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Abstract. We consider the Black Scholes equation with the volatility assumed to depend on a finite number of4
independent random variables. The aim is to quantify the effect of this uncertainty when computing5
the price of derivatives. Our underlying method is the generalized Polynomial Chaos (gPC) method6
in order to numerically compute the uncertainty of the solution by the stochastic Galerkin approach7
and a finite difference method. We present an efficient numerical variation of this method for solving8
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2 KATHRIN HELLMUTH, CHRISTIAN KLINGENBERG

1. Introduction. In modern financial markets, traders can choose from a large variety of13

financial derivatives. This term denotes financial instruments that have a value determined14

so called underlying variables or assets such as stocks, the oil price or the weather. Originally,15

derivatives were invented to reduce the risk of uncertain prices, especially in agricultural mar-16

kets where one could have long periods between sowing and harvest, see e.g. [26] Chapter 117

or [4] Chapter I.18

19

As the derivative market increased, also the need for a pricing formula for derivatives grew20

in the 20th century. A breakthrough was made by Black, Scholes [1] and Merton [14] in 197321

when they contemporaneously formulated a model allowing the evaluation of derivatives, for22

which they were later awarded the Nobel prize in economics. Derived from this model, the23

Black Scholes equation24

(1.1)
∂V (S, t)

∂t
+

1

2
σ2S2∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV (S, t) = 0, S ∈ (0,∞), t ∈ [0, T ],25

explains the behaviour of the price V of the derivative by means of a partial differential equa-26

tion (PDE). This derivative is allowed to depend on the time t up to maturity T and only one27

underlying stochastic asset, whose price is denoted by S and follows a geometric Brownian28

motion (e.g. a stock, an index or some commodity price). The constant r denotes the risk29

free rate of interest in the market and σ ∈ R is the so called volatility of the stochastic asset.30

Later, this model was extended to multiple underlying assets and adjusted for certain kinds31

of underlying variables like interest rates, see e.g. [3].32

33

However, the comparison to real data soon showed that the volatility σ of one and the same34

stochastic asset can take values that differ more than one can explain by rounding errors etc.,35

see e.g. [22], [23] and [8]. The most popular approaches to deal with this are to model the36

volatility either as local volatility, i.e. a function σ(S, t), (see [7], [2], [5] and [9]) or as a37

stochastic process, compare e.g. the famous Heston model [10] or [22], [23] and [11].38

39

Another approach is used in [15], [17] and [6]: The volatility is modelled as a one dimen-40

sional random variable Σ(ω) = Θ(ω) (in [15]) or a function of a one dimensional random41

variable Σ(Θ(ω)) (in [17] and [6]) for ω from a probability space. The resulting stochastic42

version of the Black Scholes equation43

∂V (S, t,Θ)

∂t
+

1

2
Σ(Θ)2S2∂

2V (S, t,Θ)

∂S2
+ rS

∂V (S, t,Θ)

∂S
− rV (S, t,Θ) = 0(1.2)44

is then studied by means of uncertainty quantification:45

The solution V is developed in a generalized Polynomial Chaos (gPC) expansion46

(1.3) V (S, t,Θ(ω)) =

∞∑
n=0

vn(S, t)pn(Θ(ω))47

for orthogonal polynomials pn w.r.t. the distribution of Θ and coefficients given by the ex-48

pected value vn(S, t) = E(V (S, t,Θ)pn(Θ)). If Θ has a density µ : D → R, one can alterna-49
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COMPUTING BLACK SCHOLES WITH UNCERTAIN VOLATILITY - A BI-FIDELITY APPROACH 3

tively calculate the coefficients by50

vn(S, t) =

∫
D
V (S, t, x)pn(x)µ(x) dx.51

52

In [15], these integrals are directly computed by a quadrature rule, where the required solutions53

V in the quadrature points xj are calculated as the solutions of the deterministic Black Scholes54

equation 1.1 with σ = xj . This classifies the method as a Stochastic Collocation method.55

In the articles of Pulch and van Emmerich [17] and Drakos [6] however, the stochastic Galerkin56

method is applied for computing the coefficients vn(S, t). By inserting the gPC expansion57

1.3 into the stochastic Black Scholes equation, multiplying the equation by an orthogonal58

polynomial pk(Θ) and applying the expected value on both sides, deterministic PDEs for the59

coefficients vn(S, t) are derived60

(1.4) 0 =
∂vk(S, t)

∂t
+

1

2
S2

∞∑
n=0

∂2vn(S, t)

∂S2
E
(
(Σ(Θ))2pk(Θ)pn(Θ)

)
+ rS

∂vk(S, t)

∂S
− rvk(S, t).61

After truncating of the system and the coupling term to attain a maximum index N , the62

system is solved numerically by the method of lines in [17] and the finite element method in63

[6].64

65

In our work we extend the model used above to the volatility Σ(Θ1, ...,ΘL) depending on66

finitely many random variables Θ1, ...,ΘL. This leads to the stochastic Black Scholes equa-67

tion68

0 =
∂V (S, t,Θ1, ...,ΘL)

∂t
+

1

2
Σ2(Θ1, ...,ΘL)S2∂

2V (S, t,Θ1, ...,ΘL)

∂S2
(1.5)69

+rS
∂V (S, t,Θ1, ...,ΘL)

∂S
− rV (S, t,Θ1, ...,ΘL).70

A model like this might for instance occur when the volatility is modelled as a random variable71

that also depends on certain stochastic factors as in [20], [21] and [19].72

The solution is derived in the same way as in 1.4 and calculated numerically by a finite dif-73

ference method. The computational cost for multiple similar calculations is reduced by a74

Bi-Fidelity technique, which can be considered as a Machine learning approach.75

76

After introducing gPC to finitely many random variables in section 2, the stochastic Galerkin77

method is used to solve equation 1.5. However, computational costs can be quite high. Thus,78

we introduce a Bi-Fidelity numerical technique to compute this more efficiently in section79

3. The paper gets rounded out with numerical results illustrating the effectiveness of this80

technique in section 4.81
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4 KATHRIN HELLMUTH, CHRISTIAN KLINGENBERG

2. Deriving the system of PDEs for the gPC coefficients. Denote by Θ1, ...,ΘL random82

variables with joint distribution function F̄ : D̄ → R for a multivariate domain D̄ ⊂ RL. For83

a function f̄ : D̄ → R the following notation is used for integration with respect to (w.r.t.) F̄ :84

〈f̄〉 :=

∫
D̄
f̄(x1, ..., xL) dF̄ (x1, ..., xL) = E(f̄(Θ1, ...,ΘL)).85

Orthogonal polynomials w.r.t. F̄ can be defined al follows:86

Definition 2.1 (adapted from [25] Definition 8.24). Let F̄ : D̄ → R be a multivariate87

probability distribution defined on the domain D̄ ⊂ RL. Then a system of polynomials88

{p̄α : D̄ → R |α = (α1, .., αL) ∈ NL0 }, where the polynomial p̄α(x1, ..., xL) has degree in89

the i-th variable degxi(p̄α) = αi, is called an infinite system of orthogonal polynomials w.r.t.90

F̄ , if for all multi indices α, β ∈ NL0 one has91

〈p̄αp̄β〉 = 0 for α 6= β,92

〈p̄2
α〉 =: γ̄α > 0.93

Existence of orthogonal polynomial systems follows from the Gram Schmidt algorithm, if for94

all α = (α1, ..., αL) ∈ NL0 the moments 〈xα1
1 · ... · x

αL
L 〉 are finite. Hence, uniqueness of the95

orthogonal polynomials is given up to multiplication by constants. In case of independence of96

the Θi, they are in particular given by the product of the orthogonal polynomials w.r.t. the97

distribution of every Θi.98

99

In the following, the notation LpdF (D,H) denotes the space of all functions D → H that100

are p-times integrable w.r.t. the measure dF for some D ⊂ Rn and codomain H. If dF is101

not explicitly defined, the Lebesgue measure is chosen. If D and H are not defined, then D102

equals the domain of F and H equals R.103

It is well known, that under certain circumstances orthogonal polynomials span the space104

L2
dF̄

. They are thus called a complete orthogonal basis of L2
dF̄

.105

This is for example the case, if F̄ is absolutely continuous, has finite moments and it holds,106

that (Θ1, ...,ΘL) realizes in a compact domain almost surely or the density of F̄ is expo-107

nentially integrable. For details, see [18]. In case of independence of the Θi, the orthogonal108

polynomials w.r.t. F̄ span L2
dF̄

, if all orthogonal polynomial systems w.r.t. the density of Θi109

span the corresponding L2 spaces. This is due to the tensor product representation of L2
dF̄

in110

case of independency of the Θi, see e.g. [12] Example E.10.111

112

Assuming such circumstances to be given, the gPC expansion can be defined.113

Theorem 2.2 (generalization of [25] 11.3). Let Θ1, ...,ΘL : Ω→ R be random variables with114

joint distribution F̄ such that the orthogonal polynomials (p̄α)α∈NL0
w.r.t. F̄ form a complete115

basis of L2
dF̄

. Denote by H an arbitrary Hilbert space, e.g. the real numbers R or a space116

of the form Lp(D,R), p = 0, 1, 2, for some domain D ⊂ Rn. Then every random variable117

X : Ω→ H with118

X =d X̃(Θ1, ...,ΘL)119
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in distribution for a function X̃ ∈ L2
dF̄

(D̄,H) can be represented in the generalized Polynomial120

Chaos form121

(2.1) X =d
∑
α∈NL0

xαp̄α(Θ1, ...,ΘL) with xα =
〈Xp̄α〉
〈p̄2
α〉
∈ H.122

The proof follows in analogy to the proof for independent continuous random variables in [25]123

section 11.3 from the tensor product decomposition L2
dF̄
⊗H ∼= L2

dF̄
(D̄,H).124

125

126

The stochastic Galerkin method is applied to the Black Scholes equation 1.5 with uncertain127

volatility is to transform the stochastic PDE into a system of deterministic PDEs for the gPC128

coefficients of the solution V (S, t,Θ1, ...,ΘL).129

To do so, one has to assume Σ ∈ L2
dF̄

and V ∈ L2
dF̄

(D̄, L2((0,∞) × [0, T ],R)), such that130

theorem 2.2 can be applied to the volatility Σ(Θ1, ...,ΘL), the solution V (S, t,Θ1, ...,ΘL) and131

the partial derivatives of V in S and t. In analogy to the one dimensional case in [6] and [17],132

inserting the gPC expansions in the Black Scholes equation 1.5 and multiplying the equation133

by p̄δ(Θ1, ...,ΘL) and applying the expected value, for each δ ∈ NL0 at a time, yields134

0 =
∂vδ(S, t)

∂t
+

1

2
S2

∑
α,β,γ∈NL0

σασβ
∂2vγ(S, t)

∂S2
Mαβγδ + rS

∂vδ(S, t)

∂S
− rvδ(S, t)135

due to orthogonality of the pα. Note that the Galerkin multiplication tensor Mαβγδ :=136
〈p̄αp̄β p̄γ p̄δ〉
〈p̄2δ〉

exists since the integrated functions are all polynomials in L variables.137

In order to solve the system, the boundary conditions and the final condition corresponding138

to the derivative under consideration are transformed to conditions on the gPC coefficients vi.139

Usually, they are deterministic and thus appear in the coefficient v(0,...,0), whereas all other140

coefficients vanish.141

142

After that, the gPC expansions are truncated to a finite number of terms by bounding the143

maximum degree |α| := α1 + ...+ αL of the gPC expansions144

ΣK(Θ1, ...,ΘL) :=
∑

α∈NL0 , |α|≤K

σαp̄α(Θ1, ...,ΘL)(2.2)145

V N (S, t,Θ1, ...,ΘL) :=
∑

δ∈NL0 , |δ|≤N

vNδ (S, t)p̄δ(Θ1, ...,ΘL)(2.3)146

147

for fixed maximum degrees K,N ∈ N0 and coefficients vNδ ∈ L2((0,∞)× [0, T ],R).148

The system of equations for the truncated gPC coefficients vNδ , δ ∈ NL0 with |δ| ≤ N , is then149

given by150

(2.4) 0 =
∂vNδ (S, t)

∂t
+

1

2
S2

∑
α,β,γ∈NL0 ,
|α|,|β|≤K,
|γ|≤N

σασβ
∂2vNγ (S, t)

∂S2
Mαβγδ + rS

∂vNδ (S, t)

∂S
− rvNδ (S, t),151
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6 KATHRIN HELLMUTH, CHRISTIAN KLINGENBERG

which can be evaluated numerically.152

153

Note, however, that convergence of the truncated stochastic Galerkin solution V N in 2.3154

to the true solution V as N →∞ is not obvious and could not be proven by now. It is a topic155

open to further research. However, one assumes convergence to be given in order to trust the156

numerical solution to represent the true solution.157

158
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COMPUTING BLACK SCHOLES WITH UNCERTAIN VOLATILITY - A BI-FIDELITY APPROACH 7

3. Numerical implementation. For demonstrative purposes, European Call options with159

strike price strike and maturity T will be considered to present the numerics used for solving160

the system of equations 2.4.161

162

3.1. An explicit finite difference scheme for system 2.4. For an easier implementation,163

system 2.4 is rewritten in vector form. This is done via a bijection φ from the set {0, ..., |I|−1}164

of positions in the vector to the set of multi indices I := {δ ∈ NL0 | |δ| ≤ N} as described in165

[27] section 5.2. Define v := (vNφ(0), ..., v
N
φ(|I|−1))

T , then one can represent system 2.4 by166

0|I| =
∂v(S, t)

∂t
+

1

2
S2A

∂2v(S, t)

∂S2
+ rS

∂v(S, t)

∂S
− rv(S, t),167

where the coupling matrix A is given by168

A[n, l] =
∑

α,β∈NL0 ,
|α|,|β|≤K

σασβMαβ(φ(l))(φ(n)), for n, l = 0, ..., |I| − 1.(3.1)169

The boundary conditions and final values have to be transformed to vectors as well. For the170

European Call option, they are given by171

v(S, T ) =


(S − strike)+

0
...
0

 , S ∈ (0,∞),172

v(S, t)
S→0−−−→ 0|I|, t ∈ [0, T ], and173

1

S
v(S, t)

S→∞−−−−→


1
0
...
0

 , t ∈ [0, T ].174

175

The system has to be transformed to a finite domain. For the European Call option this can176

be achieved by the following transformation of variables177

ζ :=
S

S + strike
,178

τ := T − t,179

v̄(ζ, τ) :=
v(S, t)

S + strike
=

(1− ζ)v(strike · ζ/(1− ζ), T − τ)

strike
,180

181

which can be found e.g. in [28] Chapter 2.2.5 for the deterministic Black Scholes equation.182

This leads to a PDE for v̄ given by:183

∂v̄(ζ, τ)

∂τ
=

1

2
ζ2(1− ζ)2A

∂2v̄(ζ, τ)

∂ζ2
+ rζ(1− ζ)

∂v̄(ζ, τ)

∂ζ
− r(1− ζ)v̄(ζ, τ),(3.2)184

ζ ∈ (0, 1), τ ∈ [0, T ],185
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8 KATHRIN HELLMUTH, CHRISTIAN KLINGENBERG

with boundary and initial conditions186

v̄(ζ, 0) =


(2ζ − 1)+

0
...
0

 , ζ ∈ (0, 1),187

v̄(ζ, τ)
ζ→0−−−→ 0|I|, τ ∈ [0, T ], and188

v̄(ζ, τ)
ζ→1−−−→


1
0
...
0

 , τ ∈ [0, T ].189

190

In order to solve the system, we choose a finite difference scheme, because it is easy to191

implement for practitioners. An equidistant grid192

ζm :=
m

Mζ
= m∆ζ, m = 0, ...,Mζ ,193

τn := T
n

Nτ
= n∆τ, n = 0, ..., Nτ ,194

was selected with Mζ , Nτ ∈ N large enough to represent the solution in a proper way and in195

the right proportion to obtain a stable scheme and ∆ζ := 1/Mζ ,∆τ := T/Nτ . The partial196

derivatives are approximated component wise by finite differences, as it was done for the197

deterministic solution in [28] Chapter 8.1.1, with198

forward differences for
∂v̄

∂τ
(ζm, τ

n) ≈ v̄(ζm, τ
n+1)− v̄(ζm, τ

n)

∆τ
and199

central differences for
∂v̄

∂ζ
(ζm, τ

n) ≈ v̄(ζm+1, τ
n)− v̄(ζm−1, τ

n)

2∆ζ
200

and for
∂2v̄

∂ζ2
(ζm, τ

n) ≈ v̄(ζm+1, τ
n)− 2v̄(ζm, τ

n) + v̄(ζm−1, τ
n)

(∆ζ)2
,201

for m = 1, ...,Mζ − 1, n = 0, ..., Nτ − 1. This yields the explicit finite difference scheme202

v̄(ζm, τ
n+1) =∆τ

(
1

2
ζ2
m(1− ζm)2A

v̄(ζm+1, τ
n)− 2v̄(ζm, τ

n) + v̄(ζm−1, τ
n)

(∆ζ)2
203

+rζm(1− ζm)
v̄(ζm+1, τ

n)− v̄(ζm−1, τ
n)

2∆ζ
− r(1− ζm)v̄(ζm, τ

n)

)
(3.3)204

+ v̄(ζm, τ
n),205

for m = 1, ...,Mζ − 1, n = 0, ..., Nτ − 1 with initial value206

v̄(ζm, 0) =


(2ζm − 1)+

0
...
0

 , m = 1, ...,Mζ − 1.207

208
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The remaining values for m ∈ {0,Mζ}, i.e. ζm ∈ {0, 1}, are given by the boundary conditions209

v̄(0, τn) = 0N+1 and v̄(1, τn) = (1, 0, ..., 0)T for all n.210

Consistency of the scheme can easily be verified. By the Lax-Richtmyer Equivalence theorem,211

see for instance [24] Theorem 1.5.1, convergence of the numerical solution is given, if Mζ and212

Nτ are chosen to obtain a stable scheme 3.3 and if the system of equations 3.2 is well posed.213

Well posedness is in particular given for a parabolic system, i.e. when all real parts of the214

eigenvalues of A are positive.215

216

The Galerkin multiplication tensor and thus the entries of the coupling matrix A can be217

computed by a suitable quadrature method. Gaussian quadrature was used to obtain the218

numerical results in section 4.219

3.2. A Bi-Fidelity approach for calculating the stochastic Galerkin solution to the Black220

Scholes equation with random volatility. In case of a volatility depending on L = 2 random221

variables, the SG solution truncated at maximum degree N already has (N + 1)(N + 2)/2222

gPC coefficients. Thus, (N + 1)(N + 2)/2 coupled equations have to be solved to obtain the223

approximate SG solution. This number and with it the computational cost rapidly increase224

as N or L increases.225

This becomes a problem especially if the SG solutions for many options shall be computed at226

a time. A solution to this problem is given by applying a Bi-Fidelity approach, if the same227

type of option (e.g. European Call options) with the same maturity T and interest rate r, but228

different distributions of the volatility model Σ(Θ1, ...,ΘL) are considered. A situation like229

this arises for instance when comparing financial derivatives of the same type and maturity230

date, but with different underlying stochastic assets.231

232

In literature, the Bi-Fidelity approach is frequently described for uncertainty quantification233

via Stochastic Collocation methods, see e.g. [29] and [16] for the general procedure and [13]234

for an application to the multi-scale Boltzmann equation. However, the same procedure can235

be applied to equations derived by a stochastic Galerkin method, if one takes care of the236

classification of the random variable.237

238

The Bi-Fidelity method aims to approximate the desired high fidelity solution of the con-239

sidered PDE, that depends on a random variable Ξ, at a certain realization z of Ξ by stored240

high and low fidelity solutions in some realizations of Ξ and the computationally cheaper low241

fidelity solution in z.242

This random variable Ξ has to be assigned at first. In our case, it is not given by (Θ1, ...,ΘL),243

since we still want our solution to be a random variable depending the Θi in order to explore244

its stochastic behaviour. Instead, we suppose the distribution of Σ(Θ1, ...,ΘL) to change from245

calculation to calculation, as it would be the case for different underlying assets, without246

changes in the distributions of the Θi. By representation 2.2 of the truncated gPC expansion247

of Σ, a variation in the distribution of the volatility therefore means a variation in at least248

one of the gPC coefficients σα, |α| ≤ K. Hence, the random variable Ξ describes volatility249

models of the form 2.2 by their gPC coefficients σα, |α| ≤ K.250

251
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10 KATHRIN HELLMUTH, CHRISTIAN KLINGENBERG

Then, high and low the high fidelity models have to be defined. The high fidelity model252

is the one, we are actually is interested in. We chose a high resolution numerical solution to253

2.4 derived by the explicit finite difference scheme 3.3254

v̄(ζm, τ
n+1) =∆τ

(
1

2
ζ2
m(1− ζm)2A

v̄(ζm+1, τ
n)− 2v̄(ζm, τ

n) + v̄(ζm−1, τ
n)

(∆ζ)2
255

+rζm(1− ζm)
v̄(ζm+1, τ

n)− v̄(ζm−1, τ
n)

2∆ζ
− r(1− ζm)v̄(ζm, τ

n)

)
256

+ v̄(ζm, τ
n), for m = 1, ...,Mζ − 1, n = 0, ..., Nτ − 1,257

with high MH
ζ and corresponding to that, for stability, high NH

τ . The low fidelity model,258

i.e. the cheaper model that is less trusted but used to define the approximation projection, is259

chosen to be the same numerical solution on a coarse grid with small ML
ζ and NL

τ .260

Note, however, that NL
τ must not be chosen too small to ensure that the scheme is stable for261

a large number of volatility models. The reason for this requirement will become clear at step262

3.2.263

Now one can proceed with the typical Bi-Fidelity algorithm as described in [16], [29] or [13].264

265

Below, the application of the algorithm is explained, where the volatility is assumed to de-266

pend on L = 2 random variables Θ1,Θ2 for a better readability. An extension to more random267

variables can easily be done. The truncation number K = 1 is chosen such that the random268

variable Ξ represents the gPC coefficients σ00, σ10 and σ01.269

Since the actual computational effort lies in the calculation of the transformed system of equa-270

tions 3.2 for v̄ = (v̄Nφ(0), ..., v̄
N
φ(|I|−1))

T by the scheme 3.3, the Bi-Fidelity approach is applied271

directly on v̄. Thus, a transformation back to the original variables vN , S and t is applied272

only once for the Bi-Fidelity solution, reducing the computational cost. For the calculation273

of the scheme, initial conditions and the Galerkin multiplication tensors are stored and reused.274

275

The following three steps describe the generation of the stored approximation data and have276

to be executed only once.277

278

Step 1: At first, the co-domain of Ξ is described by finite intervals such that σ00 ∈279

[a00, b00], σ10 ∈ [a10, b10], σ01 ∈ [a01, b01] if possible.280

The intervals can for instance be constructed by experimentally calculating some σ00, σ10, σ01281

for some of the later interesting stochastic assets. Alternatively, one can think of possible282

values of σ00 inspired by experiments e.g., and choose bounds of σ10 and σ01 such that the283

variance of Σ(Θ1,Θ2) is bounded. We used this approach for calculations.284

After that, a large set Y of possible realizations of Ξ has to be chosen such that it is a good285

’cover’ of the possible values of Ξ. One can use Monte Carlo sampling or a structured grid on286

the co-domain of Ξ.287

For every volatility model described by a y ∈ Y , the low fidelity solution v̄L(y) is computed,288

if the corresponding system of equations is parabolic and the scheme is stable.289

290

Step 2: Since one can usually not afford to calculate the high fidelity solution in ev-291
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COMPUTING BLACK SCHOLES WITH UNCERTAIN VOLATILITY - A BI-FIDELITY APPROACH 11

ery y ∈ Y , one has to determine the A ∈ N most important points, where A denotes292

the number of high fidelity computations one can afford. This is achieved by choosing293

z0 := argmaxy∈Y d
L(v̄L(y), 0)) and294

(3.4) zi+1 := argmax
y∈Y

dL(v̄L(y), V̄L(y)L(z1, ..., zi)), i = 0, ..., A− 1.295

The notation V̄L(Ŷ ) := span(v̄L(ŷ) | ŷ ∈ Ŷ ) for Ŷ ⊂ Y is used and dL(u, V ) := infv∈V ‖u−v‖L296

is the distance of a point v ∈ V̄L(Y ) to the set V ⊂ V̄L(y) induced by a norm ‖·‖L on V̄L(Ŷ ).297

Further details on the computation can be found in [16] algorithm 1.298

This step selects the points z1, ..., zA that span the largest subspace V̄L(z1, ..., zA) of V̄L(Y ).299

300

Step 3: The high fidelity solution is calculated in the thus derived points z1, ..., zA. Note that301

Nτ has to be chosen large enough such that the numerical scheme is stable for all volatility302

models zi. Parabolicity of the system of PDEs does not have to be checked again, as it has303

been checked in step 1 already. The high fidelity solutions v̄H(zi) and low fidelity solutions304

v̄L(zi) are stored.305

306

Assume now, a certain volatility model z is given and one wants to compute the Bi-Fidelity307

solution of the Black Scholes equation with uncertain volatility. This is done as follows:308

309

Step 1: The low resolution numerical solution v̄L(z) is calculated by scheme 3.3. Note310

that the system of equations needs to be parabolic and the scheme has to be stable for a311

reasonable calculation.312

313

Step 2: The low fidelity solution v̄L(z) is projected onto V̄L(z1, ..., zA) leading to the pro-314

jection formula315

v̄L(z) ≈ PV̄L(z1,...,zA)v̄
L(z) =

A∑
k=1

ckv̄
L(zk)316

with projection coefficients ck ∈ R and PVv denoting the orthogonal projection of v onto V.317

Details of the computation of the ck can be found in [16] e.g..318

319

Step 3: Finally, the Bi-Fidelity solution is constructed by applying the same projection320

law to the stored high fidelity solutions321

v̄BF (z) :=
A∑
k=1

ckv̄
H(zk).322

After deriving v̄BF , it has to be transformed back to the original variables v, S and t.323
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4. Numerical results. This section presents numerical solutions to the Black Scholes equa-324

tion with uncertain volatility. For sake of simplicity the volatility is assumed to depend on325

two independent random variables Θ and ∆ with standard normal distribution and uniform326

distribution on [−0.5, 0.5] respectively. The error of the Bi-Fidelity approximation is investi-327

gated and its computation time is compared to the high fidelity model. For more convenient328

reading, times t and the maturity T are given in days, whereas for the computations, these329

values were multiplied by 1/251 to go over to years.330

4.1. Results for the extended model. The numerical solution to the truncated system of331

equations 2.4 for a European Call option with strike price strike = 100 and maturity T = 20332

in a market with risk free rate of interest r = 0 is visualized in figures 1a and 1b by plotting333

its mean and variance.334

The volatility of the underlying stochastic asset is modelled by335

(4.1) Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.1
√

12∆.336

For the gPC expansion of the solution, the truncation number N = 5 was chosen, for which337

system 2.4 is parabolic. The numbers of grid points Mζ = 200 in ζ and Nτ = 319 in τ were338

chosen such that the applied explicit finite difference scheme 3.3 is stable.339

340

Contour lines were drawn at height of quarters of the maximum absolute value and the bor-341

ders of the smoothing area, i.e. the area where the solution differs from its final condition342

V (S, T ) = (S−strike)+, were drawn in red. These lines will be present in each of the following343

surface plots. Note that the expected value surface resembles the solution of the deterministic344

Black Scholes equation for σ = 0.5 in figure 1c, but the smoothing area is larger.345

346

Experiments showed that the qualitative shape of the expected value and variance is char-347

acteristic for solutions to the Black Scholes equation with random volatility 1.5 of the form348

Σ(Θ,∆) = σ00 +σ10Θ +σ01∆. These models lead to solutions that ’lie between’ the solutions349

for volatility depending on Θ or ∆ only with the same mean and variance of the volatility.350

The higher σ10 is in comparison to σ01, the closer the solution is to the solution for volatility351

depending on Θ only and the further away it is from the solution for the model depending on352

∆ only, vice versa. An increase in the mean σ00 of the volatility while keeping its variance353

constant was observed to enlarge the smoothing area and thus the spread of the variance,354

which in turn flattens it.355

A rise in the variance σ2
10 + σ2

01/12 of the volatility with constant mean σ00, however, seemed356

to scale up the variance of the SG solution by the same factor. Meanwhile, the expected value357

of the SG solution was marginally increased within the smoothing area.358

359

Comparison to real market data:360

The model is compared to market prices of a European Call option, whose end of day values361

are considered from January 7th 2019 to September 20th 20191. Its underlying asset is the362

DAX index and the strike price and maturity are given by strike = 10275 and T = 180 days363

1The values were obtained from https://www.finanzen.net/.
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(a) Expected value surface for the stochastic
solution.

(b) Variance surface for the stochastic solution.

(c) Deterministic solution.

Figure 1: Solutions to the Black Scholes equation for a European call option with T =
20, strike = 100 and r = 0 for the volatility model Σ1(Θ,∆) = 0.5 + 0.2Θ + 0.1

√
12∆, Θ

normal distributed, in (a) and (b) and the deterministic model σ = 0.5 in (c) calculated with
K = 1, N = 5,Mζ = 200, Nτ = 319.

respectively.364

365

A volatility model of the form Σ(Θ,∆) = σ00 + σ10Θ + σ01∆ was fitted to the data by using366

a maximum likelihood approach on the daily implied volatilities. This lead to the volatility367

model368

(4.2) Σ(Θ,∆) = 0.2292 + 0.1126Θ + 0.0115∆,369

whose fitted density is shown in figure 2a together with a histogram density estimator. The370

SG solution was computed using the truncation number N = 5 and the numbers of grid points371

Mζ = 200 and Nτ = 678. With these values, the numerical scheme is stable and system of372

equations 2.4 is parabolic.373

Figure 2b shows the market prices and the expected value of the SG solution as well as the374
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range expected value plus/minus standard deviation and the solution to the deterministic375

Black Scholes equation with volatility σ = E(Σ(Θ,∆)). A more detailed plot of those graphs376

for the last 55 days of the option is given in figure 2c. One observes that the expected value377

of the SG solution is very close to the data in these days but slightly above the data at earlier378

times. However, the data is always in the range expected value plus/minus standard deviation,379

as one would expect from stochastic theory. A comparison to the deterministic solution shows,

(a) Histogram density estimator and den-
sity of Σ(Θ,∆) fitted to the implied
volatilities by maximum likelihood.

(b) Market values of the option together with the
expected value of the SG solution and the range
expected value plus minus standard deviation.

(c) Detailed look on the last 55 days.

380

that it also lies above the market data for early times. Recall that unlike the deterministic381

solution, the SG solution allows realizations to differ from the expected value within a certain382

range.383

4.2. Comparing Bi-Fidelity solution and high fidelity solution. The Bi-Fidelity solution384

of the Black Scholes equation with uncertain volatility 1.5 following volatility model 4.1 for385

a European Call option is compared to its high fidelity solution. After that, a simulation is386

done to find the mean size and shape of the error in expected value and in variance between387
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the Bi-Fidelity solution and the high fidelity solution. Finally, the computation times for high388

fidelity and Bi-Fidelity model are compared.389

390

The interest rate in the market was supposed to be r = 0 and a maturity of T = 23 days was391

chosen. The strike price was set to strike = 100 and the gPC expansion of the solution was392

truncated after a total polynomial degree of N = 5 as before.393

394

A rather coarse grid with ML
ζ = 50 and NL

τ = 150 was chosen for the low fidelity model.395

This NL
τ is high enough such that the vast majority of all low fidelity computations per-396

formed in the examples explained below was stable. In case of instability, the corresponding397

sample point was removed from the set of low fidelity sample points. The high fidelity solution398

was computed on a fine grid with MH
ζ + 1 = 350 + 1 grid points in ζ direction. The number399

of grid points NH
τ + 1 = 5853 + 1 in τ direction was chosen such that all high resolution400

computations for important volatility models were stable.401

402

The low fidelity sample points represented volatility models Σi(Θ,∆) = σ
(i)
00 + σ

(i)
10 Θ + σ

(i)
01 ∆403

with404

σ
(i)
00 ∈ {0 < 0.05λ ≤ 0.8 |λ ∈ N \ {0}} ,405

σ
(i)
10 ∈

{
0.05λ ≤

√
σ00/2 |λ ∈ N0

}
and(4.3)406

σ
(i)
01 ∈

{
0.05λ ≤

√
12(σ00/2− σ2

10) |λ ∈ N0

}
.407

The coefficients were chosen such that V ar(Σ(Θ,∆)) ≤ σ(i)
00 /2.408

Figures 3a and 3b show the expected value surfaces of the high fidelity and the Bi-Fidelity409

solution for the volatility model Σ(Θ,∆) = 0.5+0.2Θ+0.1
√

12∆. They seem to approximately410

coincide. To study the deviations, the absolute difference in expected values is displayed in

(a) Expected value surface of the high
fidelity solution.

(b) Expected value of the Bi-Fidelity
solution.

411

figures 4a close to the strike price and figure 4b for a wider range of S values. One can412

observe that there is some difference of size 10−3 within the smoothing area, but for S →∞413

the difference of the two solutions seems to increase in absolute value. Figure 4c shows the414

difference for all values of S and t. The maximum absolute value of the absolute difference is415
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16 KATHRIN HELLMUTH, CHRISTIAN KLINGENBERG

less than 0.3 and occurs close to S =∞, where the option values tends to infinity. Therefore,416

a difference of 0.3 in these regions means small deviation. The difference in the smoothing417

area of size 3 · 10−3 is larger compared to the values attained in this region that are close to418

zero. Recall however, that the solution is multiplies by strike when transforming back the419

variables. Hence, an error of size 10−3 at strike 100 means an error of size 10−5 · strike.

(a) close to the strike price (b) for a wider range of S values

(c) for all S values

Figure 4: Absolute difference in expected value of high fidelity and Bi-Fidelity solution.

420

The variances of high and Bi-Fidelity solution are considered in figures 5a and 5b respec-421

tively. The high fidelity variance seems to be a little bit steeper than the Bi-Fidelity variance.422

We examine the absolute difference in variance as represented in figure 6a to lie in the smooth-

(a) Variance of the high fidelity solu-
tion.

(b) Variance of the Bi-Fidelity solu-
tion.

This manuscript is for review purposes only.



COMPUTING BLACK SCHOLES WITH UNCERTAIN VOLATILITY - A BI-FIDELITY APPROACH 17

423

ing area. Figure 6b showing the difference for all S and t values supports this conclusion. The424

error is again of size 10−3 = 10−7 · strike2.

(a) close to the strike price (b) for all S values

Figure 6: Absolute difference in variance of high fidelity and Bi-Fidelity solution.

425

Finally, a simulation of the errors was done to obtain the mean size and shape of the Bi-426

Fidelity error. For this purpose, 300 volatility models of the form Σ(Θ,∆) = σ00+σ10Θ+σ01∆427

were generated randomly by obtaining the coefficients σij as realizations of uniform random428

variables such that σ00 ∈ [0, 0.8], σ10 ∈ [0,
√
σ00/2], σ01 ∈ [0,

√
12(σ00/2− σ2

10].429

The mean absolute difference of the expected value of the Bi-Fidelity solution and the expected430

value of the high fidelity solution is represented in figure 7a close to the strike price and figure431

7b for a larger range of S values. Figure 7c is a plot of the error for all S and t values. The432

smoothing area is not plotted, since it differs for every volatility model. The shape of the433

error is characterized by an oscillation of size 10−3 = 10−5 · strike close to the strike price434

and a steady increase in absolute value for S → ∞. The maximum absolute difference lies435

close to S =∞ and has a size of 10−2 = 10−4 · strike, which is small in relative terms. This436

coincides with the error shape in figures 4a, 4b and 4c and thus seems to be characteristic for437

the considered Bi-Fidelity model.438

The characteristic error in variances derived by the same 300 volatility models is displayed439

in figure 8a. It shows some oscillation close to the strike price of size 10−2 = 10−6 · strike2,440

but vanishes elsewhere, as one can observe in figure 8b.441

442

Comparing computational times443

For demonstration, the above Bi-Fidelity model and the high fidelity model with the same444

number of grid points MH
ζ = 350 and NH

τ = 5853 were calculated in the same 300 randomly445

generated volatility models. Every model Σ(i)(Θ,∆) = σ
(i)
00 + σ

(i)
10 Θ + σ

(i)
01 ∆ belonging to iter-446

ation i ∈ {1, ..., 300} was generated such that it satisfies the same bounds on the coefficients447

σ
(i)
00 ∈ (0, 0.8], σ

(i)
10 ∈ [0,

√
σ00/2] and σ

(i)
01 ∈ [0,

√
12(σ00/2− σ2

10)] as for the low fidelity sample448

points in 4.3. The Σ(i) should thus be ’covered’ by the low fidelity sample points which enables449

a Bi-Fidelity computation. In every calculation the stability of the scheme w.r.t. the chosen450

time step is checked. The computation times for both models are plotted in figure 9.451
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(a) close to the strike price (b) for a wider range of S values

(c) for all S values

Figure 7: Mean absolute difference in expected value of high fidelity and Bi-Fidelity solution.

(a) within the smoothing area (b) for all S values

Figure 8: Mean absolute difference in variance of high fidelity and Bi-Fidelity solution.

The mean computation time for the high fidelity model is 173.99s whereas the Bi-Fidelity452

model achieved a mean computation time of 10.68s per volatility model. Hence, the appli-453

cation of the Bi-Fidelity method accelerated our computations by the factor 16.3 in mean.454

For finer grids, this difference should further increase. However, choosing a finer grid means455

introducing a larger difference in high and low fidelity model, which could introduce errors.456
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Figure 9: Computation times for the high fidelity model and the Bi-Fidelity model evaluated
in the same volatility model.
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5. Summary and Conclusion. The price of a derivative was modelled by the Black Scholes457

equation with uncertain volatility depending on a finite number of random variables. Under458

certain assumptions, the random volatility and the stochastic solution can be represented by459

their generalized Polynomial Chaos (gPC) expansions allowing the application of the stochas-460

tic Galerkin method. The resulting deterministic system of PDEs for the gPC coefficients was461

truncated and solved numerically by a finite difference scheme.462

Numerical examples showed that the expected value of this stochastic model fitted real mar-463

ket data in a similar way as a deterministic model. However, the stochastic solution allows464

deviations from its expected value within a certain range and it can be used for calculations465

of further stochastic quantities as the variance of the solution.466

467

However, computation can become costly for a large number of random variables or a late468

truncation 2 due to the fast increase in the number of equations. Therefore, a machine learn-469

ing technique was presented to reduce the computation cost for computing the solutions for470

different volatility models within the same setting (option type, maturity, interest rate, max-471

imum polynomial degree). The so called Bi-Fidelity approach calculates the costly solution472

on basis of a computationally cheaper solution and some prestored costly solutions for wisely473

selected volatility models.474

For a European Call option, the maximum absolute difference in the expected value of the475

Bi-Fidelity solution to desired solution was experimentally observed to be of size 10−5 ∗strike476

in mean close to the strike price and increase to size 10−4 ∗ strike in mean for S →∞, where477

the expected value also tends to ∞. The maximum difference in variance attained a value of478

size 10−6 ∗ strike2 in mean. Meanwhile, the mean computation time was decreased by the479

factor 16.3.480

481

However, a topic that is still open to further research is the convergence of the truncated482

gPC expansion of the stochastic solution to the true solution as the truncation number goes483

to infinity. However, if convergence is assumed to hold then one could also think of solving the484

deterministic system of PDEs for the gPC coefficients with a different numerical technique and485

applying the Bi-Fidelity approach to this solution. Furthermore, one could think of applying486

the technique used in this paper to the Black Scholes equation with uncertain volatility and487

interest rate, when there are doubts concerning its true value, or to familiar equations like the488

Black Scholes equation for multiple assets or the bond equation.489

2can I write that?
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