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Introduction

• We consider 1d balance laws of the form

Ut + F (U)x = S(U)Hx , (1)

where U(x , t) takes values in Ω ⊂ RN , F : Ω→ RN is the flux function;
S : Ω→ RN ; and H is a known function from R→ R (possibly the identity
function H(x) = x).

• Stationary solutions:
F (U)x = S(U)Hx .

Main objective

To design high-order finite volume methods that preserve all or a
representative set of the stationary solutions of system (1): high order
Well-balanced finite volume schemes.



High-order finite volume methods

• For systems of conservation laws:

Ut + F (U)x = 0,

we consider numerical methods of the form:

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
, (2)

where
• Ui (t) is the approximation given by the numerical method of the average of the

exact solution at the i th cell, [xi−1/2, xi+1/2] at time t ;

• Fi+1/2(t) = F(U t,−
i+1/2,U

t,+
i+1/2);

• F is a consistent first order numerical flux;

• U t,−
i+1/2 = P t

i (xi+1/2), U t,+
i+1/2 = P t

i+1(xi+1/2);

• P t
i (x) is the approximation of the solution at the i th cell obtained by applying a

high-order reconstruction operator to {Ui (t)}.
• Examples: ENO, WENO, CWENO, or hyperbolic reconstructions: see [HEOC97],

[Mar94], [Shu97], [SO89],[DBTM08, DK07, DKTT07], [LPR00], [CS16].



High-order finite volume methods

• For systems of conservation laws:

Ut + F (U)x = 0,

we consider numerical methods of the form:

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
, (2)

Time discretization

(2) is an ODE system which is solved by using a high order numerical solver
with good properties, as the TVD Runge-Kutta schemes (see [GS98], [SO88])
or ADER schemes (see [DK07], [DKTT07]).
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Well-balanced high-order finite volume scheme

• Let us consider the system

Ut + F (U)x = S(U)Hx , (3)

where H(x) is supposed to be a known continuous function.
• We consider high-order finite volume numerical methods of the form:

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
+

1
∆x

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx (x) dx .

(4)

Well-balanced

The numerical scheme (4) is well balanced for the stationary solution U if the
vector of the cell-averages of U, {Ui}, is an equilibrium of the ODE system (4)

Remarks

1 Typically,
1

∆x

∫ xi+1/2

xi−1/2

U(x) dx ≈ U(xi ) = Ui ,

for low order schemes (first and second order).



Well-balanced high-order finite volume scheme

• Let us consider the system

Ut + F (U)x = S(U)Hx , (3)

where H(x) is supposed to be a known continuous function.
• We consider high-order finite volume numerical methods of the form:

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
+

1
∆x

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx (x) dx .

(4)

Well-balanced

The numerical scheme (4) is well balanced for the stationary solution U if the
vector of the cell-averages of U, {Ui}, is an equilibrium of the ODE system (4)

Remarks

1 In general, we use a high-order quadrature formula to approximate the cell
averages

1
∆x

∫ xi+1/2

xi−1/2

U(x) dx ≈
M∑

j=0

αj U(x j
i ) = Ui ,



Well-balanced high-order finite volume scheme

• Given a continuous stationary solution U of (3), the reconstruction
operator is said to be well-balanced for U if

Pi (x) = U(x), ∀x ∈ [xi−1/2, xi+1/2], ∀i , (5)

where Pi is the approximation of U obtained by applying the
reconstruction operator to the sequence of cell averages of U, {Ui}

Theorem

If the reconstruction operator is well-balanced for a stationary solution U,
then the numerical method (4) is also well-balanced for U, in the sense that
the vector of the cell-averages of U is an equilibrium of the ODE system (4).



Well-balanced high order reconstruction operator

But, a standard reconstruction operator is not expected in general to be
well-balanced.

Well-balanced high order reconstruction operator (see [CLP08, CP20])
Given a family of cell averages {Ui}, at every cell [xi−1/2, xi+1/2]:

1 Look for the stationary solution U∗i (x) such that

1
∆x

∫ xi+1/2

xi−1/2

U∗i (x) dx = Ui . (6)

2 Apply the reconstruction operator to the cell values {Vj}j∈Si given by

Vj = Uj −
1

∆x

∫ xj+1/2

xj−1/2

U∗i (x) dx ,

to obtain
Qi (x) = Qi (x ; {Vj}j∈Si ).

3 Define
Pi (x) = U∗i (x) + Qi (x).



Well-balanced high order reconstruction operator: comments

• Remarks:
• If Qi is exact for the zero function, conservative, and high order accurate,

then Pi is well-balanced for every stationary solution; conservative, i.e.

1
∆x

∫ xi+1/2

xi−1/2

Pi (x) dx = Ui , ∀i,

and it is high-oder accurate provided that the stationary solutions are smooth
(see [CLP08]).

• If the problem (6) has no solution, then U∗i ≡ 0 is chosen so that the
reconstruction operator reduces to the standard one.

• If the problem (6) has more than one solution a criterion to select one of
them is needed (see for example [CDLGP13]).

• This strategy can be easily adapted to obtain an operator which is
well-balanced for a prescribed set C of stationary solutions.

• If there is only a stationary solution U∗ to preserve, then step 1 is skipped
and U∗i = U∗ in steps 2 and 3.



Well-balanced high-order finite volume scheme: quadrature formula

• The well-balancing property can be lost if a quadrature formula is used to
compute the integral:

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
+

1
∆x

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx (x) dx .

• To avoid this problem the numerical scheme is written in the equivalent
form:

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)− F (U t,∗

i (xi+1/2)) + F (U t,∗
i (xi−1/2))

)
+

1
∆x

∫ xi+1/2

xi−1/2

(
S(P t

i (x))− S(U t,∗
i (x))

)
Hx (x) dx , (7)

where U t,∗
i is the stationary solution found at the first step of the

reconstruction procedure at the i th cell and time t .



Well-balanced high-order finite volume scheme: quadrature formula

• The well-balancing property can be lost if a quadrature formula is used to
compute the integral:

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
+

1
∆x

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx (x) dx .

• Now, a high-order quadrature formula could be used to approximate the
source term integral.

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)− F (U t,∗

i (xi+1/2)) + F (U t,∗
i (xi−1/2))

)
+

M∑
j=0

αi
j

(
S(P t

i (x i
j ))− S(U t,∗

i (x i
j ))
)

Hx (x i
j ), (7)

where αi
0, . . . , α

i
M and x i

0, . . . , x
i
M are respectively the weights and the

nodes of the quadrature rule used in the i th cell.



Well-balanced high-order finite volume scheme: quadrature formula

• The well-balancing property can be lost if a quadrature formula is used to
compute the integral:

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
+

1
∆x

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx (x) dx .

• First and second order schemes reduce to

U ′i (t) = − 1
∆x

(
Fi+1/2(t)− Fi−1/2(t)− F (U t,∗

i (xi+1/2)) + F (U t,∗
i (xi−1/2))

)
,

supposing that (6) is satisfied.



Burgers equation with source term: Example 1

• Let us consider the Burgers equation with a non-linear source term ut +

(
u2

2

)
x

= u2Hx , x ∈ R, t > 0

u(x , 0) = u0(x).

• The system can be written in the form

Ut + F (U)x = S(U)Hx ,

with

U = u, F (U) =
U2

2
, S(U) = U2.

• Stationary solutions are given by

u′(x) = u(x)Hx ,

that is
u∗(x) = C0eH(x).



H continuous: stationary solution

Setting of the experiment

• x ∈ (−1, 1), t ∈ (0, 8]. CFL = 0.9, H(x) = x .
• We consider 4 uniform meshes with 100, 200, 400, and 800 cells.
• Inflow boundary condition is set at x = −1 and free boundary conditions

are set at x = 1.
• Initial condition: U0(x) = ex .
• Rusanov flux.
• First, second (MUSCL) and third order (CWENO) schemes are

considered.
• First, second and third order Runge-Kutta TVD are considered.



H continuous: stationary solution

Figure: Solution at t = 8s: first, second and third order well-balanced schemes.
Number of cells: 100



H continuous: stationary solution

Figure: Solution at t = 8s: first, second and third order non well-balanced schemes.
Number of cells: 100



H continuous: stationary solution

Cells Error (1st ) Order (1st ) Error (2nd ) Order (2nd ) Error (3rd ) Order (3rd )
100 4.21E-15 - 8.87E-16 - 3.20E-16 -
200 2.90E-15 - 4.42E-16 - 2.54E-16 -
400 1.84E-14 - 1.82E-15 - 7.40E-14 -
800 4.45E-16 - 1.83E-16 - 2.61E-15 -

Table: Well-balanced schemes: L1 errors and convergence rates for the stationary
solution.

Cells Error (1st ) Order (1st ) Error (2nd ) Order (2nd ) Error (3rd ) Order (3rd )
100 1.58E-01 - 5.42E-02 - 3.12E-02 -
200 7.51E-02 1.08 1.48E-02 1.87 5.41E-03 2.54
400 3.66E-02 1.04 3.91E-03 1.92 7.33E-04 2.87
800 1.81E-02 1.04 1.01E-03 1.98 9.49E-05 2.95

Table: Non well-balanced schemes: L1 errors and convergence rates for the stationary
solution.



H continuous: Perturbation of a stationary solution

Setting of the experiment

• x ∈ (−1, 1), t ∈ (0, 8]. CFL = 0.9, g = 1.0.
• We consider 4 uniform meshes with 100, 200, 400, and 800 cells.
• Inflow boundary condition is set at x = −1 and free boundary conditions

are set at x = 1.
• Initial condition: U0(x) = ex + 0.3e−200(x+0.5)2

.
• Rusanov flux.
• First, second (MUSCL) and third order (CWENO reconstruction)

schemes are considered.
• First, second and third order Runge-Kutta TVD are considered.
• A reference solution computed with a first order well-balanced scheme

on a fine mesh (12800 cells) is considered.



H continuous: Perturbation of a stationary solution

Figure: Initial condition. Number of cells: 200.



H continuous: Perturbation of a stationary solution

Figure: Solution at time t = 0.5 s. Well-balanced schemes (left) (100 cells) and non
well-balanced schemes (right) (200 cells) .



H continuous: Perturbation of a stationary solution

Figure: Solution at time t = 1.0 s. Well-balanced schemes (left) (100 cells) and non
well-balanced schemes (right) (200 cells).



H continuous: Perturbation of a stationary solution

Figure: Solution at time t = 8.0 s. Well-balanced schemes (left) (100 cells) and non
well-balanced schemes (right) (200 cells).



1D Shallow-water equations

Ut + F (U)x = S(U)Hx

with

U =

[
h
q

]
, F (U) =

 q
q2

h
+

1
2

gh2

 , S(U) =

[
0

gh

]
.

The variable x makes reference to the axis of the channel and t is the time;
q(x , t) and h(x , t) are the discharge and the thickness, respectively; g is the
gravity and H(x) is the depth function measured from a fixed reference level.

Stationary solutions:

q = q̄, g(h − H) +
q̄2

2h2 = C,

where q̄ and C are two real constants.
In [CPMP07] we propose a first order fully well-balanced scheme for the
shallow-water system with variable cross-section, and later on, in [CDLGP13],
we extend it to high-order. More recently in [CCMdL18] and [MdLCC19] we
propose a first and high-order L-P scheme for the shallow-water system as
well as a first order semi-implicit version of the scheme.



Stationary transcritical smooth solution

We consider a stationary solution with a transition at xcrit = 1.5 characterized
by the constants:

q̄ = 2.5, C = 17.56957396120237, g = 9.812.

The depth function is given by

H(x) =


0.5− 0.25(1 + cos(5π(x + 0.5))) if 1.3 ≤ x ≤ 1.7,

0.5 otherwise.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Free surface
Topography

Figure: Stationary solution: Free surface and topography.



Stationary transcritical smooth solution

We consider a stationary solution with a transition at xcrit = 1.5 characterized
by the constants:

q̄ = 2.5, C = 17.56957396120237, g = 9.812.

The depth function is given by

H(x) =


0.5− 0.25(1 + cos(5π(x + 0.5))) if 1.3 ≤ x ≤ 1.7,

0.5 otherwise.

N. cells L1 error h L1 error q
50 9.99e-17 5.32e-17

100 1.04e-16 1.27e-15
200 1.03e-15 7.95e-15
400 3.36e-15 2.91e-14

Table: Transcritical stationary solution: Errors in L1 norm for the third order exactly
well-balanced for all stationary states method.



Stationary transcritical smooth solution

We consider a stationary solution with a transition at xcrit = 1.5 characterized
by the constants:

q̄ = 2.5, C = 17.56957396120237, g = 9.812.

The depth function is given by

H(x) =


0.5− 0.25(1 + cos(5π(x + 0.5))) if 1.3 ≤ x ≤ 1.7,

0.5 otherwise.

N. cells L1 error h L1 error q order h order q
100 1.39e-3 1.06e-2 - -
200 1.55e-4 1.12e-3 3.16 3.24
400 1.89e-5 1.25e-4 3.03 3.16
800 2.22e-6 1.42e-5 3.08 3.13

Table: Transcritical stationary solution: Errors in L1 norm for the third order
well-balanced for water-at-rest method.



Perturbation around a transcritical solution

A perturbation of size ∆h = 0.02 is imposed to the thickness h in the interval
[1.1, 1.2].
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Figure: Evolution of the perturbation in a mesh of 150 cells at time t = 0.15 (the
reference solution has been computed using a mesh composed by 2000 cells).



1D Euler equations

• System:

Ut + F (U)x = S(U)H(x)x

with

U =

 ρ
ρu
E

 , F (U) =

 ρu
ρu2 + P

u(E + P)

 , S(U) =

 0
−ρ
−ρu

 .
P = (γ − 1)ρe;

E = ρe +
1
2
ρu2.

g = 1, γ = 5/3. and H(x) = gx .
• A family of stationary solutions with u = 0:

ρ∗(x) = C1e−H(x) ≥ 0 P∗(x) = C1e−H(x) + C2 ≥ 0, E∗(x) =
P∗(x)

γ − 1
.

(7)
where C1 and C2 are arbitrary constants.



1D Euler equations: stationary solution

Setting of the experiment

• x ∈ (−1, 1), t ∈ (0, 10], CFL = 0.9.
• We consider a uniform mesh with 100 cells.
• Wall boundary conditions at x = −1 and x = 1.
• Initial condition:

ρ0(x) = e−x , P0(x) = e−x , u0(x) = 0.

• First, second and third order (CWENO reconstruction) schemes are
considered.
• First, second and third order Runge-Kutta TVD are considered.



1D Euler equations: stationary solution

Reconstruction procedure:
• Look for C t

1,i such that ρt,∗
i (x) = α(x ,C t

1,i ) satisfies:

1
∆x

∫ xi+1/2

xi−1/2

ρt,∗
i (x) dx = ρi .

• Look for C t
2,i such that

E t,∗
i (x) =

β(x ,C t
1,i ,C

t
2,i )

γ − 1
.

satisfies
1

∆x

∫ xi+1/2

xi−1/2

E t,∗
i (x) dx = Ei .

Notice that the EOS has been used in the second step. In practice, the
integrals in the above steps have to be replaced by the corresponding
quadrature formula. Momentum is reconstructed using a standard
reconstruction operator.



1D Euler equations: stationary solution

Cells Error (1st ) Order (1st ) Error (2nd ) Order (2nd ) Error (3rd ) Order (3rd )
100 4.28E-16 - 4.03E-16 - 5.93E-15 -
200 5.86E-16 - 3.63E-16 - 3.05E-15 -
400 4.44E-16 - 4.23E-16 - 5.33E-14 -
800 9.59E-16 - 5.90E-16 - 2.21E-14 -

Table: Well-balanced schemes: L1 errors and convergence rates for the stationary
solution.

Cells Error (1st ) Order (1st ) Error (2nd ) Order (2nd ) Error (3rd ) Order (3rd )
100 2.35E-02 - 2.27E-05 - 2.15E-06 -
200 1.18E-02 1.00 4.87E-06 2.22 7.51E-08 4.84
400 5.85E-03 1.00 1.21E-06 2.00 5.93E-09 3.66
800 2.91E-03 1.00 3.02E-07 2.00 7.38E-10 3.01

Table: Non well-balanced schemes: L1 errors and convergence rates for the stationary
solution.



Shock tube problem

We consider the shock tube problem given by the initial condition with wall
boundary conditions:

(ρ(x , 0), u(x , 0), p(x , 0)) =

{
(1, 0, 1) if x ≤ 0.5,
(0.125, 0, 0.1) if x > 0.5, x ∈ [0, 1],



Shock tube problem
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Figure: Shock tube problem: density at t = 0.2 s. Well-balanced schemes (left) and
non well-balanced schemes (right) (400 cells) .



Shock tube problem
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Figure: Shock tube problem: velocity at t = 0.2 s. Well-balanced schemes (left) and
non well-balanced schemes (right) (400 cells) .



Shock tube problem
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Figure: Shock tube problem: pressure at t = 0.2 s. Well-balanced schemes (left) and
non well-balanced schemes (right) (400 cells) .



Computing the stationary solutions

Main difficulty

At each time step, a local stationary solution defined at the stencil of the
reconstruction operator should be computed satisfying:
•

1
∆x

∫ xi+1/2

xi−1/2

U∗i (x) dx = Ui .

• In some cases, the stationary solutions are known and this problem can
be solved, but in general it may be difficult and costly. Different strategies
could be used.



Computing the stationary solutions: the control problem

• We reformulate the previous problem as a control one (see [GCP20]):

min
U0∈RN

∣∣∣∣∣∣ 1
∆x

∫ x
i+ 1

2

x
i− 1

2

U∗i (x) dx − Un
i

∣∣∣∣∣∣
2

(8)

subject to : {
F (U∗i )x = S(U∗i )Hx ,

U∗i (xi− 1
2

) = U0,
(9)

• A numerical method is used to approximate the Cauchy problems.
• Newton method is used based on the adjoint state computation with the

initial guess U0 = Un
i .



Computing the stationary solutions

Approximated WB reconstruction operators

To implement the well-balanced reconstruction operator, the following
ingredients have to be chosen:
• Quadrature rules at the cells∫ xi+1/2

xi−1/2

g(x) dx ∼= ∆x
M∑

l=0

αl
ig(x l

i ). (10)

• A numerical method for solving the Cauchy problems that is reversible or
symmetric, that is,

Φh ◦ Φ−h = Id , or equivalently Φh = Φ−1
−h, (11)

where Φh is the iteration funcion that characterizes the method.
• Meshes of maximum step h at the cells [xi−1/2, xi+1/2] whose set of

nodes include the quadrature points x l
i and xi±1/2.



Computing the stationary solutions

With the previous ingredients, it can be proved that the numerical method is
well-balanced in the following sense: given the vector of cell averages {Ui} of
a stationray solution U that has been computed with the cuadrature formula
(10) and with a numerical method that satisfies (11), then {Ui} is an
equilibrium of the ODE system (4).
In the previous result, we consider that the numerical procedure to solve the
control problem converges up to machine precision.



Some particular situations

Let us consider the smooth stationary solutions for the Euler equations of gas
dynamics with u = 0. Those could be determined, if for example, the stationay density
profile ρ is given, and then pressure P should be a primitive of the density and E is
determined using EOS. For example E(x) = P(x)

γ−1 .
We could proceed as follows:
• Given a stencil Si around the cell Ii , compute some high-order polynomial

reconstruction of the density ρ, on the complete stencil: ρ∗i (x), satisfying that

1
∆x

∫ xi+1/2

xi−1/2

ρ∗(x) dx = ρi .

• Define P∗i (x) a primitive of −ρ∗i (x)H(x)x satisfying

1
∆x

∫ xi+1/2

xi−1/2

P∗i (x) dx = Pi

• Define E∗i (x) using EOS.
• Next, we apply the general procedure to the approximated stationary solution

given by

U∗i (x) =

 ρ∗i (x)
0

E∗i (x)

 .
to construct a well-balanced numerical scheme that preserves the previous
discrete approximation of the stationary solutions.



Euler equations

Smooth stationary solutions of the Euler equations of gas dynamics are given
by qx = 0,

dÛ
dx

= G(x , Û),
(12)

where

Û =

(
ρ
E

)
, G(x , Û) = −


ρ

c2 − u2

ρ

γ − 1

(
1 +

3− γ
2

u2

c2 − u2

)
Hx ,

where

c =

√
γ

p
ρ

is the wave speed.



Euler equations

As initial condition, we compute the supersonic stationary solution which
solves the Cauchy problem:

qx = 0,

dÛ
dx

= G(x , Û),

ρ(−1) = 1, q(−1) = 10, E(−1) = 52.

(13)

with x ∈ [−1, 1], being H(x) = x .

Now, we consider first, second and third order well-balanced and not
well-balanced schemes with CFL = 0.9. Boundary conditions are imposed
upstream and open boundary conditions are set downstream.



Euler equations
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(b) WB schemes: Density

Figure: Differences between the stationary solution and the numerical solutions at time
t = 5s . Number of cells: 100.



Euler equations
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(a) NWB schemes: Momentum
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(b) WB schemes: Momentum

Figure: Differences between the stationary solution and the numerical solutions at time
t = 5s . Number of cells: 100.



Euler equations

Now we consider a small perturbation of the previous stationary solution
U∗(x)

U0(x) = U∗(x) +

0.3e−200(x+0.5)2

0.0
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(a) NWB schemes. t = 0.05.
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(b) WB schemes. t = 0.05.

Figure: Density at time t = 0.05s. Number of cells: 100.



Euler equations

Now we consider a small perturbation of the previous stationary solution
U∗(x)

U0(x) = U∗(x) +

0.3e−200(x+0.5)2
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(a) NWB schemes. Zoom at t = 5.
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(b) WB schemes. Zoom at t = 5.

Figure: Density: zoom at time t = 5s. Number of cells: 100.



Euler equations

Now we consider a small perturbation of a u = 0 smooth stationary solution
given by

U0(x) = U∗(x) +

0.4e−200x2

0.0
0.0

 , U∗(x) =

 ex

0
ex

γ−1

 .

We compare two different WB numerical schemes of second order:
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(a) Comparison of two different WB schemes.
t = 5s.
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(b) Comparison of two different WB schemes.
t = 10s.

Figure: Density at time t = 5 and t = 10: WB1 scheme (blue), WB2 scheme (red),
reference solution (black). Number of cells: 200.



2D Euler equations with gravity in polar coordinates

We consider the 2D Euler equations with gravity in polar coordinates (see
[GCD18]):

Ut + F (U)r + G(U)ϕ = S(U)H(ϕ)ϕ.

with H(ϕ) = ϕ,

U =


rρ

rρur

rρuϕ
rρE

 , F (U) =


rρur

rρu2
r + rP

rρur uϕ
rur (ρE + P)

 , G(U) =


ρuϕ
ρur uϕ
ρu2
ϕ + P

uϕ(ρE + P)



S(U) =


0

−ρGms
r + P + ρu2

ϕ

−ρur uϕ
−ρur

Gms
r


ms is the solar mass, G the gravitational constant and the pressure P is

given by

P = (γ − 1)

(
ρE − 1

2
ρ
(

u2
r + u2

ϕ

))
, γ =

cp

cv
> 1,

where γ is the ratio between heat at constant pressure and volume, which is
taken to be constant.



2D Euler equations with gravity in polar coordinates

We consider the 2D Euler equations with gravity in polar coordinates (see
[GCD18]):

Ut + F (U)r + G(U)ϕ = S(U)H(ϕ)ϕ.

with H(ϕ) = ϕ,

U =


rρ

rρur

rρuϕ
rρE

 , F (U) =


rρur

rρu2
r + rP

rρur uϕ
rur (ρE + P)

 , G(U) =


ρuϕ
ρur uϕ
ρu2
ϕ + P

uϕ(ρE + P)



S(U) =


0

−ρGms
r + P + ρu2

ϕ

−ρur uϕ
−ρur

Gms
r


Stationary solutions:

ρ = ρ(r), ur = 0,
∂uϕ
∂ϕ

= 0,
∂rP
∂r

= −ρ
(

Gms

r
− u2

ϕ

)
+ P.



Keplerian disc with Kelvin-Helmholtz instabilities

Stationary Keplerian disc:

ρ∗ = ρ0 + ρ1tanh
( r − rm

σ

)
, u∗r = 0, u∗ϕ =

√
Gms

r
, P∗ = 1,

with G = 1, ms = 1, ρ0 = 1, ρ1 = 0.25, rm = 1.5 and σ = 0.01. The
computational domain is given by: [1, 2]× [0, π/2]. Periodic boundary
conditions are consider in ϕ = 0 and ϕ = π/2 and the exact solution is
imposed at r = 1 and r = 2.
Now, a small perturbation over the density, radial velocity and pressure is
prescribed:

ρ = ρ∗ + Aρ0 sin(kϕ)e
−(r−rm)2

s

u = u∗r + A sin(kϕ)e
−(r−rm)2

s

P = P∗ + A sin(kϕ)e
−(r−rm)2

s

with A = 0.1, k = 8 and s = 0.005.



Keplerian disc with Kelvin-Helmholtz instabilities

Figure: Keplerian disc with Kelvin-Helmholtz instabilities 100x200 mesh grid. Second
order well-balanced scheme (left) and third order non well-balanced scheme (PLUTO
solver) (right).



2D shallow-water over the sphere

We consider the 2D shallow-water over the sphere (see [COP17]):

∂t h +
1

R cos(ϕ)

(
∂θqθ + ∂ϕ(qϕ cos(ϕ))

)
= 0,

∂t qθ +
1

R cos(ϕ)
∂θ

(
q2
θ

h

)
+

1
R
∂ϕ
(qθqϕ

h

)
− 2

qθqϕ
Rh

tan(ϕ) +
gh

R cos(ϕ)
∂θh =

gh ∂θH
R cos(ϕ)

,

∂t qϕ +
1

R cos(ϕ)
∂θ

(qϕqθ
h

)
+

1
R
∂ϕ

(
q2
ϕ

h

)
+

(q2
θ − q2

ϕ)

hR
tan(ϕ) +

gh
R
∂ϕh =

gh
R
∂ϕH,

where (θ, ϕ) is the longitude and latitude, R is the radius, g is the gravity
constant and

qθ = huθ, qϕ = huϕ.

Stationary solution (water at rest):

uθ = uϕ = 0, (h − H) cos(ϕ) = η̄ cos(ϕ), η̄ = constant.

In [COP17] a third order well-balanced scheme for the water at rest solutions
of the 2D shallow-water system over the sphere has been developed.



Propagation of a hypothetical tsunami in the Mediterranean Sea

Figure: Propagation of a hypothetical tsunami in the Mediterranean Sea. Initial
condition. Third order well-balanced scheme.



Propagation of a hypothetical tsunami in the Mediterranean Sea

Figure: Propagation of a hypothetical tsunami in the Mediterranean Sea. Initial
condition. Third order well-balanced scheme. T = 10 minutes



Propagation of a hypothetical tsunami in the Mediterranean Sea

Figure: Propagation of a hypothetical tsunami in the Mediterranean Sea. Initial
condition. Third order well-balanced scheme. T = 30 minutes



Propagation of a hypothetical tsunami in the Mediterranean Sea

Figure: Propagation of a hypothetical tsunami in the Mediterranean Sea. Initial
condition. Third order well-balanced scheme. T = 60 minutes



Solition preserving scheme for KdV-BBM equation

We could apply the same strategy to define a numerical scheme that exactly
preserve some representative time dependent solutions like solitons or
paekons. Here is one example for the KdV-BBM equation:

∂tu + ∂x (αu +
β

2
u2)− γ∂txx u + δ∂xxx u = 0, (14)

with α ≥ 0, β > 0, γ ≥ 0, and δ > 0. u represents the free surface elevation
with respect to water at rest.
System (14) admits exact solitons of the form:

u(x , t) = 3
cs − α
β

sech2
(1

2

√
cs − α
γcs + δ

(x − cst)
)
.



Soliton preserving scheme for KdV-BBM equation
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Figure: Soliton evolution (t = 20): second order soliton preserving scheme (left) and
second order standard scheme (right) (200 cells) .



Soliton preserving scheme for KdV-BBM equation
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Figure: Soliton evolution (t = 200): second order soliton preserving scheme (left) and
second order standard scheme (right) (200 cells) .



Soliton preserving scheme for KdV-BBM equation: perturbation
evolution
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Figure: Initial condition: soliton with a small perturbation.



Soliton preserving scheme for KdV-BBM equation: perturbation
evolution
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Figure: Soliton+small perturbation (t = 20): second order soliton preserving scheme
(left) and second order standard scheme (right) (200 cells) .



Soliton preserving scheme for KdV-BBM equation: perturbation
evolution
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Figure: Soliton+ small perturbation (t = 200): second order soliton preserving scheme
(left) and second order standard scheme (right) (200 cells) .
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Well-balanced high-order finite volume scheme: H discontinuous

Let us consider the system

Ut + F (U)x = S(U)Hx ,

where now H has finite isolated jump discontinuities.

• S(U)Hx is in this case a nonconservative product and it can be defined
in infinitely many different forms (see [DMLM95]).

• At a discontinuity point of H, x∗, a Dirac measure(∫ 1

0
S(ΦU(s))∂sΦH(s) ds

)
δx=x∗

is produced, where

s ∈ [0, 1] 7→ (ΦU(s),ΦH(s)) ∈ Ω× R

is a path liking (U−,H−) and (U+,H+).



Well-balanced high-order finite volume scheme: H discontinuous

• A path-conservative approximation [Par06] of these Dirac measures is
added to the numerical method:

U ′i (t) = − 1
∆x

(
Fi+1/2−Fi−1/2−S+

i−1/2−S−i+1/2+

∫ xi+1/2

xi−1/2

S(P t
i (x))Hx (x) dx

)
,

where S±i+1/2 are such that:

S−i+1/2 + S+
i+1/2 =

∫ 1

0
S(ΦU(s))∂sΦH(s) ds;

S±i+1/2 = 0 if H−i+1/2 = H+
i+1/2.

• The Generalized Hydrostatic reconstruction is used (see [CPMP07]).



Well-balanced high-order finite volume scheme: H discontinuous

• The jumps of the source term are then computed by:

S+
i+1/2 = F (U+

i+1/2)− F (V +
i+1/2(H0

i+1/2)),

S−i+1/2 = F (V−i+1/2(H0
i+1/2))− F (U−i+1/2).

where
• H0

i+1/2 is an intermediate value between H−i+1/2 and H+
i+1/2;

• V±i+1/2(σ) are the solution of the equation

F (V )σ = S(V )

with initial conditions:
V (H±i+1/2) = U±i+1/2.



Well-balanced high-order finite volume scheme: H discontinuous

If a quadrature formula is used, the previous numerical scheme could be
written as follows:

U ′i (t) = − 1
∆x

(
Fi+1/2 − Fi−1/2 − F (U t,∗

i (x+
i+1/2)) + F (U t,∗

i (x−i−1/2))

−S+
i−1/2 − S−i+1/2

)
+

M∑
j=0

αi
j

(
S(P t

i (x i
j ))− S(U t,∗

i (x i
j ))
)

Hx (x i
j ),

with

S+
i+1/2 = F (U t,+

i+1/2)− F (V t,+
i+1/2(H0

i+1/2)),

S−i+1/2 = F (V t,−
i+1/2(H0

i+1/2))− F (U t,−
i+1/2).



H discontinuous

H(x) =

{ 0.1 + 0.1x if x < 0.0

1 + x if x ≥ 0.0

Stationary solutions:

U(x) =

 C0e0.1x if x < 0.0

C0e0.9+x if x ≥ 0.0

Setting of the experiment

• x ∈ (−1, 1), t ∈ (0, 1]. CFL = 0.9.
• We consider 5 uniform meshes with 100, 200, 400, 800, and 1600 cells.
• Inflow boundary condition is set at x = −1 and free boundary conditions are set

at x = 1.
• Initial condition: we use the previous expression with C0 = 1.0.
• Rusanov flux.
• First, second (MUSCL) and third order (CWENO) schemes are considered.
• First, second and third order Runge-Kutta TVD are considered.



H discontinuous: stationary solution

Figure: Solution at t = 1s: first, second and third order well-balanced schemes.
Number of cells: 400



H discontinuous: stationary solution

Figure: Solution at time t = 1.0 s. Non well-balanced schemes: left (line segment path
on U2). Right (line segment path on U). Blue (first order scheme), green (second order
scheme), red (third order scheme), black (exact solution).



H discontinuous: perturbation of a stationary solution

Setting of the experiment

• x ∈ (−1, 1), t ∈ (0, 1]. CFL = 0.9.
• We consider 5 uniform meshes with 100, 200, 400, 800, and 1600 cells.
• Inflow boundary condition is set at x = −1 and free boundary conditions

are set at x = 1.
• Initial condition:

U(x) =

 e0.1x + 0.3e−200(x+0.5)2
if x < 0.0

e0.9+x if x ≥ 0.0

• Rusanov flux.
• First, second (MUSCL) and third order (CWENO) schemes are

considered.
• First, second and third order Runge-Kutta TVD are considered.



H discontinuous: perturbation of a stationary solution

Figure: Initial condition. Number of cells: 400.



H discontinuous: perturbation of a stationary solution

Figure: Solution at time t = 0.2 s. Well-balanced schemes (left) and non well-balanced
schemes (right). Blue (first order scheme), green (second order scheme), red (third
order scheme), black (reference solution)



H discontinuous: perturbation of a stationary solution

Figure: Solution at time t = 0.5 s. Well-balanced schemes (left) and non well-balanced
schemes (right). Blue (first order scheme), green (second order scheme), red (third
order scheme), black (reference solution).



H discontinuous: perturbation of a stationary solution

Figure: Solution at time t = 1.0 s. Well-balanced schemes (left) and non well-balanced
schemes (right). Blue (first order scheme), green (second order scheme), red (third
order scheme), black (reference solution).



1D Euler: Non-smooth potential

Let us consider now Euler equations for gas dynamics with a discontinuous
potential given by

H(x) =

{
0.1x if x < 0,
1 + x if x ≥ 0,

The isothermal stationary solutions associated to the previous potential are

ρ(x , 0) =

{
C1e−0.1x if x < 0,
C1e−1−x if x ≥ 0,

u(x , 0) = 0,

p(x , 0) =

{
C1e−0.1x + C2 if x < 0,
C1e−1−x + C2 if x ≥ 0.



1D Euler: non-smooth potential
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Figure: Non-smooth stationary solution: pressure at t = 50 s. Well-balanced schemes
(left) and non well-balanced schemes (right) (800 cells) .



1D Euler: Perturbation of a non-smooth stationary solution

We consider a small perturbation on the density:

ρ(x , 0) = ρ∗(x) + 0.4e−200(x+0.5)2
.
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Figure: Perturbation of the stationary a non-smooth stationary solution: density at t = 2
s. Well-balanced schemes (left) and non well-balanced schemes (right) (800 cells) .



1D Euler: Perturbation of a non-smooth stationary solution

We consider a small perturbation on the density:

ρ(x , 0) = ρ∗(x) + 0.4e−200(x+0.5)2
.
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Figure: Perturbation of a non-smooth stationary solution (47): velocity at t = 2 s.
Well-balanced schemes (left) and non well-balanced schemes (right) (800 cells) .



1D Euler: Perturbation of a non-smooth stationary solution

We consider a small perturbation on the density:

ρ(x , 0) = ρ∗(x) + 0.4e−200(x+0.5)2
.
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Figure: Perturbation of a non-smooth stationary solution : pressure at t = 2 s.
Well-balanced schemes (left) and non well-balanced schemes (right) (800 cells) .
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