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A typical Mean Field Game for Social Sciences

∂tρ +∇ · (ρ∇θ) = ν∆ρ, ∂tθ +
1
2
|∇θ|2 + ν∆θ = f (ρ)

ρ(t , x) ≥ 0, θ(t , x) being respectively prescribed at
t = 0 and t = T . Here T > 0 and f : R+ → R are given.

This is a BACKWARD-FORWARD SYSTEM
...NOT an INITIAL VALUE PROBLEM !!!

This MFG à la Lasry-Lions is "well-posed" with respect
to data ρ0 and θT provided f ′ ≥ 0 and ν ≥ 0 .
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Euler, but...with an imaginary speed of sound!

For ν = 0, our MFG reads, in terms of q = ρ∇θ,

∂tρ +∇ · q = 0, ∂tq +∇ · (q ⊗ q
ρ

) = −∇(p(ρ)),

i.e. just the Euler equations of a gas with pressure
p(ρ) = −

∫ ρ
0 sf ′(s)ds and speed of sound

√
p′(ρ).

Thus, the well-posedness condition f ′ ≥ 0 for the
MFG exactly means that the speed of sound is
imaginary so that the initial value problem is ill-posed.

COROLLARY: SOCIAL SCIENCES 6= PHYSICS!!!
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The numerical analysis of MFG has been done by
Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta, A. Porretta.

A key point of the analysis is the careful preservation
at the discrete level of the dual backward-forward
structure of the MFG.

In particular, the linearized operators

ρ→ ∂tρ− ν∆ρ, θ → ∂tθ + ν∆θ

must be discretized in a consistent way.

YB (CNRS, DMA-ENS) MFG and Conservation Laws visio-Uni-Würz., 26 Nov 2020 4 / 22



The numerical analysis of MFG has been done by
Y. Achdou, F. Camilli, I. Capuzzo-Dolcetta, A. Porretta.

A key point of the analysis is the careful preservation
at the discrete level of the dual backward-forward
structure of the MFG.

In particular, the linearized operators

ρ→ ∂tρ− ν∆ρ, θ → ∂tθ + ν∆θ

must be discretized in a consistent way.

YB (CNRS, DMA-ENS) MFG and Conservation Laws visio-Uni-Würz., 26 Nov 2020 4 / 22



from Yves Achdou, Alessio Porretta, 2015 hal-01137705:
Convergence of a finite difference scheme to weak solutions of the
system of partial differential equation arising in mean field games
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Well-posedness: a variational proof

Provided f ′ ≥ 0, this MFG is nothing but the optimality
system for the CONCAVE MAXIMIZATION PROBLEM

sup
θ(T ,·)=θT

−
∫ T

0

∫
D

G(∂tθ + ν∆θ,∇θ)−
∫

D
ρ0 θ(0, ·)

where D is the spatial domain (say D = Td ) and:

G(r ,w) = sup
ρ≥0,q∈Rd

rρ + w · q − |q|
2

2ρ
−

∫ ρ

0
f (s)ds.

This (roughly) explains why the MFG is well-posed.
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A GENERALIZED VARIATIONAL MFG
TO SOLVE THE INITIAL VALUE PROBLEM (IVP)

In Y.B. CMP 2018, we tried to solve the IVP by
space-time CONVEX MINIMIZATION for the class of
ENTROPIC SYSTEMS OF CONSERVATION LAWS.

For that goal, we found a GENERALIZED MFG,
involving a vector-potential instead of a scalar one.

In our opinion, this opens the way to challenging
structure preservation problems at the numerical level.
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Entropic system of conservation laws

∂tU +∇ · (F (U)) = 0, U = U(t , x) ∈ W ⊂ Rm, x ∈ Td ,

involve a strictly convex "entropy" E :W → R (where
W is convex) and an "entropy flux" Z ∈ W → Rd , such
that each smooth solution U satisfies the extra
conservation law ∂t(E(U)) +∇ · (Z(U)) = 0.

A typical example is the (barotropic) Euler system, where U = (ρ, q) ∈ R+ × Rd ,

with entropy E(ρ, q) = |q|2
2ρ + Φ(ρ) and pressure p(ρ) =

∫ ρ
0 sΦ”(s)ds.
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’fort.10’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Formation of two shock waves. (Vertical axis: t ∈ [0,1/4], horizontal axis: x ∈ T.)
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A minimization approach to the IVP

Given U0 on D = Td and T > 0, minimize the total
entropy among all weak solutions U of the IVP:

inf
U

∫ T

0

∫
D
E(U), U = U(t , x) ∈ W ⊂ Rm subject to

∫ T

0

∫
D
∂tA · U +∇A · F (U) +

∫
D

A(0, ·) · U0 = 0

for all smooth A = A(t , x) ∈ Rm with A(T , ·) = 0.

The problem is not trivial since there may be many weak solutions starting from U0

which are not entropy-preserving (by "convex integration" à la De Lellis-Székelyhidi).
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The resulting saddle-point problem

inf
U

sup
A

∫ T

0

∫
D
E(U)− ∂tA · U −∇A · F (U)

−
∫

D
A(0, ·) · U0

where A = A(t , x) ∈ Rm is smooth with A(T , ·) = 0.
Here U0 is the initial condition and T the final time.

N.B. The supremum in A exactly encodes that U is a
weak solution with initial condition U0,
each test function A acting as a Lagrange multiplier.
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Reversing infimum and supremum...

leads to a concave maximization problem in A, namely

sup
A(T ,·)=0

inf
U

∫ T

0

∫
D
E(U)− ∂tA · U −∇A · F (U)−

∫
D

A(0, ·) · U0

= sup
A(T ,·)=0

∫ T

0

∫
D
−G(∂tA,∇A)−

∫
D

A(0, ·) · U0,

where G(R,W ) = sup
U∈W⊂Rm

R · U + W · F (U)− E(U),

for all (R,W ) ∈ Rm × Rd×m.

Observe that G is automatically convex.
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Comparison with our initial MFG

sup
θ(T ,·)=θT

−
∫ T

0

∫
D

G(∂tθ + ν∆θ,∇θ)−
∫

D
ρ0 θ(0, ·)

(written as a concave maximization problem) with data ρ0, θT .

Now, we rather have

sup
A(T ,·)=0

−
∫ T

0

∫
D

G(∂tA,∇A)−
∫

D
A(0, ·) · U0

where, now, ν = 0 and the vector-potential A substitutes for the scalar potential θ.

So, our maximization problem to solve the initial value
problem can be seen as a generalized variational MFG
involving a vector-valued potential A = A(t , x) ∈ Rm.
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Notice that, for the initial MFG

∂tρ +∇ · (ρ∇θ) = ν∆ρ, ∂tθ +
1
2
|∇θ|2 + ν∆θ = f (ρ),

we had : G(r ,w) = sup
ρ,q

rρ + w · q − |q|
2

2ρ
−

∫ ρ

0
f (s)ds,

while, for our new generalized variational MFG, to
solve the IVP for the entropic conservation law with
entropy E , ∂tU +∇ · (F (U)) = 0, we just obtained

G(R,W ) = sup
U∈W⊂Rm

R · U + W · F (U)− E(U).
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Main results (Y.B. CMP 2018)

Theorem 1: If U is a smooth solution to the IVP and T
is not too large (*), then U can be recovered from the
concave maximization problem which admits
A(t , x) = (t − T )E ′(U(t , x)) as solution.

Theorem 2: For the Burgers equation, all entropy
solutions can be recovered, for arbitrarily large T .

(*) more precisely if, ∀ t , x ,V ∈ W, E”(V )− (T − t)F”(V ) · ∇(E ′(U(t , x))) > 0.
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Example: the isothermal Euler equations (p = ρ)

In that case, we end up with the minimization of∫
[0,T ]×D

e
1
2 Q·M−1Q+u +

∫
D
σ(0, ·)ρ0 + w(0, ·) · q0

among all fields u = u(t , x) ∈ R, Q = Q(t , x) ∈ Rd ,
M = M(t , x) = M t(t , x) ∈ Rd×d , M ≥ 0, obeying
the challenging structural linear constraints

u = ∂tσ +∇ · w , Q = ∂tw +∇σ, M = Id −∇w −∇w t

where σ and w must vanish at t = T .
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Let us finish with the simple Burgers equation

Then, we obtain the concave maximization problem

sup
(ρ,q)
{
∫
[0,T ]×T

−q2

2ρ
− qu0 | ∂tρ + ∂xq = 0, ρ(T , ·) = 1}.

As mentioned, for arbitrarily large T , we may recover,
through this problem, the correct "entropy solution" à
la Kruzhkov, but only at time T and (surprisingly
enough) not for t < T , once shocks have formed!
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’fort.10’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Formation of two shock waves. (Vertical axis: t ∈ [0,1/4], horizontal axis: x ∈ T.)
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’fort.19’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.1 by convex optimization.

Observe the formation of a first vacuum zone as the first shock has formed.
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’fort.24’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.16 by convex optimisation.

Observe the formation of a second vacuum zone as the second shock has formed.
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’fort.29’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.225 by convex optimisation.

Observe the extension of the two vacuum zones.
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Analogy with mountain climbing: going from Everest to Lhotse without following
the crest! (Partial credit to Thomas Gallouët for this analogy.)

Thanks for your attention! For more details, see Y.B. CMP 2018.
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Other cases: the incompressible Euler equations

Then, we get the generalized matrix-valued MFG

sup
(M,Q)

−
∫
[0,T ]×D

q0 ·Q +
1
2

Q ·M−1 ·Q,

where now Q is a vector field (not necessarily
divergence-free) and M = M t ≥ 0 is a field of
semi-definite symmetric matrices subject to

Mij(T , ·) = δij , ∂tMij = ∂jQi + ∂iQj + 2∂i∂j(−4)−1∂kQk .
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Extension to some parabolic equations

Using the quadratic change of time t → θ = t2/2, as in
Y.B., X. Duan (Arma 2018), we may derive from the
Euler equations, with pressure p = ρ2, the "porous
medium" equation ∂θρ = ∆ρ2 and, therefore, we get
for it a corresponding convex minimization problem:

inf{
∫
[0,T ]×Td

q2

4σ
− σ0q, s.t. ∂θσ + ∆q = 0, σ(T , ·) = 1}

which, in 1D, is a backward-forward version of the
Martingale Optimal Transport Problem recently
introduced by Huesmann and Trevisan.
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’burgers-2c’

Numerics: 2 lines of code differ from a standard (Benamou-B.) OT solver!
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