Structure preservation issues for mean-field games and entropic conservation laws

Yann Brenier,
CNRS, DMA-ENS, 45 rue d'Ulm 75005 Paris.

UNI-WÜRZBURG SEMINAR: "STRUCTURE PRESERVING NUMERICAL METHODS FOR HYPERBOLIC EQUATIONS", SEPT-DEC 2020

A typical Mean Field Game for Social Sciences

$$
\partial_{t} \rho+\nabla \cdot(\rho \nabla \theta)=\nu \Delta \rho, \quad \partial_{t} \theta+\frac{1}{2}|\nabla \theta|^{2}+\nu \Delta \theta=f(\rho)
$$

$\rho(t, x) \geq 0, \theta(t, x)$ being respectively prescribed at $t=0$ and $t=T$. Here $T>0$ and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ are given.

A typical Mean Field Game for Social Sciences

$$
\partial_{t} \rho+\nabla \cdot(\rho \nabla \theta)=\nu \Delta \rho, \quad \partial_{t} \theta+\frac{1}{2}|\nabla \theta|^{2}+\nu \Delta \theta=f(\rho)
$$

$\rho(t, x) \geq 0, \theta(t, x)$ being respectively prescribed at $t=0$ and $t=T$. Here $T>0$ and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ are given.

This is a BACKWARD-FORWARD SYSTEM ...NOT an INITIAL VALUE PROBLEM !!!

A typical Mean Field Game for Social Sciences

$$
\partial_{t} \rho+\nabla \cdot(\rho \nabla \theta)=\nu \Delta \rho, \quad \partial_{t} \theta+\frac{1}{2}|\nabla \theta|^{2}+\nu \Delta \theta=f(\rho)
$$

$\rho(t, x) \geq 0, \theta(t, x)$ being respectively prescribed at $t=0$ and $t=T$. Here $T>0$ and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ are given.

This is a BACKWARD-FORWARD SYSTEM ...NOT an INITIAL VALUE PROBLEM !!!

This MFG à la Lasry-Lions is "well-posed" with respect to data ρ_{0} and θ_{T} provided $f^{\prime} \geq 0$ and $\nu \geq 0$.

Euler, but...with an imaginary speed of sound!

For $\nu=0$, our MFG reads, in terms of $q=\rho \nabla \theta$,

$$
\partial_{t} \rho+\nabla \cdot q=0, \quad \partial_{t} q+\nabla \cdot\left(\frac{q \otimes \boldsymbol{q}}{\rho}\right)=-\nabla(p(\rho))
$$

i.e. just the Euler equations of a gas with pressure $p(\rho)=-\int_{0}^{\rho} s f^{\prime}(s) d s$ and speed of sound $\sqrt{p^{\prime}(\rho)}$.

Euler, but...with an imaginary speed of sound!

For $\nu=0$, our MFG reads, in terms of $q=\rho \nabla \theta$,

$$
\partial_{t} \rho+\nabla \cdot q=0, \quad \partial_{t} q+\nabla \cdot\left(\frac{q \otimes q}{\rho}\right)=-\nabla(p(\rho)),
$$

i.e. just the Euler equations of a gas with pressure $p(\rho)=-\int_{0}^{\rho} s f^{\prime}(s) d s$ and speed of sound $\sqrt{p^{\prime}(\rho)}$.

Thus, the well-posedness condition $f^{\prime} \geq 0$ for the MFG exactly means that the speed of sound is imaginary so that the initial value problem is ill-posed.

Euler, but...with an imaginary speed of sound!

For $\nu=0$, our MFG reads, in terms of $q=\rho \nabla \theta$,

$$
\partial_{t} \rho+\nabla \cdot \boldsymbol{q}=0, \quad \partial_{t} \boldsymbol{q}+\nabla \cdot\left(\frac{q \otimes \boldsymbol{q}}{\rho}\right)=-\nabla(p(\rho)),
$$

i.e. just the Euler equations of a gas with pressure $p(\rho)=-\int_{0}^{\rho} s f^{\prime}(s) d s$ and speed of sound $\sqrt{p^{\prime}(\rho)}$.

Thus, the well-posedness condition $f^{\prime} \geq 0$ for the MFG exactly means that the speed of sound is imaginary so that the initial value problem is ill-posed.

COROLLARY: SOCIAL SCIENCES \neq PHYSICS!!!

The numerical analysis of MFG has been done by Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta, A. Porretta.

A key point of the analysis is the careful preservation at the discrete level of the dual backward-forward structure of the MFG.

The numerical analysis of MFG has been done by Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta, A. Porretta.

A key point of the analysis is the careful preservation at the discrete level of the dual backward-forward structure of the MFG.

In particular, the linearized operators

$$
\rho \rightarrow \partial_{t} \rho-\nu \Delta \rho, \quad \theta \rightarrow \partial_{t} \theta+\nu \Delta \theta
$$

must be discretized in a consistent way.

Remark 1. An important property of \mathcal{T} is that the operator $m \mapsto\left(-\nu\left(\Delta_{h} m\right)_{i, j}-\right.$ $\left.\mathcal{T}_{i, j}(u, m)\right)_{i, j}$ is the adjoint of the linearized version of the operator $u \mapsto\left(-\nu\left(\Delta_{h} u\right)_{i, j}+\right.$ $\left.g\left(x_{i, j},\left[\nabla_{h} u\right]_{i, j}\right)\right)_{i, j}$.
This property implies that the structure of (1.1)-(1.2) is preserved in the discrete version (2.7)-(2.9). In particular, it implies the uniqueness result stated in Theorem 2.2 below.

Summary. The fully discrete scheme for system (1.1),(1.2),(1.3) is therefore the following: for all $0 \leq i, j<N_{h}$ and $0 \leq k<N_{T}$

$$
\begin{cases}\frac{u_{i, j}^{k+1}-u_{i, j}^{k}}{\Delta t}-\nu\left(\Delta_{h} u^{k+1}\right)_{i, j}+g\left(x_{i, j},\left[\nabla_{h} u^{k+1}\right]_{i, j}\right) & =F\left(m_{i, j}^{k}\right) \tag{2.11}\\ \frac{m_{i, j}^{k+1}-m_{i, j}^{k}}{\Delta t}+\nu\left(\Delta_{h} m^{k}\right)_{i, j}+\mathcal{T}_{i, j}\left(u^{k+1}, m^{k}\right) & =0\end{cases}
$$

with the initial and terminal conditions

$$
\begin{equation*}
u_{i, j}^{0}=u_{0}\left(x_{i, j}\right), \quad m_{i, j}^{N_{T}}=\frac{1}{h^{2}} \int_{\left|x-x_{i, j}\right|_{\infty} \leq h / 2} m_{T}(x) d x, \quad 0 \leq i, j<N_{h} \tag{2.12}
\end{equation*}
$$

The following theorem was proved in [5] (using essentially Brouwer's fixed point theorem and estimates on the solutions of the discrete Bellman equation):

from Yves Achdou, Alessio Porretta, 2015 hal-01137705:

 Convergence of a finite difference scheme to weak solutions of the system of partial differential equation arising in mean field games
Well-posedness: a variational proof

Provided $f^{\prime} \geq 0$, this MFG is nothing but the optimality system for the CONCAVE MAXIMIZATION PROBLEM

$$
\sup _{\theta(T, \cdot)=\theta_{T}}-\int_{0}^{T} \int_{D} G\left(\partial_{t} \theta+\nu \Delta \theta, \nabla \theta\right)-\int_{D} \rho_{0} \theta(0, \cdot)
$$

where D is the spatial domain (say $D=\mathbb{T}^{d}$) and:

$$
G(r, w)=\sup _{\rho \geq 0, q \in \mathbb{R}^{d}} r \rho+w \cdot q-\frac{|q|^{2}}{2 \rho}-\int_{0}^{\rho} f(s) d s
$$

Well-posedness: a variational proof

Provided $f^{\prime} \geq 0$, this MFG is nothing but the optimality system for the CONCAVE MAXIMIZATION PROBLEM

$$
\sup _{\theta(T, \cdot)=\theta_{T}}-\int_{0}^{T} \int_{D} G\left(\partial_{t} \theta+\nu \Delta \theta, \nabla \theta\right)-\int_{D} \rho_{0} \theta(0, \cdot)
$$

where D is the spatial domain (say $D=\mathbb{T}^{d}$) and:

$$
G(r, w)=\sup _{\rho \geq 0, q \in \mathbb{R}^{d}} r \rho+w \cdot q-\frac{|q|^{2}}{2 \rho}-\int_{0}^{\rho} f(s) d s
$$

This (roughly) explains why the MFG is well-posed.

A GENERALIZED VARIATIONAL MFG TO SOLVE THE INITIAL VALUE PROBLEM (IVP)

In Y.B. CMP 2018, we tried to solve the IVP by space-time CONVEX MINIMIZATION for the class of ENTROPIC SYSTEMS OF CONSERVATION LAWS.

A GENERALIZED VARIATIONAL MFG TO SOLVE THE INITIAL VALUE PROBLEM (IVP)

In Y.B. CMP 2018, we tried to solve the IVP by space-time CONVEX MINIMIZATION for the class of ENTROPIC SYSTEMS OF CONSERVATION LAWS.

For that goal, we found a GENERALIZED MFG, involving a vector-potential instead of a scalar one.

A GENERALIZED VARIATIONAL MFG TO SOLVE THE INITIAL VALUE PROBLEM (IVP)

In Y.B. CMP 2018, we tried to solve the IVP by space-time CONVEX MINIMIZATION for the class of ENTROPIC SYSTEMS OF CONSERVATION LAWS.

For that goal, we found a GENERALIZED MFG, involving a vector-potential instead of a scalar one.

In our opinion, this opens the way to challenging structure preservation problems at the numerical level.

Entropic system of conservation laws

$\partial_{t} U+\nabla \cdot(F(U))=0, U=U(t, x) \in \mathcal{W} \subset \mathbb{R}^{m}, x \in \mathbb{T}^{d}$,
involve a strictly convex "entropy" $\mathcal{E}: \mathcal{W} \rightarrow \mathbb{R}$ (where \mathcal{W} is convex) and an "entropy flux" $\mathcal{Z} \in \mathcal{W} \rightarrow \mathbb{R}^{d}$, such that each smooth solution U satisfies the extra conservation law $\partial_{t}(\mathcal{E}(U))+\nabla \cdot(\mathcal{Z}(U))=0$.

Entropic system of conservation laws

$\partial_{t} U+\nabla \cdot(F(U))=0, U=U(t, x) \in \mathcal{W} \subset \mathbb{R}^{m}, x \in \mathbb{T}^{d}$,
involve a strictly convex "entropy" $\mathcal{E}: \mathcal{W} \rightarrow \mathbb{R}$ (where \mathcal{W} is convex) and an "entropy flux" $\mathcal{Z} \in \mathcal{W} \rightarrow \mathbb{R}^{d}$, such that each smooth solution U satisfies the extra conservation law $\partial_{t}(\mathcal{E}(U))+\nabla \cdot(\mathcal{Z}(U))=0$.

A typical example is the (barotropic) Euler system, where $U=(\rho, q) \in \mathbb{R}_{+} \times \mathbb{R}^{d}$, with entropy $\mathcal{E}(\rho, q)=\frac{|q|^{2}}{2 \rho}+\Phi(\rho)$ and pressure $p(\rho)=\int_{0}^{\rho} s \Phi^{\prime \prime}(s) d s$.

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$.
Formation of two shock waves. (Vertical axis: $t \in[0,1 / 4]$, horizontal axis: $x \in \mathbb{T}$.)

A minimization approach to the IVP

A minimization approach to the IVP

Given U_{0} on $D=\mathbb{T}^{d}$ and $T>0$, minimize the total entropy among all weak solutions U of the IVP:

A minimization approach to the IVP

Given U_{0} on $D=\mathbb{T}^{d}$ and $T>0$, minimize the total entropy among all weak solutions U of the IVP:
$\inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U), \quad U=U(t, x) \in \mathcal{W} \subset \mathbb{R}^{m}$ subject to

A minimization approach to the IVP

Given U_{0} on $D=\mathbb{T}^{d}$ and $T>0$, minimize the total entropy among all weak solutions U of the IVP:

$$
\begin{gathered}
\inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U), \quad U=U(t, x) \in \mathcal{W} \subset \mathbb{R}^{m} \text { subject to } \\
\int_{0}^{T} \int_{D} \partial_{t} A \cdot U+\nabla A \cdot F(U)+\int_{D} A(0, \cdot) \cdot U_{0}=0
\end{gathered}
$$

for all smooth $A=A(t, x) \in \mathbb{R}^{m}$ with $A(T, \cdot)=0$.

A minimization approach to the IVP

Given U_{0} on $D=\mathbb{T}^{d}$ and $T>0$, minimize the total entropy among all weak solutions U of the IVP:

$$
\begin{gathered}
\inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U), \quad U=U(t, x) \in \mathcal{W} \subset \mathbb{R}^{m} \text { subject to } \\
\int_{0}^{T} \int_{D} \partial_{t} A \cdot U+\nabla A \cdot F(U)+\int_{D} A(0, \cdot) \cdot U_{0}=0
\end{gathered}
$$

for all smooth $A=A(t, x) \in \mathbb{R}^{m}$ with $A(T, \cdot)=0$.

The problem is not trivial since there may be many weak solutions starting from U_{0} which are not entropy-preserving (by "convex integration" à la De Lellis-Székelyhidi).

The resulting saddle-point problem

The resulting saddle-point problem

$$
\begin{aligned}
\inf _{U} \sup _{A} \int_{0}^{T} & \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U) \\
& -\int_{D} A(0, \cdot) \cdot U_{0}
\end{aligned}
$$

where $A=A(t, x) \in \mathbb{R}^{m}$ is smooth with $A(T, \cdot)=0$. Here U_{0} is the initial condition and T the final time.

The resulting saddle-point problem

$$
\begin{gathered}
\inf _{U} \sup _{A} \int_{0}^{T} \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U) \\
-\int_{D} A(0, \cdot) \cdot U_{0}
\end{gathered}
$$

where $A=A(t, x) \in \mathbb{R}^{m}$ is smooth with $A(T, \cdot)=0$. Here U_{0} is the initial condition and T the final time.
N.B. The supremum in A exactly encodes that U is a weak solution with initial condition U_{0}, each test function A acting as a Lagrange multiplier.

Reversing infimum and supremum...

Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

$$
\sup _{A(T, \cdot)=0} \inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U)-\int_{D} A(0, \cdot) \cdot U_{0}
$$

Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

$$
\begin{aligned}
& \sup _{A(T, \cdot)=0} \inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U)-\int_{D} A(0, \cdot) \cdot U_{0} \\
= & \sup _{A(T, \cdot)=0} \int_{0}^{T} \int_{D}-G\left(\partial_{t} A, \nabla A\right)-\int_{D} A(0, \cdot) \cdot U_{0},
\end{aligned}
$$

where $G(R, W)=\sup _{U \in \mathcal{W} \subset \mathbb{R}^{m}} R \cdot U+W \cdot F(U)-\mathcal{E}(U)$,
for all $(R, W) \in \mathbb{R}^{m} \times \mathbb{R}^{d \times m}$.

Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

$$
\begin{aligned}
& \sup _{A(T, \cdot)=0} \inf _{U} \int_{0}^{T} \int_{D} \mathcal{E}(U)-\partial_{t} A \cdot U-\nabla A \cdot F(U)-\int_{D} A(0, \cdot) \cdot U_{0} \\
= & \sup _{A(T, \cdot)=0} \int_{0}^{T} \int_{D}-G\left(\partial_{t} A, \nabla A\right)-\int_{D} A(0, \cdot) \cdot U_{0},
\end{aligned}
$$

where $G(R, W)=\sup _{U \in \mathcal{W} \subset \mathbb{R}^{m}} R \cdot U+W \cdot F(U)-\mathcal{E}(U)$,
for all $(R, W) \in \mathbb{R}^{m} \times \mathbb{R}^{d \times m}$.
Observe that G is automatically convex.

Comparison with our initial MFG

$$
\sup _{\theta(T, \cdot)=\theta_{T}}-\int_{0}^{T} \int_{D} G\left(\partial_{t} \theta+\nu \Delta \theta, \nabla \theta\right)-\int_{D} \rho_{0} \theta(0, \cdot)
$$

(written as a concave maximization problem) with data ρ_{0}, θ_{T}.

Comparison with our initial MFG

$$
\sup _{\theta(T, \cdot)=\theta_{T}}-\int_{0}^{T} \int_{D} G\left(\partial_{t} \theta+\nu \Delta \theta, \nabla \theta\right)-\int_{D} \rho_{0} \theta(0, \cdot)
$$

(written as a concave maximization problem) with data ρ_{0}, θ_{T}. Now, we rather have

$$
\sup _{A(T, \cdot)=0}-\int_{0}^{T} \int_{D} G\left(\partial_{t} A, \nabla A\right)-\int_{D} A(0, \cdot) \cdot U_{0}
$$

where, now, $\nu=0$ and the vector-potential A substitutes for the scalar potential θ.

Comparison with our initial MFG

$$
\sup _{\theta(T, \cdot)=\theta_{T}}-\int_{0}^{T} \int_{D} G\left(\partial_{t} \theta+\nu \Delta \theta, \nabla \theta\right)-\int_{D} \rho_{0} \theta(0, \cdot)
$$

(written as a concave maximization problem) with data ρ_{0}, θ_{T}. Now, we rather have

$$
\sup _{A(T, \cdot)=0}-\int_{0}^{T} \int_{D} G\left(\partial_{t} A, \nabla A\right)-\int_{D} A(0, \cdot) \cdot U_{0}
$$

where, now, $\nu=0$ and the vector-potential A substitutes for the scalar potential θ.
So, our maximization problem to solve the initial value problem can be seen as a generalized variational MFG involving a vector-valued potential $A=A(t, x) \in \mathbb{R}^{m}$.

Notice that, for the initial MFG
$\partial_{t} \rho+\nabla \cdot(\rho \nabla \theta)=\nu \Delta \rho, \quad \partial_{t} \theta+\frac{1}{2}|\nabla \theta|^{2}+\nu \Delta \theta=f(\rho)$,
we had: $G(r, w)=\sup _{\rho, q} r \rho+w \cdot q-\frac{|q|^{2}}{2 \rho}-\int_{0}^{\rho} f(s) d s$,

Notice that, for the initial MFG

$$
\partial_{t} \rho+\nabla \cdot(\rho \nabla \theta)=\nu \Delta \rho, \quad \partial_{t} \theta+\frac{1}{2}|\nabla \theta|^{2}+\nu \Delta \theta=f(\rho),
$$

while, for our new generalized variational MFG, to solve the IVP for the entropic conservation law with entropy $\mathcal{E}, \quad \partial_{t} U+\nabla \cdot(F(U))=0$, we just obtained

$$
G(R, W)=\sup _{U \in \mathcal{W} \subset \mathbb{R}^{m}} R \cdot U+W \cdot F(U)-\mathcal{E}(U)
$$

Main results (Y.B. CMP 2018)

Main results (Y.B. CMP 2018)

Theorem 1: If U is a smooth solution to the IVP and T is not too large

Main results (Y.B. CMP 2018)

Theorem 1: If U is a smooth solution to the IVP and T is not too large (*), then U can be recovered from the concave maximization problem which admits $A(t, x)=(t-T) \mathcal{E}^{\prime}(U(t, x))$ as solution.

Main results (Y.B. CMP 2018)

Theorem 1: If U is a smooth solution to the IVP and T is not too large (*), then U can be recovered from the concave maximization problem which admits $A(t, x)=(t-T) \mathcal{E}^{\prime}(U(t, x))$ as solution.

Theorem 2: For the Burgers equation, all entropy solutions can be recovered, for arbitrarily large T.
$\left(^{*}\right)$ more precisely if, $\forall t, x, V \in \mathcal{W}, \mathcal{E}^{\prime \prime}(V)-(T-t) F^{\prime \prime}(V) \cdot \nabla\left(\mathcal{E}^{\prime}(U(t, x))\right)>0$.

Example: the isothermal Euler equations ($p=\rho$)

Example: the isothermal Euler equations ($p=\rho$)

In that case, we end up with the minimization of

$$
\int_{[0, T] \times D} e^{\frac{1}{2} Q \cdot M^{-1} Q+u}+\int_{D} \sigma(0, \cdot) \rho_{0}+w(0, \cdot) \cdot q_{0}
$$

Example: the isothermal Euler equations ($p=\rho$)

In that case, we end up with the minimization of

$$
\int_{[0, T] \times D} e^{\frac{1}{2} Q \cdot M^{-1} Q+u}+\int_{D} \sigma(0, \cdot) \rho_{0}+w(0, \cdot) \cdot q_{0}
$$

among all fields $u=u(t, x) \in \mathbb{R}, Q=Q(t, x) \in \mathbb{R}^{d}$, $M=M(t, x)=M^{t}(t, x) \in \mathbb{R}^{d \times d}, \quad M \geq 0$,

Example: the isothermal Euler equations ($p=\rho$)

In that case, we end up with the minimization of

$$
\int_{[0, T] \times D} e^{\frac{1}{2} Q \cdot M^{-1} Q+u}+\int_{D} \sigma(0, \cdot) \rho_{0}+w(0, \cdot) \cdot q_{0}
$$

among all fields $u=u(t, x) \in \mathbb{R}, Q=Q(t, x) \in \mathbb{R}^{d}$, $M=M(t, x)=M^{t}(t, x) \in \mathbb{R}^{d \times d}, \quad M \geq 0, \quad$ obeying the challenging structural linear constraints
$u=\partial_{t} \sigma+\nabla \cdot w, Q=\partial_{t} w+\nabla \sigma, M=\mathbb{I}_{d}-\nabla w-\nabla w^{t}$
where σ and w must vanish at $t=T$.

Let us finish with the simple Burgers equation

Let us finish with the simple Burgers equation

Then, we obtain the concave maximization problem

Let us finish with the simple Burgers equation

Then, we obtain the concave maximization problem

$$
\sup _{(\rho, q)}\left\{\left.\int_{[0, T] \times \mathbb{T}}-\frac{q^{2}}{2 \rho}-q u_{0} \right\rvert\, \partial_{t} \rho+\partial_{x} q=0, \quad \rho(T, \cdot)=1\right\} .
$$

As mentioned, for arbitrarily large T, we may recover, through this problem, the correct "entropy solution" à la Kruzhkov, but only at time T and (surprisingly enough) not for $t<T$, once shocks have formed!

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$.
Formation of two shock waves. (Vertical axis: $t \in[0,1 / 4]$, horizontal axis: $x \in \mathbb{T}$.)

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$. Recovery of the solution at time $\mathrm{T}=0.1$ by convex optimization. Observe the formation of a first vacuum zone as the first shock has formed.

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$.
Recovery of the solution at time $\mathrm{T}=0.16$ by convex optimisation.
Observe the formation of a second vacuum zone as the second shock has formed.

Inviscid Burgers equation : $\partial_{t} u+\partial_{x}\left(u^{2} / 2\right)=0, u=u(t, x), x \in \mathbb{R} / \mathbb{Z}, t \geq 0$. Recovery of the solution at time $\mathrm{T}=0.225$ by convex optimisation.

Observe the extension of the two vacuum zones.

Analogy with mountain climbing: going from Everest to Lhotse without following the crest! (Partial credit to Thomas Gallouët for this analogy.)

Analogy with mountain climbing: going from Everest to Lhotse without following the crest! (Partial credit to Thomas Gallouët for this analogy.)

Thanks for your attention!

Analogy with mountain climbing: going from Everest to Lhotse without following the crest! (Partial credit to Thomas Gallouët for this analogy.)

Thanks for your attention! For more details, see Y.B. CMP 2018.

Other cases: the incompressible Euler equations

Other cases: the incompressible Euler equations

Then, we get the generalized matrix-valued MFG

$$
\sup _{(M, Q)}-\int_{[0, T] \times D} q_{0} \cdot Q+\frac{1}{2} Q \cdot M^{-1} \cdot Q,
$$

Other cases: the incompressible Euler equations

Then, we get the generalized matrix-valued MFG

$$
\sup _{(M, Q)}-\int_{[0, T] \times D} q_{0} \cdot Q+\frac{1}{2} Q \cdot M^{-1} \cdot Q,
$$

where now Q is a vector field (not necessarily divergence-free) and $M=M^{t} \geq 0$ is a field of semi-definite symmetric matrices subject to

Other cases: the incompressible Euler equations

Then, we get the generalized matrix-valued MFG

$$
\sup _{(M, Q)}-\int_{[0, T] \times D} q_{0} \cdot Q+\frac{1}{2} Q \cdot M^{-1} \cdot Q,
$$

where now Q is a vector field (not necessarily divergence-free) and $M=M^{t} \geq 0$ is a field of semi-definite symmetric matrices subject to

$$
M_{i j}(T, \cdot)=\delta_{i j}, \quad \partial_{t} M_{i j}=\partial_{j} Q_{i}+\partial_{i} Q_{j}+2 \partial_{i} \partial_{j}(-\triangle)^{-1} \partial_{k} Q^{k}
$$

Extension to some parabolic equations

Extension to some parabolic equations

Using the quadratic change of time $t \rightarrow \theta=t^{2} / 2$, as in Y.B., X. Duan (Arma 2018), we may derive from the Euler equations, with pressure $p=\rho^{2}$, the "porous medium" equation $\partial_{\theta} \rho=\Delta \rho^{2}$ and, therefore, we get for it a corresponding convex minimization problem:

$$
\inf \left\{\int_{[0, T] \times \mathbb{T}^{d}} \frac{q^{2}}{4 \sigma}-\sigma_{0} q, \text { s.t. } \partial_{\theta} \sigma+\Delta q=0, \quad \sigma(T, \cdot)=1\right\}
$$

Extension to some parabolic equations

Using the quadratic change of time $t \rightarrow \theta=t^{2} / 2$, as in Y.B., X. Duan (Arma 2018), we may derive from the Euler equations, with pressure $p=\rho^{2}$, the "porous medium" equation $\partial_{\theta} \rho=\Delta \rho^{2}$ and, therefore, we get for it a corresponding convex minimization problem:

$$
\inf \left\{\int_{[0, T] \times \mathbb{T}^{d}} \frac{q^{2}}{4 \sigma}-\sigma_{0} q, \text { s.t. } \partial_{\theta} \sigma+\Delta q=0, \quad \sigma(T, \cdot)=1\right\}
$$

which, in 1D, is a backward-forward version of the Martingale Optimal Transport Problem recently introduced by Huesmann and Trevisan.

Numerics: 2 lines of code differ from a standard (Benamou-B.) OT solver!

