equations with gravitational
source term stable with respect to convection, if N2 ≥0 on the whole domain Ω. Otherwise
we call it unstable with respect to convection.

If N2>0, N is real and Eq. (3.2) describes an oscillation around χ0 with the frequency
N. If N = 0, the fluid element does not move at all. In both cases, the amplitude never
surpasses the initial displacement a. If N2 < 0, N is imaginary, so that the exponent in
Eq. (3.2) is ±iNt. (χ−χ0) is then a real exponential function with a positive exponent in
one of the solutions. The displacement increases in time in that case. In some numerical
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tests in which we consider hydrostatic solutions which are stable w.r.t. convection we use
the minimal Brunt-Väisälä time

tBV :=min
x∈Ω

tloc
BV(x) :=

2π

maxx∈Ω N(x)
(3.9)

as a reference time. It seems to be a natural time scale for the evolution of small pertur-
bations, such as numerical errors, on a hydrostatic solution. The Brunt-Väisälä frequency
and time depend on the spatial position x, since ρ and φ depend on x. We need a global
time as reference time. The minimal Brunt-Väisälä time is used because it corresponds to
the fastest oscillations. One can expect that significant spurious dynamics, introduced via
small statistical perturbations, first occur around the coordinates with the highest value
for N and lowest value for tloc

BV if N2 >0.

Remark 3.1. The definition of the Brunt-Väisälä frequency can be extended to hydrostatic
solutions with genuinely multidimensional smooth ρ, p, and φ by locally aligning the χ-
coordinate with ∇φ.

3.2 Examples of hydrostatic solutions considering stability w.r.t. convection

3.2.1 Polytropic and Isentropic Solutions

Polytropic solutions of Eq. (3.1) are of the form

θ(x) :=1− ν−1

ν
φ(x), ρ̄(x)= θ(x)

1
ν−1 , p̄(x)= ρ̄(x)ν (3.10)

with ν > 0. Eq. (3.10) is a solution of Eq. (3.1) to several different EoS, since there is
freedom for the choice of the internal energy stratification. Using an ideal gas EoS and
ν=γ defines the special case of an isentropic solution. In the case of an ideal gas EoS, we
have T̄≡ θ for the equilibrium temperature T̄.

The stability with respect to convection can be computed analytically in the case of an
ideal gas EoS using Eqs. (3.4) and (3.7). For Eq. (3.10) with an ideal gas EoS we have

p̄(x)

ρ̄(x)
= T̄(x)=1− ν−1

ν
φ(x)

and

ln p̄= ln
(

T̄
ν

ν−1

)

=
ν

ν−1
lnT̄ ⇒ ∇ext=

ν−1

ν
.

Using Eqs. (3.4) and (3.7) we get

N(x)2 =

(

1− ν−1

ν
φ(x)

)−1(γ−1

γ
− ν−1

ν

)

. (3.11)

Assuming ν ≥ 1 and φ ≤ 1 < ν
ν−1 , the polytropic solution is stable with respect to con-

vection if and only if ν ≤ γ. In the isentropic case, the equilibrium is marginally stable
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everywhere, since N2 ≡ 0. An adiabatically displaced fluid element neither oscillates
around the original position nor moves away from it, but it just holds the new position.
A Brunt-Väisälä time can not be calculated, since N=0 is the denominator in Eq. (3.9).

In the case ν<γ, the criterion in Definition 3.1 is satisfied. The global Brunt-Väisälä
time, calculated using Eq. (3.9) and Eq. (3.11), is

tBV=max
x∈Ω





√

√

√

√

4π2
(

1− ν−1
ν φ(x)

)

(

γ−1
γ − ν−1

ν

)



=
2π

√

(

γ−1
γ − ν−1

ν

)

.

In the case ν>γ no Brunt-Väisälä time can be given since the solution is then unstable
w.r.t. convection.

If the ideal gas with radiation pressure EoS is used, stability w.r.t. convection can be
discussed using Eq. (3.4) together with Eq. (3.8) on the data. It can not be done analyti-
cally since there is no explicit expression for the temperature in this case. Instead, N2 can
be approximated numerically from the data on the grid. For the spatial derivative of T
we will use a central finite difference approximation.

3.2.2 Isothermal solutions

Hydrostatic solutions with constant temperature, in our case T̄≡1, are called isothermal
solutions. An isothermal solution for the ideal gas EoS Eq. (2.3) is given by

ρ̄(x)= p̄(x)=exp(−φ(x)). (3.12)

One can also find an isothermal solution for the ideal gas with radiative pressure EoS
Eq. (2.4). It is given by

ρ̄(x)=exp(−φ(x)), p̄=exp(−φ(x))+1. (3.13)

Again, we can analyze the stability with respect to convection in the case of an ideal gas
EoS. Since T ≡ const, we have ρ≡ p and ∇ext ≡ 0 for this solution. With that, Eqs. (3.4)
and (3.7) yield a spatially constant Brunt-Väisälä frequency of

N=

√

γ−1

γ
, and hence tBV=2π

√

γ

γ−1
,

which is an implication of Eq. (3.9). This hydrostatic solution is always stable with respect
to convection.

Plugging the hydrostatic solution into Eqs. (3.4) and (3.8) we find

N2(x)=
3

4(8exp(φ(x))(4exp(φ(x))+5)+5)
+

1

4
, (3.14)

which is positive for all x. The isothermal hydrostatic solution for the ideal gas with
radiation pressure EoS is hence also stable w.r.t. convection.
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3.2.3 The tanh-profile

To demonstrate the flexibility of our scheme in Section 5.1.5, we introduce a hydrostatic
solution which can for example be found in [15]. We assume a temperature profile

T̄(x)= T̄(x,y)=1+∆Ttanh

(

x

µ

)

with constants ∆T,µ>0. For this profile the following solution of the hydrostatic equation
(3.1) together with the ideal gas EoS Eq. (2.3) can be found:

p̄(x)= p̄(x,y)=exp



−
x−∆Tµlog

(

cosh
(

x
µ

)

+∆Tsinh
(

x
µ

))

1−∆T2



, ρ̄(x)=
p̄(x)

T̄(x)
. (3.15)

The corresponding gravitational potential is φ(x)=φ(x,y)=x. The ideal gas EoS Eq. (2.3)
is used, hence the Brunt-Väisälä frequency can be computed via Eqs. (3.4) and (3.7) if ∇ext

can be determined. We can approximate the maximal N2 numerically using the values
on the initial numerical grid and numerical derivatives.

3.2.4 Numerically approximated hydrostatic solution

Hydrostatic solutions which are analytically known are a special case. In astrophysical
applications it is common, that underlying hydrostatic solutions are not known analyti-
cally. Instead, initial data for the simulation are given in the form of data points on the
grid. Knowing, that these data are close to a hydrostatic solution a close by hydrostatic
solution can be obtained by numerically solving the hydrostatic equation and EoS. For
that one can for example use the given temperature profile and solve the system for den-
sity and pressure.

As an example we assume the following given data: Let the gravitational potential be
given as φ(x)=φ(x,y)=x+y and the temperature T(x)=1−0.1φ(x). We assume an ideal
gas with radiation pressure as given in Eqs. (2.4) and (2.5). Using Chebfun [14] in the
numerical software MATLAB we solve the hydrostatic equation and EoS for density and
pressure corresponding to the given temperature profile. The result is shown in Fig. 1.

To discuss stability w.r.t. convection we use the criterion given by Eqs. (3.4) and (3.8).
In our case, the direction χ is the diagonal direction χ(x,y) = 1√

2
(x+y). The resulting

values for N2 are shown in Fig. 1. We see that the hydrostatic solution we computed is
stable w.r.t. convection, since the criterion N2>0 is met in the whole domain.

4 The α-β well-balanced scheme

In the following we construct our well-balanced scheme for Euler equations with gravi-
tational source term on curvilinear grids.
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Figure 1: Data of the integrated hydrostatic solution presented in Section 3.2.4.

4.1 Hydrostatic solution and source terms

Let us rewrite the hydrostatic solution as

ρ̄(x,y)=ρ0α(x,y), p̄(x,y)= p0β(x,y),

which is merely a rescaling of the hydrostatic solution so that α, β are positive dimension-
less quantities, ρ0 and p0 are positive constants. The non-dimensional functions will be
useful later during the reconstruction step of the finite volume method. Using Eq. (3.1),
the gravitational force can be written as

∂φ

∂x
=− p0

ρ0β

∂α

∂x
,

∂φ

∂y
=− p0

ρ0β

∂α

∂y
.

We will now rewrite the source terms in the general coordinates (ξ,η) as follows:

−Jρ
∂φ

∂x
=

p0ρ

β
J

∂α

∂x
=

p0ρ

β
J(αξ ξx+αηηx)

Eq. (A.1)
=

p0ρ

β
(αξyη−αηyξ)

=
p0ρ

ρ0β
((αyη)ξ−(αyξ)η),

where the last relation holds due to (yη)ξ =(yξ)η . In the same way we get

−Jρ
∂φ

∂y
=

p0ρ

ρ0β
(−(αxη)ξ+(αxξ)η).

This re-formulation of the source term is one of the key elements in achieving a well-
balanced scheme.
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4.2 Finite volume scheme

The body-fitted curvilinear coordinates define a mesh for the physical domain. The grid
points are indexed by (i, j) and the (i, j)’th cell is denoted Ci,j in the physical space and by

Ĉi,j in the computational space, i.e., in (ξ,η) coordinates. The semi-discrete finite volume

scheme is obtained by integrating Eq. (2.2) over the cell Ĉi,j leading to

Ωi,j
d

dt
qi,j+ F̂i+ 1

2 ,j Ai+ 1
2 ,j− F̂i− 1

2 ,j Ai− 1
2 ,j+Ĝi,j+ 1

2
Ai,j+ 1

2
−Ĝi,j− 1

2
Ai,j− 1

2
=Si,j, (4.1)

where

Ωi,j=
∫

Ĉi,j

Jdξdη=
∫

Ci,j

dxdy

is the physical area of the cell. The numerical fluxes F̂i+ 1
2 ,j= F̂(qL

i+ 1
2 ,j

,qR
i+ 1

2 ,j
,ℓi+ 1

2 ,j), Ĝi,j+ 1
2
=

Ĝ(qL
i,j+ 1

2

,qR
i,j+ 1

2

,mi,j+ 1
2
), etc. are consistent with the fluxes F, G, and the unit normal vec-

tors are given by

ℓi+ 1
2 ,j =

1

Ai+ 1
2 ,j

[

(yi+ 1
2 ,j+ 1

2
−yi+ 1

2 ,j− 1
2
), −(xi+ 1

2 ,j+ 1
2
−xi+ 1

2 ,j− 1
2
)
]

,

mi,j+ 1
2
=

1

Ai,j+ 1
2

[

−(yi+ 1
2 ,j+ 1

2
−yi− 1

2 ,j+ 1
2
), (xi+ 1

2 ,j+ 1
2
−xi− 1

2 ,j+ 1
2
)
]

,

with

Ai+ 1
2 ,j=

√

(xi+ 1
2 ,j− 1

2
−xi+ 1

2 ,j+ 1
2
)2+(yi+ 1

2 ,j− 1
2
−yi+ 1

2 ,j+ 1
2
)2,

Ai,j+ 1
2
=
√

(xi+ 1
2 ,j+ 1

2
−xi− 1

2 ,j+ 1
2
)2+(yi+ 1

2 ,j+ 1
2
−yi− 1

2 ,j+ 1
2
)2.

The gravitational source term is discretized as

S
(1)
i,j =0,

S
(2)
i,j =+

p0ρi,j

ρ0αi,j

[

(yη)i+ 1
2 ,jβi+ 1

2 ,j−(yη)i− 1
2 ,jβi− 1

2 ,j

]

− p0ρi,j

ρ0αi,j

[

(yξ)i,j+ 1
2
βi,j+ 1

2
−(yξ)i,j− 1

2
βi,j− 1

2

]

,

S
(3)
i,j =− p0ρi,j

ρ0αi,j

[

(xη)i+ 1
2 ,jβi+ 1

2 ,j−(xη)i− 1
2 ,jβi− 1

2 ,j

]

+
p0ρi,j

ρ0αi,j

[

(xξ)i,j+ 1
2
βi,j+ 1

2
−(xξ)i,j− 1

2
βi,j− 1

2

]

,

S
(4)
i,j =0.
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The derivatives of the mesh in the source term are computed using central differences,
e.g.

(yη)i+ 1
2 ,j=yi+ 1

2 ,j+ 1
2
−yi+ 1

2 ,j− 1
2
, etc.,

where

yi+ 1
2 ,j+ 1

2
=

1

4
(yi,j+yi+1,j+yi+1,j+1+yi,j+1), etc.

To obtain the values at the face qL
i+ 1

2 ,j
, qR

i+ 1
2 ,j

, qL
i,j+ 1

2

, qR
i,j+ 1

2

used to compute the numerical

flux, we reconstruct the following set of variables

w=[ρ/α, u, v, p/β]⊤ . (4.2)

We obtain the reconstructed primitive variables u via

uL,R

i+ 1
2 ,j
=T

(

xi+ 1
2 ,j

)

wL,R

i+ 1
2 ,j

, uL,R

i,j+ 1
2

=T
(

xi,j+ 1
2

)

wL,R

i,j+ 1
2

, (4.3)

where T(x) =diag
(

α(x)−1,1,1,β(x)−1
)

and transform them to conservative variables in
the canonical way if necessary in the implementation.

4.3 Well-balanced property

The following theorem establishes the well-balanced property of the 2D finite volume
scheme.

Theorem 4.1. The finite volume scheme (Eq. (4.1)) together with any consistent numerical flux
and reconstruction of w variables is well-balanced in the sense that the initial condition given by

ui,j =vi,j =0, ρi,j/αi,j =ρ0= const, pi,j/βi,j = p0= const, ∀ (i, j) (4.4)

is preserved by the numerical scheme.

Proof. Let us start the computations with an initial condition which is hydrostatic and
hence satisfies (Eq. (4.4)). Since the w variables are constant for this initial condition, any
reconstruction scheme will be exact and give

ρL
i+ 1

2 ,j
=ρR

i+ 1
2 ,j
=ρi+ 1

2 ,j, pL
i+ 1

2 ,j
= pR

i+ 1
2 ,j
= pi+ 1

2 ,j,

uL
i+ 1

2 ,j
=uR

i+ 1
2 ,j
=vL

i+ 1
2 ,j
=vR

i+ 1
2 ,j
=0,
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etc., where ρi+ 1
2 ,j =ρ0αi+ 1

2 ,j, pi+ 1
2 ,j = p0βi+ 1

2 ,j, etc. By consistency of the flux we get
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2
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2
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2 ,j+ 1
2
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2

0











.

An inspection of the source terms shows that they are exactly equal to the flux terms,
leading to a well-balanced scheme.

Remark 4.1. The well-balanced scheme presented in this section allows the choice of arbi-
trary consistent methods for the numerical flux function, the reconstruction method, the
time-stepping routine, and the grid topology. Note that the source term discretization is
a second order approximation. The particular form of the source term discretization is of
central importance for our well-balanced method. Also, in Eq. (4.1) the fluxes are evalu-
ated as interface-averages. This limits the resulting scheme to second order accuracy.

Remark 4.2. The proposed well-balanced scheme excels due to generality. The freedom
to write any hydrostatic solution into the functions α and β makes the scheme flexible
and applicable for all EoS. Only the choice of the reconstructed variables and the source
term discretization have to be adapted to implement this scheme. This leaves freedom
in the choice of all other components such as time-stepping, numerical flux function,
reconstruction method, and grid geometry.

4.4 Numerical flux function

We use Roe’s approximate Riemann solver [33] for the numerical flux function which is
given by

F̂χ(qL,qR)=
1

2

[

Fχ(qL)+Fχ(qR)−Dχ,Roe(qR−qL)
]

for χ= x,y and the fluxes Fx = F,Fy =G. The matrix Dχ,Roe is the Roe diffusion matrix.

With the eigenvalues λl
χ and eigenvectors rl

χ for l = 1,··· ,4 of the flux Jacobian Aχ =
∂Fχ

∂q

we can define the matrix

Dχ,Roe := |Aχ| :=Rχ|Λχ|R−1
χ , where |Λχ| :=diag(|λl

χ|), Rχ :=(r1
χ,··· ,r4

χ). (4.5)

The diffusion matrix Dχ,Roe = Dχ,Roe(q
′) depends on a state vector q′. It is evaluated at

the Roe-average state q′=qRoe(q
L,qR), which is given in [33].
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4.5 Reconstruction

We use two types of reconstruction schemes in this paper, but this is not the only pos-
sible choice as the scheme is well-balanced for any reconstruction scheme. The constant
reconstruction scheme, applied on the variables w, is given by

wL
i+ 1

2 ,j
=wi,j, wR

i+ 1
2 ,j
=wi+1,j, wL

i,j+ 1
2
=wi,j, wR

i,j+ 1
2
=wi,j+ 1

2
.

For parabolic reconstruction we use a MUSCL scheme [39] with κ=1/3. It is given by

wL
i+ 1

2 ,j
=wi,j+

1

4

(

(1−κ)(wi,j−wi−1,j)+(1+κ)(wi+1,j−wi,j

)

,

wR
i+ 1

2 ,j
=wi+1,j−

1

4

(

(1+κ)(wi+1,j−wi,j)+(1−κ)(wi+2,j−wi+1,j

)

,

wL
i,j+ 1

2
=wi,j+

1

4

(

(1−κ)(wi,j−wi,j−1)+(1+κ)(wi,j+1−wi,j

)

,

wR
i,j= 1

2
=wi,j+1−

1

4

(

(1+κ)(wi,j+1−wi,j)+(1−κ)(wi,j+2−wi,j+1

)

.

We obtain the reconstructed conservative variables as described in Section 4.2.
When the constant reconstruction is used the resulting overall scheme is first order ac-

curate. The parabolic MUSCL reconstruction combined with our well-balanced method
leads to a second order accurate scheme due to the second order discretization of the
gravitational source term.

4.6 Time-stepping

For the numerical experiments in this paper, we use an explicit, three stage Runge-Kutta
scheme, which has been introduced in [34]. It has the total variation diminishing property
(e.g. [36], chapter 13) and is third-order accurate in time. The scheme can be written as

q
(1)
i,j =qn

i,j−∆tRi,j(q
n), (4.6)

q
(2)
i,j =

3

4
qn

i,j+
1

4
q
(1)
i,j −

1

4
∆tRi,j(q

(1)), (4.7)

qn+1
i,j =

1

3
qn

i,j+
2

3
q
(2)
i,j −

2

3
∆tRi,j(q

(2)), (4.8)

where Ri,j is the spatial residual which contains the sum of the numerical fluxes and the
discretized source term. The size of the time step ∆t is limited by the CFL condition and
given via

∆t=CCFL · min
(i,j) with (xi,yj)∈Ω

(

min(k,l)∈{(i+1,j),(i−1,j),(i,j+1),(i,j−1)}‖xi,j−xk,l‖2

ci,j+|vi,j|

)

.

In the numerical tests we use CCFL=0.9. This choice leads to a CFL stable scheme [34].
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4.7 Curvilinear grids

We will use curvilinear grids in many of the numerical tests. In practice, the transformed
Euler equations (2.2) are solved on a Cartesian grid on a reference domain. Details on
the construction of curvilinear grids are given in [20], for example. Three grids that are
used in numerical tests in this paper are shown in Fig. 2. In Fig. 2(a) we see the grid
corresponding to the most trivial case of curvilinear coordinates, x(ξ) = ξ. In Fig. 2(b)
the cubed sphere grid is presented. It is the result of the attempt of Calhoun et al. [4]
to create a grid that adapts to spherical symmetry, but is still basically Cartesian in the
center. This way the central singularity of polar coordinates is avoided. A polar grid, i.e.
a grid introduced by polar coordinates, can be seen in Fig. 2(c). It is discretely spherically
symmetric. The center has to be avoided, since it is singular. The volume of the cells
increases from smaller to higher radii. The sinusoidal grid is shown in Fig. 2(d). This grid
has been introduced by Colella et al. [10] for testing purposes.

(a) Cartesian grid (b) Cubed sphere grid (c) Polar grid (d) Sinusoidal grid

Figure 2: Some curvilinear grids which are used in this paper. Each of the grids is shown with 16×16 grid cells.
The same row and line in the corresponding computational grid is colorized for every shown grid.

4.8 Non-well-balanced scheme

Comparison with a non-well-balanced scheme is given in some parts of Section 5 to out-
line the importance of well-balancing. The difference to the well-balanced scheme pre-
sented in this section is in the reconstructed variables and the source term discretization.
Instead of the hydrostatic variables w the primitive variables

wprim :=[ρ,u,v,p]T

are reconstructed. The source terms are computed by evaluating the gravitational accel-
eration at the cell-center exactly, so that the discretized source term has the form

Snon-WB
i,j :=

[

0,ρi,j
∂φ

∂x
(xi,yj),ρi,j

∂φ

∂y
(xi,yj), 0

]T

.



J. P. Berberich et al. / Commun. Comput. Phys., 26 (2019), pp. 599-630 615

5 Numerical experiments

The methods discussed in Section 4 are applied in numerical tests. For that we use the
Seven-League Hydro Code (SLH) (see www.slh-code.org), which is an astrophysical code
described in [29] and [15]. All tests are performed in double precision.

5.1 Numerical tests of the stability

To demonstrate the well-balanced property of a scheme it is in principle sufficient to
run a test with a hydrostatic setup for few time step. Yet, it is another question if the
method is leading to a stable scheme or not. To address this question we run all tests
for a longer time. For the tests we present in this section we check if the underlying
problem is stable w.r.t. convection. This way we can distinguish numerical instabilities
from underlying instabilities of the solution. In case the setup is stable w.r.t. convection
we run the tests for 10tBV. The Brunt-Väisälä time is a natural time scale corresponding
to the stability of the atmosphere. We concentrate on two dimensional problems since
schemes are more likely to introduce instabilities in multidimensional applications due
to the higher number of degrees of freedom. All tests in this subsection are conducted
with the Roe numerical flux function combined with constant reconstruction and explicit
RK3 time-stepping. The tests are conducted on the unit square Ω= [0,1]×[0,1] using a
Cartesian grid. Dirichlet boundary conditions are used. If some of the parameters are
altered, they are given explicitly.

5.1.1 Isothermal hydrostatic solution

Consider the isothermal hydrostatic solution Eq. (3.12). To make the results comparable
to [40] and [7] we choose a slightly modified problem given by

ρ̄(x,y)=ρ0 exp(−ρ0φ(x,y)/p0), p̄(x,y)= p0 exp(−ρ0φ(x,y)/p0) (5.1)

with φ(x,y)= x+y, ρ0 =1.21, and p0 =1. We apply our well-balanced scheme combined
with the Roe numerical flux function to evolve this initial condition to the time t=10tBV=
117.55.

The errors in L1 norm with respect to the initial condition are shown in Table 1a. All
errors are close to machine precision when the well-balanced scheme is applied. When
the non well-balanced scheme is applied, the errors are significant.

5.1.2 Isentropic hydrostatic solution

Consider the isentropic hydrostatic solution Eq. (3.10) with ν=γ=1.4. We use it as initial
condition on the unit square with the gravitational potential φ(x,y)= x+y. We run the
simulation on different Cartesian grids to the final time t=150. The results are shown in
Table 1b using the L1 norm. Like in Section 5.1.1 the well-balanced scheme keeps errors
close to machine precision.
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Table 1: L1 errors for the tests in Sections 5.1.1 to 5.1.7. WB is short notation for well-balanced. The final
time is t=150 for (b) and (d), t=10tBV for the other tests.

cells scheme ‖ρ−ρ0‖L1 ‖u‖L1 ‖v‖L1 ‖p−p0‖L1

(a) Isothermal solution, ideal gas

50×50 WB 7.9328e-15 3.0617e-16 4.3988e-15 2.1249e-15

no WB 1.3930e-02 6.6988e-15 8.6857e-03 3.9785e-03

200×200 WB 5.3619e-14 5.5781e-16 2.8956e-14 1.1549e-14

no WB 3.4358e-03 7.0805e-15 2.1278e-03 9.0645e-04

(b) Isentropic solution, ideal gas

50×50 WB 1.7171e-14 1.1442e-15 1.1455e-14 1.7990e-15

no WB 1.8785e-03 4.4098e-15 1.5233e-03 2.2894e-03

200×200 WB 1.5001e-13 3.8162e-15 9.6811e-14 1.6175e-14

no WB 4.6335e-04 9.8775e-15 3.8098e-04 5.6391e-04

(c) Polytropic solution, ν=1.2<γ, ideal gas

50×50 WB 1.2129e-14 5.5438e-16 7.3212e-15 1.3942e-15

no WB 1.4198e-02 9.3538e-15 9.0315e-03 4.2003e-03

200×200 WB 1.2081e-13 1.0600e-15 6.0344e-14 1.1861e-14

no WB 3.5177e-03 1.0028e-14 2.2226e-03 9.5553e-04

(d) Polytropic solution, ν=1.6>γ, ideal gas

50×50 WB 1.2100e-06 5.1134e-07 3.9891e-06 8.2899e-08

no WB 3.1469e-02 1.2112e-15 2.3118e-02 8.3768e-03

200×200 WB 2.2515e-02 2.8865e-02 5.0755e-02 8.4021e-03

no WB 3.2213e-02 7.9883e-14 2.2901e-02 8.8411e-03

(e) tanh-profile, ideal gas

50×50 WB 4.3523e-15 1.5694e-16 1.1054e-15 2.0373e-15

no WB 1.9732e-02 1.6283e-15 1.6307e-03 1.5402e-03

200×200 WB 4.4862e-14 5.0936e-16 4.2709e-15 9.8190e-15

no WB 4.9237e-03 1.6620e-15 4.0395e-04 3.8237e-04

(f) Isothermal solution, ideal gas with radiation pressure

50×50 WB 2.0389e-14 4.0172e-16 6.8921e-15 1.1469e-14

no WB 1.3934e-02 1.3761e-14 5.3882e-03 4.7652e-03

200×200 WB 1.5683e-13 7.6051e-16 2.8556e-14 5.5887e-14

no WB 3.4350e-03 1.4787e-14 1.3190e-03 9.4374e-04

(g) Polytropic solution, ideal gas with radiation pressure

50×50 WB 2.4695e-14 6.5524e-16 9.2055e-15 2.3608e-15

no WB 1.4167e-02 7.3164e-15 9.0282e-03 4.1308e-03

200×200 WB 2.0169e-13 1.0721e-15 6.8032e-14 1.8171e-14

no WB 3.5143e-03 7.7572e-15 2.2251e-03 9.5087e-04

(h) Numerically approximated solution, ideal gas with radiation pressure

50×50 WB 6.0292e-14 1.1557e-14 1.1557e-14 9.6190e-15

no WB 1.0900e-02 5.9842e-03 5.9842e-03 4.2731e-03

200×200 WB 3.3355e-13 4.8709e-14 4.8709e-14 5.1332e-14

no WB 3.0544e-03 1.5193e-03 1.5193e-03 1.2153e-03
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5.1.3 Polytropic hydrostatic solution (ν<γ)

Consider the polytropic hydrostatic solution Eq. (3.10) with an ideal gas EoS Eq. (2.3) and
ν= 1.2, i.e. ν<γ. We use it as initial condition on the unit square with the gravitational
potential φ(x,y) = x+y. We run the simulation on different Cartesian grids to the final
time t=10tBV =166.24. The results are shown in Table 1c using the L1 norm. Again, the
well-balanced scheme keeps errors close to machine precision. The temporal evolution
of the maximal local Mach number can be seen in Fig. 3.
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N × N grid cells

Figure 3: Maximal local Mach number (solid) and horizontal pressure fluctuations (dotted) for the two-
dimensional polytropic equilibrium from Section 5.1.3 over time for 200×200 cells.

5.1.4 Polytropic hydrostatic solution (ν>γ)

We redo the polytropic tests from Section 5.1.3 with ν = 1.6, i.e. ν>γ. The final time is
t= 150 since there is no Brunt-Väisälä time existent for ν>γ. The results are shown in
Table 1d using the L1 norm. The errors are significantly above machine precision, even if
the well-balanced scheme is used. This is an expected result since the polytropic solution
with ν>γ is not stable with respect to convection. The temporal evolution of the maximal
local Mach number can be seen in Fig. 4.

5.1.5 The tanh-test

Consider the hydrostatic solution Eq. (3.15). In accordance to [15] we choose ∆T = 0.1,
µ=0.02, and the computational domain x∈ [−0.1,0.1]×[−0.1,0.1]. For the Brunt-Väisälä
time we obtain tBV = 2.733. We evolve these hydrostatic initial data to the final time
t=10tBV =27.33 on different Cartesian grids using our well-balanced scheme combined
with the Roe numerical flux. The L1 errors at final time are shown in Table 1e. All errors
are close to machine precision if the well-balanced scheme is used.
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Figure 4: Maximal local Mach number (solid) and horizontal pressure fluctuations (dotted) for the two-
dimensional solution which is unstable w.r.t. convection from Section 5.1.4 over time for 200×200 cells.

5.1.6 Ideal gas with radiation pressure – isothermal solution

Let us consider the isothermal solution Eq. (3.13) of Eq. (3.1) combined with the EoS
Eq. (2.4) with the diagonal gravitational potential φ(x,y)= x+y. From Section 3.2.2 we
know that this setup is stable w.r.t. convection. Using Eqs. (3.9) and (3.14) we compute
the Brunt-Väisälä time tBV = 24.657. The L1errors at t = 10tBV = 246.57 can be seen in
Table 1f. When the well-balanced scheme is applied, all errors are sufficiently close to
machine precision.

5.1.7 Ideal gas with radiation pressure – polytropic solution

We redo the tests from Section 5.1.3 with the EoS Eq. (2.4) for an ideal gas with radi-
ation pressure. As before, we ensure stability w.r.t. convection with a positive result
and approximate the Brunt-Väisälä time tBV =12.885 from the data using Eqs. (3.4), (3.8)
and (3.9). These initial data are evolved to t=10tBV =128.85. The L1 errors at final time
are presented in Table 1g. For the well-balanced scheme, all errors are close to machine
precision.

5.1.8 Ideal gas with radiation pressure – numerically approximated solution

We run the test case with the numerically approximated hydrostatic solution from Sec-
tion 3.2.4. The data are computed using MATLAB. They are then given to our finite vol-
ume code in form of a table with discrete data points. The Brunt-Väisälä time tBV=25.708
is computed from the data numerically using Eqs. (3.4) and (3.8). We run the test to a final
time of t=10tBV=257.08. The L1-errors at the final time are shown in Table 1h. When the
well-balanced scheme is applied, all errors are sufficiently close to machine precision.
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5.2 Radial test with different grid geometries

We test the well-balanced property numerically for the isothermal solution Eq. (3.12) for
a radial gravitational potential φ(x,y) =

√

x2+y2. The ideal gas EoS Eq. (2.3) is used.
The test is computed on a 50×50 Cartesian grid. The same configuration has been used
for a well-balanced test in [7]. As a second test with curvilinear grid, we use the cubed
sphere grid suggested in [4] with 50×50 cells. The structure of the grid is shown in
Fig. 2(b). A polar grid as shown in Fig. 2(c) is used as a third grid. For the tests with
the polar grid we choose Dirichlet boundary conditions in the radial direction, periodic
boundary conditions in the angular direction. The Cartesian and cubed sphere grids are
combined with Dirichlet boundary conditions in both spatial directions. The domain
is Ω = [−1,1]×[−1,1] for the Cartesian grid. For the cubed sphere grid it reduces to
the unit disk and for the polar grid we additionally subtract the disk around the origin
with radius 0.2. The test is conducted on all three grids with combinations of the well-
balanced and the non-well-balanced scheme with the Roe numerical flux function and
constant reconstruction.
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Figure 5: Difference of the density from the initial condition at time t=1.5 for the isothermal test with radial
potential from Section 5.2. The resolution is 50×50 cells. The depicted domain is Ω=[−1,1]2. These figures
are shown in the x-y plane.
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The absolute density deviations from the initial data at time t= 1.5 are visualized in
Fig. 5. In all cases the density errors of the well-balanced tests are close to machine pre-
cision while being of magnitude 10−2 to 10−3 in the non-well-balanced tests. In Fig. 5(e)
the lack of rotation symmetry of the curvilinear grid in Fig. 2(b) gets evident.

5.3 Evolution of a small perturbation

In this test, we study the evolution of a small perturbation added to the hydrostatic so-
lution. We test this for the isothermal solution Eq. (5.1), the polytropic solution Eq. (3.10)
with an ideal gas EoS Eq. (2.3) and ν=1.2, i.e. ν<γ, and on the numerically approximated
hydrostatic solution for ideal gas with radiation pressure (Section 3.2.4). In correspon-
dence with [7] and [40], we choose the same parameters as in the Sections 5.1.1 and 5.1.3
respectively and the initial pressure is

p(x,y,0)= p̄(x,y)+ηexp(−100ρ0((x−0.3)2+(y−0.3)2)/p0). (5.2)

The initial density is ρ(·,·,0)= ρ̄. The grid resolution 50×50. For the numerically approxi-
mated hydrostatic solution a 1000×1000 grid is used to compute reference solutions. The
final time is t=0.15 for the tests on isothermal and polytropic backgrounds. It is t=0.10
for the tests with the numerically approximated hydrostatic solution as background.

The pressure perturbations at final time can be seen in Figs. 6 and 7. They are similar
for all three equilibria: The large perturbation with η =0.1 is well-resolved for both, the
well-balanced and the non-well-balanced scheme. When the perturbation is decreased
to η = 0.001, the non-well-balanced scheme is not able to resolve it well anymore, since
the discretization errors start to dominate after some time. The well-balanced scheme
shows no problems for the smaller perturbation. The isothermal test case has also been
conducted on a sinusoidal grid. This grid is introduced in Section 4.7. The result of the
test can be seen in Figs. 6(c) and 6(f). We see that the usage of the curvilinear mesh does
not introduce significant errors in this test. In Figs. 6(i) and 6(l) we can see that even a
small perturbation of η=10−10 or less leads to a well-resolved result, if the well-balanced
scheme is used.

In Fig. 8 a cut through the domain along the diagonal x=y is shown for the test with
the numerically approximated hydrostatic solution. The pressure perturbation from the
hydrostatic solution at the final time t=0.1 is shown along this line. The solution obtained
with the well-balanced method on the coarse grid and the highly resolved solution with
the standard scheme are close to each other. On the fine grid the diffusion is lower and
the amplitude of the remaining perturbation is thus higher. In the test on the coarse grid
without the well-balanced scheme the perturbation due to discretization errors domi-
nates.

5.4 Radial Rayleigh-Taylor instability

The next test case is a piecewise isothermal hydrostatic solution. The gravitational po-
tential is φ(x,y)= r :=

√

x2+y2, just as in Section 5.2. The domain is Ω=[0,1]×[0,1] and
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Perturbation on an isothermal solution Eq. (5.1)
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Perturbation on a polytropic solution Eq. (3.10) with ν=1.6>1.4=γ
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Figure 6: Evolved pressure perturbation (Eq. (5.2)) on an isothermal and a polytropic hydrostatic solution at
time t= 0.15. The x-coordinate increases to the right, the y-coordinate to the top. Lines: dotted at −0.1η,
solid at 0.0, dashed at 0.1η.
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Perturbation on the numerically approximated hydrostatic solution

for ideal gas with radiation pressure from Section 3.2.4
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Figure 7: Evolved pressure perturbation (Eq. (5.2)) on the numerically approximated hydrostatic solution
(Section 3.2.4) for ideal gas with radiation pressure at time t=0.1. The x-coordinate increases to the right, the
y-coordinate to the top. Lines: dotted at −0.1η, solid at 0.0, dashed at 0.1η.
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Figure 8: Diagonal cut along the line x=y through the domains corresponding to η=0.001 in Fig. 7.

the initial condition is given by

p=

{

exp(−r) if r≤ r0,

exp
(

−r+r0(1−a)
a

)

if r> r0,
(5.3)

ρ=

{

exp(−r) if r≤ ri,

1
a exp

(

−r+r0(1−a)
a

)

if r> ri,
(5.4)
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Figure 9: Temporal evolution of the density field for the radial Rayleigh-Taylor test. Our well-balanced scheme is
applied in combination with the Roe numerical flux function, linear reconstruction, explicit RK3 time stepping,
and different grid geometries. The grid size is 256×256 cells on the domain [−1,1]2. The figures are shown in
the x-y plane. The quantity shown is ρ−ρinternal.

with

ri := r0(1+ηcos(kθ)), a :=
exp(−r0)

exp(−r0)+∆ρ
.

While the pressure is continuous on the whole domain, the density jumps at r= ri with
∆ρ>0. In accordance to [7,8,23], we choose the parameters ∆ρ=0.1, η=0.02, and k=20,
and the grid consists of 256×256 cells. As the solution evolves with time, mixing at the
boundary between the equilibria is expected.

In Fig. 9 results of the test are presented. Our well-balanced scheme is applied in com-
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bination with the Roe numerical flux function, MUSCL reconstruction, and explicit RK3
time stepping. The shown quantity is ρ−ρinternal, where ρinternal(x,y):=exp(−r(x,y)). The
functions α and β are chosen to balance the internal hydrostatic solution on the whole
grid. The test is run to a maximal time of t = 10. Three different grid geometries have
been used: a Cartesian grid, a cubed sphere grid, and a polar grid (see Section 4.7), each
with a resolution of 256×256 grid cells. At time t= 10 we show the mixing layer for all
three grids.

5.5 Hot rising bubble

In this section we use a test case that has been used for example in [28] and [32]. The prob-
lem consists of an isentropic atmosphere with a spot (bubble) of increased temperature.
The initial data are given by

ρinit(x,y)= ρ̂

(

1− ρ̂(γ−1)

p̂γ
φ(x,y)

)
1

γ−1

, (5.5)

pinit(x,y)= p̂1−γ (Rθ(x,y)ρinit(x,y))γ , (5.6)

uinit(x,y)=0, (5.7)

vinit(x,y)=0 (5.8)

with

φ(x,y)= gy, (5.9)

r(x,y)=
√

(x−x0)2+(y−y0)2, (5.10)

θ(x,y)=

{

θ̂
(

1+∆θcos2
(

πr(x,y)
2r0

))

if r(x,y)≤ r0,

θ̂ if r(x,y)> r0

(5.11)

on the domain Ω=[0,106]×[0,1.5·106 ]. For the constants we choose

R=8.314472·107 , θ̂=300, ∆θ=0.022, p̂=106, ρ̂=
p̂

θ̂R
, (5.12)

g=981, x0=5·105, y0=2.75·105, and r0=2.5·105. (5.13)

We use the ideal gas EoS with the value for the gas constant R given in Eq. (5.12). The
above values are typical for a terrestrial atmosphere in CGS units (e.g. [22]).

Tests are conducted on a Cartesian 128×192 grid. Our well-balanced scheme is ap-
plied in combination with the Roe numerical flux function, MUSCL reconstruction, and
explicit RK3 time stepping. We choose the functions α and β in such a way that the isen-
tropic background – i.e. Eqs. (5.5) to (5.13) with ∆θ=0 – is balanced. Results of the tests
are presented in Fig. 10.
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Figure 10: Relative density deviation for the hot rising bubble test in Section 5.5. Our well-balanced scheme
is applied in combination with the Roe numerical flux function, MUSCL reconstruction, and explicit RK3 time
stepping. The grid size is 128×192 cells

5.6 Order of accuracy study

To test the order of accuracy of the scheme we use a problem from [40] and [8] which
involves a known exact solution of the Euler equations with gravity given by

ρ(t,x)=1+
1

5
sin(π(x+y−t(u0+v0))), u≡u0, v≡v0,

p(t,x)= p0+t(u0+v0)−x−y+
1

5π
cos(π(x+y−t(u0+v0))).

The gravitational potential is φ(x)= x+y, the EoS is the ideal gas EoS Eq. (2.3). In accor-
dance to [40] and [8] we choose u0 = v0 = 1. p0 = 4.5. We use our scheme to evolve the
initial data with t=0 to a final time t=0.1 with different grid resolutions on all different
grid geometries presented in Section 4.7. α and β are set for an isothermal solution (Sec-
tion 5.1.1). This is an arbitrary choice, since we want to discuss the accuracy of the scheme
if the data are far away from an hydrostatic solution. We use MUSCL reconstruction in
all tests.

The results are compared to the exact solution at time t=0.1. The L1 errors together
with the convergence rates are shown in Table 2. Together with the MUSCL reconstruc-
tion our well-balanced scheme is second order accurate on the Cartesian, sinusoidal, and
polar grid. On the cubed sphere grid some accuracy is lost due to the grid geometry as
the grid is not smooth.

6 Conclusions

We have proposed a finite volume scheme for the Euler equations with gravitational
source term in two spatial dimensions. We have shown that the scheme is well-balanced,
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Table 2: L1 errors of the test in Section 5.6 for different resolutions and the corresponding convergence rates.
The well-balanced scheme is used with linear reconstruction on the different grids introduced in Section 4.7.

Cartesian grid:

N ρ: Error Rate ρu: Error Rate ρv: Error Rate ρE: Error Rate

16 0.0006991 – 0.00071139 – 0.00071139 – 0.001336 –

32 0.00013033 2.42 0.00013137 2.44 0.00013137 2.44 0.000237 2.49

64 2.6642e-05 2.29 2.7032e-05 2.28 2.7032e-05 2.28 4.6686e-05 2.34

128 5.9188e-06 2.17 6.0525e-06 2.16 6.0525e-06 2.16 1.011e-05 2.21

256 1.3883e-06 2.09 1.4286e-06 2.08 1.4286e-06 2.08 2.3413e-06 2.11

512 3.3579e-07 2.05 3.4684e-07 2.04 3.4684e-07 2.04 5.627e-07 2.06

1024 8.2542e-08 2.02 8.5441e-08 2.02 8.5441e-08 2.02 1.379e-07 2.03

sinusoidal grid:

N ρ: Error Rate ρu: Error Rate ρv: Error Rate ρE: Error Rate

16 0.0029866 – 0.0058612 – 0.0058612 – 0.0636 –

32 0.00067682 2.14 0.0015231 1.94 0.0015231 1.94 0.015522 2.03

64 0.00015966 2.08 0.0003877 1.97 0.0003877 1.97 0.0037432 2.05

128 3.875e-05 2.04 9.8001e-05 1.98 9.8001e-05 1.98 0.00091998 2.02

256 9.5467e-06 2.02 2.4647e-05 1.99 2.4647e-05 1.99 0.00022799 2.01

512 2.3709e-06 2.01 6.1805e-06 2.00 6.1805e-06 2.00 5.6744e-05 2.01

1024 5.9083e-07 2.00 1.5475e-06 2.00 1.5475e-06 2.00 1.4154e-05 2.00

polar grid:

N ρ: Error Rate ρu: Error Rate ρv: Error Rate ρE: Error Rate

16 0.015013 – 0.01851 – 0.01851 – 0.057656 –

32 0.0050899 1.56 0.006662 1.47 0.006662 1.47 0.016689 1.79

64 0.00097143 2.39 0.0013992 2.25 0.0013992 2.25 0.0045171 1.89

128 0.0001856 2.39 0.00030959 2.18 0.00030959 2.18 0.0011836 1.93

256 3.8076e-05 2.29 7.232e-05 2.10 7.232e-05 2.10 0.00030843 1.94

512 8.4367e-06 2.17 1.7567e-05 2.04 1.7567e-05 2.04 7.9112e-05 1.96

1024 1.9729e-06 2.10 4.3412e-06 2.02 4.3412e-06 2.02 2.0045e-05 1.98

cubed sphere grid:

N ρ: Error Rate ρu: Error Rate ρv: Error Rate ρE: Error Rate

16 0.0025737 – 0.0045291 – 0.0045291 – 0.040389 –

32 0.00069247 1.89 0.0013296 1.77 0.0013296 1.77 0.011169 1.85

64 0.00019406 1.84 0.00037977 1.81 0.00037977 1.81 0.0029554 1.92

128 5.5393e-05 1.81 0.00011422 1.73 0.00011422 1.73 0.00077826 1.93

256 1.608e-05 1.78 3.5496e-05 1.69 3.5496e-05 1.69 0.00021095 1.88

512 4.7598e-06 1.76 1.1304e-05 1.65 1.1304e-05 1.65 5.8308e-05 1.86

1024 1.4667e-06 1.70 3.709e-06 1.61 3.709e-06 1.61 1.6391e-05 1.83
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and this property holds independently of the EoS, the special hydrostatic solution that
has to be maintained, the reconstruction routine, the numerical flux function, and the
grid geometry. In numerical tests we could confirm this result by maintaining different
hydrostatic solutions with different EoS. We also used different curvilinear meshes and
reconstruction routines. Tests over a long simulated time have shown two important fea-
tures of our scheme: hydrostatic solutions that are stable with respect to convection can
be maintained over a long time. Hydrostatic solutions that are unstable with respect to
convection develop instabilities, thus reproducing the physical situation. Tests with the
cubed sphere grid, which tends to introduce significant discretization errors with non-
well-balanced schemes, show the benefit of applying a well-balanced scheme in that case.
The well-balanced scheme allows the resolution of small perturbations on a hydrostatic
solution. Numerical experiments indicate that our well-balanced scheme is second order
accurate if it is combined with MUSCL reconstruction and a sufficiently accurate time-
stepping routine. This holds even on non-Cartesian, non-uniform but smooth curvilinear
grids. The generality of the present well-balanced scheme allows us to use the combina-
tion of best numerical schemes and grid system that is suitable for a particular problem.
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Appendix A: Transformation to curvilinear coordinates

In this section, we will derive the relationship between the two coordinates systems, (x,y)
and (ξ,η). The differentials are related by

[

dx
dy

]

=

[

xξ xη

yξ yη

][

dξ
dη

]

,

[

dξ
dη

]

=

[

ξx ξy

ηx ηy

][

dx
dy

]

and hence
[

ξx ξy

ηx ηy

]

=

[

xξ xη

yξ yη

]−1

=
1

J

[

yη −xη

−yξ xξ

]

, J= xξyη−xηyξ .

Hence we have proved the following identities

Jξx =yη , Jξy =−xη , Jηx =−yξ , Jηy = xξ . (A.1)



628 J. P. Berberich et al. / Commun. Comput. Phys., 26 (2019), pp. 599-630

We now transform the conservation law. The flux derivatives transform as

fx = fξξx+ fηηx, gy = gξξy+gηηy

and hence, adding the two equations and making use of (Eq. (A.1)), we get

fx+gy =
1

J
(yη fξ−xη gξ)+

1

J
(−yξ fη+xξ gη)

=
1

J
(yη f−xη g)ξ−

1

J
(yηξ f−xηξ g)+

1

J
(−yξ f+xξ g)η−

1

J
(−yξη f+xξη g)

=
1

J
(yη f−xη g)ξ+

1

J
(−yξ f+xξ g)η since yξη =yηξ , xξη = xηξ .

But since (yη f−xη g)=(x2
η+y2

η)
1
2 F and (−yξ f+xξ g)=(x2

ξ+y2
ξ)

1
2 G, and hence we obtain

fx+gy=
1

J
[(x2

η+y2
η)

1
2 F]ξ+

1

J
[(x2

ξ+y2
ξ)

1
2 G]η .

This completes the derivation of Eq. (2.2).
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