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Shallow water systems and steady states

. The shallow water system

(1)

{
∂th + ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + gh2/2)+gh∂xz = 0,

with z(x) given, has the well-known steady states at rest

(2) u = 0, h + z = cst.

There is only one degree of freedom in these steady states : if z is given then we deduce
h (and u). We have three unknown h, u, z , and two relations in (2).
. Many works have been devoted to the construction of well-balanced schemes that
preserve these steady states at rest.
. This remains an issue for related systems, in particular when several source terms are
present. Examples are the Ripa model that has been studied in [Desveaux, Zenk,
Berthon, Klingenberg], the Euler system with gravity [], the shallow water MHD system
[Bouchut, Lhébrard], the Saint-Venant system with variable pressure, the Euler system
with variable cross section...
. Here we consider systems with several families of steady states. We are going to show
that in some cases it is possible to preserve several families of steady states at rest. And
moreover to do it while satisfying a semi-discrete entropy ineqality.
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The shallow water MHD system

The shallow water MHD system in 1d can be written as

∂th + ∂x(hu) = 0,(3)

∂t(hu) + ∂x(hu2 + P) + gh∂xz − fhv = 0,(4)

∂t(hv) + ∂x(huv + P⊥) + fhu = 0,(5)

∂t(ha) + u∂x(ha) = 0,(6)

∂t(hb) + ∂x(hbu − hav) + v∂x(ha) = 0,(7)

with

(8) P = g
h2

2
− ha2, P⊥ = −hab.

It has an energy inequality

(9)
∂t
(1

2
h(u2 + v 2) +

1

2
gh2 +

1

2
h(a2 + b2) + ghz

)
+∂x

((
1
2
h(u2 + v 2) + gh2 + 1

2
h(a2 + b2) + ghz

)
u − ha(au + bv)

)
≤ 0.

The unknowns are h, u, v , a, b, and the topography z is given.
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The shallow water MHD system

. The eigenvalues of the system are

(10) u, u ± |a|, u ±
√

a2 + gh.

The associated waves are called respectively material (or divergence) waves, Alfven
waves and magnetogravity waves. There is an additional eigenvalue which is 0, and we
shall call the associated wave the topography wave. The presence of the zero-order
Coriolis terms proportional to f induces complex nonlinear waves. Here we shall assume
that f ≡ 0.

. The system is nonconservative in the variables ha, hb. However ha jumps only through
the material contacts, where u and v are continuous. Therefore, there is indeed no
ambiguity in the non conservative products u∂x(ha) and v∂x(ha), that are well-defined.
Concerning the nonconservative term h∂xz in (4), it is well-defined for continuous
topography z . Piecewise constant discontinuous z is considered however for discrete
approximations.

. A striking property of the system is that four out of six of the waves are contact
discontinuities, corresponding to linearly degenerate eigenvalues : the material contacts
associated to the eigenvalue u, the left Alfven contacts associated to u − |a|, the right
Alfven contacts associated to u + |a|, and the topography contacts associated to the
eigenvalue 0. Resonance can occur, which means that these waves can collapse. It
happens in particular when u = 0 or u ± |a| = 0.
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The shallow water MHD system

. Resonant steady states at rest for a 6= 0 satisfy

(11)
u = 0, v = cst, hab = cst,

∂x
(
g
h2

2
− ha2

)
+ gh∂xz = 0.

We have 6 unknowns h, u, v , a, b, z , and 4 relations in (11). Thus 2 degrees of freedom.
The second line is a non integrable differential form : it cannot be characterized by a
function of the unknown being constant. Thus there are several possible interpretations
of nonconservative products.
Several subfamilies of steady states at rest are characterized by giving an additional
relation between the unknowns :
. for

√
ha = cst it gives

(12) u = 0, v = cst, h + z = cst,
√
h a = cst ( 6= 0),

√
h b = cst.

. for ha = cst it gives

(13) u = 0, v = cst, ha = cst ( 6= 0), b = cst, h − a2

2g
+ z = cst.

. Another family is for a = 0 (3 degrees of freedom, but integrable)

(14) u = 0, a = 0, h + z = cst.
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The shallow water MHD system

. We consider a finite volume scheme

(15) Un+1
i = Un

i −
∆t

∆xi

(
Fl(U

n
i ,U

n
i+1,∆zi+1/2)− Fr (U

n
i−1,U

n
i ,∆zi−1/2)

)
,

where U = (h, hu, hv , ha, hb) and ∆zi+1/2 = zi+1 − zi .

. We consider a cutoff parameter γ ≥ 1 and we set h#
l = 0 if hl = 0, otherwise for

hl > 0

(16)

 h#
l −

a2
l

2g
min
( hl

h#
l

, γ
)2

= hl −
a2
l

2g
+ zl − z# if hl + (γ2 − 1)

a2
l

2g
≥ z# − zl ,

h#
l = 0 otherwise,

with

(17) z# = max (zl , zr ) .

Indeed, the function h 7→ h − (a2
l /2g) min(hl/h, γ)2 is increasing on [0,∞), and the

condition on the data in (16) is for having a solution h#
l ≥ 0 to the equation in the first

line. In the case there is no nonnegative solution, we set h#
l = 0. Similarly we set on the

right for hr > 0
(18) h#

r −
a2
r

2g
min
( hr

h#
r

, γ
)2

= hr −
a2
r

2g
+ zr − z# if hr + (γ2 − 1)

a2
r

2g
≥ z# − zr ,

h#
r = 0 otherwise.
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The shallow water MHD system

Then we have in any case

(19) 0 ≤ h#
l ≤ hl , 0 ≤ h#

r ≤ hr .

We define then

(20) a#
l = κlal , a#

r = κrar ,

with

(21) κl = min
( hl

h#
l

, γ
)
, κr = min

( hr

h#
r

, γ
)
,

(we set κl = 1 if hl = 0, κr = 1 if hr = 0), and

(22) U#
l =

(
h#
l , h

#
l ul , h

#
l vl , h

#
l a

#
l , h

#
l bl
)
, U#

r =
(
h#
r , h

#
r ur , h

#
r vr , h

#
r a

#
r , h

#
r br
)
.

The left and right numerical fluxes are finally defined by

(23)

Fl(Ul ,Ur ,∆z) = Fl(U
#
l ,U

#
r )

+

(
0, g

h2
l

2
− hla

2
l − g

h#2
l

2
+ κlhla

2
l , 0,

κl

(
(ha)#

l − (ha)l
)
ul ,
(
(ha)#

l − (ha)l
)
vl

)
+(κl − 1)

(
0, 0, 0,Fha

l (U#
l ,U

#
r ), 0

)
,

and a similar definition for Fr , where Fl and Fr are numerical fluxes associated to the
problem without topography.
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The shallow water MHD system

Theorem 1 The scheme with the numerical fluxes Fl , Fr with the above reconstruction
satisfies the following properties.

(i) It is conservative in the variables h and hv ,

(ii) It is consistent with (3)-(7) for smooth solutions,

(iii) It keeps the positivity of h under the CFL condition
∆tA(U#

l ,U
#
r ) ≤ 1

2
min(∆xl ,∆xr ) with A(., .) the maximum speed of the

homogeneous solver,

(iv) It satisfies a semi-discrete energy inequality associated to (9),

(v) It is well-balanced with respect to steady material and Alfven contact
discontinuities without jump in topography,

(vi) It is well-balanced with respect to the steady states (14) corresponding to material
and Alfven resonance.

(vii) It is well-balanced with respect to the steady states (13) that satisfy

(24) max

(
hl
hr
,
hr
hl

)
≤ γ.

(viii) The relation ha = cst is preserved by the scheme provided that at each interface
the data satisfy

(25) max
( hl

h#
l

,
hr

h#
r

)
≤ γ whenever hl > 0 and hr > 0.
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Shallow water MHD system : principle of the scheme

The formulas defining the scheme are deduced from the discrete entropy inequality, as
follows. At the continuous level, the energy inequality (9) can be written

(26) ∂t Ẽ + ∂x G̃ ≤ 0,

with

(27) Ẽ(U, z) = E(U) + ghz , G̃(U, z) = G(U) + ghzu,

and

(28)
E(U) =

1

2
h(u2 + v 2) +

1

2
gh2 +

1

2
h(a2 + b2),

G(U) = E(U)u + P(U)u + P⊥(U)v .

As before, U = (h, hu, hv , ha, hb) and P, P⊥ are defined by (8). The scheme without
topography satisfies a fully discrete energy inequality. It implies that it satisfies also a
semi-discrete energy inequality, under the form

(29)
G(Ur ) + E ′(Ur ) (Fr (Ul ,Ur )− F (Ur )) ≤ G(Ul ,Ur ),
G(Ul ,Ur ) ≤ G(Ul) + E ′(Ul) (Fl(Ul ,Ur )− F (Ul)) ,

for all values of Ul , Ur , where E ′ is the derivative of E with respect to U, and G(Ul ,Ur )
is a consistent energy flux.
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Shallow water MHD system : principle of the scheme

Then, for the scheme with topography, the characterization of the semi-discrete energy
inequality writes

(30)
G̃(Ur , zr ) + Ẽ ′(Ur , zr ) (Fr − F (Ur )) ≤ G̃(Ul ,Ur , zl , zr ),

G̃(Ul ,Ur , zl , zr ) ≤ G̃(Ul , zl) + Ẽ ′(Ul , zl) (Fl − F (Ul)) ,

where Ẽ and G̃ are defined by (27), Ẽ ′ is the derivative of Ẽ with respect to U, and G̃ is
an unknown consistent numerical energy flux. Let us choose

(31) G̃(Ul ,Ur , zl , zr ) = G(U#
l ,U

#
r ) + Fh(U#

l ,U
#
r )gz#,

where Fh is the common h-component of Fl and Fr , and for some z# that is defined
below. Then, noticing that Ẽ ′(U, z) = E ′(U) + gz(1, 0, 0, 0, 0), we can write the desired
inequalities (30) as

(32)
G(Ur ) + E ′(Ur ) (Fr − F (Ur )) + Fh(U#

l ,U
#
r )gzr

≤ G(U#
l ,U

#
r ) + Fh(U#

l ,U
#
r )gz#,

(33)
G(U#

l ,U
#
r ) + Fh(U#

l ,U
#
r )gz#

≤ G(Ul) + E ′(Ul) (Fl − F (Ul)) + Fh(U#
l ,U

#
r )gzl .
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Shallow water MHD system : principle of the scheme

. By using (29) evaluated at U#
l , U#

r and comparing the result with (32) and (33), we
get the sufficient conditions

(34)
G(Ur ) + E ′(Ur ) (Fr − F (Ur )) + Fh(U#

l ,U
#
r )gzr

≤ G(U#
r ) + E ′(U#

r )
(
Fr (U

#
l ,U

#
r )− F (U#

r )
)

+ Fh(U#
l ,U

#
r )gz#,

(35)
G(U#

l ) + E ′(U#
l )
(
Fl(U

#
l ,U

#
r )− F (U#

l )
)

+ Fh(U#
l ,U

#
r )gz#

≤ G(Ul) + E ′(Ul) (Fl − F (Ul)) + Fh(U#
l ,U

#
r )gzl .

This leads to the sufficient condition for the left side of the interface

(36)

(
hr −

a2
r

2g
− h#

r + κ2
r
a2
r

2g
+ zr − z#

)
Fh(U#

l ,U
#
r ) ≤ 0.

. These inequalities lead to the appropriate definition of the reconstructed states U#
l ,

U#
r .

. The principle of the construction implies the consistency.
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Numerical test and the role of γ
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scheme 1, gamma=2, 3300 pts

scheme 1, gamma=2, 200 pts

scheme 1/2, gamma=1, 3300 pts

scheme 1/2, gamma=1, 200 pts

scheme 2, gamma=2, 3300 pts

scheme 2, gamma=2, 200 pts
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scheme 1, gamma=2, 200 pts

scheme 1/2, gamma=1, 3300 pts

scheme 1/2, gamma=1, 200 pts

scheme 2, gamma=2, 3300 pts

scheme 2, gamma=2, 200 pts

Figure – Zoom of component b for Test 1 at the material resonance at time t = 0.02
computed at first order, with either a high resolution of 3300 points or a low resolution of 200
points, with different values of γ, and either the first scheme [] or the second scheme of
Theorem 1 (they are identical when γ = 1 and are denoted by scheme 1/2). The value γ = 1
leads to a slight overshoot while the value γ = 2 does not. The right picture is a further zoom
of the left one. We observe that even at the material resonance, the schemes 1 and 2 give
almost the same results, the difference can only be seen on the right picture for 200 points and
γ = 2. The scheme 1 gives the exact solution, in accordance with Theorem 1 since here the
contact discontinuity is of the type (12). The scheme 2 does not give the exact solution but is
nevertheless extremely accurate.
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Shallow water system with volume fraction

. We consider the system

(37) ∂t(ϕh) + ∂x(ϕhv) = 0,

(38) ∂t(ϕhv) + ∂x
(
ϕhv 2 +

1

2
gcϕh

2)+ gcϕh∂xz = 0,

(39) ∂tϕ+ v∂xϕ = 0,

h ≥ 0 : thickness, ϕ > 0 : volume fraction, v : velocity, gc > 0 : gravity, z : topography.

.The system can be interpreted as the classical full gas dynamics system with γ = 2 (by
setting the density to ρ = ϕh) with force −gc∂xz , where the roles of energy and entropy
have been reversed.

. This system is relevant in the modeling of two-phase granular flows : ϕ is the volume
fraction of solid in a solid/fluid mixture.
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Shallow water system with volume fraction

. A conservative form for (39) is

(40) ∂t(hϕ
α) + ∂x(hϕαv) = 0,

for some α with α 6= 1 in order to be independent of (37).

. Even for weak solutions with discontinuities, the conservation laws (40) (when α
varies) are all equivalent, because of the combination with (37).

. The system is completed with an entropy (energy) inequality

(41) ∂t
(
ϕh

v 2

2
+ gcϕhz + gcϕ

h2

2

)
+ ∂x

(
ϕh

v 2

2
v + gcϕh(h + z)v

)
≤ 0.

This energy is convex with respect to the conservative variables (ϕh, ϕhv , hϕα) if and
only if α ≥ 1/2 (and still α 6= 1).

. Other entropy inequalities are

(42) ∂t
(
ϕhψ(ϕα−1)

)
+ ∂x

(
ϕhψ(ϕα−1)v

)
≤ 0, for ψ convex,

This provides the minimum and maximum principle on ϕ, by taking ψ(ξ) = (k − ξ)+

and ψ(ξ) = (ξ − k)+ for an arbitrary constant k ≥ 0.
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Shallow water system with volume fraction

. The steady states at rest are characterized by

(43) v = 0, ϕ∂x(h + z) +
1

2
h∂xϕ = 0.

. 4 unknowns h, ϕ, v , z and 2 relations, thus 2 degrees of freedom.

. Several discontinuous solutions can be obtained depending on the way we understand
the nonconservative products.

. If we impose an additional relation between h and ϕ, this defines a subfamily of steady
states. We can choose in particular ϕ = cst (first family), or hϕ1−α = cst (second
family).
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Shallow water system with volume fraction

. We consider the conservative variable

(44) U =
(
ϕh, ϕhv , hϕα

)
for some fixed α > 1.
. We consider a given scheme for the problem without topography

(45) F(Ul ,Ur ) =
(
F0(Ul ,Ur ),F1(Ul ,Ur ),F2(Ul ,Ur )

)
,

corresponding to the conservative problem with flux

(46) F (U) =
(
ϕhv , ϕhv 2 +

1

2
gcϕh

2, hϕαv
)
.

We shall assume that the volume fraction flux is given by the classical upwind passive
transport flux

(47) F2(Ul ,Ur ) =

{
F0(Ul ,Ur )ϕ

α−1
l if F0(Ul ,Ur ) ≥ 0,

F0(Ul ,Ur )ϕ
α−1
r if F0(Ul ,Ur ) ≤ 0.

Example : the Suliciu relaxation solver.
. The entropy and entropy flux of the system are

(48) η(U) = ϕh
v 2

2
+ gcϕ

h2

2
, G(U) =

(
ϕh

v 2

2
+ gcϕh

2)v .
The entropy and entropy flux of the system with topography are

(49) η̃(U, z) = η(U) + gcϕhz , G̃(U, z) = G(U) + gcϕhzv .
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Shallow water system with volume fraction

. We define now the reconstructed states

(50) h∗l =


hl −

α− 1

α− 1/2
∆z∗+ if

α− 1

α− 1/2
∆z∗+ ≤ hl

(
1−

(ϕr

ϕl

)α−1
)

+
,(

hl +
hl

2(α− 1)

(
1−

(ϕr

ϕl

)α−1
)

+
−∆z∗+

)
+

otherwise,

(51) h∗r =


hr −

α− 1

α− 1/2
∆z∗− if

α− 1

α− 1/2
∆z∗− ≤ hr

(
1−

(ϕl

ϕr

)α−1
)

+
,(

hr +
hr

2(α− 1)

(
1−

(ϕl

ϕr

)α−1
)

+
−∆z∗−

)
+

otherwise.

Then we have

(52) 0 ≤ h∗l ≤ hl , 0 ≤ h∗r ≤ hr .
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Shallow water system with volume fraction

We also define the reconstructed volume fractions

(53) ϕ∗l =

{
ϕl if ∆z ≤ 0 or ϕr ≥ ϕl ,

max
(
ϕl

(
h∗l
hl

)1/(α−1)

, ϕr

)
if ∆z ≥ 0 and ϕr ≤ ϕl ,

(54) ϕ∗r =

{
ϕr if ∆z ≥ 0 or ϕl ≥ ϕr ,

max
(
ϕr

(
h∗r
hr

)1/(α−1)

, ϕl

)
if ∆z ≤ 0 and ϕl ≤ ϕr ,

that satisfy

(55) ϕ∗l , ϕ
∗
r ∈ [ϕl , ϕr ], ϕ∗l ≤ ϕl , ϕ∗r ≤ ϕr .

Finally the reconstructed states are

(56) U∗l =
(
ϕ∗l h

∗
l , ϕ
∗
l h
∗
l vl , h

∗
l (ϕ∗l )α

)
, U∗r =

(
ϕ∗r h

∗
r , ϕ
∗
r h
∗
r vr , h

∗
r (ϕ∗r )α

)
.

The numerical fluxes are defined by

Fl(Ul ,Ur ,∆z) = F(U∗l ,U
∗
r ) +

(
0, gcϕl

h2
l

2
− gcϕ

∗
l

(h∗l )2

2
, 0
)
,

Fr (Ul ,Ur ,∆z) = F(U∗l ,U
∗
r ) +

(
0, gcϕr

h2
r

2
− gcϕ

∗
r

(h∗r )2

2
, 0
)
.
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Shallow water system with volume fraction

Theorem 2 Assume that the homogeneous solver F is upwind for the ϕ variable. Then
the numerical scheme defined by the left/right numerical fluxes (19) satisfies
(i) It is conservative in the first and third components, and reduces to the homogeneous
numerical flux F when ∆z = 0.
(ii) It is well-balanced for the steady states at rest for which ϕ = cst.
(iii) It is well-balanced for the steady states at rest for which hϕ1−α = cst.
(iv) The height h remains nonnegative if the homogeneous solver has this property.
(v) It satisfies a semi-discrete energy inequality if the homogeneous solver does.
(vi) It is consistent with the system.
(vii) If the initial volume fraction ϕ is constant, it remains constant.
(viii) The volume fraction ϕ satisfies the minimum principle (but not the maximum
principle), which means that for any k ≥ 0, the inequality ϕ ≥ k remains true if it holds
initially.
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Principle of the reconstruction

. The principle of the reconstruction relies on writing the semi-discrete entropy
inequality. It yields the sufficient condition for the left side of the interface condition

F0(U∗l ,U
∗
r )

(
α− 1/2

α− 1
(h∗l −hl)−

1

2(α− 1)

(
h∗l (ϕ∗l )1−α−hlϕ

1−α
l

)
(ϕ∗l/r )

α−1 + ∆z∗+

)
≤ 0.

. Then the definition of h∗l and ϕ∗l are such that this is identically zero when this is
possible, taking into acount the necessary monotone variations.
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A generalized model

. A generalized model has height h, velocity v , a transported variable r , and two
topographies b1, b2.

∂tr + v∂x r = 0,

∂th + ∂x(hv) = 0,

h(∂tv + v∂xv) + ghM1(r)∂xb1 + ghM2(r)∂xb2 + g∂x(r
h2

2
) = 0,

where M1(r) and M2(r) are two nonlinearities that play symmetric roles.

. The solutions at rest to the system are those for which v = 0 and

M1(r)∂xb1 + M2(r)∂xb2 + r∂xh +
h

2
∂x r = 0.

. This model includes alltogether the system with variable volume fraction with
M1(r) = 1, and the ripa model if M2(r) = r . It is involved in the modeling of granular
mixtures (work in progress).
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Conclusion

. Defining robust well balanced schemes for shallow water type systems with several
right-hand sides is difficult in general. There are multiple steady states, even if we
consider only those at rest.

. If is not straightforward to define reconstructed states that manage correctly with
several families of steady states, defining ”multi well-balanced schemes”.

. We have shown that using the formulation of the semi-discrete entropy inequality
enables to find appropriate formulas in some cases : shallow water MHD system, Euler
system with volume fraction.

. The method is quite systematic, in the sense that we can apply it without a priori idea
of what could be the formula for the reconstructed states. It gives the consistency as a
byproduct.
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