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Abstract

In this paper, we construct a sequence of hyperbolic systems (1.13) to
approximate the general system of one-dimensional nonlinear elasticity in
Lagrangian coordinates (1.14). For each fixed approximation parameter
δ, we establish the existence of entropy solutions for the Cauchy problem
(1.13) with bounded initial data (1.24).

1 Introduction

Three most classical, hyperbolic systems of two equations in one-dimension are

the system of isentropic gas dynamics in Eulerian coordinates{
ρt + (ρu)x = 0
(ρu)t + (ρu2 + P (ρ))x = 0,

(1.1)

where ρ is the density of gas, u the velocity and P = P (ρ) the pressure; the

nonlinear hyperbolic system of elasticity ut + f(v)x = 0

vt + ux = 0,
(1.2)
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where v denotes the strain, f(v) is the stress and u the velocity, which describes

the balance of mass and linear momentum, and is equivalent to the nonlinear

wave equation

vtt = f(v)xx; (1.3)

and the system of compressible fluid flow ut + (1
2
u2 + F (ρ))x = 0

ρt + (ρu)x = 0.
(1.4)

To obtain the global existence of weak solutions for nonstrictly hyperbolic systems

(two eigenvalues are real, but coincide at some points or lines), the compensated

compactness theory (cf. [22, 26] or the books [15, 23, 24]) is still a powerful and

unique method until now.

For the polytropic gas P (ρ) = cργ, where γ ≥ 1 and c is an arbitrary positive

constant, the Cauchy problem (1.1) with bounded initial data was completely

resolved by many authors (cf. [1, 4, 6, 9, 13, 14]). When P (ρ) has the same

principal singularity as the γ-law in the neighborhood of vacuum (ρ = 0), a

compact framework was first provided in [2, 3] and later, the necessary H−1

compactness of weak entropy-entropy flux pairs for general pressure function was

completed in [19].

Under the strictly hyperbolic condition f ′(v) ≥ c > 0 and some linearly

degenerate conditions vḟ ′′(v) > 0 or vḟ ′′(v) < 0 as v 6= 0, the global existence of

weak bounded solutions, or Lp solutions, 1 < p <∞ was obtained by Diperna [5]

and Lin [12], Shearer [25] respectively.

Without the strictly hyperbolic restriction, a preliminary existence result of

the nonlinear wave equation (1.3) was proved in [17] for the special case f(v) =

v|v|γ−1, γ > 1 under the assumption v ≥ 0 or v ≤ 0.

Using the Glimm’s scheme method (cf. [8]), Diperna [7] first studied the

system (1.4) in a strictly hyperbolic region. Roughly speaking, for the polytropic

case F (ρ) = cργ−1, Diperna’s results cover the case 1 < γ < 3.

Since the solutions for the case of γ > 3 always touch the vacuum, its existence

was obtained in [18] by using the compensated compactness method coupled with

some basic ideas of the kinetic formulations (cf. [13, 14]). The existence of the

Cauchy problem (1.4) for more general function F (ρ) was given in [16] under
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some conditions to ensure the H−1 compactness for all smooth entropy-entropy

flux pairs.

If all smooth entropy-entropy flux pairs satisfy the H−1 compactness, an ideal

compactness framework to prove the global existence was provided by Diperna

in [5]. For the above three systems (1.1)-(1.2) and (1.4), we can prove the H−1

compactness only for half of the entropies (weak or strong entropy).

In [19] (see also [20] for inhomogeneous system), the author constructed a

sequence of regular hyperbolic systems{
ρt + (−2δu+ ρu)x = 0
(ρu)t + (ρu2 − δu2 + P1(ρ, δ))x = 0,

(1.5)

to approximate system (1.1), where δ > 0 in (1.5) denotes a regular perturbation

constant and the perturbation pressure

P1(ρ, δ) =
∫ ρ

2δ

t− 2δ

t
P ′(t)dt = P (ρ)− 2δ

∫ ρ

2δ

1

t
P ′(t)dt. (1.6)

The most interesting point of this kind approximation is that both systems (1.5)

and (1.1) have the same entropies (or the same entropy equation). In [19], the

H−1 compactness of weak entropy-entropy flux pairs was also proved for general

pressure function P (ρ).

Let the entropy-entropy flux pairs of systems (1.1) and (1.5) be (η(ρ, u), q(ρ, u))

and (η(ρ, u), q(ρ, u) + δqa(ρ, u)) respectively. Then by using Murat-Tartar theo-

rem, we have 
η1q2 − η2q1 + δ(η1qa2 − η2qa1)

= η1 q2 − η2 q1 + δ(η1 qa2 − η2 qa1),
(1.7)

for any fixed δ ≥ 0, where the weak-star limit is denoted by w?−lim η(uε) = η(uε)

as ε goes to zero.

Paying attention to the approximation function (1.6), we know that

(η(ρ, u), δqa(ρ, u)) or (η(ρ, u), qa(ρ, u)) (1.8)

are the entropy-entropy flux pairs of system{
ρt − 2δux = 0
(ρu)t − (δu2 + 2δ

∫ ρ
2δ

1
t
P ′(t)dt)x = 0,

(1.9)
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or system {
ρt − 2ux = 0
(ρu)t − (u2 + 2

∫ ρ
2δ

1
t
P ′(t)dt)x = 0

(1.10)

respectively.

If we could prove from the arbitrary of δ in (1.7) that

< η1q2 − η2q1 >=< η1 >< q2 > − < η2 >< q1 > (1.11)

and

< η1qa2 − η2qa1 >=< η1 > qa2 > − < η2 >< qa1 >, (1.12)

where < h > denotes the weak-star limit w? − limh(ρε,δ, uε,δ) as ε, δ tend to

zero, then we would have more function equations (1.12) to reduce the strong

convergence of (ρε,δ, uε,δ) as ε, δ tend to zero.

Between systems (1.2) and (1.4), we have the following approximation{
vt − ux + δ(vu)x = 0
ut + p(v)x + δ(1

2
u2 − vp(v) +

∫ v p(s)ds)x = 0
(1.13)

which has also the same entropy equation like system (1.2). If we could prove

(1.11) and (1.12) from (1.7), then similarly we could prove the equivalence of

systems (1.2) and (1.4). Moreover, we have much more information from system

(1.13) to prove the existence of solutions for system (1.2) or (1.4).

Systems (1.13) and {
vt − ux = 0
ut + p(v)x = 0

(1.14)

have many common basic behaviors, such as the nonstrict hyperbolicity, the same

entropy equation, same Riemann invariants and so on.

By simple calculations, two eigenvalues of system (1.13) are

λ1 = δu− (δv − 1)
√
−p′(v), λ2 = δu+ (δv − 1)

√
−p′(v) (1.15)

with corresponding right eigenvectors

r1 = (1,−
√
−p′(v))T , r2 = (1,

√
−p′(v))T (1.16)

and Riemann invariants

z(u, v) = u−
∫ v √

−p′(s)ds, w(u, v) = u+
∫ v √

−p′(s)ds. (1.17)
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Moreover

∇λ1 · r1 =
4δp′(v) + (δv − 1)p′′(v)

2
√
−p′(v)

(1.18)

and

∇λ2 · r2 = −4δp′(v) + (δv − 1)p′′(v)

2
√
−p′(v)

. (1.19)

Any entropy-entropy flux pair (η(v, u), q(v, u)) of system (1.13) satisfies the ad-

ditional system

qv = δuηv + (1− δv)p′(v)ηu, qu = (δv − 1)ηv + δuηu. (1.20)

Eliminating the q from (1.20), we have

ηvv = −p′(v)ηuu. (1.21)

Therefore systems (1.13) and (1.14) have the same entropies. From these calcu-

lations, we know that system (1.13) is strictly hyperbolic in the domain {(x, t) :

0 < v < 1
δ
} or {(x, t) : v > 1

δ
}, while it is nonstrictly hyperbolic on the domain

{(x, t) : v = 1
δ
} since λ1 = λ2 when v = 1

δ
.

However, from (1.18) and (1.19), for each fixed δ, both characteristic fields

of system (1.13) are genuinely nonlinear in the domain {(x, t) : 0 < v ≤ 1
δ
} if

p′(v) < 0, p′′(v) > 0 or in the domain {(x, t) : v ≥ 1
δ
} if p′(v) < 0, p′′(v) < 0.

In the first case (p′(v) < 0, p′′(v) > 0), we have an a-priori L∞ estimate for the

solutions of system (1.13)

c1 ≤ v ≤ 1

δ
, |u| ≤M1 (1.22)

because the region

Rδ = {(v, u) : w(v, u) ≥ −M, z(v, u) ≤M, v ≤ 1

δ
}

is an invariant region, where c1 ≤ c0,( c0 is given in Theorem 1), M and M1 are

positive constants depending on the initial date, but being independent of δ. In

the second case (p′(v) < 0, p′′(v) < 0), we have the L∞ estimate

1

δ
≤ v ≤M1, |u| ≤M1 (1.23)

because the region

Rδ = {(v, u) : w(v, u) ≤M, z(v, u) ≥ −M, v ≥ 1

δ
}
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is an invariant region.

In this paper, for fixed δ > 0, we first establish the existence of entropy

solutions for the Cauchy problem (1.13) with bounded measurable initial data

(v(x, 0), u(x, 0)) = (v0(x), u0(x)). (1.24)

In a further coming paper, we will study the relation between the functions equa-

tions (1.11) and (1.12), and the convergence of approximated solutions of system

(1.13) as δ goes to zero.

Theorem 1 Suppose the initial data (v0(x), u0(x)) be bounded measurable. Let

(I): p′(v) < 0, p′′(v) > 0, c0 ≤ v0(x) ≤ 1
δ
, where c0 > 0 is a positive constant, or

(II): p′(v) < 0, p′′(v) < 0, v0(x) ≥ 1
δ
. Then the Cauchy problem (1.13) with the

bounded measurable initial data (1.24) has a global bounded entropy solution.

Note 1. The idea to use the flux perturbation coupled with the vanishing viscos-

ity was well applied by the author in [21] to control the super-line, source terms

and to obtain the L∞ estimate for the nonhomogeneous system of isentropic gas

dynamics.

Note 2. It is well known that system (1.14) is equivalent to system (1.1),

but (1.1) is different from system (1.4) although the latter can be derived by

substituting the first equation in (1.1) into the second. However, (1.4) can be

considered as the approximation of (1.14). In fact, let ρ = 1
δ
−v, x = δy in (1.13).

Then (1.13) is rewritten to the form{
ρt + (ρu)y = 0

ut + (u
2

2
+ g(ρ, δ))y = 0

(1.25)

for some nonlinear function g(ρ, δ).

Note 3. For any fixed δ > 0, the invariant region Rδ above is bounded, so

the vacuum is avoided. However, the limit of Rδ, as δ goes to zero, is the original

invariant region of system (1.14) because v could be infinity from the estimates

in (1.22).

In the next section, we will use the compensated compactness method coupled

with the construction of Lax entropies [11] to prove Theorem 1.
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2 Proof of Theorem 1

In this section, we prove Theorem 1.

Consider the Cauchy problem for the related parabolic system{
vt − ux + δ(vu)x = εvxx
ut + p(v)x + δ(1

2
u2 − vp(v) +

∫ v p(s)ds)x = εuxx,
(2.1)

with the initial data (1.24).

We multiply (2.1) by (wv, wu) and (zv, zu), respectively, to obtain

wt + λ2wx = εwxx +
εp′′(v)

2
√
−p′(v)

v2x, (2.2)

and

zt + λ1zx = εzxx −
εp′′(v)

2
√
−p′(v)

v2x. (2.3)

Then the assumptions on p(v) yield

wt + λ2wx ≥ εwxx (2.4)

and

zt + λ1zx ≤ εzxx (2.5)

if p′(v) < 0, p′′(v) > 0; or

wt + λ2wx ≤ εwxx (2.6)

and

zt + λ1zx ≥ εzxx (2.7)

if p′(v) < 0, p′′(v) < 0.

If we consider (2.4) and (2.5) (or (2.6) and (2.7)) as inequalities about the

variables w and z, then we can get the estimates w(vε,δ, uε,δ) ≥ −M, z(vε,δ, uε,δ) ≤
M by applying the maximum principle to (2.4) and (2.5) (or w(vε,δ, uε,δ) ≤
M, z(vε,δ, uε,δ) ≥ −M by applying the maximum principle to (2.6) and (2.7)).

Then, using the first equation in (2.1), we get vε,δ ≤ 1
δ

or vε,δ ≥ 1
δ

depending on

the conditions on v0(x). Therefore, the region

Rδ = {(v, u) : w(v, u) ≥ −M, z(v, u) ≤M, v ≤ 1

δ
}
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or

Rδ = {(v, u) : w(v, u) ≤M, z(v, u) ≥ −M, v ≥ 1

δ
}

is respectively an invariant region. Thus we obtain the estimates given in (1.22)

or (1.23) respectively.

It is easy to check that system (1.13) has a strictly convex entropy when v ≤ 1
δ

or v ≥ 1
δ

η? =
u2

2
−

∫ v ∫ s

p′(τ)dτds. (2.8)

We multiply (2.1) by (η?v , η
?
u) to obtain the boundedness of

ε(vx, ux) · ∇2η?(v, u) · (vx, ux)T (2.9)

in L1
loc(R×R+). Then it follows that

−εp′(v)v2x + εu2x (2.10)

is bounded in L1
loc(R×R+). Since 0 < C1(δ) ≤ −p′(v) ≤ C2(δ) for some bounded

constants C1(δ), C2(δ) when v ≤ 1
δ

or v ≥ 1
δ
, we get the boundedness of

εv2x, εu2x in L1
loc(R×R+) (2.11)

for any fixed δ > 0.

Now we multiply (2.1) by (ηv(v, u), ηu(v, u)), where η(v, u) is any smooth

entropy of system (1.13), to obtain

η(v, u)t + q(v, u)x = εη(v, u)xx + ε(vx, ux) · ∇2η(v, u) · (vx, ux)T , (2.12)

where q(v, u) is the entropy-flux corresponding to η(v, u). Then using the estimate

given in (2.11), we know that the first term in the right-hand side of (2.12) is

compact in W−1,∞
loc (R × R+), and the second is bounded in L1

loc(R × R+). Thus

the term in the left-hand side of (2.12) is compact in H−1loc (R×R+).

Then for smooth entropy-entropy flux pairs (ηi(δ, v, u), qi(δ, v, u)), i = 1, 2, of

system (1.13), the following measure equations or the communicate relations are

satisfied

< νδ(x,t), η1(δ)q2(δ)− η2(δ)q1(δ) >
=< νδ(x,t), η1(δ) >< νδ(x,t), q2(δ) > − < νδ(x,t), η2(δ) >< νδ(x,t), q1(δ) >,

(2.13)
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where νδ(x,t) is the family of positive probability measures with respect to the

viscosity solutions (vε,δ, uε,δ) of the Cauchy problem (2.1) and (1.24).

To finish the proof of Theorem 1, it is enough to prove that Young measures

given in (2.13) are Dirac measures.

For applying for the framework given by DiPerna in [5] to prove that Young

measures are Dirac ones, we construct four families of entropy-entropy flux pairs

of Lax’s type in the following special form:

η1k = ekw(a1(v) +
b1(v, k)

k
), q1k = η1k(λ2 +

c1(v, k)

k
+
d1(v, k)

k2
); (2.14)

η2−k = e−kw(a2(v) +
b2(v, k)

k
), q2−k = η2−k(λ2 +

c2(v, k)

k
+
d2(v, k)

k2
); (2.15)

η2k = ekz(a3(v) +
b3(v, k)

k
), q2k = η2k(λ1 +

c3(v, k)

k
+
d3(v, k)

k2
); (2.16)

η1−k = e−kz(a4(v) +
b4(v, k)

k
), q1−k = η1−k(λ1 +

c4(v, k)

k
+
d4(v, k)

k2
), (2.17)

where w, z are the Riemann invariants of system (1.13) given by (1.17). Notice

that all the unknown functions ai, bi(i = 1, 2, 3, 4) are only of a single variable v.

This special simple construction yields an ordinary differential equation of second

order with a singular coefficient 1/k before the term of the second order derivative.

Then the following necessary estimates for functions ai(v), bi(v, k), ci(v, k), di(v, k)

are obtained by the use of the singular perturbation theory of ordinary differential

equations:

0 < ai(v) ≤M2, |bi(v, k)| ≤M2, (2.18)

0 < ci(v, k) ≤M2, ( or −M2 ≤ ci(v, k) < 0), |di(v, k)| ≤M2 (2.19)

uniformly for 0 < c1 ≤ v ≤ 1
δ

or 1
δ
≤ v ≤ M1, where i = 1, 2, 3, 4 and M2 is a

positive constant independent of k.

In fact, substituting entropies η1k = ekw(a1(ρ) + b1(ρ, k)/k) into (1.21), we

obtain that

k[2
√
−p′(v)a′1−

p′′(v)√
−2p′(v)

a1] + a′′1 + 2
√
−p′(v)b′1−

p′′(v)√
−2p′(v)

b1 +
b′′1
k

= 0. (2.20)

Let

2
√
−p′(v)a′1 −

p′′(v)√
−2p′(v)

a1 = 0 (2.21)
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and

a′′1 + 2
√
−p′(v)b′1 −

p′′(v)√
−2p′(v)

b1 +
b′′1
k

= 0. (2.22)

Then

a1 =
√
−p′(v) > 0. (2.23)

The existence of b1(v, k) and its uniform bound |b1(v, k)| ≤M2 on 0 < c1 ≤ v ≤ 1
δ

or 1
δ
≤ v ≤ M1 with respect to k can be obtained by the following lemma (cf.

[10]) (also see Lemma 10.2.1 in [15]):

Lemma 2 Let Y (x) ∈ C2[0, h] be the solution of the equation

F (x, Y, Y ′) = 0,

and functions f(x, y, z, λ), F (x, y, z) be continuous on the regions 0 ≤ x ≤ h, |y−
Y (x)| ≤ l(x), |z − Y ′(x)| ≤ m(x) for some positive functions l(x),m(x) and

λ0 > λ > 0. In addition,

|f(x, y, z, λ)− F (x, y, z)| ≤ ε,

|F (x, y2, z)− F (x, y1, z)| ≤M |y2 − y1|,
F (x, y, z2)− F (x, y, z1)

z2 − z1
≥ L

for some positive constants ε,M and L.

If y(x) = y(x, λ) is a solution of the following ordinary differential equation

of second order:

λy′′ + f(x, y, y′, λ) = 0,

with y(0) = Y (0) and y′(0) being arbitrary, then for sufficiently small λ > 0, ε > 0

and P = |y′(0)− Y ′(0)|, y(x) exists for all 0 ≤ x ≤ h and satisfies

|y(x, λ)− Y (x)| <
[ ε
M

+ λ(
P

L
+
N

M
)
]
exp(

Mx

L
),

where N = max
0≤x≤h

|Y (x)|.

Furthermore, we can use Lemma 2 again to obtain the bound of b′1 with respect

to k if we differentiate Equation (2.22) with respect to v.
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By the second equation in (1.20), an entropy flux q1k corresponding to η1k is

provided by

q1k = λ2η
1
k + ekw(

(δv − 1)a′1 − δa1
k

+
(δv − 1)b′1 − δb1

k2
), (2.24)

where

(δv − 1)a′1 − δa1 = −(δv − 1)p′′(v)

2
√
−p′(v)

− δ
√
−p′(v) < 0 (2.25)

if v ≤ 1
δ
, p′′(v) > 0 or v ≥ 1

δ
, p′′(v) < 0, and (δv − 1)b′1 − δb1 both are bounded

uniformly on v ∈ [c1,
1
δ
] or v ∈ [1

δ
,M1].

In a similar way, we can obtain estimates on another three pairs of entropy-

entropy flux of Lax type. Hence Theorem 1 is proved when we use these entropy-

entropy flux pairs in (2.14)-(2.17) together with the theory of compensated com-

pactness coupled with DiPerna’s framework [5].
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