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Abstract We present a relaxation system for ideal magnetohydrodynamics (MHD)
that is an extension of the Suliciu relaxation system for the Euler equations of gas
dynamics. From it one can derive approximate Riemann solvers with three or seven
waves, that generalize the HLLC solver for gas dynamics. Under some subcharacte-
ristic conditions, the solvers satisfy discrete entropy inequalities, and preserve posi-
tivity of density and internal energy. The subcharacteristic conditions are nonlinear
constraints on the relaxation parameters relating them to the initial states and the
intermediate states of the approximate Riemann solver itself. The 7-wave version of
the solver is able to resolve exactly all material and Alfven isolated contact discon-
tinuities. Practical considerations and numerical results will be provided in another
paper.

Mathematics Subject Classification (2000) 35F25 · 65M20 · 65M12

1 Introduction

The equations of ideal magnetohydrodynamics (MHD) give a continuum description
of a charged gas interacting with a magnetic field. They may be formulated as conser-
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8 F. Bouchut et al.

vation laws for mass density, energy, momentum and magnetic field strength. If the
state is a function of time t , and only one spatial dimension x , the equations are

ρt + (ρu)x = 0, (1.1)

(ρu)t +
(

ρu2 + p + 1
2
|B⊥|2 − 1

2
B2

x

)

x
= 0, (1.2)

(ρu⊥)t + (ρuu⊥ − Bx B⊥)x = 0, (1.3)

Et +
[(

E + p + 1
2
|B⊥|2 − 1

2
B2

x

)
u − Bx (B⊥ · u⊥)

]

x
= 0, (1.4)

(B⊥)t + (B⊥u − Bx u⊥)x = 0, (1.5)

where ρ is the mass density, p the pressure, and the velocity is split into its longitudinal
and transversal component u and u⊥, as is the magnetic field into Bx and B⊥. Hence
u⊥ and B⊥ are two-dimensional vectors. Since the divergence of the magnetic field is
zero at all times, we may assume that Bx is constant for one-dimensional data. Finally
E is the total energy, E = 1

2ρ(u2 + |u⊥|2) + ρe + 1
2 (B2

x + |B⊥|2), with e denoting
the specific internal energy.

The system is closed by an equation of state connecting p to ρ and e. For an ideal
gas, p = (γ − 1)ρe with γ > 1, but we consider here a more general setting: the
specific physical entropy s = s(ρ, e) must be well-defined and satisfy

de + pd
(

1
ρ

)
= T ds (1.6)

for some temperature T (ρ, e) > 0. Then, to ensure the hyperbolicity of the system,
we assume

p′ ≡
(

∂p
∂ρ

)

s
> 0, (1.7)

where the subscript s means that the partial derivative is taken with s constant. We
shall also make the classical assumption that

− s is a convex function of
(

1
ρ

, e
)

. (1.8)

To ensure the dissipativity of shocks, we need some additional constraints, and the
second law of thermodynamics implies the entropy inequalities

(ρφ(s))t + (ρuφ(s))x ≤ 0 (1.9)

for all smooth, nonincreasing, convex functions φ, the assumption (1.8) ensuring that
ρφ(s) is convex with respect to the conservative variable. For an isentropic gas on the
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Riemann solver for MHD 9

other hand, one would still solve (1.1)–(1.5) with s = cst , except that from the second
law of thermodynamics, the energy equation (1.4) is replaced by an inequality

Et +
[(

E + p + 1
2
|B⊥|2 − 1

2
B2

x

)
u − Bx (B⊥ · u⊥)

]

x
≤ 0, (1.10)

so that E becomes a mathematical entropy for the system.
The eigenvalues of system (1.1)–(1.5) are given by

u, u ±

√√√√√1
2



p′ + |B|2
ρ

−
√(

p′ + |B|2
ρ

)2

− 4p′ B2
x

ρ



, u ± |Bx |√
ρ

,

u ±

√√√√√1
2



p′ + |B|2
ρ

+
√(

p′ + |B|2
ρ

)2

− 4p′ B2
x

ρ



.

(1.11)

The associated waves are called respectively material wave, slow magnetosonic waves,
Alfven waves, and fast magnetosonic waves. Some of these waves will have the same
speed when either Bx or B⊥ vanishes, which means the system is nonstrictly hyper-
bolic. The system has three types of contact discontinuities corresponding to linearly
degenerate eigenvalues: the material contacts associated to the eigenvalue u, the left
Alfven contacts associated to u − |Bx |√

ρ
, and the right Alfven contacts associated to

u + |Bx |√
ρ

. The jump relations associated to these contact discontinuities are as follows.

Across a material contact, the quantities u, u⊥, p+ 1
2 |B⊥|2 − 1

2 B2
x , Bx B⊥ are constant.

Across an Alfven contact, the quantities ρ, u, p, |B⊥|2 are constant, and moreover
for a left Alfven contact we have %B⊥ = sign(Bx )

√
ρ%u⊥, while for a right Alfven

contact %B⊥ = −sign(Bx )
√

ρ%u⊥ (where % denotes the jump).

1.1 Conservative schemes and stability

Let us consider a general system of conservation laws

Ut + F(U )x = 0. (1.12)

The MHD system (1.1)–(1.5) can be written under the form (1.12), with U = (ρ, ρu,

ρu⊥, E, B⊥) and F(U ) = (ρu, ρu2 + p+|B⊥|2/2− B2
x /2, ρuu⊥ − Bx B⊥, (E + p+

|B⊥|2/2 − B2
x /2)u − Bx B⊥ · u⊥, B⊥u − Bx u⊥). The general system (1.12) may be

approximated by the Godunov scheme, which consists of the following steps. Let the
initial data be given as constants U n

i over intervals (xi− 1
2
, xi+ 1

2
) partitioning R, and

evolve this by (1.12) for a time interval %t small enough that the waves emerging from
the cell boundaries do not interact. Then take U n+1

i as the averages of the obtained
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10 F. Bouchut et al.

solution over the cells, and restart the process. One iteration may be written as

U n+1
i − U n

i + %t
hi

[Fc(U n
i , U n

i+1) − Fc(U n
i−1, U n

i )] = 0, hi = xi+ 1
2

− xi− 1
2
,

(1.13)

where Fc(U n
i , U n

i+1) is the numerical flux, given via the solution to the so called
Riemann problem, that is the interaction of initially two constant states U n

i , U n
i+1

separated by a single jump. More generally, if we take some numerical flux Fc such
that Fc(U, U ) = F(U ), (1.13) is consistent to first-order accuracy, and we call it a
conservative scheme.

If the flux F has an entropy flux pair (η, G) (meaning that η is a smooth convex
function and G is such that G ′(U ) = η′(U )F ′(U )), we also prescribe an entropy
inequality

η(U )t + G(U )x ≤ 0. (1.14)

In our case we have a family of entropy inequalities (1.9) for all convex nonincreasing
φ. In this situation it is desirable to look for conservative schemes that satisfy a discrete
entropy inequality

η(U n+1
i ) − η(U n

i ) + %t
hi

[Gc(U n
i , U n

i+1) − Gc(U n
i−1, U n

i )] ≤ 0, (1.15)

with Gc(U, U ) = G(U ). Such inequalities in fact play a central role when rigorous
convergence analysis is possible, for example for scalar equations and two-by-two
systems. In any case, such an inequality provides an a priori bound, and ensures that
the computed shocks are physically relevant.

A problem when solving gas dynamics problems numerically is that unphysical
states may occur, more specifically density or internal energy may become negative.
In addition to these irrelevant values, this often ruins computer simulations when it
occurs. It is therefore desirable to have schemes such that if ρn > 0 and en > 0, then
ρn+1 > 0 and en+1 > 0. This means that we want

ρ > 0 and ρe = E − 1
2
ρ(u2 + |u⊥|2) − 1

2
(B2

x + |B⊥|2) > 0 (1.16)

at all times also for the numerical computation. However, it is well-known that positi-
vity of density and entropy inequalities (1.15) for η = ρφ(s) for all φ imply positivity
of internal energy.

Since the Riemann problem is often very complicated to solve, and generally
contains a lot of detail that is averaged over before the next timestep, simpler ways
of determining the numerical flux Fc are often preferred. The main method to do that
is to replace the exact Riemann solution with an approximate one, by defining a self-
similar function R( x

t , Ul , Ur ), called an approximate Riemann solver. This provides
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Riemann solver for MHD 11

a consistent conservative numerical flux if R( x
t , U, U ) = U , and

F(Ul) −
0∫

−∞
(R(ξ, Ul , Ur ) − Ul) dξ = F(Ur ) +

∞∫

0

(R(ξ, Ul , Ur ) − Ur ) dξ,

(1.17)

with the left or right-hand side defining the numerical flux Fc(Ul , Ur ). It yields an
entropy inequality (1.15) for an entropy pair (η, G) if it is entropy consistent, meaning
that

G(Ul ) −
0∫

−∞
(η(R(ξ, Ul , Ur )) − η(Ul )) dξ ≥ G(Ur ) +

∞∫

0

(η(R(ξ, Ul , Ur )) − η(Ur )) dξ,

(1.18)

and if a suitable CFL condition is satisfied, see [4]. For the Euler and MHD equations,
if R( x

t , Ul , Ur ) has positive density and internal energy, then so will U n+1
i .

The simplest approximate Riemann solver is the HLL solver [17], which consists
of two discontinuities separating a constant intermediate state. Conservativity (1.17)
implies

RHLL(ξ, Ul , Ur ) =






Ul , ξ < σ1,

σ2Ur −σ1Ul−F(Ur )+F(Ul )
σ2−σ1

, σ1 < ξ < σ2,

Ur , σ2 < ξ,

(1.19)

where the signal velocities σ1 and σ2 must be chosen properly.
Conditions of stability, like positivity or entropy inequalities, are usually much more

subtle to prove than consistency and conservativity. For the HLL solver, finding good
signal velocities σ1 and σ2 is crucial for stability. They must be chosen larger than the
characteristic speeds over a certain subset of state space, typically a subset containing
the exact solution. However, the sizes of these signal speeds control the amount of
artificial diffusion applied by the scheme. If the signal speeds are too large, the scheme
will not have optimal accuracy. The behaviour of more complex solvers is governed by
similar conditions. The main weakness of the HLL solver is that it is too dissipative,
because it approximates the solution with only two waves, instead of seven in the true
solver for the MHD system. It is therefore important to find approximate Riemann
solvers with more waves, that can in particular well resolve the contact discontinuities,
which are the most diffused waves.

1.2 The Suliciu relaxation scheme

For the gas dynamics system (i.e., (1.1)–(1.5) with B ≡ 0 and u⊥ ≡ 0), the Suliciu
relaxation system is obtained as follows. We observe first that for smooth solutions,
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12 F. Bouchut et al.

one has

(ρp)t + (ρup)x + ρ2 p′ux = 0. (1.20)

Then, the idea of relaxation is to replace the pressure p = p(ρ, e) by an independent
variable π , that will be an approximation to it, and solve for π an additional equation
which is preferably an approximation to (1.20). This motivates the Suliciu relaxation
system

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + π)x = 0,

Et + [(E + π)u]x = 0,

(ρπ)t + (ρπu)x + c2ux = 0,

(1.21)

where E = 1
2ρu2 + ρe, and c is a constant replacing the Lagrangian sound speed

ρ
√

p′. We say that the system is at equilibrium whenever π = p(ρ, e). In order for π

to be an approximation to p(ρ, e), one needs to include a procedure of relaxation to
equilibrium. A classical way of doing this is to put a right-hand side ρ(p − π)/ε in
the right-hand side of the last equation of (1.21). In the isentropic case this relaxation
approximation has been shown to converge as ε → 0 in [25].

In the time discrete case, which is our interest here, the relaxation procedure is per-
formed at each timestep, this is the so called transport-projection method introduced in
[5]. It works as follows. We start from initial data at equilibrium, that is to say knowing
values of ρ, u, E we set π = p(ρ, e) to complete the data. Then we solve (1.21) over a
timestep, and in the solution at the next time level we keep only the conserved variables
ρ, ρu, E . In this way the timestep %t takes the role of the relaxation parameter ε, as
can be seen from a Chapman-Enskog analysis. The algorithm can also be interpreted
within the Godunov approach. Indeed, starting from piecewise constant data and ave-
raging the obtained solution over the cell, one sees that the method is equivalent to an
approximate Riemann solver R(x/t, Ul , Ur ) obtained by taking only the components
ρ, ρu, E of the solution to the Riemann problem associated to (1.21) when starting
from initial data at equilibrium (i.e., we complete Ul , Ur by setting πl = p(ρl , el),
πr = p(ρr , er )), see [4]. Since the resolution of (1.21) is exact, the numerical flux
Fc(Ul , Ur ) associated to the method is then given by the first components of the flux
of (1.21) evaluated at the interface x/t = 0.

The system (1.21) has characteristic speeds u − c
ρ , u and u + c

ρ with the interme-
diate speed having multiplicity 2. All of the characteristic fields are linearly degenerate,
hence the Riemann problem is easy to solve. Note that the constant c in (1.21) repre-
sents the signal speed of the corresponding approximate Riemann solver. Hence it is
not surprising that it plays a crucial role in the convergence behaviour of relaxation
systems as well as for the approximate Riemann solver. In the context of relaxation
systems, a lower bound on c that is sufficient for stability is called a subcharacteristic
condition.
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Riemann solver for MHD 13

In [8] a general framework for relaxation of conservation laws was presented. One
may consider relaxation systems of the form

ψt + A(ψ)x = Q(ψ)

ε
, (1.22)

with an equilibrium mapping ψ = M(U ), and a linear operator L such that L M(U ) =
U . One requires also that L Q(ψ) = 0, and that Q(ψ) = 0 if and only if ψ = M(U ) for
some U . The fluxes are connected by the relation L A(M(U )) = F(U ). One can show
that such systems define an approximate Riemann solver, and hence a conservative
scheme, by the same procedure as described for the Suliciu solver, see [3] or [4].
If the resulting approximate Riemann solver is a simple solver, which means that
it only consists of constant states separated by discontinuities, the numerical flux is
L A(ψ) evaluated at the cell interface (note that A(ψ) is always continuous here by
the Rankine–Hugoniot condition).

We can also formalize the entropy stability of (1.22) with respect to an entropy
pair (η, G) for F . Let A have an entropy pair (H,G), such that H(M(U )) = η(U ),
G(M(U )) = G(U ), and the minimization principle H(M(Lψ)) ≤ H(ψ) holds for
any ψ . Then we say that (1.22) has an entropy extension relative to η, and if so is
the case, the deduced approximate Riemann solver will be entropy consistent with
respect to η. The relaxation system (1.21) has an entropy extension in the isentropic
case under the subcharacteristic condition ρ2 p′(ρ) ≤ c2. We explain below how this
can be used to create entropy satisfying schemes for full gas dynamics.

1.3 Some previous results on approximate Riemann solvers

In this section we summarize some results on approximate Riemann solvers for the
Euler equations and for ideal MHD.

First, for the HLL solver, methods to choose the signal speeds have been given for
example in [10,14,24]. Entropy inequalities for the HLL solver may be found in [10],
or in [18] where a relaxation interpretation is employed.

It was remarked already in [17] that the HLL solver is very diffusive on contact
waves, especially for nearly stationary contact discontinuities. To improve this, they
suggested adding a third wave inside the approximate Riemann fan. This was carried
out in [23] by assigning a constant value u∗ to u across the whole Riemann fan, and
let u∗ be the speed of the middle wave, defining the HLLC approximate Riemann
solver. The choice of signal velocities for HLLC is addressed in [1]. The speeds of
[14] for HLL ensure positivity and sharpness at shocks also for HLLC, but they may
underestimate shock speeds for shocks emerging from a Riemann problem. In [13] it
was shown that a linearized solver can not be positive, but that for HLLC it is enough

that Cl < u∗ < Cr , Cl < ul −
√

γ−1
2γ

√
γ pl
ρl

, and Cr > ur +
√

γ−1
2γ

√
γ pr
ρr

for an ideal
gas. The last two conditions were also given in [14] for HLL.

The HLLC solver can indeed be interpreted as the approximate Riemann solver de-
duced from the relaxation system (1.21), but with a nonconstant c solving ct +ucx = 0.
This gives two independent signal speeds ul − cl

ρl
and ur + cr

ρr
. This is presented in
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14 F. Bouchut et al.

more detail in [3,4], where an entropy inequality is proved to hold under the following
subcharacteristic condition. Let the left and right intermediate values of ρ be given as
ρ∗

l and ρ∗
r , and assume that they are positive. Then entropy consistency is implied by

ρ2 p′(ρ, sl) ≤ c2
l , for ρ ∈ [ρl , ρ

∗
l ],

ρ2 p′(ρ, sr ) ≤ c2
r , for ρ ∈ [ρr , ρ

∗
r ].

(1.23)

Note that the condition does not refer to the exact solution, but only to the approximate
one. From this one can derive explicit estimates on the signal speeds such that the
entropy inequality holds and positivity of ρ and e is maintained, see [4].

In [12] a flux vector splitting method is given that is entropy consistent under some
unspecified CFL-condition for Lagrangian gas dynamics. This method can indeed be
identified with the Suliciu relaxation solver. An extension to MHD is given in [2],
with a proof of asymptotic entropy inequalities when the sound speeds tend to infinity.
Both a 7-wave and a 3-wave solver are suggested for MHD in [15] with a proof of
entropy stability for large enough sound speeds. Moreover, the 7-wave solver exactly
solves isolated Alfven contacts.

Generalized HLLC solvers have been proposed for MHD in [16,19]. They present
tests and both observe increased resolution at material contact discontinuities compa-
red to the HLL-solver. In addition, [16] uses a modified solver whenever Bx = 0 such
that so called tangential discontinuities are exactly resolved also, but u⊥ and B are
otherwise taken to be constant across the approximate Riemann fan. An Einfeldt type
speed is used and shown to lead to exact resolution of isolated fast shocks. This idea
was taken further with the 5-wave solver of [20], which can exactly resolve isolated
Alfven contacts. A positivity condition is given there, but otherwise no stability results
are known.

Concerning other approaches to derive numerical fluxes, we mention that a kinetic
flux vector splitting scheme for MHD was derived and tested in [22,26]. A Roe-solver
was derived and tested in [6] for ideal gases with γ = 2, and this was extended to
general values of γ in [7].

2 The relaxation system

In order to get a relaxation system for MHD that corresponds to (1.21), we first observe
that for a smooth solution to (1.1)–(1.5), we have

pt + upx + ρp′ux = 0, (2.1)
( |B⊥|2

2

)

t
+ u

( |B⊥|2
2

)

x
+ |B⊥|2ux − Bx B⊥ · (u⊥)x = 0, (2.2)

and

(−Bx B⊥)t + u(−Bx B⊥)x − Bx B⊥ux + B2
x (u⊥)x = 0. (2.3)
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Riemann solver for MHD 15

Replacing p + 1
2 |B⊥|2 − 1

2 B2
x by an independent variable π , and −Bx B⊥ by an

independent variable π⊥, we obtain the following relaxation system,

ρt + (ρu)x = 0, (2.4)

(ρu)t + (ρu2 + π)x = 0, (2.5)

(ρu⊥)t + (ρuu⊥ + π⊥)x = 0, (2.6)

Et + [(E + π)u + π⊥ · u⊥]x = 0, (2.7)

(B⊥)t + (B⊥u − Bx u⊥)x = 0, (2.8)

with still E = 1
2ρ(u2+|u⊥|2)+ρe+ 1

2 (B2
x +|B⊥|2), and with the relaxation pressures

π and π⊥ evolved by

(ρπ)t + (ρπu)x + (|b|2 + c2
b)ux − cab · (u⊥)x = 0, (2.9)

(ρπ⊥)t + (ρπ⊥u)x − cab ux + c2
a(u⊥)x = 0. (2.10)

The parameters ca ≥ 0, cb ≥ 0, and b ∈ R2 play the role of approximations of
√

ρ|Bx |,
ρ
√

p′ and sign(Bx )
√

ρB⊥ respectively. Indeed, ca, cb, b are not taken constant, but
are evolved with

(ca)t + u(ca)x = 0, (cb)t + u(cb)x = 0, bt + ubx = 0. (2.11)

The equilibrium is defined by

π = p + 1
2
|B⊥|2 − 1

2
B2

x and π⊥ = −Bx B⊥. (2.12)

As in the gas dynamics case, the approximate Riemann solver associated to the
relaxation system is obtained as follows. We start with left and right states Ul , Ur ,
and we complete them with left and right values of π and π⊥ at equilibrium, i.e.,
πl/r = (p + 1

2 |B⊥|2 − 1
2 B2

x )l/r and (π⊥)l/r = −(Bx B⊥)l/r . We also have to pro-
vide values for (ca)l/r , (cb)l/r , bl/r . Then we solve the Riemann problem for (2.4)–
(2.11), and in the solution (that depend only on x/t) we retain only the components
ρ, ρu, ρu⊥, E , B⊥. This gives the approximate Riemann solver. By construction this
automatically gives a consistent conservative scheme, and the numerical flux is given
by Fc(Ul , Ur ) = (ρu, ρu2 + π, ρuu⊥ + π⊥, (E + π)u + π⊥ · u⊥, B⊥u − Bx u⊥)

evaluated at x/t = 0. Of course, this is true provided that the solution to the Riemann
problem for (2.4)–(2.11) exists and takes physically relevant values. In order to get
this property, and also entropy inequalities, we have to make a good choice of the
parameters (ca)l/r , (cb)l/r , bl/r .

2.1 Treating nonsolenoidal magnetic fields

For multidimensional applications, it can be useful to allow Bx to vary, and a convenient
technique to facilitate this consists of augmenting the system with a term depending
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16 F. Bouchut et al.

on ∇ · B, an idea introduced in [21]. Here we propose a different system than in [21],
which consists in letting ∇ · B be transported by the flow, by adding the term u∇ · B
to the induction equation. Hence in one dimension we get

(B⊥)t + (B⊥u − Bx u⊥)x + u⊥(Bx )x = 0, (2.13)

(Bx )t + u(Bx )x = 0. (2.14)

Equation (2.13) simply replaces (2.8) in the relaxation system, while (2.14) is added.
It allows for left and right values of Bx . A related approach can be found in [11], and
this would also easily fit into (2.4)–(2.10). The source terms suggested there do not
violate conservation, and could be treated by an operator splitting. There are several
other approaches to this issue, but they are not directly connected to the design of
one-dimensional Riemann solvers.

2.2 Exact resolution of contact discontinuities

The approximate Riemann solver derived from the relaxation system (2.4)–(2.11) has
the property of being able to solve exactly isolated contact discontinuities of the MHD
system.

Indeed, consider data Ul , Ur corresponding to an isolated contact with speed λ.
Then the exact resolution property is true as soon as the solution to the MHD Riemann
problem (i.e., U (x/t, Ul , Ur ) = Ul if x/t < λ, U (x/t, Ul , Ur ) = Ur if x/t > λ)
when completed with π , π⊥ at equilibrium, is a solution to the relaxation system
(2.4)–(2.10). Since we are at equilibrium and U (x/t) is a solution to the MHD system,
Eqs. (2.4)–(2.8) hold, and it only remains to check (2.9)–(2.10). Consider first the case
of a material contact. Then the jump relations ensure that u, u⊥, π , π⊥ are constant,
and since λ = u, the Eqs. (2.9)–(2.10) hold obviously. Consider then the case of
a left Alfven discontinuity, λ = u − |Bx |/√ρ with the jump relations written in
the introduction. Then by a simple computation, (2.9)–(2.10) hold as soon as cal =√

ρ|Bx |, and bl colinear to (B⊥l + B⊥r )/2 (no condition is needed on car and br , nor
on cbl , cbr ). For a right Alfven discontinuity λ = u + |Bx |/√ρ, we get the conditions
car = √

ρ|Bx |, and br colinear to (B⊥l + B⊥r )/2.
Therefore, one would like to derive choices of the parameters ca , cb, b on the left

and on the right, in such a way that the previous conditions are satisfied whenever the
data are those of an isolated Alfven contact.

2.3 Chapman-Enskog analysis

The Chapman-Enskog expansion provides a stability condition for a relaxation system
when the solution is sufficiently smooth. Consider our MHD relaxation system (2.4)–
(2.11) completed with BGK relaxation terms, i.e., (2.9)–(2.10) is replaced by

(ρπ)t + (ρπu)x + (|b|2 + c2
b)ux − cab · (u⊥)x = ρ

p + |B⊥|2/2 − B2
x /2 − π

ε
,

(2.15)
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Riemann solver for MHD 17

(ρπ⊥)t + (ρπ⊥u)x − cab ux + c2
a(u⊥)x = ρ

−Bx B⊥ − π⊥
ε

. (2.16)

We perform an expansion in ε, keeping only the first term, proportional to ε. From
(2.15)–(2.16) we deduce that π = p + 1

2 |B⊥|2 − 1
2 B2

x + O(ε) and π⊥ = −Bx B⊥ +
O(ε). Inserting this in (2.4)–(2.8), we get the MHD system (1.1)–(1.5), up to terms in
ε. In order to get second-order expansions of π and π⊥, we write down the values of π

and π⊥ obtained from the right-hand side of (2.15)–(2.16), and express the left-hand
side with the first-order expansion of π and π⊥. This gives

π = p+ |B⊥|2
2

− B2
x

2
− ε

ρ

[(
ρ

(
p+ |B⊥|2

2
− B2

x

2

))

t
+

(
ρu

(
p + |B⊥|2

2
− B2

x

2

))

x

+ (|b|2 + c2
b)ux − cab · (u⊥)x

]
+ O(ε2), (2.17)

π⊥ = −Bx B⊥− ε

ρ

[
(ρ(−Bx B⊥))t +(ρ(−Bx B⊥u))x −cabux + c2

a(u⊥)x

]
+ O(ε2).

But since the MHD system (1.1)–(1.5) is resolved up to terms in ε, the identities
(2.1)–(2.3) hold true up to terms in ε, and using this in (2.17), we get

π = p + |B⊥|2
2

− B2
x

2

− ε

ρ

[
(|b|2 + c2

b − ρ(ρp′ + |B⊥|2))ux + (ρBx B⊥ − cab) · (u⊥)x

]
+ O(ε2),

π⊥ = −Bx B⊥ − ε

ρ

[
(ρBx B⊥ − cab)ux + (c2

a − ρB2
x )(u⊥)x

]
+ O(ε2). (2.18)

Putting this in (2.4)–(2.8) we obtain

ρt + (ρu)x = 0,

(ρu)t +
(

ρu2 + p + |B⊥|2
2

− B2
x

2

)

x
= ε

[(
|b|2 + c2

b

ρ
− (ρp′ + |B⊥|2)

)

ux

+
(

Bx B⊥ − cab
ρ

)
· (u⊥)x

]

x

+ O(ε2),

(ρu⊥)t +(ρuu⊥−Bx B⊥)x =ε

[(
Bx B⊥− cab

ρ

)
ux +(

c2
a

ρ
− B2

x )(u⊥)x

]

x
+O(ε2),

Et +
[(

E + p + |B⊥|2
2

− B2
x

2

)
u − Bx B⊥ · u⊥

]

x

= ε

[

u

(
|b|2 + c2

b

ρ
− (ρp′ + |B⊥|2)

)

ux + u
(

Bx B⊥ − cab
ρ

)
· (u⊥)x
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18 F. Bouchut et al.

+ u⊥ ·
(

Bx B⊥ − cab
ρ

)
ux + u⊥ ·

(
c2

a

ρ
− B2

x

)
(u⊥)x

]

x

+ O(ε2),

(B⊥)t + (B⊥u − Bx u⊥)x = 0. (2.19)

Now, up to ε2 we have a system of the form

Ut + F(U )x = ε(D(U )Ux )x . (2.20)

The entropy is then evolved according to

η(U )t + G(U )x − ε[η′(U )D(U )Ux ]x = −εD(U )tη′′(U ) · Ux · Ux . (2.21)

A natural stability condition is to ensure entropy dissipation by enforcing D(U )tη′′(U )

to be symmetric nonnegative. Computing the matrix D(U ) from (2.19) one can check
that the symmetry holds for all entropies η(U ) = ρφ(s) (φ convex nonincreasing),
while nonnegativity means that

c2
a

ρ
− B2

x ≥ 0,
|b|2 + c2

b

ρ
− (ρp′ + |B⊥|2) ≥ 0,

∣∣∣∣Bx B⊥ − cab
ρ

∣∣∣∣
2

≤
(

|b|2 + c2
b

ρ
− (ρp′ + |B⊥|2)

) (
c2

a

ρ
− B2

x

)
.

(2.22)

Developing the last inequality and factorizing it differently, we can rewrite it to get
finally the stability conditions

1
ρ

− B2
x

c2
a

≥ 0, c2
b − ρ2 p′ ≥ 0,

∣∣∣∣B⊥ − Bx b
ca

∣∣∣∣
2

≤
(

c2
b − ρ2 p′

) (
1
ρ

− B2
x

c2
a

)
.

(2.23)

We observe that the reference values ca = √
ρ|Bx |, cb = ρ

√
p′, b = sign(Bx )

√
ρB⊥

give equalities in (2.23). Indeed, for these optimal values, the dissipation matrix D(U )

vanishes. However, the above analysis is valid only for smooth solutions, and the
inequalities (2.23) involve only a single state U . What we are going to do in the next
sections is to analyze the entropy inequalities for the Riemann problem. Then we shall
derive a discrete version of (2.23), involving Ul , Ur and the intermediate values of the
Riemann solver.

2.4 Relations with other solvers

The approximate Riemann solver obtained with our relaxation approach has a priori
nothing to do with other proposed MHD solvers, like those of [2,15,16,19,20].
However, a few links exist.
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Riemann solver for MHD 19

At first, it is easy to see that if we take ca , cb, b constant, then writing the relaxation
system in Lagrange coordinates gives a linear system, leading to a Lagrange numerical
flux of flux vector splitting type. Thus it is somehow related to [2].

The main difference between what we do here and the solvers of [2,15] is that
for our 7-wave solver, the entropy inequality is here obtained for consistent values
of the relaxation speeds ca , cb, b (instead of “sufficiently large” values). This means
that for data Ul , Ur being sufficiently close to a reference state U , the speeds of the
solver tend to the true eigenvalues of the system (evaluated at U ), and the jumps in the
intermediate states tend to have the direction of the true eigenvectors. This accuracy
property is related to the fact that the viscosity in the Chapman-Enskog expansion
(2.20) vanishes identically for these consistent values of ca , cb, b.

Finally, one can check that the approximate Riemann solver of [20] can be inter-
preted as the solution to a (partial) relaxation system, where only the longitudinal
pressure π is relaxed while the orthogonal pressure π⊥ is kept to equilibrium,

ρt + (ρu)x = 0, (2.24)

(ρu)t + (ρu2 + π)x = 0, (2.25)

(ρu⊥)t + (ρuu⊥ − Bx B⊥)x = 0, (2.26)

Et + [(E + π)u − Bx B⊥ · u⊥]x = 0, (2.27)

(B⊥)t + (B⊥u − Bx u⊥)x = 0, (2.28)

with still E = 1
2ρ(u2 +|u⊥|2)+ρe+ 1

2 (B2
x +|B⊥|2), and with the relaxation pressure

π evolved by

(ρπ)t + (ρπu)x + (|b|2 + c2
b)ux − cab · (u⊥)x = 0. (2.29)

The equilibrium is still defined by

π = p + 1
2
|B⊥|2 − 1

2
B2

x . (2.30)

However, a Chapman-Enskog expansion from (2.24)–(2.29) gives instability, unfor-
tunately.

2.5 The approximate Riemann solver

In order to get the approximate Riemann solver, we have to solve the Riemann problem
for (2.4)–(2.11). This system is a quasilinear system of dimension 14. We shall not
give the details of the computation, but one can check that its eigenvalues are u with
multiplicity 8, u ± ca/ρ, and u + X/ρ where X is a root of the polynomial

P(X) = X4 − (|b|2 + c2
b + c2

a)X2 + c2
ac2

b. (2.31)

Since P(ca) ≤ 0 (and also P(cb) ≤ 0), there are two real roots with respect to X2.
They are both nonnegative since their sum |b|2 + c2

b + c2
a and their product c2

ac2
b are
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20 F. Bouchut et al.

both nonnegative, thus P has two nonnegative and two nonpositive roots (which are
opposite). Now, define 0 ≤ cs ≤ c f to be the two nonnegative roots of P , i.e.,

c2
s + c2

f = |b|2 + c2
b + c2

a, c2
s c2

f = c2
ac2

b. (2.32)

Then since P(ca) ≤ 0 and P(cb) ≤ 0, we have

cs ≤ ca ≤ c f , cs ≤ cb ≤ c f . (2.33)

Notice that if b = 0 we get cs = min(ca, cb), c f = max(ca, cb). The eigenvalues of
the relaxation system are finally

u, u ± cs

ρ
, u ± ca

ρ
, u ± c f

ρ
, (2.34)

the central one u having multiplicity 8. For further reference we notice the identity

c2
a |b|2 = (c2

f − c2
a)(c2

a − c2
s ). (2.35)

We notice this very nice property of the relaxation system: when taking for ca , cb, b
their reference values (ca = √

ρ|Bx |, cb = ρ
√

p′, b = sign(Bx )
√

ρB⊥), the eigenva-
lues (2.34) of the relaxation system reduce to the ones of the MHD system (1.11). One
can check the hyperbolicity of the relaxation system, and also that all the eigenvalues
(2.34) are linearly degenerate. Thus one needs not specify the sense of the noncon-
servative products in (2.9), (2.10), (2.11), and the solution to the Riemann problem
is made of constant states separated by discontinuities, one for each eigenvalue. This
solution is characterized by the relations at each discontinuity, saying that 14 − m
independent weak Riemann invariants attached to the eigenvalue do not jump (m
being the multiplicity). However there can be a collapse between the eigenvalues if
either b = 0, ca = 0 or cb = 0. This leads to several formulas for the solution to the
Riemann problem according these limit cases. We have to mention that since cs and
c f are functions of b, ca and cb which are advected according to (2.11), cs and c f are
also advected, (cs)t + u(cs)x = 0, (c f )t + u(c f )x = 0. Thus we have left and right
values for all these parameters, namely csl , cal , cbl , c f l , bl and csr , car , cbr , c f r , br .

2.6 The 3-wave solver

A simple choice we can make for the parameters is to take b = 0 and cs = ca =
cb = c f = c, which leads to only two parameters cl , cr . Then the eigenvalues of the
relaxation system are u −c/ρ, u, u +c/ρ, and it gives an approximate Riemann solver
with three waves. This can be understood as a generalization of the HLLC solver for gas
dynamics, except that here there remains quite a lot of diffusion. Indeed, the stability
condition (2.23) from the Chapman-Enskog analysis gives here that c must be greater
than the fast speed of the MHD system, and thus the diffusion matrix D(U ) is not
small. Also, the solver cannot exactly solve isolated Alfven contact waves, because the
stability condition prevents c to be taken

√
ρ|Bx | in this case (see Sect. 2.2). Indeed,
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Riemann solver for MHD 21

only the fast waves are resolved with good accuracy, while the Alfven and slow waves
are diffused.

For the 3-wave solver, the left and right waves have multiplicity 3. There are eight
strong Riemann invariants associated to the central wave (i.e., quantities that lie in the
kernel of ∂t + u∂x ), which are ca , cb, b, and

1
ρ

+ π

c2 ,
B⊥
ρ

+ Bx

c2 π⊥, e + |B|2
2ρ

− π2

2c2 − |π⊥|2
2c2 . (2.36)

These quantities are thus weak Riemann invariants for the left and right waves. They
must be completed with three weak Riemann invariants, that are found to be π + cu,
π⊥ + cu⊥ for the left wave, and π − cu, π⊥ − cu⊥ for the right wave. For the central
wave, six weak Riemann invariants are u, u⊥, π , π⊥. We deduce that the solution has
two intermediate states denoted l∗ and r∗ separated by speeds σ1 < σ2 < σ3,

σ1 = ul − cl

ρl
, σ2 = u∗

l = u∗
r ≡ u∗, σ3 = ur + cr

ρr
. (2.37)

The values of ca , cb, b are the left values for the l∗ state, and the right values for
the r∗ state. The intermediate values for ρ, B⊥, e are deduced from the fact that
the quantities in (2.36) do not jump through the left and right waves. It remains to
determine the values u∗, u∗

⊥, π∗, π∗
⊥ (which are common for the l∗ and r∗ states).

They are determined by the relations

(π + cu)∗l = (π + cu)l , (π − cu)∗r = (π − cu)r ,

(π⊥ + cu⊥)∗l = (π⊥ + cu⊥)l , (π⊥ − cu⊥)∗r = (π⊥ − cu⊥)r .
(2.38)

Hence we get the intermediate values

u∗ = clul + cr ur + πl − πr

cl + cr
,

π∗ = crπl + clπr − clcr (ur − ul)

cl + cr
, (2.39)

u∗
⊥ = clul

⊥ + cr ur
⊥ + π l

⊥ − πr
⊥

cl + cr
,

π∗
⊥ = crπ

l
⊥ + clπ

r
⊥ − clcr (ur

⊥ − ul
⊥)

cl + cr
. (2.40)

Notice the relations σ2 − σ1 = cl/ρ
∗
l , σ3 − σ2 = cr/ρ

∗
r , which show that to have

the right ordering σ1 < σ2 < σ3 is equivalent to having positivity of the intermediate
densities ρ∗

l , ρ∗
r . We remark that the characteristic speeds and the intermediate values

of ρ, u and π are formally the same as for the case of Euler equations (the equilibria
of course differ, since πl/r and (π⊥)l/r are initialized according to (2.12)). Notice also
the symmetry between u, π on one hand, and u⊥, π⊥ on the other hand.
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2.7 The 7-wave solver

We now consider the general case with seven waves. Thus we assume that b -= 0 and
ca, cb > 0. Still, six weak Riemann invariants attached to the central wave are u, u⊥,
π , π⊥, while eight strong Riemann invariants (i.e., quantities that lie in the kernel of
∂t + u∂x ) are ca , cb, b, and

1
ρ

+ 1

c2
b

(
π + b

ca
· π⊥

)
,

B⊥
ρ

+ Bx

c2
a

π⊥ + 1

c2
b

(
π + b

ca
· π⊥

)
b
ca

Bx ,

e + |B|2
2ρ

− 1

2c2
b

(
π + b

ca
· π⊥

)2

− |π⊥|2
2c2

a
.

(2.41)

These are consequently weak Riemann invariants for all the noncentral waves, and
for each noncentral wave one has to complete them with five more weak Riemann
invariants, that are obtained from the following list of six W j by eliminating the one
attached to the wave considered:

Ws = π + csu + ca

c2
a − c2

s
b · (π⊥ + csu⊥),

W−s = π − csu + ca

c2
a − c2

s
b · (π⊥ − csu⊥),

W f = π + c f u − ca

c2
f − c2

a
b · (π⊥ + c f u⊥),

W− f = π − c f u − ca

c2
f − c2

a
b · (π⊥ − c f u⊥),

Wa = π⊥ + cau⊥ − (π⊥ + cau⊥) · b
b

|b|2 ,

W−a = π⊥ − cau⊥ − (π⊥ − cau⊥) · b
b

|b|2 .

(2.42)

Note that Wa and W−a are two-dimensional vectors, but each one represents only one
independent scalar function since they are orthogonal to b (their components are not
independent). It is useful to write the inverse relations from (2.42),

π = c2
a − c2

s

2(c2
f − c2

s )
(Ws + W−s) +

c2
f − c2

a

2(c2
f − c2

s )
(W f + W− f ),

u = c2
a − c2

s

2cs(c2
f − c2

s )
(Ws − W−s) +

c2
f − c2

a

2c f (c2
f − c2

s )
(W f − W− f ), (2.43)

π⊥ = 1
2
(Wa + W−a) +

(c2
f − c2

a)(c2
a − c2

s )

2ca(c2
f − c2

s )
(Ws + W−s − W f − W− f )

b
|b|2 ,
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u⊥ = 1
2ca

(Wa − W−a) +
(c2

f − c2
a)(c2

a − c2
s )

2ca(c2
f − c2

s )

(
Ws − W−s

cs
− W f − W− f

c f

)
b

|b|2 .

In order to find the intermediate states, we can argue as follows. First, the values of ca ,
cb, b are taken left or right respectively on the left and on the right of the central wave.
Next, observe that given the intermediate values of u, u⊥, π , π⊥, the intermediate
values of ρ, B⊥, e are obtained by writing that the quantities (2.41) only jump through
the central wave. Thus we only need to find the intermediate values of u, u⊥, π ,
π⊥. They are determined with the identities (2.42) or (2.43), knowing that for each
noncentral j−wave, only W j jumps; together with the fact that u, u⊥, π , π⊥ do not
jump through the central wave, and thus have common values u∗, u∗

⊥, π∗, π∗
⊥ on each

side. More explicitly, two methods are possible for this resolution.
The first method to solve it, is to write the relations

(W−s)
r∗ = (W−s)

r , (W− f )
r∗ = (W− f )

r , (W−a)r∗ = (W−a)r ,

(Ws)
l∗ = (Ws)

l , (W f )
l∗ = (W f )

l , (Wa)l∗ = (Wa)l ,
(2.44)

where (W−s)
r∗ represents W−s evaluated to the right of the middle wave, etc. This

gives six linear equations in the six unknowns u∗, u∗
⊥, π∗, π∗

⊥. Once the linear system
(2.44) is solved, all the values of W j at l∗ and r∗ are deduced from (2.42), and the
values of u, u⊥, π , π⊥ follow from (2.43).

The second method is to define the main jumps as

%W−s = (W−s)
l∗ − (W−s)

l , %W− f = (W− f )
l∗ − (W− f )

l ,

%W−a = (W−a)l∗ − (W−a)l , %Ws = (Ws)
r∗ − (Ws)

r , (2.45)

%W f = (W f )
r∗ − (W f )

r , %Wa = (Wa)r∗ − (Wa)r .

Then from (2.43) and taking into account (2.44), we can express the values of u, u⊥, π ,
π⊥ on the states l∗ and r∗, linearly in terms of the %W j . Writing the equality between
the l∗ and r∗ values, we get a system of six linear equations in the six unknowns %W j ,

πl +
c2

f l − c2
al

2(c2
f l − c2

sl)
%W− f + c2

al − c2
sl

2(c2
f l − c2

sl)
%W−s

= πr +
c2

f r − c2
ar

2(c2
f r − c2

sr )
%W f + c2

ar − c2
sr

2(c2
f r − c2

sr )
%Ws,

ul −
c2

f l − c2
al

2c f l(c2
f l − c2

sl)
%W− f − c2

al − c2
sl

2csl(c2
f l − c2

sl)
%W−s

= ur +
c2

f r − c2
ar

2c f r (c2
f r − c2

sr )
%W f + c2

ar − c2
sr

2csr (c2
f r − c2

sr )
%Ws,
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π⊥l − cal

2(c2
f l − c2

sl)
%W− f bl + 1

2
%W−a + cal

2(c2
f l − c2

sl)
%W−sbl (2.46)

= π⊥r − car

2(c2
f r − c2

sr )
%W f br + 1

2
%Wa + car

2(c2
f r − c2

sr )
%Wsbr ,

u⊥l + cal

2c f l(c2
f l − c2

sl)
%W− f bl − 1

2cal
%W−a − cal

2csl(c2
f l − c2

sl)
%W−sbl

= u⊥r − car

2c f r (c2
f r − c2

sr )
%W f br + 1

2car
%Wa + car

2csr (c2
f r − c2

sr )
%Wsbr .

Once it is solved, the values of u, u⊥, π , π⊥ follow from (2.43).
Finally, the wave speeds σ− f , σ−a , σ−s , σ0, σs , σa , σ f of the Riemann solution

(corresponding to the eigenvalues u−c f /ρ, u−ca/ρ, u−cs/ρ, u, u+cs/ρ, u+ca/ρ,
u + c f /ρ) can be computed using the relations

σ− f = (u − c f /ρ)l = (u − c f /ρ)∗a f l ,

σ−a = (u − ca/ρ)∗a f l = (u − ca/ρ)∗asl ,

σ−s = (u − cs/ρ)∗asl = (u − cs/ρ)∗l ,

σ0 = ul∗ = ur∗, (2.47)

σs = (u + cs/ρ)∗r = (u + cs/ρ)∗asr ,

σa = (u + ca/ρ)∗asr = (u + ca/ρ)∗a f r ,

σ f = (u + c f /ρ)∗a f r = (u + c f /ρ)r ,

where the intermediate states are denoted from left to right by l, ∗a f l, ∗asl, l∗, r∗,
∗asr , ∗a f r , r . Noticing that ρ∗a f l = ρ∗asl ≡ ρ∗al and ρ∗a f r = ρ∗asr ≡ ρ∗ar , we
deduce the identities

σ−a − σ− f = c f l − cal

ρ∗al ,

σ−s − σ−a = cal − csl

ρ∗al ,

σ0 − σ−s = csl

ρ∗l , (2.48)

σs − σ0 = csr

ρ∗r ,

σa − σs = car − csr

ρ∗ar ,

σ f − σa = c f r − car

ρ∗ar .

Therefore, again, to have the right ordering σ− f < σ−a < σ−s < σ0 < σs < σa < σ f
is equivalent to having positive intermediate densities.
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3 Entropy analysis

In this section we analyze the entropy stability of the approximate Riemann solver
defined by the relaxation system (2.4)–(2.11).

3.1 Local entropy condition

We use first an argument introduced in [9] for gas dynamics, which is based on swit-
ching the role of the energy equation and the entropy inequality, thus reducing to the
isentropic case. It leads to a condition written for each intermediate state.

Let us extend the system (2.4)–(2.11) with an additional unknown ŝ solving

(ρ ŝ)t + (ρuŝ)x = 0, (3.1)

which initial data at equilibrium, ŝ = s(ρ, e). In other words, ŝ is advected, and in the
Riemann solution, ŝ just takes the left and right values sl = s(ρl , el), sr = s(ρr , er )

on each side of the central wave.

Proposition 3.1 Assume that in the Riemann solution to the relaxation system (2.4)–
(2.11), each intermediate state U∗ ≡ (ρ∗, ρ∗u∗, ρ∗u∗

⊥, ρ∗((u∗)2+(u∗
⊥)2)/2+ρ∗e∗+

B2
x /2 + (B∗

⊥)2/2, B∗
⊥) has positive density ρ∗ > 0, and satisfies

e∗ ≥ e(ρ∗, ŝ∗). (3.2)

Then the approximate Riemann solver preserves the positivity of density and internal
energies, and satisfies all entropy inequalities related to the entropies ρφ(s) with φ

convex nonincreasing.

Proof The positivity of internal energy is obvious from (3.2) since e(ρ∗, ŝ∗) ≥ 0.
Then, consider an entropy η = ρφ(s), which has entropy flux G = ρuφ(s). Because
of (3.1), one has

(ρφ(ŝ))t + (ρuφ(ŝ))x = 0, (3.3)

and let us denote Gc(Ul , Ur ) = (ρuφ(ŝ))x/t=0. In order to get the entropy inequality
(1.18), we are going to prove that

Gr (Ul , Ur ) ≤ Gc(Ul , Ur ) ≤ Gl(Ul , Ur ), (3.4)

where Gl and Gr denote respectively the left-hand side and the right-hand side of
(1.18). This will not only prove (1.18), but also that Gc(Ul , Ur ) can be used as
numerical entropy flux. Denoting by ξ = x/t the self-similar variable, we notice
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that

Gc(Ul , Ur ) = G(Ul) −
0∫

−∞

(
ρφ(ŝ)(ξ) − η(Ul)

)
dξ

= G(Ur ) +
∞∫

0

(
ρφ(ŝ)(ξ) − η(Ur )

)
dξ .

(3.5)

Therefore, in order to get (3.4), it is enough to prove that for a.e. ξ , η(U (ξ)) ≤
ρφ(ŝ)(ξ). This means equivalently that for any intermediate state U∗,

ρ∗φ(s(ρ∗, e∗)) ≤ ρ∗φ(ŝ∗). (3.6)

But since ρ∗ > 0 and φ is nonincreasing, we thus only have to prove that s(ρ∗, e∗) ≥
ŝ∗. Recalling that according to (1.6), at ρ fixed, e(ρ, s) is an increasing function of s,
this inequality is equivalent to e∗ ≥ e(ρ∗, ŝ∗), which proves the claim. ./

3.2 Sufficient stability conditions for a fixed intermediate state

In this subsection we derive sufficient conditions for (3.2) to hold, for a fixed inter-
mediate state U∗. The state U∗ is described by ρ∗, u∗, u∗

⊥, e∗, B∗ = (Bx , B∗
⊥), and

we also have the associated relaxation pressures π∗ and π∗
⊥. We shall denote by Ul/r

the initial state on the same side as U∗ with respect to the central wave, and we shall
use the same convention for sl/r (indeed sl/r = ŝ∗ with the notation of the previous
paragraph). The values of cs , ca , cb, c f , b, are evaluated also locally, i.e., on the same
side as U∗ (even if we do not write explicitly the index l/r ), in accordance with (2.11).
We use finally the short-hand notations

e(ρ∗) ≡ e(ρ∗, sl/r ), p(ρ∗) ≡ p(ρ∗, sl/r ). (3.7)

The desired inequality (3.2) then becomes e∗ ≥ e(ρ∗).
We first write a decomposition into elementary entropy dissipation terms, similarly

as in [3]. The main one D0 is related to the central wave, and we just group the ones
related to the other waves into a longitudinal part and a transverse part.

Lemma 3.2 We have the identity

e(ρ∗) − e∗ = D0(U∗, Ul/r )

− 1

2c2
b

(

p(ρ∗) + |B∗
⊥|2
2

− B2
x

2
− π∗ + b

ca
· (−Bx B∗

⊥ − π∗
⊥)

)2

− 1
2c2

a

∣∣−Bx B∗
⊥ − π∗

⊥
∣∣2

, (3.8)
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where

D0(U∗, Ul/r ) = e(ρ∗) − e(ρl/r ) + p(ρ∗)
(

1
ρ∗ − 1

ρl/r

)

+ 1

2c2
b

(

p(ρ∗) + |B∗
⊥|2
2

− Bx
b
ca

· B∗
⊥

−p(ρl/r ) − |Bl/r
⊥ |2
2

+ Bx
b
ca

· Bl/r
⊥

)2

−
(

1
ρl/r − B2

x

c2
a

)
1
2
|B∗

⊥ − Bl/r
⊥ |2. (3.9)

This identity can be verified using that the weak Riemann invariants (2.41) take the
same value at the intermediate state and on the initial data l/r . Note that this is true also
for the 3-wave solver since the weak Riemann invariants (2.36) are obtained formally
as the one in (2.41) where we set cs = ca = cb = c f = c, b = 0.

In order to analyze D0(U∗, Ul/r ), let us recall the following inequality, that was
proved in [3] or [4].

Lemma 3.3 As soon as ρ∗ > 0, one has

e(ρ∗) − e(ρl/r ) + p(ρ∗)
(

1
ρ∗ − 1

ρl/r

)
+ 1

2
1

(ρ2 p′)∗,l/r

(
p(ρ∗) − p(ρl/r )

)2
≤ 0,

(3.10)
with

(ρ2 p′)∗,l/r ≡ sup
ρ

ρ2 p′(ρ, sl/r ), (3.11)

where the supremum is taken over all ρ between ρl/r and ρ∗.

Proof Since in the inequality, the specific entropy s takes a fixed value sl/r , one can
consider that e and p are functions of ρ only. Recall that according to (1.6), one has
then e′(ρ) = p(ρ)/ρ2.

Consider an interval I ⊂ (0,∞) and a constant c > 0 such that for all ρ ∈ I , one
has ρ2 p′(ρ) ≤ c2. Then, for a fixed ρl/r ∈ I , define for ρ∗ ∈ I

.(ρ∗) = e(ρ∗)−e(ρl/r )+p(ρ∗)
(

1
ρ∗ − 1

ρl/r

)
+ 1

2c2

(
p(ρ∗) − p(ρl/r )

)2
. (3.12)

One computes

.′(ρ∗) = p′(ρ∗)
(

1
ρ∗ − 1

ρl/r + p(ρ∗) − p(ρl/r )

c2

)
. (3.13)

Now, since p′ > 0 and by assumption 1/ρ + p(ρ)/c2 is a nonincreasing function of
ρ ∈ I , we deduce that .′(ρ∗) has the sign of ρl/r − ρ∗, and therefore that . has a
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maximum at ρl/r . Thus for all ρ∗ ∈ I , .(ρ∗) ≤ .(ρl/r ) = 0. Finally, for any given
ρl/r , ρ∗ > 0, one can take for I the closed interval [ρl/r , ρ∗] and c2 = (ρ2 p′)∗,l/r .
This gives the result. ./

The main estimate on D0(U∗, Ul/r ) is the following.

Lemma 3.4 If ρ∗ > 0, then

D0(U∗, Ul/r ) − 1

2c2
b

(

p(ρ∗) + |B∗
⊥|2
2

− B2
x

2
− π∗ + b

ca
· (−Bx B∗

⊥ − π∗
⊥)

)2

≤ −1
2

(
c2

b − (ρ2 p′)∗,l/r

) (
1

ρl/r − 1
ρ∗

)2

+
(

1
ρl/r − 1

ρ∗

) (
Bl/r

⊥ + B∗
⊥

2
− Bx

b
ca

)

· (B∗
⊥ − Bl/r

⊥ )

−
(

1
ρl/r − B2

x

c2
a

)
1
2
|B∗

⊥ − Bl/r
⊥ |2. (3.14)

Proof Since 1/ρ + 1
c2

b
(π + b

ca
·π⊥) is a strong Riemann invariant for the central wave,

it has the same value at U∗ and Ul/r . Substituting the equilibrium values for π l/r and
π

l/r
⊥ gives

π∗ + b
ca

·π∗
⊥ = p(ρl/r )+ |Bl/r

⊥ |2
2

− B2
x

2
− Bx

b
ca

· Bl/r
⊥ + c2

b

(
1

ρl/r − 1
ρ∗

)
. (3.15)

Therefore, the left-hand side of (3.14) can be rewritten as

LHS = D0(U∗, Ul/r ) − 1

2c2
b

(

p(ρ∗) + |B∗
⊥|2
2

− Bx
b
ca

· B∗
⊥

− p(ρl/r ) − |Bl/r
⊥ |2
2

+ Bx
b
ca

· Bl/r
⊥ − c2

b

(
1

ρl/r − 1
ρ∗

))2

. (3.16)

Subtracting the last term from the second line in (3.9) and using the identity α2/2 −
β2/2 = (α − β)(α + β)/2, we deduce

LHS = e(ρ∗) − e(ρl/r ) + p(ρ∗)
(

1
ρ∗ − 1

ρl/r

)

+
(

1
ρl/r − 1

ρ∗

) (

p(ρ∗) + |B∗
⊥|2
2

− Bx
b
ca

· B∗
⊥
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− p(ρl/r ) − |Bl/r
⊥ |2
2

+ Bx
b
ca

· Bl/r
⊥ − c2

b

2

(
1

ρl/r − 1
ρ∗

))

−
(

1
ρl/r − B2

x

c2
a

)
1
2
|B∗

⊥ − Bl/r
⊥ |2. (3.17)

Combining the inequality

(
1

ρl/r − 1
ρ∗

)(
p(ρ∗) − p(ρl/r )

)

≤ 1
2

1
(ρ2 p′)∗,l/r

(
p(ρ∗) − p(ρl/r )

)2
+ 1

2
(ρ2 p′)∗,l/r

(
1

ρl/r − 1
ρ∗

)2

(3.18)

with (3.17), and then applying (3.10) gives the Lemma. ./
We now introduce the following notation. For θ ∈ R, take

Bθ
⊥ = 1 − θ

2
B∗

⊥ + 1 + θ

2
Bl/r

⊥ ,
1
ρθ

= 1 − θ

ρl/r + θ

ρ∗ . (3.19)

By this definition,

(
Bl/r

⊥ + B∗
⊥

2
− Bθ

⊥

)

· (B∗
⊥ − Bl/r

⊥ ) = θ
1
2
|B∗

⊥ − Bl/r
⊥ |2. (3.20)

Therefore, since 1/ρθ − 1/ρl/r = θ(1/ρ∗ − 1/ρl/r ), we have

(
1

ρl/r − 1
ρ∗

) (
Bl/r

⊥ + B∗
⊥

2
− Bθ

⊥

)

· (B∗
⊥ − Bl/r

⊥ ) =
(

1
ρl/r − 1

ρθ

)
1
2
|B∗

⊥ − Bl/r
⊥ |2.

(3.21)
This identity enables us to express the last line in (3.14) in terms of Bθ

⊥ and ρθ ,

(
1

ρl/r − 1
ρ∗

) (
Bl/r

⊥ +B∗
⊥

2
−Bx

b
ca

)

· (B∗
⊥−Bl/r

⊥ )−
(

1
ρl/r − B2

x

c2
a

)
1
2
|B∗

⊥ − Bl/r
⊥ |2

=
(

1
ρl/r − 1

ρ∗

)
(Bθ

⊥ − Bx
b
ca

) · (B∗
⊥ − Bl/r

⊥ ) −
(

1
ρθ

− B2
x

c2
a

)
1
2
|B∗

⊥ − Bl/r
⊥ |2.

(3.22)

We deduce the following stability criterion.

Proposition 3.5 In order to have e(ρ∗) − e∗ ≤ 0 (ensuring the discrete entropy
inequality), it is enough that ρ∗ > 0 and that there exists some θ ∈ R such that

(ρ2 p′)∗,l/r ≤ c2
b,

1
ρθ

− B2
x

c2
a

≥ 0, (3.23)
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and
(

1
ρl/r − 1

ρ∗

)
(Bθ

⊥ − Bx
b
ca

) · (B∗
⊥ − Bl/r

⊥ ) ≤
(

1
ρl/r − 1

ρ∗

)
|B∗

⊥ − Bl/r
⊥ |ϒ, (3.24)

for some ϒ satisfying

ϒ2 ≤
(

c2
b − (ρ2 p′)∗,l/r

)(
1
ρθ

− B2
x

c2
a

)
. (3.25)

Proof Starting from (3.8), we neglect the last term and use Lemma 3.4 for the two
first terms, and also use the identity (3.22). Then we use (3.24), and apply the estimate

(
1

ρl/r − 1
ρ∗

)
|B∗

⊥ − Bl/r
⊥ |ϒ ≤ 1

2

(
c2

b − (ρ2 p′)∗,l/r

) (
1

ρl/r − 1
ρ∗

)2

+ 1
2

1

c2
b − (ρ2 p′)∗,l/r

|B∗
⊥ − Bl/r

⊥ |2ϒ2. (3.26)

With (3.25) this gives the result. ./
Remark Taking θ = 0 gives Bθ

⊥ = (B∗
⊥ + Bl/r

⊥ )/2 and ρθ = ρl/r . Another special
choice is θ = 1, that gives Bθ

⊥ = Bl/r
⊥ and ρθ = ρ∗. This yields our most simple

sufficient condition for entropy stability, that is a discrete version of (2.23).

Proposition 3.6 The approximate Riemann solver defined by the relaxation system
(2.4)–(2.11) is positive and satisfies all discrete entropy inequalities whenever for all
intermediate states U∗, one has ρ∗ > 0 and

(ρ2 p′)∗,l/r ≤ c2
b,

1
ρ∗ − B2

x

c2
a

≥ 0,

∣∣∣∣Bl/r
⊥ − Bx

b
ca

∣∣∣∣
2

≤
(

c2
b − (ρ2 p′)∗,l/r

)(
1
ρ∗ − B2

x

c2
a

)
, (3.27)

where (ρ2 p′)∗,l/r is defined by (3.11).

This condition is useful for the 3-wave solver, as it will be shown in a follow-up
paper. However, it does not allow exact resolution of isolated Alfven waves since by
the discussion of Sect. 2.2, in this case one should have a vanishing right-hand side in
(3.27), which sets a value of b colinear to Bl/r

⊥ , which is not colinear to B⊥l + B⊥r in
general. Therefore, we provide a more precise analysis, adapted to the 7-wave solver,
that allows the exact resolution of isolated Alfven waves.

Lemma 3.7 Assume b -= 0 and define the projections parallel and orthogonal to b

P‖ X = X · b
|b|2 b, P⊥ X = X − X · b

|b|2 b. (3.28)
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Consider again Bθ
⊥ and ρθ as in (3.19) for any θ ∈ R. Then for any θ‖, θ⊥ ∈ R we

have

D0(U∗, Ul/r ) − 1

2c2
b

(

p(ρ∗) + |B∗
⊥|2
2

− B2
x

2
− π∗ + b

ca
· (−Bx B∗

⊥ − π∗
⊥)

)2

≤ −1
2

(
c2

b − (ρ2 p′)∗,l/r

)(
1

ρl/r − 1
ρ∗

)2

+
(

1
ρl/r − 1

ρ∗

)
P‖(Bθ‖

⊥ − Bx
b
ca

) · P‖(B∗
⊥ − Bl/r

⊥ )

−
(

1
ρθ‖

− B2
x

c2
a

)
1
2
|P‖(B∗

⊥ − Bl/r
⊥ )|2

+
(

1
ρl/r − 1

ρ∗

)
P⊥(Bθ⊥

⊥ − Bx
b
ca

) · P⊥(B∗
⊥ − Bl/r

⊥ )

−
(

1
ρθ⊥

− B2
x

c2
a

)
1
2
|P⊥(B∗

⊥ − Bl/r
⊥ )|2. (3.29)

Proof We use Lemma 3.4, and decompose the vectors in their components parallel
and orthogonal to b,

(
1

ρl/r − 1
ρ∗

) (
Bl/r

⊥ + B∗
⊥

2
− Bx

b
ca

)

· (B∗
⊥ − Bl/r

⊥ )

−
(

1
ρl/r − B2

x

c2
a

)
1
2
|B∗

⊥ − Bl/r
⊥ |2

=
(

1
ρl/r − 1

ρ∗

)
P‖

(
Bl/r

⊥ + B∗
⊥

2
− Bx

b
ca

)

· P‖(B∗
⊥ − Bl/r

⊥ )

−
(

1
ρl/r − B2

x

c2
a

)
1
2
|P‖(B∗

⊥ − Bl/r
⊥ )|2

+
(

1
ρl/r − 1

ρ∗

)
P⊥

(
Bl/r

⊥ + B∗
⊥

2
− Bx

b
ca

)

· P⊥(B∗
⊥ − Bl/r

⊥ )

−
(

1
ρl/r − B2

x

c2
a

)
1
2
|P⊥(B∗

⊥ − Bl/r
⊥ )|2. (3.30)

We have an identity similar to (3.21),

(
1

ρl/r − 1
ρ∗

)
P

(
Bl/r

⊥ +B∗
⊥

2
−Bθ

⊥

)

·P(B∗
⊥−Bl/r

⊥ )=
(

1
ρl/r − 1

ρθ

)
1
2
|P(B∗

⊥−Bl/r
⊥ )|2,

(3.31)
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for any θ and any projection P = P‖ or P = P⊥. In the part parallel to b of the
right-hand side of (3.30), use (3.31) with P = P‖ and θ = θ‖, while in the part
orthogonal to b, use (3.31) with P = P⊥ and θ = θ⊥. This gives (3.29). ./

We shall use Lemma 3.7 in the following way. Assume that (Bl/r
⊥ − Bx

b
ca

) · b = 0.
Then take θ‖ = 1. Provided 1/ρ∗ − B2

x /c2
a ≥ 0, the second and third terms on the

right-hand side of (3.29) gives a nonpositive contribution. To the remaining terms we
can apply the Cauchy–Schwarz inequality as in Proposition 3.5, to deduce that we
only need

∣∣∣∣P⊥
(

Bθ⊥
⊥ − Bx

b
ca

)∣∣∣∣
2

≤
(

c2
b − (ρ2 p′)∗,l/r

) (
1

ρθ⊥
− B2

x

c2
a

)
(3.32)

for some θ⊥.

4 Stability conditions on each intermediate state

Let us now examine more precisely the stability conditions for each intermediate state
U∗. We shall give sufficient conditions for the seven wave solver, thus we assume that
b -= 0 and ca, cb > 0. We recall that we use the same convention as in the previous
section: the index l/r mean that we take l if U∗ is on the left of the central wave, and
r if U∗ is on the right of the central wave. The parameters ca , cb, b are evaluated in
the same way (according to (2.11)).

We shall assume that
Bl/r

⊥ − Bx
b
ca

= µZ , (4.1)

where µ ≡ µl/r ∈ R, Z ≡ Zl/r satisfies

Z · b = 0, (4.2)

and Z is an approximation of the strength of the Alfven wave. At least, one should have
that when the data are that of a left isolated Alfven wave one has Zl = −(Br

⊥− Bl
⊥)/2,

µl = 1, and when the data are that of a right isolated Alfven wave, Zr = (Br
⊥−Bl

⊥)/2,
µr = 1.

Since we aim to resolve isolated Alfven waves, we shall consider as ‘small’ any
term proportional to %W∓ f , %W∓s , and

1
4

ρl/r Bx

c2
a

%W∓a − Z , (4.3)

where the notation %W∓a means that we take %W−a if U∗ is on the left of the central
wave, and %Wa if it is on the right. Indeed, from the assumptions on Z , this term
vanishes on the left for an isolated left Alfven wave (not necessarily for a right Alfven
wave), and on the right for an isolated right Alfven wave.
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Example 1 Define

Wl = 1
4

ρl Bxl

c2
al

2cal

cal + car
[π⊥r − π⊥l + car (u⊥l − u⊥r )] ,

Wr = 1
4

ρr Bxr

c2
ar

2car

cal + car
[π⊥l − π⊥r + cal(u⊥l − u⊥r )] , (4.4)

and

µl = min

(

1,
|Bl

⊥|
|Wl |

)

, µr = min
(

1,
|Br

⊥|
|Wr |

)
. (4.5)

In other words, µl Wl = proj
|Bl

⊥|
Wl , µr Wr = proj

|Br
⊥|

Wr with

proj
ν

X =






X if |X | ≤ ν,
X

|X |ν if |X | > ν.
(4.6)

Then, define
Vl = Bl

⊥ − µl Wl ,

Vr = Br
⊥ − µr Wr ,

(4.7)

and assume that Vl -= 0, Vr -= 0 (otherwise one should take bl = 0 or br = 0). This
implies Vl · Bl

⊥ > 0, and Vr · Br
⊥ > 0. Thus we can define

Bx b
ca

= V + µ
W · V
|V |2 V = Bl/r

⊥ · V
|V |2 V . (4.8)

We have that b is colinear to V , and

Bx b
ca

= Bl/r
⊥ − µW + µ

W · b
|b|2 b, (4.9)

i.e., (4.1)–(4.2) hold with Z = W − W ·b
|b|2 b.

In this example, all %W∓ f , %W∓s and (4.3) are expressed linearly in terms of

πr−πl , ur−ul , bl · [π⊥l−π⊥r+car (u⊥r−u⊥l)], br · [π⊥l−π⊥r−cal(u⊥r−u⊥l)],
(4.10)

which are small for any left or right isolated Alfven wave.

Example 2 Colinear bl and br . Assume that Bl
⊥ -= 0, Br

⊥ -= 0, and that Bl
⊥/|Bl

⊥| +
Br

⊥/|Br
⊥| -= 0. Take µl = µr = 1,

Zl = 1
2

Bl
⊥ − 1

2
Br

⊥
|Br

⊥| |B
l
⊥|,

Zr = 1
2

Br
⊥ − 1

2
Bl

⊥
|Bl

⊥| |B
r
⊥|,

(4.11)
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and
Bxlbl

cal
= 1

2
Bl

⊥ + 1
2

Br
⊥

|Br
⊥| |B

l
⊥|,

Bxr br

car
= 1

2
Br

⊥ + 1
2

Bl
⊥

|Bl
⊥| |B

r
⊥|.

(4.12)

Then conditions (4.1) and (4.2) are satisfied, and bl and br are colinear with the
same direction. The interest of this choice is that it simplifies the calculation of the
intermediate states, since the system (2.44) (or (2.46)) decouples into a part colinear
to b and a part normal to b, leading to a linear system of four equations and a system
of two equations instead of one of six equations.

4.1 Fast intermediate states

We first consider the state between the waves corresponding to ca and c f , which we
denote with the superscript ‘*af’ or with ‘*a’ for quantities that are constant across
the ca-wave. From the Riemann invariants relations we get

1
ρl/r − 1

ρ∗a = 1
2

c2
f − c2

a

c2
f (c

2
f − c2

s )
%W∓ f ,

B∗a f
⊥

ρ∗a = Bl/r
⊥

ρl/r + 1
2

ca

c2
f (c

2
f −c2

s )
%W∓ f Bx b= Bl/r

⊥
ρl/r +

(
1

ρl/r − 1
ρ∗a

)
c2

a

c2
f − c2

a

Bx b
ca

,

(4.13)

and

B∗a f
⊥ − Bl/r

⊥ = ρ∗a
(

1
ρl/r − 1

ρ∗a

)[

Bl/r
⊥ + c2

a

c2
f − c2

a

Bx b
ca

]

. (4.14)

We use Lemma 3.7 with θ‖ = 1 and also θ⊥ = 1. The second and third terms gives a
nonpositive contribution as soon as 1/ρ∗a − B2

x /c2
a ≥ 0. For the final two terms, we

compute

P⊥(B∗a f
⊥ − Bl/r

⊥ ) = ρ∗a
(

1
ρl/r − 1

ρ∗a

)
µZ ,

P⊥(Bθ⊥
⊥ − Bx b

ca
) = µZ .

(4.15)

Here we take also into account the last term in the decomposition (3.8), which involves

Bx B∗a f
⊥ + π

∗a f
⊥ = Bxρ

∗a
(

1
ρl/r − 1

ρ∗a

) (

Bl/r
⊥ + c2

a

c2
f − c2

a

Bx b
ca

)

−
(

1
ρl/r − 1

ρ∗a

) c2
f

c2
f − c2

a
cab. (4.16)
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Its orthogonal projection is given by

P⊥(Bx B∗a f
⊥ + π

∗a f
⊥ ) = Bxρ

∗a
(

1
ρl/r − 1

ρ∗a

)
µZ . (4.17)

In order to get e(ρ∗) − e∗ ≤ 0, it is enough to estimate the first and last line in the
right-hand side of (3.29), to which we add −|P⊥(Bx B∗a f

⊥ + π
∗a f
⊥ )|2/(2c2

a). Thus the
inequality reduces to

−1
2

(
c2

b − (ρ2 p′)∗a,l/r

) (
1

ρl/r − 1
ρ∗a

)2

+
(

1
ρl/r − 1

ρ∗a

)2

ρ∗a |µZ |2

−
(

1
ρ∗a − B2

x

c2
a

)
1
2
(ρ∗a)2

(
1

ρl/r − 1
ρ∗a

)2

|µZ |2

− B2
x (ρ∗a)2

2c2
a

(
1

ρl/r − 1
ρ∗a

)2

|µZ |2 ≤ 0. (4.18)

Dividing by ( 1
ρl/r − 1

ρ∗a )2, this gives the sufficient condition

c2
b − (ρ2 p′)∗a,l/r − ρ∗a |µZ |2 ≥ 0. (4.19)

4.2 Middle intermediate states

Next, we move on to the states between the waves associated with cs and ca , which
we denote by the superscript ‘*as’, or just ‘*a’ if there is no jump at the ca-wave. We
have B∗as

⊥ = B∗a f
⊥ − 1

2
ρ∗a Bx

c2
a

%W∓a , thus

B∗as
⊥ − Bl/r

⊥ = B∗a f
⊥ − Bl/r

⊥ − 1
2

ρ∗a Bx

c2
a

%W∓a

= ρ∗a
(

1
ρl/r − 1

ρ∗a

) (

Bl/r
⊥ + c2

a

c2
f − c2

a

Bx b
ca

)

− 1
2

ρ∗a Bx

c2
a

%W∓a .

(4.20)
Next, we have for any θ

Bθ
⊥ − Bx b

ca
= 1 − θ

2
(B∗as

⊥ − Bl/r
⊥ ) + Bl/r

⊥ − Bx b
ca

= 1 − θ

2
ρ∗a

(
1

ρl/r − 1
ρ∗a

) (

Bl/r
⊥ + c2

a

c2
f − c2

a

Bx b
ca

)

+ (1 − θ)
ρ∗a

ρl/r

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)
+

(
µ − (1 − θ)

ρ∗a

ρl/r

)
Z
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= 1 − θ

2
ρ∗a

(
1

ρl/r − 1
ρ∗a

) c2
f

c2
f − c2

a

Bx b
ca

+(1 − θ)
ρ∗a

ρl/r

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)

+
(

µ − (1 − θ)
ρ∗a

ρl/r + 1 − θ

2
µ

(
ρ∗a

ρl/r − 1
))

Z . (4.21)

We apply Lemma 3.7 with θ‖ = 1. For θ⊥, a useful choice is to make the last term in
(4.21) vanish, since it is large for isolated Alfven wave data, hence

1 − θ⊥ = 2µ
ρ∗a

ρl/r (2 − µ) + µ
. (4.22)

This gives

P⊥
(

Bθ⊥
⊥ − Bx b

ca

)
=

2µ ρ∗a

ρl/r

ρ∗a

ρl/r (2 − µ) + µ

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)
, (4.23)

to which we need only to require the inequality (3.32). As soon as 0 ≤ µ ≤ 1 and
ρ∗a/ρl/r ≥ µ/(2 − µ) this gives the natural bounds 0 ≤ θ⊥ ≤ 1, and we get the
sufficient condition

∣∣∣∣
2µ

2 − µ

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)∣∣∣∣
2

≤
(

c2
b − (ρ2 p′)∗a,l/r

) (
1

ρθ⊥
− B2

x

c2
a

)
. (4.24)

Otherwise, still for 0 ≤ µ ≤ 1, another possible choice is

θ⊥ =
4(1 − µ)

(
ρ∗a

ρl/r

)2

(
ρ∗a

ρl/r (2 − µ) + µ
)2 (4.25)

which satisfies 0 ≤ θ⊥ ≤ 1, and

P⊥
(

Bθ⊥
⊥ − Bx b

ca

)
= (1 − θ⊥)

ρ∗a

ρl/r

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)

+1
2

1 −
(

ρ∗a

ρl/r

)2

ρ∗a

ρl/r (2 − µ) + µ
µ2 Z . (4.26)
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Then, the last term in (4.26) can be grouped in (3.29) with the term in (1/ρl/r −1/ρ∗)2.
Using the Cauchy–Schwarz inequality this gives the sufficient condition

∣∣∣∣(1 − θ⊥)
ρ∗a

ρl/r

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)∣∣∣∣
2

≤



c2
b − (ρ2 p′)∗a,l/r +

1 + ρ∗a

ρl/r

ρ∗a

ρl/r (2 − µ) + µ
ρ∗aµ2 Z · P⊥(B∗as

⊥ − Bl/r
⊥ )





×
(

1
ρθ⊥

− B2
x

c2
a

)
, (4.27)

where

P⊥(B∗as
⊥ − Bl/r

⊥ ) = ρ∗a
(

1
ρl/r − 1

ρ∗a

)
µZ − 1

2
ρ∗a Bx

c2
a

%W∓a

= −
(

ρ∗a

ρl/r (2 − µ) + µ

)
Z + 2

ρ∗a

ρl/r

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)
.

(4.28)
This is especially interesting when ρ∗a/ρl/r ≤ µ/(2−µ), where we get the sufficient
condition

∣∣∣∣
µ

2 − µ

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)∣∣∣∣
2

≤
(
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b − (ρ2 p′)∗a,l/r −

(
1 + ρ∗a

ρl/r

)
ρ∗aµ2

×
(

|Z |2 +
∣∣∣∣Z ·

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)∣∣∣∣

))
×

(
1

ρθ⊥
− B2

x

c2
a

)
.

(4.29)

4.3 Internal intermediate states

The intermediate states between the middle wave and the slow wave will be denoted
by ‘*i’. We have similarly as for fast intermediate states

1
ρ∗a − 1

ρ∗i = 1
2

c2
a − c2

s

c2
s (c

2
f − c2

s )
%W∓s,

B∗i
⊥

ρ∗i = B∗as
⊥

ρ∗a − 1
2

ca

c2
s (c

2
f − c2

s )
%W∓s Bx b = B∗as

⊥
ρ∗a −

(
1

ρ∗a − 1
ρ∗i

)
c2

a

c2
a − c2

s

Bx b
ca

,

B∗i
⊥ − B∗as

⊥ = ρ∗i
(

1
ρ∗a − 1

ρ∗i

) [
B∗as

⊥ − c2
a

c2
a − c2

s

Bx b
ca

]
.

(4.30)
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Using that B⊥
ρ + Bx

c2
a
π⊥ − Bx b

ca

1
ρ is a Riemann invariant for the central wave, we have

(
B∗i

⊥ − Bx b
ca

)
1

ρ∗i + Bx

c2
a

π∗i
⊥ =

(
Bl/r

⊥ − Bx b
ca

)
1

ρl/r + Bx

c2
a

π
l/r
⊥ . (4.31)

Then, we decompose

π∗i
⊥ − π

l/r
⊥ = (π∗i
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⊥ ) + (π∗as

⊥ − π
∗a f
⊥ ) + (π

∗a f
⊥ − π

l/r
⊥ )

= c2
s

c2
a − c2

s

(
1

ρ∗a − 1
ρ∗i

)
cab+ 1

2
%W∓a −

c2
f

c2
f − c2

a

(
1

ρl/r − 1
ρ∗a

)
cab,

(4.32)
and from (4.31) we get

B∗i
⊥ − Bx b
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=

(
Bl/r

⊥ − Bx b
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)
ρ∗i
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[

− c2
s

c2
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s

(
1
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ρ∗i
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Bx b
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−1
2
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c2
a

%W∓a +
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f

c2
f − c2

a

(
1

ρl/r − 1
ρ∗a

)
Bx b
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]

. (4.33)

Then, we compute

Bθ
⊥ − Bx b
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2
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)
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(
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)
+

c2
f

c2
f − c2

a

(
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ρl/r Bx
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)

+
[
µ − (1 − θ)

ρ∗i

ρl/r + 1 − θ

2
µ

(
ρ∗i

ρl/r − 1
)]

Z .

(4.34)
As for the middle intermediate states, apply Lemma 3.7 with θ‖ = 1. Then, the first
choice of θ⊥ is to make the last term in (4.34) vanish,

1 − θ⊥ = 2µ

ρ∗i

ρl/r (2 − µ) + µ
. (4.35)

This gives

P⊥
(

Bθ⊥
⊥ − Bx b

ca

)
=

2µ ρ∗i

ρl/r

ρ∗i

ρl/r (2 − µ) + µ

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)
, (4.36)

to which we need only to require the inequality (3.32). As soon as 0 ≤ µ ≤ 1 and
ρ∗i/ρl/r ≥ µ/(2 − µ) this gives the natural bounds 0 ≤ θ⊥ ≤ 1, and we get the
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sufficient condition

∣∣∣∣
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. (4.37)

Otherwise, still for 0 ≤ µ ≤ 1, the other possible choice is

θ⊥ =
4(1 − µ)

(
ρ∗i

ρl/r

)2

(
ρ∗i

ρl/r (2 − µ) + µ
)2 (4.38)

which satisfies 0 ≤ θ⊥ ≤ 1, and
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Bθ⊥
⊥ − Bx b
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= (1 − θ⊥)
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ρl/r (2 − µ) + µ
µ2 Z .

(4.39)

Again, the last term in (4.39) can be grouped in (3.29) with the term in (1/ρl/r −1/ρ∗)2.
Using the Cauchy–Schwarz inequality this gives the sufficient condition
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, (4.40)

where according to (4.33)
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)
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(4.41)
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This gives when ρ∗i/ρl/r ≤ µ/(2 − µ) the sufficient condition

∣∣∣∣
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. (4.42)

4.4 Summary of sufficient conditions

From Sects. 4.1–4.3 we deduce the following sufficient conditions for entropy inequa-
lities on each side (left or right) for the 7-wave solver.

Proposition 4.1 The approximate Riemann solver is entropy stable if all intermediate
densities are positive, (4.1)–(4.2) hold,

0 ≤ µ ≤ 1, (4.43)

and

∣∣∣∣
2µ

2 − µ

(
Z − 1

4
ρl/r Bx

c2
a

%W∓a

)∣∣∣∣
2

≤
(

c2
b − (ρ2 p′)∗a,l/r − 2

2 − µ
ρ∗aµ2

(
|Z |2 +

∣∣∣∣Z ·
(

Z − 1
4
ρl/r Bx

c2
a

%W∓a

)∣∣∣∣

))

×
(

1
max(ρ∗a, ρl/r )

− B2
x

c2
a

)
, (4.44)
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1
max(ρ∗i , ρl/r )

− B2
x

c2
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)
, (4.45)

where in both inequalities the two factors on the right-hand side must be nonnegative.

Remark If we want to exactly resolve an isolated, say left, Alfven discontinuity, the
above conditions impose that either bl and br are not colinear, or cal -= car . Indeed,
if cal = car = |Bx |√ρ, the right-hand sides of (4.44)–(4.45) vanish. However, since
%Wa = 0, we deduce that µr Zr = 0, and from (4.1) that Bx br/ca = Br

⊥, which is
not colinear to Bl

⊥ + Br
⊥ in general.

Even in the Euler case, the nonlinearity of the subcharacteristic condition is too
complicated to directly give values of the relaxation parameters. One has to make a bit
of analysis to find them, see [4]. In contrast to that case where there is only one speed
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c, here there are four parameters ca , cb, b ∈ R2 to be chosen (on each left and right
side), and the simplifications we can make are limited due to the previous remark. The
issue of finding good relaxation velocities for this scheme can nevertheless be rather
well resolved, using Proposition 4.1 and lower bounds for 1/ρ∗ for any intermediate
density ρ∗. This will be presented in a follow-up paper.
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