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A LOW MACH TWO-SPEED RELAXATION SCHEME FOR THE
COMPRESSIBLE EULER EQUATIONS WITH GRAVITY∗
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Abstract. We present a numerical approximation of the solutions of the Euler equations with
a gravitational source term. On the basis of a Suliciu type relaxation model with two relaxation
speeds, we construct an approximate Riemann solver, which is used in a first order Godunov-type finite
volume scheme. This scheme can preserve both stationary solutions and the low Mach limit to the
corresponding incompressible equations. In addition, we prove that our scheme preserves the positivity
of density and internal energy, that it is entropy satisfying and also guarantees not to give rise to
numerical checkerboard modes in the incompressible limit. Later we give an extension to second order
that preserves positivity, asymptotic-preserving and well-balancing properties. Finally, the theoretical
properties are investigated in numerical experiments.
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1. Introduction
The goal of this paper is to find a numerical approximation of the solutions of the

Euler equations including a gravitational source term. In a dimensionless form these
equations are defined by

∂tρ+∇·(ρu)=0,

∂t (ρu)+∇·(ρu⊗u)+
1

M2
∇p=− 1

M2
ρ∇Φ,

∂tE+∇·((E+p)u)=−ρu ·∇Φ,

(1.1)

where ρ(x,t) :Rd×R≥0→R+ denotes the density, u(x,t) :Rd×R≥0→Rd the velocity
vector, E(x,t) :Rd×R≥0→R+ the total energy and Φ(x) :Rd→R a given smooth grav-
itational potential. In this dimensionless formulation, the parameter M represents the
Mach number, which controls the ratio between the velocity of the gas and the speed
of sound. In this work, we consider the combined low Mach/low Froude number limit,
which is the reason why we set Fr=M . As an effect, only the Mach number M appears
in the dimensionless equations in (1.1).

The pressure is given by a pressure law p(τ,e) :R+×R+→R, where τ =1/ρ denotes
the specific volume and e>0 the internal energy. The total energy can then be expressed
by

E=ρe+
1

2
M2ρ |u|2 . (1.2)
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The pressure law closing this model obeys the second law of thermodynamics so that a
specific entropy s(τ,e) :R+×R+→R+, which satisfies the relation

−Tds=de+pdτ (1.3)

for some temperature T (τ,e)>0, exists. In this work, we assume (τ,e) 7→s(τ,e) to be
strictly convex.

The phase space to which the system (1.1) is associated is denoted by

Ω={ω=(ρ,ρu,E)T ∈Rd+2;ρ>0,e>0}. (1.4)

This model can be used in various fields of application, such as the simulation of gas
flows in the interior of stars in astrophysics. Depending on the application, the flows
can have large scale differences, e.g. the sound speed can be much higher than the
speed of the fluid flow. In these low Mach number regimes standard finite volume
schemes suffer from excessive diffusion, which can erase the structure of the solution
beyond recognition. A number of different strategies have been developed to overcome
this problem. One simple but efficient strategy is to modify the diffusion term in the
numerical flux by rescaling it with the local Mach number and thereby reduce the
viscosity on the velocity. First introduced for the homogeneous Euler equations [1,
11, 16, 24–27, 34], this approach was also extended to the Euler equations including a
gravitational source term [2]. A second approach introduced by Klein [23] relies on a
pressure splitting, which decomposes the system of equations into one slow, non-linear
part and into a linear part for the fast acoustic dynamics. In [6] this splitting is combined
with a Suliciu type relaxation model and an implicit time integration. Thomann et al.
modify the approach to an implicit-explicit (IMEX) scheme, in which only the acoustic
part is solved implicitly, while the non-linear part is solved explicitly by a Godunov-type
method based on an approximate Riemann solver [32]. Later this IMEX approach was
extended to the Euler equations with gravity [31].

Basis of the herein presented scheme is a third alternative introduced by Chalons
et al. in [8], where a two-speed relaxation scheme for the barotropic, homogeneous
Euler equations is proposed. The use of two different relaxation speeds enables an in-
dependent control of the numerical viscosity on the density and on the velocity. By
special definitions of the speeds in the low Mach regime, viscosity is transferred from
the velocity to the density. Therefore, this approach is related to the previously de-
scribed rescaling of the viscosity term. The key advantage of this method is that under
a subcharacteristic condition it is stable and provably entropy satisfying. Later the
two-speed relaxation system was used to develop an IMEX scheme for the homogeneous
Euler equations [9]. In contrast, the method presented in this paper is fully explicit.
The basic structure of the two-speed relaxation system is adopted and extended by grav-
itational source terms. From the exact resolution of the Riemann problem associated
with this relaxation system, a Godunov-type finite volume method is constructed. The
modification of the relaxation speeds is adopted from the original approach. The result-
ing approximate Riemann solver satisfies a discrete entropy inequality. Based on this
inequality, it is shown that no checkerboard modes can arise in the variables fluid veloc-
ity and pressure. Checkerboard modes pose an instability characterized by a decoupling
of the spatial approximation, which can occur in numerical solutions of incompress-
ible fluid equations computed on collocated grids [18]. It is well-known that most of
the asymptotic-preserving schemes exhibit such nonphysical checkerboard modes in low
Mach regimes [15,27].
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When studying the Euler equations with gravity source terms one has to consider
their influence on the behaviour of steady states. In several applications such as astro-
physics one deals with problems close to the hydrostatic equilibrium{

u=0,
∇p=−ρ∇Φ.

(1.5)

Standard finite volume schemes do not automatically satisfy a discrete equivalent of
(1.5). Therefore these steady states are not preserved exactly by such schemes and
small perturbations around this equilibrium cannot be resolved unless the resolution of
the scheme is increased, so that the truncation error is sufficiently small. In order to
avoid this potentially high computational effort, well-balanced schemes [3, 4, 12, 13, 21,
22, 30, 31, 35] were introduced, which satisfy exactly a discrete equivalent of the steady
state.

The well-balancing mechanism in the herein presented relaxation scheme is taken
over from [17]. The key idea is to add a transport relaxation equation for the gravi-
tational potential to the relaxation system, which leads to a Riemann-problem that is
under-determined. This gives an additional degree of freedom and allows to introduce a
closure equation that is a discrete equivalent of (1.5) and ensures the well-balanced prop-
erty. This approach is exact for certain families of hydrostatic equilibria, i.e. isothermal,
incompressible and polytropic ones. In all other cases it maintains the equilibrium to
second order. We extend this approach so that it can be applied to any hydrostatic
solution for the Euler equations with any equation of state if the hydrostatic solution is
known a priori. The extension is based on a second order approximation of the differ-
ence in the gravitational potential using the given hydrostatic states for the density and
pressure. This is useful for applications in stellar astrophysics, in which the equation of
state (EoS) is given in form of a table. Since hydrostatic solutions depend on the EoS,
they can then only be found through numerical simulations carried out beforehand and
are therefore available in the form of discrete data.

The paper is organized as follows. In Section 2, the two-speed relaxation model
is derived. In addition, the approximate Riemann solver associated with this system
and its intermediate states are determined. The following Section 3 contains the first
order Godunov-type finite volume scheme, which is based on the previously introduced
approximate Riemann solver. Its properties are described and proven in Section 4. A
suitable extension to second order in space is given in Section 6. In Section 7, the
properties of the second order scheme are checked in numerical tests. Finally, Section 8
provides the conclusion and an outlook.

2. The relaxation model

The one dimensional relaxation system described below is based at its core on the
Suliciu relaxation model [7, 14, 29]. The pressure p is approximated by the relaxation
variable π and we add an additional equation describing its behaviour to the system

∂tρπ+∂x(ρπv)+ab∂xv=ρ
p−π

ε
. (2.1)

While only one relaxation speed is used in the classical Suliciu relaxation model, here
two speeds a>0 and b>0 appear, as proposed in [8]. This will be useful to control
viscosity for pressure and velocity separately. These speeds will be defined later in
Section 4.4 so that they meet stability criteria and keep the viscosity bounded in the
low Mach regime.
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In addition, also the velocity u is approximated by a relaxation variable v and the
following equation is introduced

∂t (ρv)+∂x
(
ρv2
)
+

a

b
∂x

π

M2
=ρ

u−v

ε
− a

b

1

M2
ρ∂xΦ. (2.2)

In the next step, we also want to include the gravitational potential in the approximate
Riemann solver. According to [17] this can be done by approximating the gravitational
potential Φ by the relaxation variable Z and adding a transport relaxation equation to
the relaxation system

∂tρZ+∂xρvZ=ρ
Φ−Z

ε
. (2.3)

Finally, we derive the following relaxation model

∂tρ+∂x (ρv)=0,

∂t (ρu)+∂x

(
ρuv+

π

M2

)
=− 1

M2
ρ∂xZ,

∂tE+∂x ((E+π)v)=−ρv∂xZ,

∂t (ρπ)+∂x (ρπv)+ab∂xv=ρ
p−π

ε
,

∂t (ρv)+∂x
(
ρv2
)
+

a

b
∂x

π

M2
=ρ

u−v

ε
− a

b

1

M2
ρ∂xZ,

∂tρZ+∂xρvZ=ρ
Φ−Z

ε
,

∂ta+v∂xa=0,

∂tb+v∂xb=0.

(2.4)

The solutions to this relaxation model can be seen as a viscous approximation of the
solutions of the original system (1.1) as long as the subcharacteristic conditions

a≥ b and ab≥ρ2c2 (2.5)

are satisfied.

Remark 2.1. By choosing u=v and a= b one recovers the standard Suliciu relaxation
model.

The homogeneous system, denoted by (2.4)ε=∞, has the following properties.

Lemma 2.1. The relaxation system (2.4)ε=∞ is hyperbolic and all characteristic fields
are linearly degenerate. The eigenvalues of the system are given by

σv =v, σ±=v± a

Mρ
(2.6)

where σv has multiplicity six. The eigenvalues have the fixed ordering

σ−<σv <σ+. (2.7)

The Riemann invariant corresponding to the eigenvalue σv is

Iv1 =v (2.8)
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and those corresponding to σ± are

I±1 =v± a

Mρ
, I±2 =u± b

Mρ
, I±3 =

1

ρ
+

π

ab
,

I±4 =e+
(a−b)b+2ρ(π±bM(v−u))

2ρ2
,

I±5 =a, I±6 = b, I±7 =Z.

(2.9)

Proof. The computations are straightforward and left to the reader.

Remark 2.2. The relaxation system (2.4)ε=∞ provides only one Riemann invariant Iv1
for the contact wave. As a result, the associated Riemann problem is under-determined.

Let us now consider a single Riemann problem associated with the system (2.4)ε=∞.
In order to simplify the notations we introduce the state vector

W =(ρ,ρu,E,ρπ,ρv,ρZ,a,b)
T

(2.10)

in the phase space

O={W ∈R8 : ρ>0, e>0} (2.11)

and additionally for ω∈Ω and given gravitational potential Φ the state vector at relax-
ation equilibrium denoted by

W eq(ω)=(ρ,ρu,E,ρp(τ,e),ρu,ρΦ,a,b)
T
. (2.12)

Then the initial data of the Riemann problem is given by two constant states WL and
WR separated by one discontinuity located at x=0

W0(x)=

{
WL, x<0,
WR, x>0.

(2.13)

The solution to this problem consists of four constant states, each separated by a contact
discontinuity. Therefore the approximate Riemann solver WR(x/t;WL,WR) has the
structure

WR(
x

t
;WL,WR)=


WL, x

t <σ−,
WL∗, σ−< x

t <σv,
WR∗, σv < x

t <σ+,
WR, σ+< x

t .

(2.14)

This structure of the solution is also shown in Figure 2.1. For the computation of the in-
termediate statesWL∗ andWR∗ we can use the Riemann invariants given in Lemma 2.1.
Since Riemann invariants are constant across their corresponding wave, each Riemann
invariant provides one equation. However, counting the Riemann invariants reveals that
only 15 Riemann invariants face 16 unknown intermediate states. Therefore, the Rie-
mann problem (2.13) is, as already stated in Remark 2.2, under-determined. In order
to overcome this problem, it is suggested in [17] to introduce an additional relation

πR∗−πL∗=−ρ̄
(
WL,WR

)(
ZR−ZL

)
, (2.15)

where the function ρ̄ denotes a ρ-average function. This equation is chosen because it
is a discrete representation of the steady states at rest in (1.5) in one spatial dimension
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v− a
Mρ

x=0

v+ a
Mρv

WL WR

WL∗ WR∗

Fig. 2.1. Schematic diagram of the Riemann fan for the relaxation system (2.4). The Riemann
fan consists of the two intermediate states WL∗ and WR∗ for given states WL and WR. The states
are separated by the three wave speeds v−a/(Mρ), v and v+a/(Mρ).

and therefore will be useful for the well-balancing of hydrostatic equilibria. The explicit
definition of the function ρ̄ depends on the underlying hydrostatic equilibrium and will
be given later in Section 4.5.

With the newly added closure equation, it is now possible to compute the interme-
diate states in the Riemann solution.

Lemma 2.2. The solution of the Riemann problem (2.13) associated with the relaxation
system (2.4)ε=∞ has the structure given in (2.14) with the intermediate states

v∗=
MbLvL+MbRvR+πL−πR− ρ̄

(
WL,WR

)(
ZR−ZL

)
M(bL+bR)

, (2.16)

1

ρL∗ =
1

ρL
+

MbR
(
vR−vL

)
+πL−πR− ρ̄

(
WL,WR

)(
ZR−ZL

)
aL (bL+bR)

, (2.17)

1

ρR∗ =
1

ρR
+

MbL
(
vR−vL

)
+πR−πL+ ρ̄

(
WL,WR

)(
ZR−ZL

)
aR (bL+bR)

, (2.18)

uL∗=uL+
bL
(
bRM

(
vR−vL

)
+πL−πR− ρ̄

(
WL,WR

)(
ZR−ZL

))
MaL (bL+bR)

, (2.19)

uR∗=uR+
bR
(
bLM

(
vL−vR

)
+πL−πR− ρ̄

(
WL,WR

)(
ZR−ZL

))
MaR (bL+bR)

, (2.20)

πL∗=
bRπL+bLπR+MbLbR

(
vL−vR

)
+bLρ̄

(
WL,WR

)(
ZR−ZL

)
bL+bR

, (2.21)

πR∗=
bRπL+bLπR+MbLbR

(
vL−vR

)
−bRρ̄

(
WL,WR

)(
ZR−ZL

)
bL+bR

, (2.22)

eL∗=eL+
(πL∗)2−(πL)2

2aLbL
+

(v∗−uL∗)2−(vL−uL)2

2(a
L

bL
−1)

, (2.23)

eR∗=eR+
(πR∗)2−(πR)2

2aRbR
+

(v∗−uR∗)2−(vR−uR)2

2(a
R

bR
−1)

, (2.24)

aL∗=aL, aR∗=aR, bL∗= bL, bR∗= bR, ZL∗=ZL, ZR∗=ZR. (2.25)

Proof. The intermediate states can be computed by solving the system of equations
given by the Riemann invariants and the closure Equation (2.15). The precise steps are
straightforward and therefore left to the reader.
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Remark 2.3. At this point, we do not explicitly define the relaxation speeds aL, aR,
bL and bR, since later, in the proofs of the properties of the relaxation method, various
conditions are placed on these speeds. The explicit definitions are then provided in
Section 4.4.

Equipped with the approximate Riemann solver, we can now define the overall
discretization of the scheme in the next section.

3. The relaxation scheme
Before we derive a complete finite volume scheme for the Euler equations with a

gravitational source (1.1), we introduce some useful notations. The spatial domain is
divided into cells Ci=(xi−1/2,xi+1/2) with i∈Z that have the size ∆x=xi+1/2−xi−1/2.
The cell centers are denoted by xi. The time discretization is given by tn=n∆t with
n∈N and a timestep ∆t that is restricted by the CFL condition

∆t

∆x i
max

{∣∣∣∣vi− ai
Mρi

∣∣∣∣ ,∣∣∣∣vi+ ai
Mρi

∣∣∣∣}≤ 1

2
. (3.1)

The cell average ωn
i then approximates the value over the cell Ci at time tn

ωn
i ≈ 1

∆x

∫
Ci

ω(x,tn)dx. (3.2)

At the start of each time step, we assume to be at the relaxation equilibrium.
Therefore the initial data for the relaxation variables at time level n is defined by

πn
i =pni , vni =un

i , Zn
i =Φn

i . (3.3)

Starting from the equilibrium we solve the homogeneous relaxation system (2.4)ε=∞
using the Riemann solver WR defined in (2.14) and update the cell averages to the next
time level tn+1 by a Godunov method of the form

ωn+1
i =ωn

i −
∆t

∆x

(
Fn
i+1/2−Fn

i−1/2

)
+

∆t

2

(
S+,n
i−1/2

Φn
i −Φn

i−1

∆x
+S−,n

i+1/2

Φn
i+1−Φn

i

∆x

)
,

Fn
i−1/2=F (ωn

i−1,Φ
n
i−1,ω

n
i ,Φ

n
i ), Fn

i+1/2=F (ωn
i ,Φ

n
i ,ω

n
i+1,Φ

n
i+1),

S+,n
i−1/2=S+(ωn

i−1,Φ
n
i−1,ω

n
i ,Φ

n
i ), S−,n

i+1/2=S−(ωn
i ,Φ

n
i ,ω

n
i+1,Φ

n
i+1).

(3.4)

The numerical flux is defined by

F (ωL,ΦL,ωR,ΦR)=


F (ωL), if σ−>0,
FL∗, if σ−<0≤σv,
FR∗, if σv <0<σ+,
F (ωR), if σ+<0,

(3.5)

where according to the left-hand sides of the first three equations of (2.4) the interme-
diate fluxes can be written as

FL∗=

(
ρL∗v∗,ρL∗uL∗v∗+

πL∗

M2
,(EL∗+πL∗)v∗

)
,

FR∗=

(
ρR∗v∗,ρR∗uR∗v∗+

πR∗

M2
,(ER∗+πR∗)v∗

)
.

(3.6)
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The numerical source terms are set as follows

S+(ωL,ΦL,ωR,ΦR)=−(sgn(v∗)+1)

(
0,

1

M2
ρ̄(WL,WR), ρ̄(WL,WR)v∗

)T

,

S−(ωL,ΦL,ωR,ΦR)=(sgn(v∗)−1)

(
0,

1

M2
ρ̄(WL,WR), ρ̄(WL,WR)v∗

)T

.

(3.7)

We note that in this procedure only the variables of the original Euler Equations (1.1)
in the vector ω are updated to the next time level. For the upcoming time step we
again assume to be at the equilibrium. As a consequence of this projection approach,
the relaxation parameter ε does not appear in the relaxation scheme (3.4) and thus does
not have to be set explicitly.

4. Properties of the relaxation scheme
In this section we focus on the properties of the relaxation scheme just described.

We start with the property of entropy stability.

4.1. Entropy inequality. We seek those correct solutions that satisfy the
entropy inequality. In practice, it can be observed that searching for entropy solutions
makes a finite volume method more stable. This is partly because an entropy inequality
can help to ensure the positivity of density and/or internal energy.

Going back to the Euler Equations (1.1) and assuming smooth solutions, it is pos-
sible to derive the additional conservation law

∂tρF(s)+∂xρF(s)u=0 (4.1)

for all smooth functions F . Assuming that F is increasing and ω 7→ρF(s) is convex, the
pair (ρF(s),ρF(s)u) defines a Lax entropy pair for the system (1.1). Thus, Equation
(4.1) states that the entropy is conserved for smooth solutions. However, since the Euler
equations are non-linear, discontinuities can arise in the solution in finite time despite
of smooth initial conditions. At discontinuities the Equation (4.1) is not valid, since it
does not consider the entropy dissipation at shocks. Therefore, we replace the equality
in (4.1) by an inequality, which leads to the following entropy inequality

∂tρF(s)+∂xρF(s)u≤0. (4.2)

Our scheme should now mimic this behaviour in the sense that its solutions satisfy a
discrete version of (4.2).

Theorem 4.1. Let us assume that wn
i belongs to Ω for all i∈Z. Furthermore,

we assume that at each interface with initial left state ωL and initial right state ωR the
intermediate states for density and internal energy in the Riemann solution are positive,
i.e. ρL∗,ρR∗,eL∗,eR∗>0, and that the relaxation speeds aL,R and bL,R are such that they
satisfy the subcharacteristic Whitham conditions

aLbL>p(τL,eL)∂ep(τ
L,eL)−∂τp(τ

L,eL), (4.3)

aLbL>p(τL∗,eL∗)∂ep(τ
L∗,eL∗)−∂τp(τ

L∗,eL∗), (4.4)

aRbR>p(τR∗,eR∗)∂ep(τ
R∗,eR∗)−∂τp(τ

R∗,eR∗), (4.5)

aRbR>p(τR,eR)∂ep(τ
R,eR)−∂τp(τ

R,eR). (4.6)

Moreover, we assume that the pressure law satisfies Assumption 4.1.
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Then for all i∈Z, the updated state ωn+1
i , computed with the relaxation Scheme

(3.4) under the CFL condition (3.1), satisfies the discrete entropy inequality

ρn+1
i F(sn+1

i )−ρni F(sni )−
∆t

∆x

(
{ρF(s)u}ni+1/2−{ρF(s)u}ni−1/2

)
≤0, (4.7)

where we define the numerical entropy flux by

{ρFu}ni−1/2={ρF(s)u}
(
W eq(ωn

i−1),W
eq(ωn

i )
)
, (4.8)

{ρFu}L,R={ρF(s)u}
(
W eq(ωL),W eq(ωR)

)
=


ρLF(s(τL,eL))uL, if σ−>0,

ρL∗F(ŝ(WL∗))v∗, if σ−<0≤σv,

ρR∗F(ŝ(WR∗))v∗, if σv <0<σ+,

ρRF(s(τR,eR))uR, if σ+<0,

(4.9)

where the function W 7→ ŝ(W ) is defined by (4.13).

Remark 4.1. At the beginning of this theorem, we assume the intermediate states of
density and internal energy to be positive. In Section 4.3 we show that the approximate
Riemann solver (2.14) satisfies this property for suitably chosen relaxation speeds.

Proof. (Proof of Theorem 4.1.) The proof of this theorem closely follows the
steps of a similar proof in [17, p. 113]. Therefore, we only give a sketch of the proof
here and do not prove every intermediate step. For more details see [17].

First of all, it is easy to check that

I(W )=π+abτ and J(W )=e−M2(v−u)2

2(ab −1)
− π2

2ab
(4.10)

are strong Riemann invariants of (2.4)ε=∞. Therefore, weak solutions of (2.4)ε=∞ satisfy

∂tρΨ(I,J)+∂xρΨ(I,J)v=0 (4.11)

for all smooth functions Ψ :R2→R. As a consequence, for a function W 7→ ŝ(W ), which
only depends on I and J , weak solutions of (2.4)ε=∞ satisfy the additional conservation
law

∂tρF(ŝ)+∂xρF(ŝ)v=0. (4.12)

We define the function ŝ by

ŝ(W )=s(τ̂(I(W ),J(W )), ê(I(W ),J(W ))), (4.13)

where τ̂(I,J) is the the largest root within R+ of the function fI,J :R+→R defined by

fI,J(τ)= τp(τ,e(τ,I−abτ))+abτ2−Iτ (4.14)

and ê is defined by

ê(I,J)=e(τ̂(I,J),I−abτ̂(I,J)). (4.15)

For the further steps, the following assumption is made about the pressure law.
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Assumption 4.1. We assume that the pressure law is such that the function τ 7→fI,J
is strictly convex for all fixed pairs (I,J).

This condition is fulfilled by most common pressure laws, including the ideal gas
law [17].

Under this assumption, it can be proven (see [17]) that for all W , for which the pair
(I(W ),J(W )) is in

A={(I,J)∈R2,∃τ >0,∃e>0,∃v,∃u such that:

I=p(τ,e)+abτ, (4.16)

J =e− p(τ,e)2

2ab
, (4.17)

ab>p(τ,e)∂ep(τ,e)−∂τp(τ,e)}, (4.18)

the function ŝ is larger than the specific entropy of the original system, i.e.

ŝ(W )≥s(τ,e) (4.19)

and that equality is reached in the relaxation equilibrium, i.e.

ŝ(W|π=p(τ,e),v=u)=s(τ,e). (4.20)

Let us now go back to the additional conservation law (4.12) and integrate it over
[0,∆x/2)× [0,∆t)∫ ∆x/2

0

(ρF(ŝ)
(
WR

( x

∆t
;W eq(ωL),W

eq(ωR)
))

=

∫ ∆x/2

0

(ρF(ŝ))(W (x,0))dx−∆t(ρF(ŝ)v)

(
WR

(
∆x

2∆t
;W eq(ωL),W

eq(ωR)

))
+∆t(ρF(ŝ)v)(WR(0;W eq(ωL),W

eq(ωR))). (4.21)

Under consideration of the CFL condition (3.1) and equality (4.20), this can be rewritten
as

1

∆x

∫ ∆x/2

0

(ρF(ŝ)
(
WR

( x

∆t
;W eq(ωL),W

eq(ωR)
))

dx

=
ρRF(sR)

2
− ∆t

∆x

(
ρRF(sR)uR−{ρFu}L,R

)
. (4.22)

The replacement of v by u in the entropy fluxes is due to the fact that the input values
of the approximate Riemann solver are at equilibrium and therefore left and right states
of u and v are equal in each case. Just in the intermediate states both velocities differ,
which is the reason why we write v∗ in (4.9). Due to the inequality (4.19), it follows

ŝ
(
WR

( x

∆t
;W eq(ωL),W eq(ωR)

))
≥s
(
(τeq,eeq)

( x

∆t
;ωL,ωR

))
. (4.23)

The quantities τeq,eeq on the right-hand side originate from the approximate Riemann
solver WR(x/∆t;W eq(ωL),W eq(ωR)). Since we assume F to be increasing, it in turn
follows that

F(ŝ)
(
WR

( x

∆t
;W eq(ωL),W eq(ωR)

))
≥F(s)

(
W

(ρ,ρu,E)
R

( x

∆t
;W eq(ωL),W eq(ωR)

))
.

(4.24)
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By replacing the content of the integral in (4.22), we obtain the inequality

1

∆x

∫ ∆x/2

0

(ρF(s))
(
W

(ρ,ρu,E)
R

( x

∆t
;W eq(ωL),W eq(ωR)

))
dx

≤ρRF(sR)

2
− ∆t

∆x

(
ρRF(sR)uR−{ρF(s)u}L,R

)
. (4.25)

Inserting ωL=ωn
i−1 and ωR=ωn

i leads to

1

∆x

∫ xi

xi−1/2

(ρF(s))

(
x−xi−1/2

∆t
;ωn

i−1,ω
n
i

)
dx

≤ρni F(sni )

2
− ∆t

∆x

(
ρni F(sni )u

n
i −{ρF(s)u}ni−1/2

)
. (4.26)

For the other half of the cell, on the other hand, integrating over (−∆x/2,0]× [0,∆t)
and applying similiar steps as before results in

1

∆x

∫ 0

−∆x/2

(ρF(s))
(
W

(ρ,ρu,E)
R

( x

∆t
;W eq(ωL),W eq(ωR)

))
dx

≤ρLF(sL)

2
− ∆t

∆x

(
{ρF(s)u}L,R−ρLF(sL)uL

)
, (4.27)

and inserting ωL=ωn
i and ωR=ωn

i+1 leads to

1

∆x

∫ xi+1/2

xi

(ρF(s))

(
x−xi+1/2

∆t
;ωn

i ,ω
n
i+1

)
dx

≤ρni F(sni )

2
− ∆t

∆x

(
{ρF(s)u}ni+1/2−ρni F(sni )u

n
i

)
. (4.28)

Summing up the inequalities (4.26) and (4.28) results in the inequality

1

∆x

∫ xi+1/2

xi−1/2

(ρF(s))(ωn(x,tn+1))dx≤ρni F(sni )−
∆t

∆x

(
{ρF(s)u}ni+1/2−{ρF(s)u}ni−1/2

)
.

(4.29)
Since we assume ρF(s) to be strictly convex, by applying Jensen’s inequality we get

ρF(s)

(
1

∆x

∫ xi+1/2

xi−1/2

ωn(x,tn+1)dx

)
≤ 1

∆x

∫ xi+1/2

xi−1/2

(ρF(s))(ωn(x,tn+1))dx. (4.30)

Finally, we obtain the desired discrete entropy inequality

ρn+1
i F(sn+1

i )≤ρni F(sni )−
∆t

∆x

(
{ρF(s)u}ni+1/2−{ρF(s)u}ni−1/2

)
. (4.31)

4.2. Prevention of checkerboard modes. For asmptotic preserving meth-
ods, stationary and non-constant solutions may occur in the low-Mach regime, jumping
between two different values. This behaviour can arise from the fact that the diver-
gence or gradient of a variable is supposed to be zero in the limit equations, while the
discretisation of this term allows a jumping solution. Such solutions are sometimes
called checkerboards modes. Of course, it is desirable to prevent the occurrence of this
unphysical phenomenon.
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Theorem 4.2. For the relaxation scheme, velocity and pressure are constant in space
for steady periodic solutions.

Proof. The proof builds on the entropy inequality of the previous section and
follows the strategy of a similar proof in [8]. First of all, using the notations used in the
entropy proof, we can write

ρn+1
i F(sn+1

i )≤ρni F(sni )−
∆t

∆x

(
{ρF(s)u}ni+1/2−{ρF(s)u}ni−1/2

)
=

1

∆x

∫ xi+1/2

xi−1/2

(ρF(ŝ))
(
WR(x,tn+1)

)
dx. (4.32)

Additionally, by applying Jensen’s inequality to the left-hand side we get the following
inequalities

ρn+1
i F(sn+1

i )≤ 1

∆x

∫ xi+1/2

xi−1/2

(ρF(s))(ωn(x,tn+1))dx

≤ 1

∆x

∫ xi+1/2

xi−1/2

(ρF(ŝ))
(
WR(x,tn+1)

)
dx. (4.33)

We now define the left-hand side of the entropy inequality (4.7) by

Dn
i :=ρn+1

i F(sn+1
i )−ρni F(sni )−

∆t

∆x

(
{ρF(s)u}ni+1/2−{ρF(s)u}ni−1/2

)
. (4.34)

For steady and space periodic solutions we then have∑
i

Dn
i =0. (4.35)

In combination with the entropy inequality (4.7) we get

Dn
i =0 ∀i. (4.36)

From this follows directly that all the inequalities in (4.33) are replaced by equalities
and therefore the entropy is equal to the relaxation entropy

(ρF(s))(ωn(x,tn+1))=(ρF(ŝ))
(
WR(x,tn+1)

)
. (4.37)

In the proof of the entropy inequality it is shown that this is just the case in the
relaxation equilibrium, so only if

π=p(ρ,e), u=v, τ =
1

ρ
, ŝ=s. (4.38)

As a consequence, the following relations apply to a single Riemann problem

τL∗=
1

ρL∗ , τR∗=
1

ρR∗ , v∗=uL∗=uR∗,

πL∗=p(ρL∗,eL∗)=p(ρL∗,sL∗), πR∗=p(ρR∗,eR∗)=p(ρR∗,sR∗).

(4.39)

Since τ is a Riemann invariant for σ− and σ+, it holds

τL∗= τL, τR∗= τR. (4.40)
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We can use this fact to gain more information about the intermediate densities

1

ρL∗ = τL∗=
1

ρL
⇒ ρL∗=ρL,

1

ρR∗ = τR∗=
1

ρR
⇒ ρR∗=ρR.

(4.41)

From the explicit definition of the intermediate states in (2.17) and (2.18) we can deduce
that

1

ρL∗ −
1

ρL
=

MbR
(
vR−vL

)
+πL−πR− ρ̄

(
WL,WR

)(
ZR−ZL

)
aL (bL+bR)

=0, (4.42)

1

ρR∗ −
1

ρR
=

MbL
(
vR−vL

)
+πR−πL+ ρ̄

(
WL,WR

)(
ZR−ZL

)
aR (bL+bR)

=0. (4.43)

With a look at the intermediate states uL∗ and uR∗, we see that we can use (4.42) and
(4.43) to get

uL∗=uL+
bL

M

MbR
(
vR−vL

)
+πL−πR− ρ̄

(
WL,WR

)(
ZR−ZL

)
aL (bL+bR)

=uL, (4.44)

uR∗=uR+
bR

M

MbL
(
vL−vR

)
+πL−πR+ ρ̄

(
WL,WR

)(
ZR−ZL

)
aR (bL+bR)

=uR. (4.45)

Since we are at equilibrium we can conclude that

v∗=uL∗=uR∗=uL=uR=vL=vR. (4.46)

In the next part we will show that the left and the right state at the interface are equal
for π. From the Riemann invariants in (2.9) we take

I±4 =
1

ρ
+

π

2ab
. (4.47)

This quantity is constant across the left and right waves in the Riemann fan which
means

1

ρL∗ +
πL∗

2aLbL
=

1

ρL
+

πL

2aLbL
,

1

ρR∗ +
πR∗

2aRbR
=

1

ρR
+

πR

2aRbR
.

(4.48)

It has already been established in (4.41) that the density has only two states and there-
fore we can simplify the equations to

πL∗=πL

πR∗=πR.
(4.49)

From the explicit definition of the intermediate states and the closure equation (2.15)
follows

πL∗=πL=
bRπL+bLπR+MbLbR

(
vL−vR

)
−bLρ̄

(
WL,WR

)(
ZR−ZL

)
bL+bR
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(4.46)
=

bRπL+bLπR−bLρ̄
(
WL,WR

)(
ZR−ZL

)
bL+bR

(2.15)
=

bRπL+bLπR+bL
(
πR−πL

)
bL+bR

. (4.50)

Solving for πL gives

πL=πR. (4.51)

Thus we have shown that for both velocities and the pressure, the left and right states
at the interface are equal. The solution in these quantities is therefore constant in space.

Remark 4.2. For pressure laws that depend only on density, it can also be proven
that the density and the internal energy are constant for steady and space periodic
solutions.

For steady periodic solutions of the relaxation method the velocity and pressure
are constant, which contradicts the non-constant nature of checkerboard modes. The
result of the above lemma can thus be interpreted that in velocity and pressure no
checkerboard modes can occur.

4.3. Positivity preserving property. For the robustness of a scheme it
is essential to keep especially the density but also the internal energy positive. The
following lemma will guarantee this property.

Lemma 4.1. Given ωL,ωR∈Ω. If the relaxation speeds aL and aR are large enough
to ensure

vL− aL

MρL
<v∗<vR+

aR

MρR
, (4.52)

eL+
(πL∗)2−(πL)2

2aLbL
+

(v∗−uL∗)2−(vL−uL)2

2(a
L

bL
−1)

>0, (4.53)

eR+
(πR∗)2−(πR)2

2aRbR
+

(v∗−uR∗)2−(vR−uR)2

2(a
R

bR
−1)

>0, (4.54)

then the approximate Riemann solver WR preserves the positivity of the density and
internal energy.

Proof. First, it is trivial that the conditions (4.52), (4.53) and (4.54) are satisfied
for a sufficiently large a. To prove the positivity of the density in a next step, we start
with the Riemann invariants I±1 from Lemma 2.1, which give us

vL− aL

MρL
=v∗− aL

MρL∗ and vR+
aR

MρR
=v∗+

aR

MρR∗ . (4.55)

Using these relations, we can rewrite (4.52) by

−ρL∗<0<ρR∗. (4.56)

So, the intermediate states for the density are positive. The positivity of the internal en-
ergy directly follows from (4.53) and (4.54), since the left-hand sides of these conditions
represent the left and right intermediate states of the internal energy.
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Clearly, this lemma is of limited use in practice. It states that in principle it is
possible to preserve the positivity, but it does not help to find a suitable definition of
the relaxation speeds that works generally. The following lemma gives stricter conditions
for the relaxation speeds, which can also be used for their explicit definition. Under
these conditions, it can be proven that the density is kept positive.

Lemma 4.2. Consider the relaxation solver with intermediate values and speeds defined
by (2.16)-(2.25) with the initial data at equilibrium. Assume that the relaxation speeds
aL, aR, bL, bR satisfy

aL≥ bL, aR≥ bR, (4.57)

bL

ρL
≥aLq ,

bR

ρR
≥aRq , (4.58)

√
aLbL

ρL
≥ cL

(
1+βXL

)
,

√
aRbR

ρR
≥ cR

(
1+βXR

)
, (4.59)

for some aLq and aRq depending on ωL, ωR and XL, XR defined by (4.62) and (4.63)

with a parameter β≥1. The quantities cL,cR represent the sound speed. Then the
approximate Riemann solver WR preserves the positivity of the density.

Proof. We start with the definition of the intermediate density (2.17)

1

ρL∗ =
1

ρL
+

MbR
(
vR−vL

)
+πL−πR− ρ̄

(
WL,WR

)(
ZR−ZL

)
aL (bL+bR)

≥ 1

ρL
−MbR(vL−vR)+

aL(bL+bR)
−
(
πR−πL+ ρ̄(WL,WR)(ZR−ZL)

)
+

aL(bL+bR)

≥ 1

ρL
−M(vL−vR)+

aL
−
(
πR−πL+ ρ̄(WL,WR)(ZR−ZL)

)
+

aL(ρLaLq +ρRaRq )
. (4.60)

Analogously, we get

1

ρR∗ ≥ 1

ρR
−M(vL−vR)+

aR
−
(
πL−πR+ ρ̄(WL,WR)(ZL−ZR)

)
+

aR(ρLaLq +ρRaRq )
. (4.61)

Let us now define the variables

XL=
1

cL

[
M
(
vL−vR

)
+
+

(
πR−πL+ ρ̄(WL,WR)(ZR−ZL)

)
+

ρLaLq +ρRaRq

]
, (4.62)

XR=
1

cR

[
M
(
vL−vR

)
+
+

(
πL−πR+ ρ̄(WL,WR)(ZL−ZR)

)
+

ρLaLq +ρRaRq

]
, (4.63)

in order to rewrite the former inequalities in the form

1

ρL∗ ≥ 1

ρL

(
1− ρLcL

aL
XL

)
,

1

ρR∗ ≥ 1

ρR

(
1− ρRcR

aR
XR

)
.

(4.64)
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From combining the conditions (4.57) and (4.59), it follows that

aL

ρL
≥ cL(1+βXL)⇒ ρLcL

aL
≤ 1

1+βXL
,

aR

ρR
≥ cR(1+βXR)⇒ ρRcR

aR
≤ 1

1+βXR
.

(4.65)

With these inequalities we rewrite (4.64)

1

ρL∗ ≥ 1

ρL

(
1− XL

1+βXL

)
,

1

ρR∗ ≥ 1

ρR

(
1− XR

1+βXR

)
.

(4.66)

Because of the definitions in (4.62) and (4.63) we know that XL,XR≥0 and therefore
we can conclude that

ρL∗>0, ρR∗>0. (4.67)

A similar proof for the positivity of the internal energy would be complicated due to
the more complex structure of its intermediate states. Therefore, we choose a different
way of proof, based on the proof of the entropy inequality in Section 4.1.

Lemma 4.3. Under the conditions of the entropy Theorem 4.1 and for given ωL,ωR∈
Ω, the relaxation scheme using the approximate Riemann solver WR defined in (2.14)
preserves the positivity of the internal energy.

Proof. In the proof of the entropy inequality, it is stated in (4.19) that the specific
relaxation entropy is larger than the specific entropy of the original system. Therefore,
we can conclude

ŝn+1
i ≥s(ρn+1

i ,en+1
i )=sn+1

i . (4.68)

In a next step we show that ŝn+1
i is positive. For this we consider one Riemann prob-

lem and investigate the input of the function ŝ(W )=s(τ̂(I(W ),J(W )), ê(I(W ),J(W ))).
Here τ̂ is already positive by definition. For ê(I(W ),J(W )) depending on W =WL or
W =WR its positivity is trivial. For W =WL∗ we can rewrite ê using J and additionally
make use of the fact that I and J are strong Riemann invariants for σL. It follows

êL∗=JL+
M2(v∗−uL∗)2

2(ab −1)
+

(IL−aLbLτ̂L∗)2

2aLbL

=eL−M2(vL−uL)2

2(a
L

bL
−1)

− (πL)2

2aLbL
+

M2(v∗−uL∗)2

2(a
L

bL
−1)

+
(πL+aLbLτL−aLbLτ̂L∗)2

2aLbL

≥eL+
M2(v∗−uL∗)2

2(a
L

bL
−1)

+
(aLbLτL−aLbLτ̂L∗)2

2aLbL
.

Then for given eL>0 it follows that êL∗>0. The same arguments lead to êR∗>0. The
positivity of ŝ then follows from the definition of the function s(τ,e) :R+×R+→R+.

Furthermore, from relation (1.3) it follows that

∂se(τ,s)=−T (τ,e)<0. (4.69)
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For the positive specific relaxation entropy ŝn+1
i and the definition of e(ρ,s) :R+×R+→

R+ we then obtain a positive updated internal energy

en+1
i =e(ρn+1

i ,sn+1
i )≥e

(
ρn+1
i , ŝn+1

i

)
>0. (4.70)

4.4. Asymptotic preserving property. In the low Mach limit, the solutions
of the Euler Equations (1.1) tend to the solutions of the incompressible Euler equations.
This behaviour can be illustrated by inserting expansions in terms of M given by

ρ=ρ0+Mρ1+M2ρ2+O(M3), u=u0+Mu1+M2u2+O(M3),

e=e0+Me1+M2e2+O(M3), p=p0+Mp1+M2p2+O(M3),
(4.71)

into the Euler Equations (1.1). Now one can collect terms of order O(M−2)

∇p0=−ρ0∇Φ, (4.72)

of order O(M−1)

∇p1=−ρ1∇Φ, (4.73)

and finally of order O(1)

∇·(ρ0u0)=0,

∂tu0+u0 ·∇u0+
∇p2
ρ0

=−ρ2∇Φ

ρ0
,

∂te0+u0 ·∇e0+
1

ρ0
∇·(p0u0)=−u0 ·∇Φ.

(4.74)

These equations describe incompressible flows. The conditions (4.72) and (4.73) show
that the couples ρ0,p0 and ρ1,p1 fulfil the hydrostatic equilibrium and are therefore time
independent. This property is used in the derivation of the limit equations in (4.74).

Remark 4.3. The third equation in (4.74) vanishes because of (4.72). In consequence,
the limit equations contain an unknown ρ2, to which no conditions seem to be attached
that determine its behavior. Under the assumption that the term ∇p2

ρ0
+ ρ2∇Φ

ρ0
can be

written as a gradient, this term can be replaced by ∇Π, so that the second equation in
(4.74) changes to

∂tu+u ·∇u+∇Π=0. (4.75)

With this equation all variables can be determined. For similar arguments, see [10].

In the next step, we want to analyse to what extent the solutions of the compress-
ible Euler equations correspond to those of the incompressible equations. Under the
assumptions that in the density no constant fluctuations occur, i.e.

ρ=ρ0+O(M2), (4.76)

and that the hydrostatic equilibrium is fulfilled up to errors of order O(M2)

∇p+ρ∇Φ=O(M2), (4.77)
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the Euler Equations (1.1) become

∇·(ρu)=O(M2),

∂tu+u ·∇u+
∇p2
ρ0

=−ρ2∇Φ

ρ0
+O(M2),

∂te+u ·∇e+
1

ρ0
∇·(pu)=−u ·∇Φ+O(M2).

(4.78)

The solutions of (1.1) thus agree with those of the incompressible model up to an error
of order M2.

Following these theoretical results, the numerical scheme should be consistent with
the limit behaviour as M tends to zero, in the sense that the discretization for the
compressible Euler equations should tend to the incompressible Euler equations when
the Mach number tends to zero. The key to achieve this behaviour for the presented
relaxation scheme is the definition of the relaxation speeds a and b. In the former
sections several conditions are imposed on these speeds that have to be satisfied so that
the scheme is stable and has the properties presented in the former sections. A suitable
choice that indeed fulfils the so far stated requirements is the classical one, in which a
and b are set to be equal

aαq = cα,

aα= bα=ραcα(1+βXα).
(4.79)

This definition closely follows the condition (4.59) in Lemma 4.2. Unfortunately, this
definition does not lead to an appropriate discretization, but to excessive diffusion in
the low Mach limit.

In order to change this behaviour the speeds have to be redefined. In this context
it is important to ensure that not only the diffusion is reduced, but also that the sub-
characteristic condition remains fulfilled. A suitable choice proposed by the authors
of [8] is given by

aαq =min(1,M)cα,

aα=
ρα

min(1,M)
cα(1+βXα),

bα=min(1,M)ραcα(1+βXα).

(4.80)

By this definition the speeds are rescaled in the case of small Mach numbers, i.e. for
M<1.

Remark 4.4. In the case of Mach numbers M ≥1, the relaxation speeds are equal
(a= b) and we obtain a classical relaxation system with only one relaxation speed.

Remark 4.5. The new scaling of the relaxation speed a has the effect that the
maximum wave speed increases by an order of magnitudeM . As a consequence, the CFL
condition (3.1) becomes stricter and the time step must be chosen smaller accordingly,
i.e.

∆t∼ M2∆x

c
. (4.81)

As shown in [8], by replacing M by M̂ =max{M2,k∆x} in the relaxation scheme the
CFL condition can be reduced to the parabolic-type condition

∆t∼ max{M2,k∆x}∆x

c
. (4.82)
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Theorem 4.3. The two-speed relaxation scheme with the relaxation speeds (4.80) is
asymptotic preserving in the sense that:

(a) it is first order uniformly with respect to the Mach number M and

(b) for M<
√
k∆x and k constant it is consistent at first order with the incompressible

limit model (4.74).

Proof. In order to prove the first statement of the theorem we evaluate the
consistency error by expanding the numerical flux (3.5) in terms of M and then subtract
the central flux (F (ωL)+F (ωR))/2.

In the low Mach limit M→0, the wave speeds σ− and σ+ in (2.6) tend towards
infinity. Therefore it is sufficient just to consider the intermediate fluxes FL∗ and FR∗

for the numerical flux. In a first step of the analysis we rewrite the relaxation speeds as
expansions in terms of M , so we get

Xα=O(M), bα=Mb̄α+O(M2), aα=
b̄α

M
(1+O(M)) (4.83)

with

b̄α=ραcα. (4.84)

Since

b̄R− b̄L=O(M2), (4.85)

we can write b̄ instead of b̄L and b̄R up to errors of O(M2). Expanding the intermediate
states (2.16)-(2.22) in terms of M yields

v∗=
uL+uR

2
+

πL−πR

2M2b̄
− ρ(ZR−ZL)

2M2b̄

+O(M(uL−uR))+O(
πL−πR+ ρ̄(ZR−ZL)

M
),

πL∗=
πL+πR

2
+M2b̄

uL−uR

2
+

ρ̄(ZR−ZL)

2b̄

+O(M3(uL−uR))+O(M(πL−πR+ ρ̄(ZR−ZL))),

πR∗=
πL+πR

2
+M2b̄

uL−uR

2
− ρ̄(ZR−ZL)

2b̄

+O(M3(uL−uR))+O(M(πL−πR+ ρ̄(ZR−ZL))),

1

ρL∗ =
1

ρL
+O(M2(uL−uR))+O(πL−πR+ ρ̄(ZR−ZL)),

1

ρR∗ =
1

ρR
+O(M2(uL−uR))+O(πL−πR+ ρ̄(ZR−ZL)),

uL∗=uL+O(M2(uL−uR))+O(πL−πR+ ρ̄(ZR−ZL)),

uR∗=uR+O(M2(uL−uR))+O(πL−πR+ ρ̄(ZR−ZL)).

(4.86)

We can derive these expansions and put the terms πL−πR+ ρ̄(ZR−ZL) into the error
estimates, since, as stated in (4.72) and (4.73), the hydrostatic equilibrium is satisfied
up to terms of order O(M2) in the low Mach limit, i.e.

pL−pR+ ρ̄(ZL−ZR)=O(M2). (4.87)
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With the help of these expansions, we calculate the flux differences component by com-
ponent.
(i) The difference for the left intermediate flux FL∗ in the first component writes

ρL∗v∗− ρLuL+ρRuR

2

=− ρLuL+ρRuR

2
+

ρL

2b̄

(
pL−pR

M2
+

ρ̄(ZL−ZR)

M2

)
+ρL

uL+uR

2
+O(M(uL−uR))+O(

πL−πR+ ρ̄(ZR−ZL)

M
).

This difference can be further simplified. In the low Mach limit, the density is
constant up to errors of O(M2). Therefore we can write

ρR−ρL=O(M2) (4.88)

and replace ρR in the difference by ρL. Additionally, we replace the differences
between the left and right states by numerical derivatives, i.e.

uL−uR=−∆x∂xu+O(∆x2),

pL−pR=−∆x∂xp+O(∆x2),

ZL−ZR=−∆x∂xZ+O(∆x2).

(4.89)

Applying these simplifications results in

ρL∗v∗− ρLuL+ρRuR

2
=−∆x

2

ρL

b̄

(
∂x

p

M2
+ ρ̄∂x

Z

M2

)
+O(∆x2)+O(M∆x).

(4.90)
The denominator M2 does not lead to excessive diffusion at this point, as again
the hydrostatic equilibrium is fulfilled up to O(M2). Analogous calculations for
the right intermediate flux FR∗ lead to

ρR∗v∗− ρLuL+ρRuR

2
=−∆x

2

ρR

b̄

(
∂x

p

M2
+ ρ̄∂x

Z

M2

)
+O(∆x2)+O(M∆x).

(4.91)
(ii) The second component for the left flux can be expressed by

ρL∗uL∗v∗+
πL∗

M2
−

ρL(uL)2+ πL

M2 +ρR(uR)2+ πR

M2

2

=b̄
uL−uR

2
+ρLuLuL+uR

2
−ρLuR uL−uR

2
+ρLuR uL−uR

2

− ρL(uL)2+ρR(uR)2

2
+ρLuL pL−pR+ ρ̄(ZL−ZR)

2b̄M2

− ρ̄(ZL−ZR)

2M2
+O(M(uL−uR))+O(

πL−πR+ ρ̄(ZR−ZL)

M
)

=b̄
uL−uR

2
+ρLuR uL−uR

2
+ρLuL pL−pR+ ρ̄(ZL−ZR)

2b̄M2

− ρ̄(ZL−ZR)

2M2
+O(M(uL−uR))+O(

πL−πR+ ρ̄(ZR−ZL)

M
)
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=−∆x

2

(
b̄+ρLuR

)
∂xu−

∆x

2

ρLuL

b̄

(
∂x

p

M2
+ ρ̄∂x

Z

M2

)
+

∆x

2
ρ̄∂x

Z

M2

+O(∆x2)+O(M∆x)

and for the right flux by

ρR∗uR∗v∗+
πR∗

M2
−

ρL(uL)2+ πL

M2 +ρR(uR)2+ πR

M2

2

=−∆x

2

(
b̄+ρRuL

)
∂xu−

∆x

2

ρRuR

b̄

(
∂x

p

M2
+ ρ̄∂x

Z

M2

)
−∆x

2
ρ̄∂x

Z

M2

+O(∆x2)+O(M∆x).

In this flux difference, the new scaling of the relaxation speeds defined in (4.80)
unfolds its importance. Clearly, the viscosity on the velocity, represented by the
first term, is independent of the Mach number and therefore does not increase in
the low Mach limit. With the classical scaling (4.79), on the other hand, this term
would have the size O(1/M) leading to excessive diffusion for low Mach numbers.
While a Mach number dependence in the first term would be problematic, it is
not in the second term due to (4.87). The remaining third term containing the
derivative of the gravitational potential, which also depends on 1/M2, cancels out
with the gravitational source term (3.7) in the relaxation scheme.

(iii) For the difference in the third component, similar steps for the left flux result in((
1

2
M2ρL∗(uL∗)2+ρL∗eL∗

)
+πL∗

)
v∗− (EL+pL)uL+(ER+pR)uR

2

=ρLuR eL−eR

2
+uR pL−pR

2
+

ρLeL+pL

2b̄

pL−pR+ ρ̄(ZL−ZR)

M2

+O(M(uL−uR))+O(
πL−πR+ ρ̄(ZR−ZL)

M
)

=−∆x

2
ρLuR∂xe−

∆x

2
uR∂xp−

∆x

2

ρLeL+pL

b̄

(
∂x

p

M2
+∂

Z

M2

)
+O(∆x2)+O(M∆x)

and for the right flux in((
1

2
M2ρR∗(uR∗)2+ρR∗eR∗

)
+πR∗

)
v∗− (EL+pL)uL+(ER+pR)uR

2

=
∆x

2
ρRuL∂xe+

∆x

2
uL∂xp−

∆x

2

ρReR+pR

b̄

(
∂x

p

M2
+∂

Z

M2

)
+O(∆x2)+O(M∆x).

The expansions for all three components are first-order uniformly inM . It is particularly
important that the viscosity on the velocity u is independent of M .

The result of the first statement can now be used to prove the second statement
of the theorem. We have proven that the solution wM,∆x of the relaxation scheme is
consistent with the exact solution wM of the dimensionless Euler Equations (1.1) up to
order O(∆x) independent of the Mach number, i.e.

wM,∆x−wM =O(∆x). (4.92)
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Additionally, we can deduce from the system (4.78) that wM is consistent with the
solution w of the incompressible Euler equations up to order O(M2), i.e.

wM −w=O(M2). (4.93)

Combining (4.92) and (4.93) with the condition that M2=O(∆x) finally results in

wM,∆x−w=O(∆x) (4.94)

and therefore meets the second statement of the theorem.

4.5. Well-balanced property. As explained in the introduction, the well-
balanced property is important for solving problems close to hydrostatic equilibrium.
In a first step, we will show that the approximate Riemann solver satisfies this property.
Building on this, we will then prove in the second step that the entire scheme has this
property.

Lemma 4.4. Assume two given states at equilibrium WL and WR satisfy

uL=uR=0, (4.95)

pR−pL+ ρ̄(WL,WR)(ΦR−ΦL)=0. (4.96)

Then the approximate Riemann solver WR preserves the steady state, i.e.

WR(x/t,WL,WR)=

{
WL if x/t<0,
WR if x/t>0.

(4.97)

Proof. The result directly follows from the definition of the intermediate states
given in (2.16)-(2.25). Consider the intermediate state v∗. Since we start at equilibrium,
we can replace the relaxation variables by their corresponding original variables. Using
the conditions (4.95)-(4.96) results in

v∗=
1

bL+bR
(
MbLuL+MbRuR+pL−pR− ρ̄

(
WL,WR

)(
ΦR−ΦL

))
=0.

Similar calculations for the other intermediate states complete the proof.

Lemma 4.4 is rather general, as it assumes that the conditions in (4.95) and (4.96)
are satisfied. Clearly, these conditions depend on the definition of the ρ̄-function. For
a simple definition like the arithmetic mean, which is not adjusted to the underlying
hydrostatic equilibrium, the scheme maintains the equilibrium to second order [17].
Since we are free to define ρ̄ we can adjust it to the hydrostatic equilibrium and maintain
it even up to machine precision. The only limiting requirement for ρ̄ that has to be
considered is the consistency property

ρL=ρR=ρ ⇒ ρ̄(WL,WR)=ρ. (4.98)

The following lemma describes the adjusted definitions for isothermal, incompressible
and polytropic equilibria. These definitions were already described in [17].

Lemma 4.5.
(i) Let WL and WR be two states satisfying the isothermal equilibrium

uL=uR=0,

ρL,R=exp C−ΦL,R

K ,

pL,R=K exp C−ΦL,R

K ,

(4.99)
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with K>0 and C ∈R. If the function ρ̄ is defined by

ρ̄(WL,WR)=

{
ρR−ρL

ln(ρR)−ln(ρL)
if ρL ̸=ρR,

ρL if ρL=ρR,
(4.100)

then the approximate Riemann solver WR preserves the steady state.

(ii) Let WL and WR be two states satisfying the incompressible equilibriumuL=uR=0,
ρL=ρR,
pL+ρLΦL=pR+ρRΦR.

(4.101)

If the function ρ̄ satisfies the consistency condition (4.98), then the approximate
Riemann solver WR preserves the steady state.

(iii) Let WL and WR be two states satisfying the polytropic equilibrium

uL=uR=0,

ρL,R=

(
Γ−1
ΓK (C−ΦL,R)

) Γ
Γ−1

,

pL,R=K
1

1−Γ

(
Γ−1
Γ (C−ΦL,R)

) Γ
Γ−1

,

(4.102)

with Γ∈ (0,1)∪(1,+∞), K>0 and C ∈R. If the function ρ̄ is defined by

ρ̄(WL,WR)=

{
Γ−1
Γ

(ρR)Γ−(ρL)Γ

(ρR)Γ−1−(ρL)Γ−1 if ρL ̸=ρR,

ρL if ρL=ρR,
(4.103)

then the approximate Riemann solver WR preserves the steady state.

Proof. In order to prove this lemma it is sufficient to show that with the explicit
definition of ρ̄ the conditions (4.95) and (4.96) are satisfied. If so, we can use Lemma
4.4 and the proof is complete. Using the definitions of the isothermal equilibrium states,
we can determine the following differences

ΦR−ΦL=K(ln(ρR)− ln(ρL)),

pR−pL=K(ρR−ρL).

By inserting these differences together with ρ̄ defined by (4.100) into Equation (4.96),
it becomes clear that this condition is satisfied. Together with the velocities, which
are zero, Lemma 4.4 can be applied and the proof of (i) is complete. The proofs for
incompressible and polytropic equilibria work in the same way. For more details we
refer the reader to [17].

Remark 4.6. To ensure the exact preservation of steady states at rest, it is important
to consider the following two points in the implementation:

(1) The comparative operators in the approximate Riemann solver (3.5) must be ad-
justed to the definition of the sign function in the programming language used. The
choice provided here is adapted to sign(0)=1.

(2) The implementation of the classical definition of the logarithmic mean can lead
to problems if left and right inputs are very close. Ismail and Roe provide an
alternative way of implementation in [20], which avoids this problem.
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In practical applications, e.g. in astrophysics, the hydrostatic states are often just
available as discrete data generated by previously performed simulations. The following
lemma provides an approach to maintain these hydrostatic equilibria as well.

Lemma 4.6. Let WL and WR be two states satisfying some hydrostatic equilibrium
uL=uR=0,

ρL,R=ρL,R
hs ,

pL,R=pL,R
hs ,

(4.104)

with ρhs and phs given hydrostatic states. If the function ρ̄ is defined by

ρ̄(WL,WR)=
1

2
(ρL+ρR) (4.105)

and the difference of the gravitational potential in the intermediate states is approximated
by

ZR−ZL≈− pRhs−pLhs
1
2 (ρ

L
hs+ρRhs)

, (4.106)

then the approximate Riemann solver WR preserves the steady state.

Proof. As can be seen in the proof of Lemma 4.5 it is sufficient to show that the
conditions (4.95) and (4.96) are fulfilled so that Lemma 4.4 can be applied. In order
to do so we plug the states from (4.104) and the approximation (4.106) into (4.96) and
use definition (4.105) for ρ̄. This results in

pRhs−pLhs−
1

2
(ρLhs+ρRhs)

pRhs−pLhs
1
2 (ρ

L
hs+ρRhs)

=0. (4.107)

Now that it has been shown that the approximate Riemann solver satisfies the
well-balanced property, it remains to show that the entire scheme does so as well.

Theorem 4.4. Let us consider an initial data ω0
i ,ω

0
i+1 that satisfies

u0
i =u0

i+1=0,

1

∆x
(p0i+1−p0i )+ ρ̄(W 0

i ,W
0
i+1)

Φi+1−Φi

∆x
=0.

(4.108)

Then the updated state ωn+1 stays at rest, and thus satisfies ωn+1
i =ωn

i for all i∈Z.

Proof. Since both conditions (4.95) and (4.96) of Lemma 4.4 are fulfilled, the
approximate Riemann solver stays at rest. The updated state ω1

i at time t=∆t is in
essence the sequence of approximate Riemann solvers. Since the approximate Riemann
solver is at rest, it directly follows ω1

i =ω0
i for all i∈Z.

5. Extension to 2D
For two spatial dimensions the Euler Equations (1.1) can be written in the form

ωt+F (ω)x+G(ω)y =S(ω,Φ). (5.1)

On a regular Cartesian grid, we extend the numerical scheme described in Section
3 to two dimensions by applying an unsplit finite volume method [33], in which the
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contributions of both directions are used in only one step to update the numerical
solution by the formula

ωn+1
i,j =ωn

i,j−
∆t

∆x

(
Fn
i+1/2,j−Fn

i−1/2,j

)
− ∆t

∆y

(
Gn

i,j+1/2−Gn
i,j−1/2

)
+

∆t

2

(
S+,n
i−1/2,j

Φn
i,j−Φn

i−1,j

∆x
+S−,n

i+1/2,j

Φn
i+1,j−Φn

i,j

∆x

)
+

∆t

2

(
S+,n
i,j−1/2

Φn
i,j−Φn

i,j−1

∆x
+S−,n

i,j+1/2

Φn
i,j+1−Φn

i,j

∆y

)
. (5.2)

The definitions of the numerical fluxes and source terms are straightforward extension
of the ones in Section 3. The numerical fluxes continue to use the one-dimensional
approximate Riemann solver, so that it is applied separately in x- and y-direction.
This Riemann solver corresponds to that defined in (2.14), in which addionally the
intermediate states for the transversal velocity are set by the left and right values at
the interface, respectively, since this velocity is a Riemann invariant for the outer waves
σ− and σ+.

Since the two-dimensional method is still based on the one-dimensional Riemann
solver, the properties proven in Section 4 also apply to this method. From this follows
the entropy inequality, the absence of checkerboard modes, positivity and the asymptotic
conservation property. In addition, the well-balanced property is also preserved, since
the approximate Riemann solver is at rest for initial data in hydrostatic equilibrium
in both spatial directions and thus in both momentum equations the pressure gradient
cancels out with the source term.

6. Second order extension
In this section we give a possible extension of the proposed scheme to second order in

space. We use a linear reconstruction in the primitive variables ωp=(ρ,u,p). In order
to obtain the values ωR

i−1/2 and ωL
i+1/2, which serve as initial data for the Riemann

problems at the interface, we evaluate the function

ωp(x)=ωp
i +σ(x−xi) (6.1)

in each cell Ci at its boundaries xi−1/2 and xi+1/2. The slope σ depends on the neigh-
bouring cells and is computed for each primitive variable separately. In order to ensure
that the reconstructed values for the density and internal energy remain positive, which
is essential for the positivity property given by the Lemmata 4.1 and 4.2, we use a
limiting procedure introduced in [30] that builds on the work by Berthon in [5]. Then
the slopes are defined by

σρ=ρimax

(
−1,min

(
1,
σ̄ρ

ρi

))
,

σu=κσ̄u,

σp=pimax

(
−1,min

(
1,
σ̄p

pi

))
,

(6.2)

with

σ̄=minmod

(
ωp
i −ωp

i−1

∆x
,
ωp
i+1−ωp

i

∆x

)
(6.3)
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and

κ=min(1,κ̄),

κ̄=

{
−σρ(ui·σ̄u)+

√
(σρ)2(ui·σ̄u)2+∥σ̄u∥2 ρipi

γ−1

ρi∥σ̄u∥2 , if σ̄u ̸=0,

1, if σ̄u=0.

(6.4)

Additionally, we also want to preserve the well-balanced property for the second-order
scheme. To achieve this, we adjust the pressure slope by using a hydrostatic reconstruc-
tion [22, 30, 31]. Instead of directly using the pressure values of the neighbouring cells,
one first applies the transformations

qi−1=pi−1− ρ̄(Wi−1,Wi)(Φi−Φi−1),

qi+1=pi+1+ ρ̄(Wi,Wi+1)(Φi+1−Φi),
(6.5)

and then computes the slope for the pressure by

σ̄p=minmod

(
pi−qi−1

∆x
,
qi+1−pi

∆x

)
. (6.6)

In the case of hydrostatic equilibrium, the slope becomes zero and the interface values
for the pressure thus reduce to the cell averages. The approximate Riemann solver then
stays at rest due to Lemma 4.4 and all results of the former section about well-balancing
remain valid for the second order scheme.

The second order scheme remains asymptotic preserving since the differences in
(4.89) are due to the linear reconstruction of order O(∆x2). In the following, we illus-
trate this for the velocity u using backward slopes for σu:

uL−uR=ui+σi
∆x

2
−
(
ui+1−σi+1

∆x

2

)
=ui+

ui−ui−1

∆x

∆x

2
−ui+1+

ui+1−ui

∆x

∆x

2

=−1

2
ui+1+ui−

1

2
ui−1

=−1

2
(∆x)2∂xu.

Thanks to these second order approximations of the derivatives, all first order terms in
the consistency error can be replaced by second order terms so that the scheme becomes
second order uniformly in M . The steps of proof of the second part of Theorem 4.3 work
analogously as for the first order case, if we assume for the last step the new condition
M<

√
k∆x2.

7. Numerical results
In this section we numerically investigate the theoretical properties of the relax-

ation scheme presented in the previous sections. The approximate Riemann solver in
the scheme is equipped with the intermediate states defined in (2.16)-(2.25) and the
relaxation speeds (4.80) with β=1.1. Various definitions are used for the ρ̄-function.
Definition (4.100) is used by default. If a different choice is made, this is indicated in
the respective test. The second order spatial scheme is combined with a third order
Runge Kutta method [28] for time integration. For all test set-ups we assume an ideal
gas law p=(γ−1)ρe. The computations are performed on a regular Cartesian grid.
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7.1. Accuracy. In a first numerical test, which is suggested by [35], we inves-
tigate the experimental order of convergence of the relaxation scheme presented. For
the Euler Equations (1.1) on the domain [0,1]2 with a linear gravitational potential
Φ(x,y)=x+y, one possible exact solution is defined by

ρ(x,y,t)=1+0.2sin(π (x+y− t(u10 +u20))),

u(x,y,t)=(u10 ,u20) ,

p(x,y,t)=4.5+(u10 +u20)t−(x+y)+0.2cos((π (x+y−(u10 +u20)t))/π,

(7.1)

with u10 =u20 =20 and p0=4.5. The exact solution is also used for the boundary
conditions. The adiabatic coefficient is set to γ=5/3. We compare the numerical and
exact solutions computed on a N×N grid at final time T =0.01. The resulting L1 errors
and experimental orders of convergence can be found in Table 7.1.1. As expected, we
obtain orders of convergence of nearly two. Without the use of limiters full second order
is reached.

N L1(ρ) EOC(ρ) L1(ρu1) EOC(ρu1) L1(ρu2) EOC(ρu2) L1(E) EOC(E)

32 7.26E-04 - 1.45E-02 - 1.45E-02 - 2.90E-01 -
64 1.97E-04 1.88 3.93E-03 1.88 3.93E-03 1.88 7.87E-02 1.88
128 5.22E-05 1.92 1.04E-03 1.92 1.04E-03 1.92 2.08E-02 1.92
256 1.37E-05 1.92 2.73E-04 1.93 2.73E-04 1.93 5.47E-03 1.93
512 3.60E-06 1.94 7.10E-05 1.94 7.10E-05 1.94 1.42E-03 1.95

Table 7.1.1. L1 errors and experimental orders of convergence

7.2. Strong rarefaction test. In this section we want to numerically verify
the theoretical results of Section 4.3, i.e. the positivity of density and internal energy.
One suitable test for which density and pressure become very small is the 1-2-0-3 strong
rarefaction test [31]. In this test set-up, two rarefaction waves are launched in x-direction
on top of an isothermal atmosphere. Therefore, on the domain [0,1]2 the density ρ and
pressure p are initially defined by (4.99) with the constants C=−0.01 and K=γ−1,
an adiabatic coefficitent γ=1.4 and a quadratic gravitational potential Φ(x,y)= 1

2 [(x−
0.5)2+(y−0.5)2]. The initial velocities are set to

u1=

{
−2, x<0.5,
2, x≥0.5,

and u2=0. (7.2)

One slice along the x-axis of the numerical solution at final time T =0.1 computed
on a 128×128 grid by our relaxation scheme is presented in Figure 7.2.1. Although
the values for density and total pressure become very small during the simulation,
they always remain positive. This outcome underlines the theoretical results stated in
Lemmata 4.1 and 4.2.

7.3. Isothermal atmosphere. The following set-up is taken from [12]. The aim
of this experiment is to illustrate the exact preservation of an isothermal equilibrium.
We consider the gravitational potential

Φ(x,y)=x+y. (7.3)

The initial conditions on the domain [0,1]2 are given by

ρ(x,y,0)=ρ0exp(−ρ0g(x+y)/p0),

u(x,y,0)=0,

p(x,y,0)=p0 exp(−ρ0g(x+y)/p0),

(7.4)
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Fig. 7.2.1. Numerical solution for density, velocity and total energy at final time T =0.1

with the parameters ρ0=1.21, p0=1 and g=1. In this test we set γ=1.4. The solution
should be preserved up to any final time. Here we choose T =1.0. Since the solution is
in hydrostatic equilibrium, the choice of the ρ̄-average plays an important role. As this
is an isothermal equilibrium, we use for ρ̄ the definition (4.100). The L1 error between
the approximated solution and the exact solution is given in Table 7.3.1 and is in the
order of magnitude of the machine accuracy.

N L1(ρ) L1(ρu1) L1(ρu2) L1(E)

32 8.95E-17 5.21E-16 5.21E-16 4.18E-16
64 1.73E-16 1.62E-16 1.62E-16 7.24E-16
128 3.40E-16 3.47E-16 3.47E-16 1.63E-15
256 6.30E-16 6.89E-16 6.89E-16 3.46E-15
512 1.22E-15 1.54E-15 1.54E-15 7.43E-15

Table 7.3.1. L1 errors for an isothermal atmosphere

7.4. General steady state. In practice, steady states that do not belong to
the class of polytropic equilibria can also occur. In order to investigate the behaviour
of the well-balancing mechanism for these cases, we now apply the scheme to a general
steady state. We take the initial conditions from the set-up in Section 7.1 and set the
initial velocities u10 and u20 to zero. Then it is easy to check that the initial data is in
hydrostatic equilibrium.

In a first step, we use the ρ̄-average tuned to isothermal equilibria (4.100) and
compute the solution at final time T =1. As expected, the L1 error shown in Table
7.4.1 is now no longer in the order of magnitude of the machine accuracy, but the
hydrostatic equilibrium is still preserved up to second order. This result remains true
even if we use a constant reconstruction and consequently a first order scheme. As the
convergence rates in Table 7.4.2 show, the hydrostatic equilibrium is maintained up to
second order despite the constant reconstruction. Mathematically, this can be explained
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by the fact that Equation (4.108) is satisfied up to second order.

N L1(ρ) EOC(ρ) L1(ρu1) EOC(ρu1) L1(ρu2) EOC(ρu2) L1(E) EOC(E)

32 9.43E-06 - 1.36E-05 - 1.36E-05 - 5.08E-05 -
64 2.35E-06 2.01 3.43E-06 1.99 3.43E-06 1.99 1.26E-05 2.01
128 5.88E-07 2.00 8.60E-07 2.00 8.60E-07 2.00 3.14E-06 2.01
256 1.47E-07 2.00 2.16E-07 1.99 2.16E-07 1.99 7.85E-07 2.00
512 3.69E-08 2.00 5.42E-08 2.00 5.42E-08 2.00 1.97E-07 2.00

Table 7.4.1. L1 errors and experimental orders of convergence of the second order scheme for a
general steady state using the ρ̄-average (4.100)

N L1(ρ) EOC(ρ) L1(ρu1) EOC(ρu1) L1(ρu2) EOC(ρu2) L1(E) EOC(E)

32 9.74E-06 - 1.40E-05 - 1.40E-05 - 5.15E-05 -
64 2.39E-06 2.03 3.48E-06 2.01 3.48E-06 2.01 1.27E-05 2.02
128 5.93E-07 2.01 8.67E-07 2.01 8.67E-07 2.01 3.15E-06 2.01
256 1.48E-07 2.00 2.17E-07 2.00 2.17E-07 2.00 7.86E-07 2.00
512 3.70E-08 2.00 5.43E-08 2.00 5.43E-08 2.00 1.97E-07 2.00

Table 7.4.2. L1 errors and experimental orders of convergence of the first order scheme for a
general steady state using the ρ̄-average (4.100)

Let us now assume that we know the hydrostatic equilibrium a priori and it is given
as discrete data for the density and pressure. In this case, the approach described in
Lemma 4.6 should be able to maintain this particular hydrostatic equilibrium up to
machine precision. In order to check this, we set the values ρhs and phs equal to the
initial values for density respective pressure. The L1 errors in Table 7.4.3 show that the
hydrostatic equilibrium is maintained up to machine precision.

N L1(ρ) L1(ρu1) L1(ρu2) L1(E)

32 6.54E-17 9.10E-16 9.10E-16 1.33E-15
64 1.85E-16 1.95E-15 1.95E-15 4.78E-15
128 2.98E-16 4.78E-15 4.78E-15 8.97E-15
256 6.25E-16 8.32E-16 8.32E-16 2.04E-14
512 1.25E-15 1.83E-14 1.83E-14 4.24E-14

Table 7.4.3. L1 errors for a general steady state using the approach for a-priori known hydrostatic
equilibria from Lemma 4.6

7.5. Perturbation of an isothermal atmosphere. One main advantage of
well-balanced schemes is their ability to resolve small perturbations on the hydrostatic
equilibrium even on coarse grids. It is precisely this effect that we are investigating with
the following test. For this purpose, we take the initial values from Section 7.3, which
are in hydrostatic equilibrium, and add a perturbation on the pressure

p(x,y,0)=p0exp(−ρ0g(x+y)/p0)+ηexp
(
−100ρ0g((x−0.3)2+(y−0.3)2)/p0

)
. (7.5)

The strength of the perturbation is controlled by the parameter η. The numerical
solutions are computed on a 64×64 mesh up to a final time t=0.15. In order to
investigate the well-balancing effect, we compare the results of our well-balanced scheme
with a non-well-balanced scheme. The non-well-balanced scheme uses a Rusanov flux
in combination with a linear reconstruction limited by the minmod limiter.
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Fig. 7.5.1. Pressure perturbation of an isothermal atmosphere at t=0.15

The numerical solutions of the two schemes for a large perturbation η=0.1 are il-
lustrated in the two upper plots of Figure 7.5.1. Looking at the two solutions, it can
be said that they are visually very similar. Both methods are capable of resolving the
perturbation well. For a significantly smaller perturbation (η=1E−10), the situation
is completely different. While our well-balanced relaxation scheme is still capable to
resolve the perturbation (in fact one cannot see any difference in the resolution in com-
parison to the larger perturbation), the non-well-balanced scheme completely destroys
the structure of the initial pressure pulse. This underlines the functionality of the well-
balanced mechanism in the relaxation scheme and also demonstrates the importance of
this property for problems close to hydrostatic equilibrium.

scheme M =0.1 M =0.01 M =0.001

1-speed 62.74 47.49 50.08
2-speed 86.03 86.00 85.99

Table 7.5.1. Percentage of kinetic energy compared to the initial value after one full turnover
(T =1) for the stationary vortex in a gravitational field

7.6. Stationary vortex in a gravitational field. In this section, we inves-
tigate the effect of the new scaling of the relaxation speeds a and b for problems with
low Mach numbers. Therefore we compare the two-speed relaxation scheme using the
speeds defined in (4.80) with the one-speed relaxation scheme using the speeds (4.79).

As a test, we use a version of the Gresho vortex modified for the Euler equations
with a gravitational source term that was already given in [31]. The density in this
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Fig. 7.5.2. Numerical solutions for different maximum Mach numbers M after one full turnover.
The local Mach number relative to the respective M is color coded

set-up is defined by

ρ=exp

(
− Φ

RT

)
. (7.6)

The rest of the initial data is given in radial coordinates (r,θ). The velocity field has
the form

uθ(r)=
1

ur

5r, r≤0.2
2−5r, 0.2<r≤0.4
0, r>0.4

(7.7)

and the gravitational potential is defined by

Φ(r)=


12r2, r≤0.2
0.5− ln(0.2)+ln(r), 0.2<r≤0.4
ln(2)−0.5 rc

rc−0.4 +2.5 rc
rc−0.4r−1.25 1

rc−0.4r
2, 0.4<r≤ rc

ln(2)−0.5 rc
rc−0.4 +1.25

r2c
rc−0.4 , r>rc.

(7.8)

The pressure p is departed into a hydrostatic pressure p0 and a pressure p2 associated
with the centrifugal forces and given by p=p0+M2p2, where p0=RTρ and

p2(r)=
RT

u2
r

p21(r), r≤0.2
p21(0.2)+p22(r), 0.2<r≤0.4
p21(0.2)+p22(0.4), 0.4<r≤ rc

(7.9)

with

p21(r)=

(
1−exp

(
−12.5

r2

RT

))
,
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p22(r)=
1

(1−M2)(1−0.5M2)
exp

(
−0.5+ln(0.2))

RT

)
(
r−

1
RT

(
M4(r(10−12.5r)−2)−4+M4(r(12.5r−20)+6)RT

)
+exp

(
−ln(0.2)

RT

)(
4−2.5M4RT +0.5M4

))
.

The reference values are given by ur=2 ·0.2 ·π and RT =1/M2. We choose γ=5/3 for
the adiabatic coefficient. The spatial domain is D=[0,1]2 and has periodic boundary
conditions. The computations are carried out on a 40×40 grid until a final time T =1,
which corresponds to one turn of the vortex. We solve this initial value problem for
various maximum Mach numbers M using the two different schemes. The solutions
generated by the one-speed relaxation scheme are depicted in the top row of Figure
7.5.2, while the solutions computed by the two-speed relaxation scheme are shown in
the bottom row. It becomes clear that for decreasing Mach numbers, the vortex in
the upper row smears out very quickly and even loses its shape completely. The vortex
produced by the two-speed scheme in the lower row, on the other hand, retains its shape
regardless of the Mach number, so that no difference is visually discernible.

This outcome can be explained by the theoretical results from Section 4.4. While
the diffusion for the one-speed scheme increases for decreasing Mach numbers, the use of
two relaxation speeds, as shown in the proof of Theorem 4.3, results in a Mach number
independent diffusion. Further evidence for this behaviour can be found in the analysis
of the kinetic energy. Table 7.5.1 contains the percentages of kinetic energy compared
to the initial value after one full turnover. The final amount of kinetic energy in the
solutions of the one-speed scheme strongly decreases for decreasing Mach numbers. In
contrast, the asymptotic preserving two-speed scheme is able to keep the loss almost
constant at 14%, regardless of the Mach number.

8. Conclusion
The proposed scheme extends the two-speed relaxation approach to the full Euler

equations with a gravitational source term. In order to preserve steady states at rest, a
well-balancing mechanism is installed in the approximate Riemann solver. The result-
ing scheme is provably asymptotic preserving and maintains all hydrostatic equilibria
up to second order, certain families and a-priori known equilibria even up to machine
precision. The approximate Riemann solver is positivity preserving, entropy satisfying
and prevents the occurrence of checkerboard modes in the velocity and pressure vari-
ables. The properties of the method proven in theory are substantiated in numerical
tests. Further steps may be the development of an IMEX scheme based on the herein
presented full time explicit scheme in order to overcome the severe time step restriction
for problems with very low Mach numbers, and the extension to other PDE systems
like the MHD equations.
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[25] F. Miczek, F.K. Röpke, and P.V.F. Edelmann, New numerical solver for flows at various Mach
numbers, Astron. Astrophys., 576:A50, 2015. 1

[26] K. Oßwald, S. Siegmund, P. Birken, V. Hannemann, and A. Meister, L2Roe: A low dissipation
version of Roe’s approximate Riemann solver for low Mach numbers, Int. J. Numer. Meth.
Fluids, 81(2):71–86, 2015. 1

[27] F. Rieper, A low-Mach number fix for Roe’s approximate Riemann solver, J. Comput. Phys.,

https://link.springer.com/article/10.1007/s10915-017-0372-4
https://link.springer.com/article/10.1007/s10915-017-0372-4
https://doi.org/10.1051/proc/201758027
https://doi.org/10.1016/j.compfluid.2021.104858
https://doi.org/10.1016/j.compfluid.2021.104858
https://doi.org/10.13140/RG.2.2.10439.11683
https://doi.org/10.13140/RG.2.2.10439.11683
https://dx.doi.org/10.4310/CMS.2005.v3.n2.a3
https://doi.org/10.5802/smai-jcm.60
https://link.springer.com/book/10.1007/b93802
https://link.springer.com/article/10.1007/s00211-020-01111-5
https://link.springer.com/article/10.1007/s10915-020-01206-z
https://doi.org/10.1016/j.nonrwa.2018.05.004
http://dx.doi.org/10.4208/cicp.260614.061115a
https://doi.org/10.1137/140984373
https://doi.org/10.1016/j.jcp.2017.12.026
https://doi.org/10.1137/S0036142997318528
https://www.researchgate.net/publication/228848347_Checkerboard_modes_and_wave_equation
https://doi.org/10.1016/j.jcp.2009.09.044
https://doi.org/10.1002/fld.4177
https://doi.org/10.1002/fld.4177
https://link.springer.com/book/10.1007/978-3-319-99693-6
https://doi.org/10.1137/1025002
https://doi.org/10.1016/j.jcp.2009.04.021
https://doi.org/10.1016/j.jcp.2013.11.028
https://doi.org/10.1051/0004-6361/201527815
https://doi.org/10.1016/S0021-9991(95)90034-9
https://doi.org/10.1016/j.compfluid.2013.07.004
https://doi.org/10.1051/0004-6361/201425059
https://doi.org/10.1002/fld.4175


2246 A WELL-BALANCED AND ASYMPTOTIC-PRESERVING RELAXATION SCHEME

230(13):5263–5287, 2011. 1
[28] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing

schemes, J. Comput. Phys., 77:439–471, 1988. 7
[29] I. Suliciu, On modelling phase transitions by means of rate-type constitutive equations. Shock wave

structure, Int. J. Eng. Sci., 28(8):829–841, 1990. 2
[30] A. Thomann, M. Zenk, and C. Klingenberg, A second-order positivity-preserving well-balanced

finite volume scheme for Euler equations with gravity for arbitrary hydrostatic equilibria, Int.
J. Numer. Meth. Fluids, 89(11):465–482, 2018. 1, 6, 6

[31] A. Thomann, G. Puppo, and C. Klingenberg, An all speed second order well-balanced IMEX
relaxation scheme for the Euler equations with gravity, J. Comput. Phys., 420:109723, 2020. 1,
1, 6, 7.2, 7.6

[32] A. Thomann, M. Zenk, G. Puppo, and C. Klingenberg, An all speed second order IMEX relaxation
scheme for the Euler equations, Commun. Comput. Phys., 28(2):591–620, 2020. 1

[33] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduc-
tion, Springer-Verlag, Berlin, Third Edition, 2009. 5

[34] E. Turkel, Preconditioning techniques in computational fluid dynamics, Annu. Rev. Fluid Mech.,
31:385–416, 1999. 1

[35] Y. Xing and C.-W. Shu, High order well-balanced WENO scheme for the gas dynamics equations
under gravitational fields, J. Sci. Comput., 54:645–662, 2013. 1, 7.1

https://doi.org/10.1016/j.jcp.2011.03.025
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1016/0020-7225(90)90028-H
https://doi.org/10.1002/fld.4703
https://doi.org/10.1016/j.jcp.2020.109723
https://doi.org/10.4208/cicp.OA-2019-0123
https://link.springer.com/book/10.1007/b79761
https://doi.org/10.1146/annurev.fluid.31.1.385
https://link.springer.com/article/10.1007/s10915-012-9585-8

