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We study the following class of scalar hyperbolic conservation laws
with discontinuous fluxes:

∂tρ + ∂x F (x,ρ) = 0. (0.1)

The main feature of such a conservation law is the discontinuity
of the flux function in the space variable x. Kruzkov’s approach for
the L1-contraction does not apply since it requires the Lipschitz
continuity of the flux function in x; an additional jump wave may
occur in the solution besides the classical waves; and entropy
solutions even for the Riemann problem are not unique under the
classical entropy conditions. On the other hand, it is known that, in
statistical mechanics, some microscopic interacting particle systems
with discontinuous speed-parameter λ(x) in the hydrodynamic
limit formally lead to scalar hyperbolic conservation laws with
discontinuous fluxes of the form

∂tρ + ∂x
(
λ(x)h(ρ)

)
= 0. (0.2)

The natural question arises which entropy solution the hydrody-
namic limit selects, thereby leading to a suitable, physical relevant
notion of entropy solutions of this class of conservation laws. This
paper is a first step and provides an answer to this question
for a family of discontinuous flux functions. In particular, we
identify the entropy condition for (0.1) and proceed to show
the well-posedness by combining our existence result with a
uniqueness result of Audusse and Perthame (2005) for the family
of flux functions; we establish a compactness framework for the
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hydrodynamic limit of large particle systems and the convergence
of other approximate solutions to (0.1), which is based on the
notion and reduction of measure-valued entropy solutions; and
we finally establish the hydrodynamic limit for a ZRP with
discontinuous speed-parameter governed by an L∞ entropy solu-
tion to (0.2).

 2008 Elsevier Inc. All rights reserved.

1. Introduction

We are concerned with the following class of scalar hyperbolic conservation laws with discontinu-
ous fluxes:

∂tρ + ∂x F
(
x,ρ(t, x)

)
= 0 (1.1)

and with initial data

ρ|t=0 = ρ0(x), (1.2)

where F (x,ρ) is continuous at all points of (R \ N )×R except on a set N ⊂ R of measure zero.
The main feature of (1.1) is the discontinuity of the flux function in the space variable x. This

feature causes new important difficulties in conservation laws. Kruzkov’s approach in [18] for the L1-
contraction does not apply; an additional jump wave may occur in the solution besides the classical
waves; and entropy solutions even for the Riemann problem of (1.1) are not unique under the classical
entropy conditions.

Several different entropy conditions have been suggested in the literature (see [1,2,4,5,10,15,17,21]
and the references therein). One type of entropy conditions involves a rule how the solution should
behave at the jump wave induced by the discontinuity in the flux, that is, the solution is required
to satisfy an additional condition on its traces at the discontinuous points of the flux function, for
which the existence of traces of the solution is needed. An alternative entropy condition in [2,4] is
an adapted entropy condition that uses steady-state solutions to replace the constant parameter in
the Kruzkov entropy inequality. This is quite an attractive notion since it does not require the traces
of the entropy solution, which allows the solution only in L∞ . In this paper, we establish the well-
posedness in L∞ for conservation laws with a certain class of flux functions (cf. conditions (H1)–(H2)
and (H3) or (H3′) in Section 2 below) by providing an existence proof to supplement the uniqueness
result in [2].

The entropy condition based on the traces of solutions at the jump waves has lead to the existence
and uniqueness of the solutions for a wider class of flux functions than those satisfying (H1)–(H2)
and (H3) or (H3′) in Section 2. The Cauchy problem (even the Riemann problem) may lead to dif-
ferent solutions depending on which choice of the conditions on the traces of solutions is made (for
example, see [2]). If one restricts oneself to the flux functions satisfying (H1)–(H2) and (H3′) in Sec-
tion 2 (in which F (x, ·) in (1.1) is monotone) and to the entropy solutions in the class of functions
of bounded variation, the two notions of entropy conditions addressed above will lead to the same
solution. This is not the case for the flux functions satisfying (H1)–(H2) and (H3) in which F (x, ·) is
non-monotone.

On the other hand, in statistical mechanics, some microscopic interacting particle systems with
discontinuous speed-parameter λ(x) in the hydrodynamic limit formally lead to scalar hyperbolic con-
servation laws with discontinuous flux of the form

∂tρ + ∂x
(
λ(x)h(ρ)

)
= 0 (1.3)
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and with initial data (1.2), where λ(x) is continuous except on a set of measure zero and h(ρ) is Lips-
chitz continuous. Equation (1.3) is equivalent to the following 2×2 hyperbolic system of conservation
laws:

{
∂tρ + ∂x

(
λh(ρ)

)
= 0,

∂tλ = 0.
(1.4)

In particular, when h(ρ) is not strictly monotone, system (1.4) is nonstrictly hyperbolic, one of the
main difficulties in conservation laws (cf. [7,9]). The natural question is which entropy solution the
hydrodynamic limit selects, thereby leading to a suitable, physical relevant notion of entropy solutions
of this class of conservation laws. This paper is a first step and provides an answer to this question
for a family of discontinuous flux functions via an interacting particle system, namely, the attractive
zero range process (ZRP). This ZRP leads to a conservation law of the form (1.3) with λ(x) > 0 and
h(ρ) being monotone in ρ . Furthermore, its hydrodynamic limit naturally gives rise to an entropy
condition of the type described in [2,4].

Motivated by the hydrodynamic limit of the ZRP, in this paper we adopt the notion of entropy
solutions in the sense of Audusse and Perthame [2] for a class of conservation laws with discontinu-
ous flux functions, including the non-monotone case, and establish the existence of such an entropy
solution via the method of compensated compactness in Section 3. This completes the well-posedness
in L∞ by combining a uniqueness result established in [2] for this class of conservation laws under
their notion of entropy solutions.

In order to establish the hydrodynamic limit of large particle systems and the convergence of
other approximate solutions to (1.1) rigorously, we establish a compactness framework for (1.1)–(1.2)
in Section 2. This mathematical framework is based on the notion and reduction of measure-valued
entropy solutions developed in Section 2, which is also applied for another proof of the existence of
entropy solutions for the non-monotone case in Section 3.

In Section 4, we establish the hydrodynamic limit for a ZRP with discontinuous speed-parameter
λ(x) governed by the unique entropy solution of the Cauchy problem (1.2)–(1.3).

2. Notion and reduction of measure-valued entropy solutions

In this section, we first develop the notion of measure-valued entropy solutions and establish their
reduction to entropy solutions in L∞ (provided that they exist) of the Cauchy problem (1.1)–(1.2)
satisfying that

(H1) F (x,ρ) is continuous at all points of (R \ N )×R with N a closed set of measure zero;
(H2) ∃ continuous functions f , g such that, for any x ∈ R and large ρ , f (ρ) ! |F (x,ρ)| ! g(ρ) with

f (ρ) " 0 and f (±∞) =∞;
(H3) there exist a function ρm(x) from R to R and a constant M0 such that, for x ∈ R \ N , F (x,ρ) is

a locally Lipschitz, one-to-one function from (−∞,ρm] and [ρm,∞) to [M0,∞) (or (−∞,M0])
with F (x,ρm(x)) = M0 and with common Lipschitz constant LI for all x ∈ R \ N and all ρ ∈ I
that is any bounded interval in R;

or

(H3′) for x ∈ R \ N , F (x, ·) is a locally Lipschitz, one-to-one function from R to R with common
Lipschitz constant LI for all x ∈ R \ N and all ρ ∈ I that is any bounded interval in R.

One example of the flux functions satisfying (H1)–(H2) and (H3) or (H3′) is

F (x,ρ) = λ(x)h(ρ), (2.1)
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where λ(x) is continuous in x ∈ R with 0 < λ1 ! λ(x) ! λ2 <∞ for some constants λ1 and λ2, except
on a closed set N of measure zero, and h(ρ) is locally Lipschitz and is either monotone or convex (or
concave) with h(ρm) = 0 for some ρm in which case M0 = 0.

It is easy to check that, if the flux function F (x,ρ) satisfies (H1)–(H3), then, for any constant
α ∈ [M0,∞) (or α ∈ (−∞,M0]), there are two steady-state solutions m+

α from R to [ρm(x),∞) and
m−

α from R to (−∞,ρm(x)] of (1.1) such that

F
(
x,m±

α (x)
)
= α for a.e. x ∈ R. (2.2)

In the case (H1)–(H2) and (H3′), m+
α (x) =m−

α (x) which is even simpler.

2.1. Notion of measure-valued entropy solutions

First, the notion of entropy solutions in L∞ introduced in Audusse and Perthame [2] and Baiti and
Jenssen [4] can be further formulated into the following.

Definition 2.1 (Notion of entropy solutions in L∞). We say that an L∞ function ρ : R2
+ := R+ × R )→ R

is an entropy solution of (1.1)–(1.2) provided that, for each α ∈ [M0,∞) (or α ∈ (−∞,M0]) and the
corresponding two steady-state solutions m±

α (x) of (1.1),

∫ (∣∣ρ(t, x)−m±
α (x)

∣∣∂t J + sign
(
ρ(t, x)−m±

α (x)
)(
F
(
x,ρ(t, x)

)
− α

)
∂x J

)
dt dx

+
∫ ∣∣ρ0(x)−m±

α (x)
∣∣ J (0, x)dx " 0 (2.3)

for any test function J : R2
+ )→ R+ .

It is easy to see that any entropy solution is a weak solution of (1.1)–(1.2) by choosing α such that
m+

α (x) " ‖ρ‖L∞ and m−
α (x) !−‖ρ‖L∞ , respectively, for a.e. x ∈ R.

From the uniqueness argument in Audusse and Perthame [2] (also see [8]), one can deduce that,
for any L > 0,

lim
t→0

∫

|x|!L

∣∣ρ(t, x)− ρ0(x)
∣∣dx = 0. (2.4)

Following the notion of entropy solutions, we introduce the corresponding notion of measure-
valued entropy solutions. We denote by P (R) the set of probability measures on R.

Definition 2.2 (Notion of measure-valued entropy solutions). We say that a measurable map

π : R2
+ → P (R)

is a measure-valued entropy solution of (1.1)–(1.2) provided that 〈π0,x;k〉 = ρ0(x) for a.e. x ∈ R and,
for each α ∈ [M0,∞) (or α ∈ (−∞,M0]) and the corresponding two steady-state solutions m±

α (x)
of (1.1),

∫ (〈
πt,x;

∣∣k−m±
α (x)

∣∣〉∂t J +
〈
πt,x; sign

(
k−m±

α (x)
)(
F (x,k)− α

)〉
∂x J

)
dxdt

+
∫ ∣∣ρ0(x)−m±

α (x)
∣∣ J (0, x)dx " 0 (2.5)

for any test function J : R2
+ )→ R+ .
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If a measure-valued entropy solution πt,x(k) is a Dirac mass with the associated profile ρ(t, x), i.e.
πt,x(k) = δρ(t,x)(k), then ρ(t, x) is an entropy solution of (1.1)–(1.2), which is unique as shown in [2].

Note that, when the flux function F (x,ρ) is locally Lipschitz in ρ and globally Lipschitz in x,
one can use the Kruzkov entropy inequality, instead of (2.5), to formulate the following notion of
measure-valued solutions:

∂t
〈
πt,x; |k− c|

〉
+ ∂x

〈
πt,x; sign(k− c)

(
F (x,k)− F (x, c)

)〉
+

〈
πt,x; sign(k− c)∂x F (x, c)

〉
! 0 (2.6)

in the sense of distributions and to establish their reduction as in DiPerna [14]. One of the new
features in our formulation (2.5) in Definition 2.2 is that the constant c in (2.6) is replaced by the
steady-state solutions m±

α (x) such that the additional third term in (2.6) vanishes, as in [2,4], and
thereby allows the discontinuity of the flux functions on a closed set of measure zero for measure-
valued entropy solutions.

2.2. Reduction of measure-valued entropy solutions

In this section we first establish the reduction of measure-valued entropy solutions of (1.1)–(1.2)
and prove that any measure-valued entropy solution πt,x(k) in the sense of Definition 2.2 is the Dirac
solution such that the associated profile ρ(t, x) is an entropy solution in the sense of Definition 2.1.
That is, our goal is to establish that, when π0,x(k) = δρ0(x)(k),

πt,x(k) = δρ(t,x)(k), (2.7)

where ρ : R2
+ )→ R is the unique entropy solution determined by (2.3). The reduction proof is achieved

by two theorems. We start with the following theorem which yields the L1-contraction between the
measure-valued entropy solution πt,x and the unique entropy solution ρ(t, x) of (1.1)–(1.2).

Theorem 2.1 (L1-contraction). Assume that there exists a measure-valued entropy solution π : R2
+ → P (R)

of (1.1) in the sense of Definition 2.2with πt,x having a fixed compact support for a.e. (t, x). Assume that there
exists a function ρ : R2

+ )→ R with initial data ρ0 ∈ L∞(R) and π0,x(k) = δρ0(x)(k) for a.e. x ∈ R satisfying
the following inequality:

∫ (〈
πt,x;

∣∣k− ρ(t, x)
∣∣〉∂t J +

〈
πt,x; sign

(
k− ρ(t, x)

)(
F (x,k)− F

(
x,ρ(t, x)

))〉
∂x J

)
dxdt " 0 (2.8)

for any test function J : R2
+ )→ R+ . Then the function

∫
〈πt,x; |k−ρ(t, x)|〉dx is non-increasing in t > 0, which

implies πt,x(k) = δρ(t,x)(k) when π0,x(k) = δρ0(x)(k) for a.e. x ∈ R. Furthermore, ρ is the unique entropy
solution of (1.1)–(1.2) in the sense of Definition 2.1.

Proof. In expression (2.8), we choose the test function as the product test function J j(t)H(x), with
J j(t) converging to the indicator function 1[t1,t2](t) as j →∞ for t2 > t1 " 0. Then (2.8) is equivalent
to

∫
H(x)

〈
πt1,x(k);

∣∣k− ρ(t1, x)
∣∣〉dx−

∫
H(x)

〈
πt2,x(k);

∣∣k− ρ(t2, x)
∣∣〉dx

+
t2∫

t1

∫
H ′(x)

〈
πt,x(k); sign

(
k− ρ(t, x)

)(
F (x,k)− F

(
x,ρ(t, x)

))〉
dxdt " 0. (2.9)

In (2.9), we choose

H(x) = e−γ
√

1+|x|2χ
(

x
N

)
, γ ,N > 0,
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for χ ∈ C∞
0 (−2,2) with χ(x) = 1 when x ∈ [−1,1] and χ(x) " 0. Letting N →∞ first and γ → 0

then yields that, for any t2 > t1 " 0,

∫ 〈
πt2,x;

∣∣k− ρ(t2, x)
∣∣〉dx−

∫ 〈
πt1,x;

∣∣k− ρ(t1, x)
∣∣〉dx ! 0.

In particular, when t2 = t > 0, t1 → 0, then π0,x(k) = δρ0(x)(k) implies

∫ 〈
πt,x;

∣∣k− ρ(t, x)
∣∣〉dx ! 0

so that πt,x(k) = δρ(t,x)(k) for any t > 0.
Plugging this into inequality (2.5), we obtain inequality (2.3). Thus, ρ(t, x) is an entropy solution

which is unique by [2]. !

It thus remains to prove inequality (2.8).

Theorem 2.2. Assume that ρ : R2
+ )→ R is the unique entropy solution of (1.1)–(1.2) with initial data ρ0 ∈

L∞(R). Assume that there exists a measure-valued entropy solution π : R2
+ → P (R) of (1.1) in the sense of

Definition 2.2 with πt,x having a fixed compact support for a.e. (t, x) and π0,x(k) = δρ0(x)(k) for a.e. x ∈ R.
Then inequality (2.8) holds for any test function J : R2

+ )→ R+ .

Proof. The proof is divided into nine steps.

Step 1. We first notice the following:

• Under assumption (H3′), F (x,ρ) is continuous in x a.e. Then we can define a function ρ̃(s, y, x)
for a.e. (s, y, x) ∈ R+ ×R2 such that, for fixed (s, y),

F
(
x, ρ̃(s, y, x)

)
:= F

(
x,mF (y,ρ(s,y))(x)

)
= F

(
y,ρ(s, y)

)
, (2.10)

where the last equality follows from (2.2). Thus, we define

ρ̃(s, y, x) =mβ(s,y)(x) with β(s, y) := F (y,ρ(s, y)).

In the same way, we can define a function m̃(x, c, y) for any constant c ∈ R and for a.e. (x, y) ∈ R2

such that, for fixed x,

F
(
y,m̃(x, c, y)

)
:= F

(
y,mF (x,c)(y)

)
= F (x, c). (2.11)

Thus, we define

m̃(x, c, y) =mγ (x,c)(y) with γ (x, c) := F (x, c).

• For the case (H3), we define ρ̃(s, y, x) such that the sign of the difference between ρ̃(s, y, x) and
ρm(y) is the same as the sign of the difference between the corresponding solution and ρm(y),
that is,

sign
(
ρ(s, y)− ρm(y)

)
= sign

(
ρ̃(s, y, x)− ρm(y)

)
. (2.12)
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It can be achieved by defining

ρ̃(s, y, x) :=m+
β(s,y)(x) sign+

(
ρ(s, y)− ρm(y)

)
+m−

β(s,y)(x) sign−
(
ρ(s, y)− ρm(y)

)
, (2.13)

since ρm(y) is the minimum (or maximum) point of the flux function with F (y,ρm(y)) = M0.
Similarly, we define

m̃(x, c, y) :=m+
γ (x,c)(y) sign+

(
c− ρm(x)

)
+m−

γ (x,c)(y) sign−
(
c− ρm(x)

)
. (2.14)

Then we have as in (2.10) and (2.11),

F
(
x, ρ̃(s, y, x)

)
= F

(
y,ρ(s, y)

)
= β(s, y)

and

F
(
y,m̃(x, c, y)

)
= F (x, c) = γ (x, c).

With these notations, we can rewrite inequality (2.5) as follows:

∂t
〈
πt,x;

∣∣k− ρ̃(s, y, x)
∣∣〉 + ∂x

〈
πt,x; sign

(
k− ρ̃(s, y, x)

)(
F (x,k)− F

(
y,ρ(s, y)

))〉
! 0 (2.15)

in the sense of distributions, and inequality (2.3) can be rewritten as

∂s
∣∣ρ(s, y)− m̃(x,k, y)

∣∣ + ∂y
(
sign

(
ρ(s, y)− m̃(x,k, y)

)(
F
(
y,ρ(s, y)

)
− F (x,k)

))
! 0

for any k ∈ R, which implies

∂s
〈
πt,x;

∣∣ρ(s, y)− m̃(x,k, y)
∣∣〉 + ∂y

〈
πt,x; sign

(
ρ(s, y)− m̃(x,k, y)

)(
F
(
y,ρ(s, y)

)
− F (x,k)

)〉
! 0 (2.16)

in the sense of distributions.

Step 2. We next perform an integration by parts against a test function of the form

Jτ ,ω(t, x, s, y) = J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y) " 0. (2.17)

Here J ∈ C∞
0 (R2

+) and the two families of functions H̄τ , Hω ∈ C∞
0 (R) are defined as

H̄τ (z) = 1
τ
H̄

(
z
τ

)
and Hω(z) = 1

ω
H

(
z
ω

)
for τ ,ω > 0,

for a positive, compactly supported function H ∈ C∞
0 (R) and a positive function H̄ ∈ C∞

0 (R) with
compact support in (−1,1) such that

∫
R H(z)dz =

∫
R H̄(z)dz = 1.

We first choose the test function in (2.15) as defined above for fixed (s, y) and then integrate the
resulting inequality with respect to (s, y) to obtain

∫ 〈
πt,x;

∣∣k− ρ̃(s, y, x)
∣∣〉∂t Jτ ,ω(t, x, s, y)dt dxdsdy

+
∫ 〈

πt,x; sign
(
k− ρ̃(s, y, x)

)(
F (x,k)− β(s, y)

)〉
∂x Jτ ,ω(t, x, s, y)dt dxdsdy

+
∫ ∣∣ρ0(x)− ρ̃(s, y, x)

∣∣ Jτ ,ω(0, x, s, y)dxdsdy " 0. (2.18)
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Furthermore, after integration, it follows from (2.16) that

∫ 〈
πt,x;

∣∣ρ(s, y)− m̃(x,k, y)
∣∣〉∂s Jτ ,ω(t, x, s, y)dt dxdsdy

+
∫ 〈

πt,x; sign
(
ρ(s, y)− m̃(x,k, y)

)(
F
(
y,ρ(s, y)

)
− γ (x,k)

)〉
∂y Jτ ,ω(t, x, s, y)dt dxdsdy

+
∫ 〈

πt,x;
∣∣ρ0(y)−m(x,k, y)

∣∣〉 Jτ ,ω(t, x,0, y)dt dxdy " 0. (2.19)

We next add (2.18) and (2.19) together to obtain the following inequality:

T1 + T2 + T3 + T4 + T5 + T6 " 0, (2.20)

where

T1 := 1
2

∫ 〈
πt,x;

∣∣k− ρ̃(s, y, x)
∣∣〉∂t J

(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy

+ 1
2

∫ 〈
πt,x; sign

(
k− ρ̃(s, y, x)

)(
F (x,k)− β(s, y)

)〉

× ∂x J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy,

T2 := 1
2

∫ 〈
πt,x;

∣∣ρ(s, y)− m̃(x,k, y)
∣∣〉∂s J

(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy

+ 1
2

∫ 〈
πt,x; sign

(
ρ(s, y)− m̃(x,k, y)

)(
F
(
y,ρ(s, y)

)
− γ (x,k)

)〉

× ∂y J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy,

T3 :=
∫ 〈

πt,x;
∣∣k− ρ̃(s, y, x)

∣∣−
∣∣ρ(s, y)− m̃(x,k, y)

∣∣〉 J
(
t + s
2

,
x+ y
2

)
H̄ ′

τ (t − s)Hω(x− y)dt dxdsdy,

T4 :=
∫ 〈

πt,x;
(
F (x,k)− F

(
y,ρ(s, y)

))(
sign

(
k− ρ̃(s, y, x)

)
+ sign

(
ρ(s, y)− m̃(x,k, y)

))〉

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)H ′

ω(x− y)dt dxdsdy,

T5 :=
∫ 〈

πt,x;
∣∣ρ0(y)− m̃(x,k, y)

∣∣〉 J
(
t
2
,
x+ y
2

)
H̄τ (t)Hω(x− y)dt dxdy,

T6 :=
∫ ∣∣ρ0(x)− ρ̃(s, y, x)

∣∣ J
(
s
2
,
x+ y
2

)
H̄τ (−s)Hω(x− y)dxdsdy.

Step 3. We first show that T4 = 0. This requires to show that

sign
(
k− ρ̃(s, y, x)

)
= sign

(
m̃(x,k, y)− ρ(s, y)

)
. (2.21)

With this result, the integrand of T4 cancels for a.e. (t, x, s, y) ∈ R2 ×R2, which yields that T4 = 0 for
every ω,τ > 0.

To prove (2.21), we apply (2.13) and (2.14). For a.e. (t, x, s, y) ∈ R2
+ ×R2

+ , we obtain

F (x,k)− F
(
x, ρ̃(s, y, x)

)
= F

(
y,m̃(x,k, y)

)
− F

(
y,ρ(s, y)

)
.
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Under (H3′), the result follows immediately, since F is monotone in the second variable.
Under (H3), we find from (2.12) that

sign
(
k− ρm(x)

)
− sign

(
m̃(x,k, y)− ρm(x)

)

= 0 = sign
(
ρ(s, y)− ρm(y)

)
− sign

(
ρ̃(s, y, x)− ρm(y)

)
. (2.22)

We have two cases:

If sign(k − ρm(x)) = sign(ρ(s, y) − ρm(y)), the problem is reduced to the monotone case since
F (x, ·) is monotone on each interval [−∞,ρm(x)] and [ρm(x),∞];

If sign(k− ρm(x)) /= sign(ρ(s, y)− ρm(y)), the result follows immediately from (2.22).

In Steps 4–6, we will show that, in the limit as ω → 0 first and τ → 0 second, inequality (2.8)
follows from T1 + T2 + T3 + T5 + T6 " 0.

Step 4. We first show that

ρ̃(s, y, x)
x→y−−−→ ρ̃(s, y, y) = ρ(s, y) for a.e. (s, y) ∈ R2

+, (2.23)

and

m̃(x,k, y)
y→x−−−→ m̃(x,k, x) = k for a.e. x ∈ R. (2.24)

For the case (H3′), since the flux function is continuous outside a negligible set N , then, for
y ∈ R \ N ,

F
(
x, ρ̃(s, y, y)

) x→y−−−→ F
(
y, ρ̃(s, y, y)

)
.

On the other hand, we have F (y, ρ̃(s, y, y)) = F (x, ρ̃(s, y, x)). Therefore, we have

F
(
x, ρ̃(s, y, x)

)
− F

(
x, ρ̃(s, y, y)

) x→y−−−→ 0,

and (2.23) is a consequence of the fact that F (x, ·) is a one-to-one function.
Similarly, for x ∈ R \ N , we have

F (y,k)
y→x−−−→ F (x,k),

while F (x,k) = F (y,m̃(x,k, y)). Therefore, we have

F
(
y,m̃(x,k, y)

)
− F (y,k)

y→x−−−→ 0,

and (2.24) is a consequence of the fact that F (y, ·) is a one-to-one function.
For the case (H3), it is clear from the definition of ρ̃(s, y, x) and m̃(x,k, y) in (2.13) and (2.14),

respectively.

Step 5. We show that, when ω → 0 first and τ → 0 second, T1 converges to

1
2

∫ (〈
πt,x;

∣∣k− ρ(t, x)
∣∣〉∂t J (t, x) +

〈
πt,x; sign

(
k− ρ(t, x)

)(
F (x,k)− F

(
x,ρ(t, x)

))〉
∂x J (t, x)

)
dt dx. (2.25)
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Observe that

∣∣∣∣

∫ 〈
πt,x;

∣∣k− ρ̃(s, y, x)
∣∣〉∂t J

(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy

−
∫ 〈

πt,x;
∣∣k− ρ̃(s, y, y)

∣∣〉∂t J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy

∣∣∣∣

!
∫ (∫ ∣∣ρ̃(s, y, x)− ρ̃(s, y, y)

∣∣Hω(x− y)

∣∣∣∣∂t J
(
t + s
2

,
x+ y
2

)∣∣∣∣dx
)
H̄τ (t − s)dt dsdy

→ 0 when ω → 0, (2.26)

by the Dominated Convergence theorem and the fact that

∫ ∣∣ρ̃(s, y, x)− ρ̃(s, y, y)
∣∣Hω(x− y)

∣∣∣∣∂t J
(
t + s
2

,
x+ y
2

)∣∣∣∣dx→ 0,

when ω → 0 for a.e. (s, y) ∈ R2
+ since ρ̃(s, y, x)

x→y−−−→ ρ̃(s, y, y) = ρ(s, y) by Step 4. Furthermore,

∫ 〈
πt,x;

∣∣k− ρ(s, y)
∣∣〉
∣∣∣∣∂t J

(
t + s
2

,
x+ y
2

)
− ∂t J (t, x)

∣∣∣∣H̄τ (t − s)Hω(x− y)dt dxdsdy

= O(ω) + O(τ )→ 0, (2.27)

when ω → 0 first and τ → 0 second. Then, to find the limit of the first part of T1, it suffices to
compute the limit of

∫ 〈
πt,x;

∣∣k− ρ(s, y)
∣∣〉∂t J (t, x)H̄τ (t − s)Hω(x− y)dt dxdsdy. (2.28)

Thus, it suffices to show that ρ(s, y) can be replaced by ρ(t, x) in (2.28), i.e., when ω → 0 first and
τ → 0 second,

∫ ∣∣ρ(t, x)− ρ(s, y)
∣∣∂t J (t, x)H̄τ (t − s)Hω(x− y)dt dxdsdy

=
∫ ∣∣ρ(t, x)− ρ(t + τ r, x+ ωz)

∣∣∂t J (t, x)H̄(−r)H(−z)dt dxdr dz→ 0. (2.29)

This is guaranteed by the fact that

lim
τ→0

lim
ω→0

∫ ∣∣ρ(t, x)− ρ(t + τ r, x+ ωz)
∣∣dt dx = 0,

and the Dominated Convergence theorem since all the functions involved are bounded. This implies
that, in (2.28), we can indeed replace ρ(s, y) by ρ(t, x).

On the other hand, hypothesis (H2) on F (x,ρ) implies

∣∣sign
(
k− ρ̃(s, y, x)

)(
F (x,k)− β(s, y)

)
− sign

(
k− ρ̃(s, y, y)

)(
F (x,k)− F

(
x, ρ̃(s, y, y)

))∣∣

=
∣∣sign

(
k− ρ̃(s, y, x)

)(
F (x,k)− F

(
x, ρ̃(s, y, x)

))
− sign

(
k− ρ(s, y)

)(
F (x,k)− F

(
x,ρ(s, y)

))∣∣

! C
∣∣ρ̃(s, y, x)− ρ(s, y)

∣∣.
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Integrating the last expression with respect to x against the function Hω(x− y) yields its convergence
to 0 by the same argument as above when ω → 0. Since J ∈ C∞

0 (R2
+), as above, the limit of the

second part of T1 is the same as the limit of

∫ 〈
πt,x; sign

(
k− ρ(s, y)

)(
F (x,k)− F

(
x,ρ(s, y)

))〉
∂x J (t, x)H̄τ (t − s)Hω(x− y)dt dxdsdy,

and it suffices to prove that, when ω → 0 first and τ → 0 second,

∫ 〈
πt,x;

∣∣sign
(
k− ρ(s, y)

)(
F (x,k)− F

(
x,ρ(s, y)

))
− sign

(
k− ρ(t, x)

)(
F (x,k)− F

(
x,ρ(t, x)

))∣∣〉

× ∂x J (t, x)H̄τ (t − s)Hω(x− y)dt dxdsdy → 0.

Using the Lipschitz property and fact (2.29), we achieve the result for the second part of T1.

Step 6. T2 converges to (2.25) as well. This follows by the same argument as used already in Step 5
and observing that

∣∣∣∣

∫ 〈
πt,x;

∣∣ρ(s, y)− m̃(x,k, y)
∣∣〉∂s J

(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy

−
∫ 〈

πt,x;
∣∣ρ(s, y)− k

∣∣〉∂s J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy

∣∣∣∣

!
∫ 〈

πt,x;
∣∣m̃(x,k, y)− k

∣∣〉
∣∣∣∣∂s J

(
t + s
2

,
x+ y
2

)∣∣∣∣H̄τ (t − s)Hω(x− y)dt dxdsdy.

Again the right-hand side of the last expression converges to zero when ω → 0. Using the same
argument as in Step 5, we achieve the result for T2.

Step 7. T3 converges to 0 when ω → 0. Since

lim
ω→0

∣∣∣∣

∫ 〈
πt,x;

∣∣k− ρ̃(s, y, x)
∣∣−

∣∣ρ(s, y)− m̃(x,k, y)
∣∣〉Hω(x− y)dxdy

∣∣∣∣

! lim
ω→0

∫ 〈
πt,x;

∣∣k− m̃(x,k, y)
∣∣〉Hω(x− y)dxdy + lim

ω→0

∫ 〈
πt,x;

∣∣ρ(s, y)− ρ̃(s, y, x)
∣∣〉Hω(x− y)dxdy

= 0,

the result follows as in Steps 5 and 6.

Step 8. T6 converges to zero when τ → 0 after ω → 0. Note that

∫ ∣∣∣∣ρ0(x)− ρ̃(s, y, x)
∣∣−

∣∣ρ0(x)− ρ̃(s, y, y)
∣∣∣∣ J

(
0,

x+ y
2

)
H̄τ (−s)Hω(x− y)dxdsdy

!
∫ ∣∣ρ̃(s, y, x)− ρ̃(s, y, y)

∣∣ J
(
0,

x+ y
2

)
H̄τ (−s)Hω(x− y)dxdsdy.

Again with (2.29), the right-hand side converges to zero when ω → 0. We therefore next compute the
limit when ω → 0 first and τ → 0 second of

∫ ∣∣ρ0(x)− ρ(s, y)
∣∣ J

(
s
2
,
x+ y
2

)
H̄τ (−s)Hω(x− y)dxdsdy.
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As before,

lim
ω→0

∫ ∣∣ρ(s, x)− ρ(s, y)
∣∣ J

(
s
2
,
x+ y
2

)
Hτ (−s)Hω(x− y)dxdsdy = 0.

Therefore, the next goal is to compute the limit when τ → 0 of

∫ ∣∣ρ0(x)− ρ(s, x)
∣∣ J

(
s
2
, x

)
H̄τ (−s)dxdsdy =

∫ ∣∣ρ0(x)− ρ(τ r, x)
∣∣ J

(
τ r
2

, x
)
H̄(−r)dxdr. (2.30)

Since all the functions are bounded and supp H̄ ⊂ (−1,1), by the Dominated Convergence theorem,
this converges to 0 when τ → 0, and thereby (2.30) converges to 0.

Step 9. T5 converges to zero by the analogous argument as in Step 8 and using the fact that
π0,x(k) = δρ0(x)(k).

With Steps 3–9 and by (2.20), we complete the proof. !

3. Existence of entropy solutions

In this section, we establish the existence of entropy solutions (1.1)–(1.2) in the sense of Defini-
tion 2.1, as required for the reduction of measure-valued entropy solutions. More precisely, for each
fixed ε > 0, ρε denotes the unique Kruzkov solution of (1.1)–(1.2) in the sense (3.3), where the flux
function depends smoothly on the space variable x; then it is shown that the sequence ρε converges
to an entropy solution of (1.1)–(1.2).

3.1. Existence of entropy solutions when F is smooth

Define F ε(x,ρ) the standard mollification of F (x,ρ) in x ∈ R:

F ε(x,ρ) :=
(
F (·,ρ) ∗ θε)(x)→ F (x,ρ) a.e. as ε → 0, (3.1)

with θε(x) := θ( x
ε ), θ(x) " 0, supp θ(x) ⊂ [−1,1], and

∫ 1
−1 θ(x)dx = 1. For fixed ε > 0, consider the

following Cauchy problem:

{
∂tρ + ∂x F ε(x,ρ) = 0,
ρ|t=0 = ρ0(x) " 0.

(3.2)

Kruzkov’s result in [18] indicates that there exists a unique solution ρε of (3.2) satisfying the
Kruzkov entropy inequality:

∂t
∣∣ρε(t, x)− c

∣∣ + ∂x
(
sign

(
ρε(t, x)− c

)(
F ε(x,ρε(t, x)

)
− F ε(x, c)

))

+ sign
(
ρε(t, x)− c

)
∂x F ε(x, c) ! 0 (3.3)

in the sense of distributions. Notice that, since F ε is now smooth in the first variable, we can define
steady-state solutions mε,±

α (x) for each x ∈ R. In particular, the steady-state solutions mε,±
α (x) also

satisfy the Kruzkov entropy inequality (3.3):

∂t
∣∣mε,±

α (x)− c
∣∣ + ∂x

(
sign

(
mε,±

α (x)− c
)(
F ε(y,mε,±

α (x)
)
− F ε(x, c)

))

+ sign
(
mε,±

α (x)− c
)
∂x F ε(x, c) ! 0 (3.4)
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in the distributional sense. This can be also seen as follows: Since the level set {x ∈ R: mε,±
α (x) = c}

is discrete for a.e. c,α, and this level set coincides with the set {x ∈ R: F ε(x, c) = α}, it follows
from the Sard theorem that the set of critical values of the function S(mε,±

α (x)) := sign(mε,±
α (x) −

c)(F ε(x,mε,±
α (x))− F ε(x, c)) has measure zero, which implies (3.4).

We now prove that the entropy solution ρε also satisfies (2.3).

Proposition 3.1. Let ρε(t, x) be a solution of the Cauchy problem (3.2) satisfying the Kruzkov entropy inequal-
ity (3.3). Then ρε(t, x) also satisfies the entropy inequality (2.3) with steady-state solutions m±

α =mε,±
α (x).

Proof. We divide the proof into five steps.

Step 1. In (3.3), we choose the constant c = mε,±
α (y) for any α ∈ [M0,∞) (or α ∈ (−∞,M0]) for

fixed (s, y), and integrate against the test function (2.17) first in (t, x) and then in (s, y) to obtain the
following inequality:

∫ ∣∣ρε(t, x)−mε,±
α (y)

∣∣∂t Jτ ,ω(t, x, s, y)dt dxdsdy

+
∫

sign
(
ρε(t, x)−mε,±

α (y)
)(
F ε(x,ρε(t, x)

)
− F ε(x,mε,±

α (y)
))

∂x Jτ ,ω(t, x, s, y)dt dxdsdy

−
∫

sign
(
ρε(t, x)−mε,±

α (y)
)
∂x F ε(x,mε,±

α (y)
)
Jτ ,ω(t, x, s, y)dt dxdsdy

+
∫ ∣∣ρε(0, x)−mε,±

α (y)
∣∣ Jτ ,ω(t,0, s, y)dxdsdy " 0. (3.5)

On the other hand, the Kruzkov entropy inequality (3.3) is satisfied for any steady-state solution mε,±
α ,

for any c ∈ R and α ∈ [M0,∞) (or α ∈ (−∞,M0]). For fixed (t, x), the steady-state solutions mε,±
α (y)

as functions in y satisfy (3.4) with (s, y) replacing (t, x) and the constant c = ρ(t, x). We integrate
against the test function Jτ ,ω first in (s, y) and then in (t, x) to obtain the following inequality:

∫ ∣∣mε,±
α (y)− ρε(t, x)

∣∣∂s Jτ ,ω(t, x, s, y)dt dxdsdy

+
∫

sign
(
mε,±

α (y)− ρε(t, x)
)(
F ε(y,mε,±

α (y)
)
− F ε(y,ρε(t, x)

))
∂y Jτ ,ω(t, x, s, y)dt dxdsdy

−
∫

sign
(
mε,±

α (y)− ρε(t, x)
)
∂y F ε(y,ρε(t, x)

)
Jτ ,ω(t, x, s, y)dt dxdsdy

+
∫ ∣∣mε,±

α (y)− ρε(t, x)
∣∣ Jτ ,ω(t, x,0, y)dt dxdy " 0. (3.6)

Adding (3.5) and (3.6) together, we then have

I1 + I2 + I3 " 0,

where

I1 := 1
2

∫ ∣∣ρε(t, x)−mε,±
α (y)

∣∣(∂t J + ∂s J )
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy

+ 1
2

∫
sign

(
ρε(t, x)−mε,±

α (y)
)(
F ε(x,ρε(t, x)

)
− F ε(x,mε,±

α (y)
))

× (∂x + ∂y) J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy,
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I2 :=
∫ ∣∣mε,±

α (y)− ρε(t, x)
∣∣ Jτ ,ω(t, x,0, y)dt dxdy +

∫ ∣∣ρε(0, x)−mε,±
α (y)

∣∣ Jτ ,ω(0, x, s, y)dxdsdy,

I3 :=
∫

sign
(
ρε(t, x)−mε,±

α (y)
)(
F ε(x,ρε(t, x)

)
− F ε(x,mε,±

α (y)
)
+ F ε(y,mε,±

α (y)
)
− F ε(y,ρε(t, x)

))

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)H ′

ω(x− y)dt dxdsdy

−
∫

sign
(
ρε(t, x)−mε,±

α (y)
)(

∂x F ε(x,mε,±
α (y)

)
− ∂y F ε(y,ρε(t, x)

))

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy.

In order to prove Proposition 3.1, we need to show that I1 + I2 converges to the left-hand side of
the entropy inequality (2.3) and I3 → 0, when τ → 0 after ω → 0.

Step 2. We start with the following two useful identities:

lim
ω→0

∫
Hω(x− y)

∣∣mε,±
α (y)−mε,±

α (x)
∣∣dxdy = 0; (3.7)

and, for any continuous function G of mε,±
α ,

lim
ω→0

∫
H ′

ω(x− y)(x− y)
∣∣G

(
mε,±

α (y)
)
− G

(
mε,±

α (x)
)∣∣dxdy = 0. (3.8)

We first show that the steady-state solutions are continuous on R for each α ∈ [M0,∞) (or α ∈
(−∞,M0]).

We start with α /= M0: Since the flux function is continuous in the first variable,

F ε(y,mε,+
α (x)

) y→x−−−→ F ε(x,mε,+
α (x)

)
.

On the other hand, F ε(y,mε,+
α (y)) = F ε(x,mε,+

α (x)). Therefore, we have

F ε(y,mε,+
α (y)

)
− F ε(y,mε,+

α (x)
) y→x−−−→ 0,

and, as a consequence of the fact that F ε(y, ·) is a one-to-one function on [ρm(y),∞),

mε,+
α (y)

y→x−−−→mε,+
α (x) for any x ∈ R.

Similarly, we can show for each α /= M0 that

mε,−
α (y)

y→x−−−→mε,−
α (x) for any x ∈ R.

If α = M0, then mε,±
M0

(x) = ρε
m(x),

F ε(y,ρε
m(x)

) y→x−−−→ F ε(x,ρε
m(x)

)
= M0.

On the other hand, we have F ε(y,ρε
m(y)) = M0. Therefore

F ε(y,ρε
m(y)

)
− F ε(y,ρε

m(x)
) y→x−−−→ 0,
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and, as a consequence of the fact that F ε is a continuous function in the second variable, we obtain

ρε
m(y)

y→x−−−→ ρε
m(x) for any x ∈ R.

With this, as in the proof of Theorem 2.2, we obtain (3.7).
Notice that, for any continuous function G of mε,±

α , we have

∫
H ′

ω(x− y)(x− y)
∣∣G

(
mε,±

α (y)
)
− G

(
mε,±

α (x)
)∣∣dxdy

=
∫

H ′
ω(−ωz)(−ωz)

∣∣G
(
mε,±

α (x+ ωz)
)
− G

(
mε,±

α (x)
)∣∣ωdxdz

=
∫

zH ′(−z)
∣∣G

(
mε,±

α (x+ ωz)
)
− G

(
mε,±

α (x)
)∣∣dxdz

→ 0 when ω → 0,

since mε,±
α is continuous and is in L∞ . Thus, (3.8) follows.

Step 3. With (3.7) and

∣∣ρε(t, x)−mε,±
α (y)

∣∣−
∣∣ρε(t, x)−mε,±

α (x)
∣∣ !

∣∣mε,±
α (x)−mε,±

α (y)
∣∣,

as in the proof of Theorem 2.2, we obtain that, when ω → 0 first and τ → 0 second, I1 converges to

∫ (∣∣ρε(t, x)−mε,±
α (x)

∣∣∂t J (t, x) + sign
(
ρε(t, x)−mε,±

α (x)
)(
F ε(x,ρε(t, x)

)
− α

)
∂x J (t, x)

)
dt dx.

In the same way, we can replace mε,±
α (y) by mε,±

α (x) and ρε(t, x) by ρε(0, x) in I2, when ω → 0 first
and τ → 0 second. Then both terms of I2 converge to

1
2

∫ ∣∣ρε(0, x)−mε,±
α (y)

∣∣ J (0, x)dx.

Step 4. It remains to show that limτ→0 limω→0 I3 = 0. To avoid confusion, from now on, we denote
the derivative of F ε(x, ·) with respect to the first variable by F ε

x (x, ·).
Notice that

I3 =
∫ (

− sign
(
ρε(t, x)−mε,±

α (y)
)(
F ε(y,ρε(t, x)

)
− F ε(x,ρε(t, x)

)
− F ε

x
(
x,ρε(t, x)

)
(y− x)

)

+ sign
(
ρε(t, x)−mε,±

α (y)
)(
F ε(y,mε,±

α (y)
)
− F ε(x,mε,±

α (y)
)
− F ε

x
(
x,mε,±

α (y)
)
(y− x)

))

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)H ′

ω(x− y)dt dxdsdy

+
∫

sign
(
ρε(t, x)−mε,±

α (y)
)
F ε
y
(
y,ρε(t, x)

)
J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy

−
∫

sign
(
ρε(t, x)−mε,±

α (y)
)
F ε
x
(
x,ρε(t, x)

)
(y− x)

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)H ′

ω(x− y)dt dxdsdy

−
∫

sign
(
ρε(t, x)−mε,±

α (y)
)
F ε
x
(
x,mε,±

α (y)
)
J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy
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+
∫

sign
(
ρε(t, x)−mε,±

α (y)
)
F ε
x
(
x,mε,±

α (y)
)
(y − x)

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy

=
∫ (

− sign
(
ρε(t, x)−mε,±

α (y)
)(
F ε(y,ρε(t, x)

)
− F ε(x,ρε(t, x)

)
− F ε

x
(
x,ρε(t, x)

)
(y− x)

)

+ sign
(
ρε(t, x)−mε,±

α (y)
)(
F ε(y,mε,±

α (y)
)
− F ε(x,mε,±

α (y)
)
− F ε

x
(
x,mε,±

α (y)
)
(y− x)

))

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)H ′

ω(x− y)dt dxdsdy

+
∫

sign
(
ρε(t, x)−mε,±

α (y)
)(
F ε
x
(
x,ρε(t, x)

)
− F ε

x
(
x,mε,±

α (y)
))(

Hω(x− y) + H ′
ω(x− y)(x− y)

)

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)dt dxdsdy

+
∫

sign
(
ρε(t, x)−mε,±

α (y)
)(
F ε
y
(
y,ρε(t, x)

)
− F ε

x
(
x,ρε(t, x)

))

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)Hω(x− y)dt dxdsdy.

The last term of this expression is of order O(ω), since F ε is at least C1 in the first variable, all the
functions in the integrand are bounded, and the support of H is also bounded. Therefore, this term
converges to 0 when ω → 0.

Step 5. It remains to show that the first and the second terms in the last expression vanish in the
limit. The first term is equal to

1
2

∫
sign

(
ρε(t, x)−mε,±

α (y)
)(
F ε
xx

(
ξ,mε,±

α (y)
)
− F ε

xx
(
ξ,ρε(t, x)

)
+ O

(
|y− x|

))
H ′

ω(x− y)(x− y)2

× J
(
t + s
2

,
x+ y
2

)
H̄τ (t − s)dt dxdsdy.

Since ρε ∈ L∞ and F ε is smooth in the first variable, by (H2), the first term of the last expression is
bounded above by

C
∫

1
ω2 H ′

(
x− y
ω

)
|y− x|2 J

(
t + s
2

,
x+ y
2

)
H̄τ (t − s)dt dxdsdy

= Cω

∫
H ′(z)z2 J

(
t + s
2

,
2x+ ωz

2

)
H̄τ (t − s)dt dxdsdz = O(ω)→ 0 when ω → 0.

The second term is equal to

∫
sign

(
ρε(t, x)−mε,±

α (y)
)(
F ε
x
(
x,ρε(t, x)

)
− F ε

x
(
x,mε,±

α (y)
))

×
(
Hω(x− y) + H ′

ω(x− y)(x− y)
)((

J
(
t + s
2

,
x+ y
2

)
− J (t, x)

)
+ J (t, x)

)
Hτ (t − s)dt dxdsdy

= O(ω) + O(τ ) +
∫

J (t, x)
(
Hω(x− y) + H ′

ω(x− y)(x− y)
)

×
(
sign

(
ρε(t, x)−mε,±

α (y)
)(
F ε
x
(
x,ρε(t, x)

)
− F ε

x
(
x,mε,±

α (y)
))
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− sign
(
ρε(t, x)−mε,±

α (x)
)(
F ε
x
(
x,ρε(t, x)

)
− F ε

x
(
x,mε,±

α (x)
)))

dt dxdy

+
∫

sign
(
ρε(t, x)−mε,±

α (x)
)(
F ε
x
(
x,ρε(t, x)

)
− F ε

x
(
x,mε,±

α (x)
))

×
(∫ (

Hω(x− y) + H ′
ω(x− y)(x− y)

)
dy

)
J (t, x)dt dx.

Notice that

sign
(
ρε −mε,±

α

)(
F ε
x
(
x,ρε)− F ε

x
(
x,mε,±

α

))

is a continuous function of mε,±
α . Thus, the third term of the last expression goes to zero if ω → 0 by

(3.7) and (3.8).
In the remaining last term, the integral with respect to y is equal to 0 because

Hω(x− y) + H ′
ω(x− y)(x− y) =−∂y

(
(x− y)Hω(x− y)

)
.

This concludes that I3 vanishes in the limit when ω → 0 first and τ → 0 second. !

Thus we conclude the existence of an entropy solution ρε(t, x) in the sense of Definition 2.1 for
each F ε with fixed ε > 0.

Remark 3.1. Notice that the sequence of approximate entropy solutions converges to a measure-valued
entropy solution when ε → 0: First, since ρ0 ∈ L∞ , we find that, for α big enough,

mε,−
α (x) ! ρ0(x) !mε,+

α (x) for all x ∈ R.

From [2], it then follows that

mε,−
α (x) ! ρε(t, x) !mε,+

α (x),

which implies the uniform boundedness of ρε(t, x) in ε since mε,±
α (x) are uniformly bounded in ε.

Then there exist a compactly supported family of probability measures πt,x on R (i.e. Young mea-
sures; see Tartar [23]) and a subsequence (still denoted by) ρε(t, x) such that, for any continuous
function f (ρ),

f
(
ρε(t, x)

) ∗
⇀

〈
πt,x, f (k)

〉
when ε → 0. (3.9)

On the other hand, by Section 3.1, the sequence ρε(t, x) satisfies the entropy inequality (2.3) for
F ε(x,ρ) and the steady-state solutions m±

α = mε,±
α . In particular, we use (3.9) and the definition of

the sequence F ε(x,ρ) in (3.1) to conclude that, when ε → 0, the compactly supported family of
probability measures πt,x satisfies that, for any test function J : R2

+ )→ R+ ,

∫ (〈
πt,x;

∣∣k−m±
α (x)

∣∣〉∂t J +
〈
πt,x; sign

(
k−m±

α

)(
F (x,k)− α

)〉
∂x J

)
dxdt

+
∫ ∣∣ρ0(x)−m±

α (x)
∣∣ J (0, x)dx " 0. (3.10)

Thus, πt,x is a measure-valued entropy solution of (1.1)–(1.2) with compact support for a.e. (t, x) ∈ R2
+

in the sense of Definition 2.2.
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3.2. Existence of entropy solutions when F is discontinuous in x

We are now ready to state the main theorem of this section.

Theorem 3.1. Let F (x,ρ) be strictly convex or concave in ρ for a.e. x ∈ R and satisfy (H1)–(H3), or let F (x,ρ)
satisfy (H1)–(H2) and (H3′). Let ρ0(x) ∈ L∞ . Then the sequence of entropy solutions ρε of the Cauchy problem
(3.2) (in the sense of Definition 2.1) converges to the unique entropy solution of the Cauchy problem (1.1)–(1.2)
in the sense of Definition 2.1.

Proof. We consider the two cases separately.
For the case (H1)–(H2) and (H3′), that is, the flux function F is monotone in ρ , we apply the

compactness framework established in Section 2 to establish the convergence. For this case, the ex-
istence of entropy solutions has been established in [4]. In Remark 3.1, we have shown that the
limit of the entropy solutions ρε is determined by a measure-valued entropy solution πt,x . Then, by
Theorems 2.1–2.2, πt,x is the Dirac measure concentrated on the unique entropy solution ρ(t, x) of
(1.1)–(1.2) in the sense of Definition 2.1, which implies the whole sequence converges.

For the case (H1)–(H3), since we have not established the existence of an entropy solution, we
employ the compensated compactness method to establish the convergence of the entropy solutions
of the Cauchy problem (3.2), which also yields the existence of a unique entropy solution of the
Cauchy problem (1.1)–(1.2).

From Remark 3.1, we know that ρε is uniformly bounded in L∞ which implies that there exists a
subsequence ρε converging weakly to a compactly supported family of probability measures νt,x on
R+ such that, for any function f (ρ, t, x) that is continuous in ρ for a.e. (t, x),

f
(
ρε(t, x), t, x

) ∗
⇀

〈
νt,x, f (k, t, x)

〉
when ε → 0. (3.11)

In particular,

ρε(t, x)
∗
⇀ 〈νt,x,k〉 =: ρ(t, x) ∈ L∞. (3.12)

Our goal is to prove the strong convergence of ρε(t, x) to ρ(t, x) a.e., equivalently, νt,x = δρ(t,x) , which
implies that ρ(t, x) is an entropy solution of (1.1)–(1.2), that is, ρ(t, x) satisfies the entropy inequality
in Definition 2.1.

From Section 3.1, we know that the sequence ρε exists and satisfies

Eε := ∂t
∣∣ρε(t, x)− ρ̂ε(s, y, x)

∣∣ + ∂x
(
sign

(
ρε(t, x)− ρ̂ε(s, y, x)

)(
F ε(x,ρε(t, x)

)
− γ (s, y)

))
! 0

in the sense of distributions, where

ρ̂ε(s, y, x) :=m+,ε
γ (s,y)(x) sign+

(
ρ(s, y)− ρm(y)

)
+m−,ε

γ (s,y)(x) sign−
(
ρ(s, y)− ρm(y)

)
.

Notice that γ (s, y) := F (y,ρ(s, y)) is independent of ε. Thus, for fixed (s, y), we have the strong
convergence of m±,ε

γ (s,y)(x) to a steady-state solution m±
γ (s,y)(x) of (1.1)–(1.2) when ε → 0. In particular,

‖ρ̂ε‖L∞ ! M, M independent of ε;

and, for a.e. (s, y, x) ∈ R2
+ ×R,

ρ̂ε(s, y, x)→ ρ̂(s, y, x) :=m+
γ (s,y)(x) sign+

(
ρ(s, y)− ρm(y)

)
+m−

γ (s,y)(x) sign−
(
ρ(s, y)− ρm(y)

)
,
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when ε → 0. By Schwartz’s lemma, Eε is a sequence of measures; by Murat’s lemma [20], Eε is
uniformly bounded measure sequence in the measure space, which implies that

Eε is compact in W−1,p
loc

(
R2

+
)
for any p ∈ (1,2). (3.13)

On the other hand, since the vector-field sequence

(∣∣ρε(t, x)−m±,ε
γ (s,y)(x)

∣∣, sign
(
ρε(t, x)−m±,ε

γ (s,y)(x)
)(
F ε(x,ρε(t, x)

)
− γ (s, y)

))

is uniformly bounded in ε for any fixed (s, y), it follows that

Eε is bounded in W−1,∞
loc

(
R2

+
)
. (3.14)

With (3.13)–(3.14), we obtain by a compactness interpolation theorem in [6,13] that

Eε is compact in H−1
loc

(
R2

+
)
. (3.15)

On the other hand,

∂tρ
ε + ∂x F ε(x,ρε) = 0 which is automatically compact in H−1

loc

(
R2

+
)
. (3.16)

Moreover, since ρ̂ε(s, y, x) strongly converges a.e., then we find that, when ε → 0,

ηε
1
(
ρε, t, x, s, y

)
:=

∣∣ρε(t, x)− ρ̂ε(s, y, x)
∣∣

∗
⇀

〈
νt,x(k);

∣∣k− ρ̂(s, y, x)
∣∣〉

=:
〈
νt,x;η1(k, t, x, s, y)

〉
,

qε
1
(
ρε, t, x, s, y

)
:= sign

(
ρε(t, x)− ρ̂ε(s, y, x)

)(
F ε(x,ρε)− γ (s, y)

)

∗
⇀

〈
νt,x(k); sign

(
k− ρ̂(s, y, x)

)(
F (x,k)− γ (s, y)

)〉

=:
〈
νt,x;q1(k, t, x, s, y)

〉
,

ηε
2
(
ρε(t, x)

)
:= ρε(t, x)

∗
⇀

〈
νt,x(k);k

〉
= ρ(t, x)

=:
〈
νt,x;η2(k)

〉
,

qε
2
(
ρε(t, x), x

)
:= F ε(x,ρε)

∗
⇀

〈
νt,x(k); F (x,k)

〉

:=
〈
νt,x;q2(k, x)

〉
, (3.17)

and

∣∣∣∣
η1(ρε(t, x), s, y, x) q1(ρε(t, x), s, y, x)

η2(ρε(t, x)) q2(ρε(t, x), x)

∣∣∣∣
∗
⇀

〈
νt,x;

∣∣∣∣
η1(k, s, y, x) q1(k, s, y, x)

η2(k) q2(k, x)

∣∣∣∣

〉
, (3.18)

where
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(
η1(k, t, x, s, y),q1(k, t, x, s, y)

)
=

(∣∣k− ρ̂(s, y, x)
∣∣, sign

(
k− ρ̂(s, y, x)

)(
F (x,k)− γ (s, y)

))
,

(
η2(k),q2(k, x)

)
=

(
k, F (x,k)

)
.

Together (3.15)–(3.16) with (3.17)–(3.18), we apply the Div–Curl lemma (see Tartar [23] and Murat
[19]) to obtain

〈
νt,x;

∣∣∣∣
η1(k, s, y, x) q1(k, s, y, x)

η2(k) q2(k, x)

∣∣∣∣

〉
=

∣∣∣∣
〈νt,x;η1(k, s, y, x)〉 〈νt,x;q1(k, s, y, x)〉

〈νt,x;η2(k)〉 〈νt,x;q2(k, x)〉

∣∣∣∣

for all (s, y), (t, x) ∈ R \ M with M a set of measure zero in R2
+ . Thus, we have

〈
νt,x;

∣∣k− ρ̂(s, y, x)
∣∣F (x,k)− k sign

(
k− ρ̂(s, y, x)

)(
F (x,k)− γ (s, y)

)〉

=
〈
νt,x;

∣∣k− ρ̂(s, y, x)
∣∣〉〈νt,x; F (x,k)

〉
− 〈νt,x,k〉

〈
νt,x; sign

(
k− ρ̂(s, y, x)

)(
F (x,k)− γ (s, y)

)〉
.

Equivalently, we have

〈
νt,x;

∣∣k− ρ̂(s, y, x)
∣∣(F (x,k)−

〈
νt,x; F (x,k)

〉)〉

−
〈
νt,x;

(
k− ρ(t, x)

)
sign

(
k− ρ̂(s, y, x)

)(
F (x,k)− F

(
y,ρ(s, y)

))〉
= 0.

Since this is true for all (s, y) and (t, x) except on a set M of measure zero, we then choose (s, y) =
(t, x) for (t, x) ∈ R \ M to obtain

〈
νt,x;

∣∣k− ρ(t, x)
∣∣(F (x,k)−

〈
νt,x; F (x,k)

〉)〉

−
〈
νt,x;

(
k− ρ(t, x)

)
sign

(
k− ρ(t, x)

)(
F (x,k)− F

(
x,ρ(t, x)

))〉
= 0,

that is,

〈
νt,x;

∣∣k− ρ(t, x)
∣∣〉(F

(
x,ρ(t, x)

)
−

〈
νt,x; F (x,k)

〉)
= 0. (3.19)

There are two possibilities:
When 〈νt,x; |k− ρ(t, x)|〉 = 0, then we have νt,x(k) = δρ(t,x)(k).
When 〈νt,x; F (x,k)〉 − F (x,ρ(t, x)) = 0, we note that

〈
νt,x; F (x,k)

〉
− F

(
x,ρ(t, x)

)
=

〈
νt,x; F (x,k)− F

(
x,ρ(t, x)

)〉

=
〈

νt,x; Fρ
(
x,ρ(t, x)

)(
k− ρ(t, x)

)
+ 1

2

1∫

0

θ Fρρ
(
x, θρ(t, x) + (1− θ)k

)
dθ

(
k− ρ(t, x)

)2
〉

= Fρ
(
x,ρ(t, x)

)〈
νt,x;k− ρ(t, x)

〉
+ 1

2

〈

νt,x;
1∫

0

θ Fρρ
(
x, θρ(t, x) + (1− θ)k

)
dθ

(
k− ρ(t, x)

)2
〉

= 1
2

〈

νt,x;
1∫

0

θ Fρρ
(
x, θρ(t, x) + (1− θ)k

)
dθ

(
k− ρ(t, x)

)2
〉

.

Since F (x,ρ) is strictly convex or concave in ρ , we conclude

νt,x(k) = δρ(t,x)(k) for (t, x) a.e. (3.20)
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Therefore, we have

ρε(t, x)→ ρ(t, x) a.e. when ε → 0.

Since the limit is unique via the uniqueness result in [2], the whole sequence ρε(t, x) strongly con-
verges to ρ(t, x) a.e. It is easy to check that ρ(t, x) is the unique entropy solution of the Cauchy
problem (1.1)–(1.2) in the sense of Definition 2.1. !

Remark 3.2. In [5], the existence of entropy solutions (1.1)–(1.2) in the sense of Definition 2.1 is
proven for the case λ(x)u2. They used the vanishing viscosity method combined with a mollification
for λ(x).

Remark 3.3. The conditions on the flux function F (x,ρ) in Theorem 3.1 for the non-monotone case
can be relaxed as follows: F (x,ρ) satisfies (H1)–(H3) and is convex or concave with

L1{ρ: Fρρ(x,ρ) = 0
}

= 0 for a.e. x ∈ R,

where L1 is the one-dimensional Lebesgue measure.

4. Hydrodynamic limit of a zero range process with discontinuous speed-parameter

In Section 2, we have established a compactness framework for approximate solutions via the
reduction of measure-valued entropy solutions of (1.1)–(1.2) in the sense of Definition 2.1. In this
section we focus on a microscopic particle system for a zero range process (ZRP) with discontinuous
speed-parameter λ(x). We apply the compactness framework to show the hydrodynamic limit for the
particle system, when the distance between particles tends to zero, to the unique entropy solution of
the Cauchy problem

∂tρ + ∂x
(
λ(x)h(ρ)

)
= 0 (4.1)

and with initial data

ρ|t=0 = ρ0(x) " 0, (4.2)

where h(ρ) is a monotone function of ρ , and λ(x) is continuous in x ∈ R, except on a closed set N
of measure zero, with 0 < λ1 ! λ(x) ! λ2 < ∞ for some constants λ1 and λ2. Then m+

α = m−
α := mα

for α ∈ [0,∞).
Rezakhanlou in [22] first established the hydrodynamic limit of the processus des misanthropes

(PdM) with constant speed-parameter. Covert and Rezakhanlou [12] provided a proof of the hydrody-
namic limit of a PdM with nonconstant but continuous speed-parameter λ. Bahadoran [3] proved this
for a simple exclusion process. In all these papers, the most important step is to show an entropy in-
equality at microscopic level, which then implies the (macroscopic) Kruzkov entropy inequality, when
the distance between particles tends to zero, and thereby implies the uniqueness of limit points. In
this section, we generalize this to the case when the speed-parameter λ(x) has jumps for the attrac-
tive Zero Range Process (ZRP). In Section 4.1, we analyze some properties of the ZRP. In Section 4.2,
we prove the one-dimensional microscopic entropy inequality letting ε = ε(N) = N−σ ,σ ∈ (0,1), for
a ZRP with discontinuous speed-parameter when N →∞, where ε is as in Section 3 and N is the
inverse of the distance between particles. In Section 4.3, we show the existence of measure-valued
solutions via the microscopic entropy inequality and how inequality (2.3) follows.
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4.1. Some properties of the microscopic interacting particle system

We consider a system of particles with conserved total mass and evolving on a one-dimensional
lattice Z according to a Markovian law. With the Euler scaling factor N , the microscopic particle
density is expected to converge to a deterministic limit when N →∞, which is characterized by a
solution of a conservation law. Under the Euler scaling, 1

N represents the distance between sites. Ob-
viously we have two space scales: The discrete lattice Z as embedded in R with “vertices” u

N and
u ∈ Z. In this way, the distances between particles tend to zero if N increases to infinity. Sites of the
microscopic scale Z are denoted by the letters u, v and correspond to the points u

N , v
N in the macro-

scopic scale R. Points of the macroscopic space scale R are denoted by the letters x, y and correspond
to the sites [xN], [yN] in the microscopic space scale, where [z] is the integer part of z. We denote
by ηt(u) the number of particles at time t > 0 at site u. Then the vector ηt = (ηt(u): u ∈ Z) is called
a configuration at time t with configuration space NZ .

In general, the ZRP can be described as follows: Infinitely many indistinguishable particles are
distributed on a 1-dimensional lattice. Any site of the lattice may be occupied by a finite number of
particles. Associated to a given site u there is an exponential clock with rate λε(

u
N )g(η(u)) depending

on the macroscopic spatial coordinates. Each time the clock rings on the site u, one of the particles
jumps to the site v chosen with probability p(u, v). The elementary transition probabilities p: Z )→
[0,1] are supposed to be

(i) translation invariant: p(x, y) = p(0, y − x) =: p(y− x);
(ii) normalized:

∑
y p(x, y) = 1, p(x, x) = 0;

(iii) assumed to be of finite range: p(x, y) = 0 for |y− x| sufficiently large;
(iv) irreducible: p(0,1) > 0.

Without loss of generality, we assume that
∑

z p(z)z = γ = 1; otherwise, for γ /= 1, we replace the
function h(ρ) by h(ρ)/γ in the following argument. The rate g : N → R+ is a positive, nondecreasing
function with g(0) = 0, g(∞) =∞, and

g(k)
k2

→ 0 when k→∞. (4.3)

With this description, the Markov process ηt is generated by

NLNε f (η) = N
∑

u,v

λε

(
u
N

)
g
(
η(u)

)
p(v − u)

(
f
(
ηu,v)− f (η)

)
. (4.4)

Here N comes from the Euler scaling factor speeding the generator, thus ηt denotes a configuration
on which this speeded generator NLNε has acted for time Nt , and ηu,v represents the configuration η
where one particle jumped from u to v:

ηu,v(w) =
{η(w) if w /= u, v,

η(u)− 1 if w = u,
η(v) + 1 if w = v.

For any ε = ε(N) > 0 and for any constant α " 0, we define a product measure given by

ν̃N
α (η) :=

∏

u

1
Z(α/λε(

u
N ))

αη(u)

(λε(
u
N ))η(u)g(η(u))! :=

∏

u

ν̃N
α

(
η(u)

)
, (4.5)

where Z is a partition function equal to

Z
(

α

λε(
u
N )

)
=

∞∑

n=0

αn

(λε(
u
N ))n g(n)! . (4.6)
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Then the expected value of the occupation variable η(u) is equal to

E ν̃N
α

[
η(u)

]
= α

λε(
u
N )

Z ′( α
λε( u

N )
)

Z( α
λε( u

N )
)

:= R
(

α

λε(
u
N )

)
.

Now let h be the inverse function of R to obtain

h
(
R
(

α

λε(
u
N )

))
= α

λε(
u
N )

⇒ λε

(
u
N

)
h
(
E ν̃N

α

[
η(u)

])
= α ⇔ E ν̃N

α

[
η(u)

]
=mα

(
u
N

)
,

where mα is a steady-state solution to

∂tρ + ∂x
(
λε(x)h(ρ)

)
= 0. (4.7)

Furthermore, it follows that

E ν̃N
α

[
g
(
η(u)

)]
= h

(
mα

(
u
N

))
.

From now on, we set

µN
mα

(η) =
∏

u

νmα( u
N )

(
η(u)

)
:=

∏

u

ν̃N
λε( u

N )h(mα( u
n ))

(
η(u)

)
. (4.8)

The important attribute of the ZRP with nonconstant speed-parameter is that the product measure
µN

mα
(η) is invariant under the generator NLNε , i.e.,

∫
LNε

(
f (η)

)
dµN

mα
(η) = 0. (4.9)

As a reasonable initial distribution, we choose the product measure µN
0 (η) associated to a bounded

density profile defined as follows: For a bounded density profile ρ0 " 0, the probability that particles
at time t = 0 are distributed with configuration η is equal to

µN
0 (η) :=

∏

u

1
Z(h(ρu,N)/λε(

u
N ))

(h(ρu,N))η(u)

(λε(
u
N ))η(u)g(η(u))! , (4.10)

where ρu,N " 0 is a sequence satisfying limN→∞
∫

|ρ[Nx],N −ρ0(x)|dx = 0 for [Nx] as the integer part
of Nx. With this definition, we say that a sequence of probability measures µN is associated to a
density profile ρ " 0 if

lim
N→∞

〈
µN (η);

∣∣∣∣
1
N

∑

u

J
(

u
N

)
η(u)−

∫
J (x)ρ(x)dx

∣∣∣∣

〉
= 0 for every test function J .

Furthermore, let µN
t denote the distribution of a configuration at time t initially distributed by µN

0 :

µN
t = SN

t ∗µN
0 , (4.11)

where SN
t = etNLNε is the semigroup corresponding to the generator NLNε . Then the attractiveness for

two initial measures µN
ρ0

and µN
ω0

with profiles ρt and ωt , respectively, implies that

µN
ρ0

! µN
ω0

⇒ µN
ρt

! µN
ωt
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is satisfied by the assumption that g is a nondecreasing function. Moreover, it is easy to prove that
µρ0 ! µω0 if ρ0 ! ω0. It then follows by attractiveness and (4.9) that, for any constant α such that
mα(x) " ρ0(x), we obtain that the inequality µN

0 ! µN
mα

implies

SN
t µN

0 ! SN
t µN

mα
= µN

mα
. (4.12)

Since our initial distribution has a bounded density profile, then the density profile remains bounded
at later time t .

The goal in proving the hydrodynamic limit of a ZRP is that, if we start from a configuration
η0 distributed with an initial measure µN

0 associated to the bounded density profile ρ0, then the
distribution µN

t of the configuration ηt at later time t is associated to the density profile ρ(t, ·),
where ρ is the solution of the Cauchy problem (4.1)–(4.2) in the sense of Definition 2.1. In other
words, our main theorem in this section is the following.

Theorem 4.1 (Hydrodynamic limit of an attractive ZRP with discontinuous speed-parameter). Let ηt be an
attractive ZRP with (4.3) initially distributed by the measure µN

0 associated to a bounded density profile
ρ0 : R2

+ )→ R+ as defined in (4.10). Let ε = ε(N) = N−σ , σ ∈ (0,1). Then, at later time t,

lim
N→∞

〈
µN

t (η);
∣∣∣∣
1
N

∑

u

J
(

u
N

)
ηt(u)−

∫
J (x)ρ(t, x)dx

∣∣∣∣

〉
= 0 (4.13)

for any test function J : R2
+ )→ R, where ρ(t, x) is the unique solution of the Cauchy problem (4.1)–(4.2) in

the sense of Definition 2.1.

To achieve this, we have to establish an entropy inequality in the sense of Definition 2.1 at micro-
scopic level. This will be done in Section 4.2 by using the scaling relation ε = ε(N) = N−σ ,σ ∈ (0,1).
Associated to each configuration ηt , we may define the empirical measure viewed as a random mea-
sure on R by

χN
t (x) := 1

N

∑

u

ηt(u)δ u
N
(x). (4.14)

Then 〈χN
t (·), J (·)〉 = 1

N

∑
u J ( u

N )ηt(u), and we can rewrite (4.13) by

lim
N→∞

〈
µN

t (η);
∣∣∣∣
〈
χN
t (·), J (·)

〉
−

∫
J (x)ρ(t, x)dx

∣∣∣∣

〉
= 0. (4.15)

4.2. The entropy inequality at microscopic level

The following proposition is essential towards the hydrodynamic limit.

Proposition 4.1 (Entropy inequality at microscopic level for ε = N−σ with σ ∈ (0,1) when N →∞). Let
mε

α be the steady-state solutions of (3.2) as defined in (1.3) with F ε(x,ρ) = λε(x)h(ρ). Let ηt be the ZRP
generated by NLNε defined by (4.4) and initially distributed by the measure µN

0 defined by (4.10). Let ηl(u) be
the average density of particles in large microscopic boxes of size 2l + 1 and centered at u:

ηl(u) := 1
2l + 1

∑

|u−v|!l

η(v).

Then, for every test function J : R2
+ )→ R+ ,
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lim
l→∞

lim
N→∞

µN
t

{ t∫

0

1
N

∑

u

(
∂s J

(
s,

u
N

)∣∣∣∣η
l
s(u)−mε

α

(
u
N

)∣∣∣∣ + ∂x J
(
s,

u
N

)∣∣∣∣λε

(
u
N

)
h
(
ηl
s(u)

)
− α

∣∣∣∣

)
ds

+ 1
N

∑

u

J
(
0,

u
N

)∣∣∣∣η
l
0(u)−mε

α

(
u
N

)∣∣∣∣ "−δ

}

= 1. (4.16)

Inequality (4.16) is the entropy inequality (2.3) with ρ replaced by the average density of particles
in the microscopic boxes of length 2l + 1. To prove the microscopic entropy inequality, we consider
the coupled process (ηt , ξt) generated by NL̄Nε , where L̄Nε is defined by

L̄Nε f (η, ξ) =
∑

u,v

p(v − u)λε

(
u
N

)
min

{
g
(
η(u)

)
, g

(
ξ(u)

)}(
f
(
ηu,v , ξu,v)− f (η, ξ)

)

+
∑

u,v

p(v − u)λε

(
u
N

){
g
(
η(u)

)
− g

(
ξ(u)

)}
+
(
f
(
ηu,v , ξ

)
− f (η, ξ)

)

+
∑

u,v

p(v − u)λε

(
u
N

){
g
(
ξ(u)

)
− g

(
η(u)

)}
+
(
f
(
η, ξu,v)− f (η, ξ)

)
. (4.17)

Furthermore, denote the initial distribution of (ηt , ξt) by µ̄N
0 = µN

0 × µN
mε

α
, where µN

0 is the initial

measure with density profile ρ0 defined by (4.10) and µN
mε

α
denotes the invariant measure as defined

in (4.8).
Then, to prove Proposition 4.1, it suffices to prove the following proposition.

Proposition 4.2. Let (ηt , ξt) be the coupled process, starting from µ̄N
0 , generated by NL̄Nε as defined by (4.17).

Let µ̄N
t = S̄N

t ∗ µ̄N
0 , where S̄N

t is the semigroup corresponding to the generator N L̄Nε . Then, for every test
function J : R2

+ )→ R+ and every ε = N−σ with σ ∈ (0,1),

lim
l→∞

lim
N→∞

µ̄N
t

{ T∫

0

1
N

∑

u

{
∂s J

(
s,

u
N

)∣∣ηl
s(u)− ξ l

s(u)
∣∣ + ∂x J

(
s,

u
N

)
λε

(
u
N

)∣∣h
(
ηl
s(u)

)
− h

(
ξ l
s(u)

)∣∣
}
ds

+ 1
N

∑

u

J
(
0,

u
N

)∣∣ηl
0(u)− ξ l

0(u)
∣∣ "−δ

}

= 1.

Recall that a microscopic entropy inequality leading to the Kruzkov entropy inequality has been
proved in [12] for the process of PdM with nonconstant but continuous speed-parameter λε . Since
there does not exist an invariant product measure for a PdM in general such that EµN

mε
α

[ξ(u)] =
mε

α( u
N ), to replace the process ξ by mε

α( u
N ), one has to apply the relative entropy method of Yau [24].

In our case of a space-dependent ZRP, the invariant product measure is available so that we can
approximate the steady-state solution mε

α by a process ξ distributed by the invariant measure µN
mε

α

for any α ∈ (0,∞). Then, Proposition 4.1 indeed directly follows from Proposition 4.2.

4.3. Proof of Proposition 4.2

We split the proof in three steps.

Step 1: Lower bound for the martingale. For a test function J with compact support in R2
+ , define by

M J
t the martingale vanishing at time t = 0:
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M J
t = 1

N

∑

u

J
(
t,

u
N

)∣∣ηt(u)− ξt(u)
∣∣− 1

N

∑

u

J
(
0,

u
N

)∣∣η0(u)− ξ0(u)
∣∣

−
t∫

0

(
∂s + NL̄Nε

)( 1
N

∑

u

J
(
s,

u
N

)∣∣ηs(u)− ξs(u)
∣∣
)
ds.

Since J has compact support, then, for t large enough,

M J
t =− 1

N

∑

u

J
(
0,

u
N

)∣∣η0(u)− ξ0(u)
∣∣−

t∫

0

(
∂s + NL̄Nε

)( 1
N

∑

u

J
(
s,

u
N

)∣∣ηs(u)− ξs(u)
∣∣
)
ds.

We now calculate

L̄Nε
∣∣η(u)− ξ(u)

∣∣ =
∑

v,w

p(w − v)λε

(
v
N

){
min

{
g
(
η(v)

)
, g

(
ξ(v)

)}(∣∣ηv,w(u)− ξ v,w(u)
∣∣−

∣∣η(u)− ξ(u)
∣∣)

+
{
g
(
η(v)

)
− g

(
ξ(v)

)}
+
(∣∣ηv,w(u)− ξ(u)

∣∣−
∣∣η(u)− ξ(u)

∣∣)

+
{
g
(
ξ(v)

)
− g

(
η(v)

)}
+
(∣∣η(u)− ξ v,w(u)

∣∣−
∣∣η(u)− ξ(u)

∣∣)}

=
∑

v

(
1− Gu,v(η, ξ)

)(
−p(v − u)λε

(
u
N

)∣∣g
(
η(u)

)
− g

(
ξ(u)

)∣∣

+ p(u − v)λε

(
v
N

)∣∣g
(
η(v)

)
− g

(
ξ(v)

)∣∣
)

−
∑

v

Gu,v(η, ξ)

(
p(v − u)λε

(
u
N

)∣∣g
(
η(u)

)
− g

(
ξ(u)

)∣∣

+ p(u − v)λε

(
v
N

)∣∣g
(
η(v)

)
− g

(
ξ(v)

)∣∣
)

, (4.18)

where Gu,v is the indicator function that equals to 1 if η and ξ are not ordered, i.e.,

Gu,v(η, ξ) = 1
{
η(u) < ξ(u); η(v) > ξ(v)

}
+ 1

{
η(u) > ξ(u); η(v) < ξ(v)

}
.

Notice that the second sum is nonpositive. Therefore, plugging the last expression in the martingale
M J

t and then interchanging u and v in the last term, we can bound the martingale below by

− 1
N

∑

u

J
(
0,

u
N

)∣∣η0(u)− ξ0(u)
∣∣−

t∫

0

1
N

∑

u

∂s J
(
s,

u
N

)∣∣ηs(u)− ξs(u)
∣∣ds

+
t∫

0

∑

u,v

(
J
(
s,

u
N

)
− J

(
s,

v
N

))
p(v − u)

(
1− Gu,v(ηs, ξs)

)
λε

(
u
N

)∣∣g
(
ηs(u)

)
− g

(
ξs(u)

)∣∣ds.

Since the transition probability p is of finite range, i.e. p(z) = 0 if |z| > r for some r, then

(
J
(
s,

u
N

)
− J

(
s,

v
N

))
p(v − u) =− 1

N
(v − u)p(v − u)∂x J

(
s,

u
N

)
+ O

(
1
N2

)
.
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With v = u + y, it then follows that the martingale is bounded below by

−
t∫

0

1
N

∑

u

{
∂s J

(
s,

u
N

)∣∣ηs(u)− ξs(u)
∣∣

+ ∂x J
(
s,

u
N

)
λε

(
u
N

)
τu

(∑

y

yp(y)(1− G0,y)

)∣∣g
(
ηs(0)

)
− g

(
ξs(0)

)∣∣
}
ds

− 1
N

∑

u

J
(
0,

u
N

)∣∣η0(u)− ξ0(u)
∣∣ + O

(
1
N

)
.

Step 2. We show

lim
N→∞

Eµ̄N
t

[(
M J

t
)2] = 0. (4.19)

Recall that

N J
t :=

(
M J

t
)2 −

t∫

0

(
NL̄Nε

(
A J (s, η, ξ)

)2 − 2A J (s, η, ξ)NL̄Nε
(
A J (s, η, ξ)

))
ds

is a martingale vanishing at time t = 0, where A J is defined by

A J (t, η, ξ) = 1
N

∑

u

J
(
t,

u
N

)∣∣ηt(u)− ξt(u)
∣∣.

Then, by definition, Eµ̄N
s
[N J

s ] = 0 for all 0 ! s ! t . Thus, it suffices to show that the expectation of the

integral term of N J
t converges to zero when N →∞. In order to prove this, we first find that, by a

careful calculation,

NL̄Nε
(
A J (s, η, ξ)

)2 − 2NA J (s, η, ξ)L̄Nε
(
A J (s, η, ξ)

)

=
∑

v,w

p(w − v)Nλε

(
v
N

){∣∣g
(
ηs(v)

)
− g

(
ξs(v)

)∣∣ 1
N2

(
1− Gv,w(ηs, ξs)

)(
J
(
s,

w
N

)
− J

(
s,

v
N

))2

+
∣∣g

(
ξs(v)

)
− g

(
ηs(v)

)∣∣ 1
N2 Gv,w(ηs, ξs)

(
J
(
s,

v
N

)
+ J

(
s,

w
N

))2}
.

Since J is a smooth function, the first term of this expression is less than O( g(CN)

N2 ) for some constant
C depending on the total initial mass and therefore converges to zero when N →∞ by (4.3). For the
second term, we know that ( J (s, v

N ) + J (s, w
N ))2 ! 4‖ J‖2∞ , which implies

NL̄Nε
(
A J (s, η, ξ)

)2 − 2NA J (s, η, ξ)L̄Nε
(
A J (s, η, ξ)

)

= O
(
g(CN)

N2

)
+ 4‖ J‖2∞

N

∑

v,w

Gv,w(ηs, ξs)p(w − v)λε

(
v
N

)∣∣g
(
ξs(v)

)
− g

(
ηs(v)

)∣∣.
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Then, to conclude the proof of (4.19), it suffices to show

Eµ̄N
t

[ t∫

0

(∑

v,w

Gv,w(ηs, ξs)p(w − v)λε

(
v
N

)∣∣g
(
ξs(v)

)
− g

(
ηs(v)

)∣∣
)
ds

]

= O(1). (4.20)

For this, we use the martingale M J
t vanishing at 0 with J ≡ 1, that is,

Mt := 1
N

∑

u

∣∣ηt(u)− ξt(u)
∣∣− 1

N

∑

u

∣∣η0(u)− ξ0(u)
∣∣−

t∫

0

1
N

∑

u

N L̄Nε
∣∣ηs(u)− ξs(u)

∣∣ds.

By (4.18), the integral term of the martingale is equal to

t∫

0

2
N

∑

u,v

NGu,v(ηs, ξs)p(v − u)λε

(
u
N

)∣∣g
(
ηs(u)

)
− g

(
ξs(u)

)∣∣ds,

by interchanging u and v in some terms. Then we find

Eµ̄N
t

[ t∫

0

2
∑

u,v

Gu,v(ηs, ξs)p(v − u)λε

(
u
N

)∣∣g
(
ηs(u)

)
− g

(
ξs(u)

)∣∣ds

]

= Eµ̄N
t

[ t∫

0

1
N

∑

u

∣∣η0(u)− ξ0(u)
∣∣ds

]

− Eµ̄N
t

[ t∫

0

1
N

∑

u

∣∣ηt(u)− ξt(u)
∣∣ds

]

! Eµ̄N
t

[ t∫

0

1
N

∑

u

∣∣η0(u)− ξ0(u)
∣∣ds

]

.

Since we assumed that both marginals of µ̄N
t are bounded, (4.20) follows, which leads to (4.19).

With the result of Step 1 and (4.19) and using the Chebichev inequality, we obtain

µ̄N
t

{
1
N

∑

u

J
(
0,

u
N

)∣∣η0(u)− ξ0(u)
∣∣ +

t∫

0

1
N

∑

u

{
∂s J

(
s,

u
N

)∣∣ηs(u)− ξs(u)
∣∣

+ ∂x J
(
s,

u
N

)
λε

(
u
N

)
τu

(∑

y

yp(y)(1− G0,y)(η, ξ)

)∣∣g
(
ηs(0)

)
− g

(
ξs(0)

)∣∣
}
ds + O

(
1
N

)
<−δ

}

! µ̄N
t
{
M J

t > δ
}

! µ̄N
t
{∣∣M J

t

∣∣ > δ
}

! 1
δ2

Eµ̄N
t

[(
M J

t
)2]

, (4.21)

which converges to 0 when N →∞, for all δ > 0.

Step 3. We next use the following summation by parts formula: For any bounded function a of η(·)
with a(0) = 0 and for any smooth test function J : R )→ R, we obtain that, for any L > 0,

1
N

∑

|u|!LN

J
(

u
N

)
a
(
η(u)

)
= 1

N
1

(2l + 1)

∑

|u|!LN

J
(

u
N

) ∑

|u−v|!l

a
(
η(v)

)
+ O

(
l ‖ J‖Lip

N

)
. (4.22)
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Since we restrict ε = N−σ ,σ ∈ (0,1), then ‖λε‖Lip ! C/ε = CNσ and O(
l‖λε‖Lip

N ) = O( l
N1−σ ) → 0

when N →∞ so that we can use this summation by parts formula (4.22) to replace inequality (4.21)
by

lim
l→∞

lim
N→∞

µ̄N
t

{
1
N

∑

u

J
(
0,

u
N

)
1

2l + 1

∑

|z−u|!l

∣∣η0(z)− ξ0(z)
∣∣

+
t∫

0

1
N

∑

u

∂s J
(
s,

u
N

)
1

2l + 1

∑

|z−u|!l

∣∣ηs(z)− ξs(z)
∣∣ds

+
t∫

0

1
N

∑

u

∂x J
(
s,

u
N

)
λε

(
u
N

)
1

2l + 1

×
∑

|z−u|!l

τz

(∑

y

yp(y)(1− G0,y)(ηs, ξs)

)∣∣g
(
ηs(0)

)
− g

(
ξs(0)

)∣∣ds <−δ

}

= 0. (4.23)

Notice that, in (4.23), since J is a positive function, by the triangle inequality, we can remove the sum
inside the absolute value in the first line. Following the same argument as in [12,22] (also [11]), since
we first set ε = 1

Nσ , independent of λε(x), we can obtain the following one block estimates:

lim
l→∞

lim
N→∞

Eµ̄N
t

{ t∫

0

1
N

∑

u

∣∣∣∣
1

2l + 1

∑

|u−z|!l

∣∣ηs(z)− ξs(z)
∣∣−

∣∣ηl
s(u)− ξ l

s(u)
∣∣
∣∣∣∣ds

}

= 0 (4.24)

and

lim
l→∞

lim
N→∞

Eµ̄N
t

{ t∫

0

1
N

∑

u

τu

∣∣∣∣
1

2l + 1

∑

|z|!l

τz

(∑

y

yp(y)(1− G0,y)(ηs, ξs)

)∣∣g
(
ηs(0)

)
− g

(
ξs(0)

)∣∣

−
∣∣h

(
ηl
s(0)

)
− h

(
ξ l
s(0)

)∣∣
∣∣∣∣ds

}

= 0. (4.25)

Combining (4.23) with (4.24)–(4.25), we complete the proof of Proposition 4.2.

4.4. Existence of measure-valued entropy solutions

In this section, we prove that Theorem 4.1 implies the existence of a measure-valued entropy
solution associated to the configuration ηt . We recall the empirical measure χN

t (x) associated to a
configuration ηt in (4.14). We define the Young measures associated to ηt as follows:

πN,l
t (x,k) := 1

N

∑

u

δ u
N
(x)δηl

t (u)(k), (4.26)

which implies 〈πN,l
t ; J 〉 = 1

N

∑
u J ( u

N , ηl
t(u)) for any J ∈ C0(R × R+). If E is the configuration space,

then these two measures are finite positive measures on E and, for any J ∈ C0(R), they are related
by the formula

〈
πN,l
t ;k J (x)

〉
≈

〈
χN
t (·); J (·)

〉
. (4.27)
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Notice that, since there are jumps, the probability measure µN
t defined by (4.11) must be defined on

the Skorohod space D[(0,∞), E], which is the space of right continuous functions with left limits
taking values in E . Then, using the one-to-one correspondence between the configuration ηt and the
empirical measure χN

t (·), the law of χN with respect to µN
t will give us a probability measure Q N

on the Skorohod space D[(0,∞), M+(R)], for the space M+(R) of finite positive measures on R
endowed with the weak topology.

In the same way, we can associate a probability measure Q̃ N,l on the space D[(0,∞), M+(R2
+)].

With these definitions, we can state the main theorem of this section as follows.

Theorem 4.2 (Law of large numbers for the Young measures). Let (µN )N"1 be a sequence of probability
measures, as defined by (4.10), associated to a bounded density profile ρ0 : R )→ R+ . Then the sequence Q̃ N,l

converges, when N →∞ first and l→∞ second, to the probability measure Q̃ concentrated on the measure-
valued entropy solution πt,x in the sense of Definition 2.2.

Proof. In order to be allowed to take the limit of Q N and Q̃ N,l , we must know that the sequences are
tight (weakly relatively compact). If Q̃ N,l is weakly relatively compact, we can take Q̃ l as a limit point
if N →∞ for each l. Denote by Q̃ a limit point of Q̃ N,l if N →∞ first and l→∞ second. Therefore,
the proof of Theorem 4.2 consists in two main steps: The first is to show that Q̃ N,l is weakly relatively
compact and the second is to show the uniqueness of limit points. The key point in the proof is that
these can be achieved independent of the choice of mollification λε of the discontinuous speed-
parameter λ with our choice of the notion of measure-valued entropy solutions.

These can be achieved by following exactly the standard argument in [12,16,22] since it requires
only the uniform boundedness of λε in the proof. That is, we can conclude the following: Let µN

t be
a measure defined by (4.11). Then

(i) the sequence Q N defined above is tight in D[(0,∞), M+(R)] and all its limit points Q are
concentrated on weakly continuous paths χ(t, ·);

(ii) similarly, the sequence Q̃ N,l is tight in D[(0,∞), M+(R × R+)] and all its limit points Q̃ are
concentrated on weakly continuous paths π(t, ·, ·);

(iii) for every t " 0, π(t, x,k) := πt(x,k) is absolutely continuous with respect to the Lebesgue mea-
sure on R, Q̃ a.s. That is, Q̃ a.s.

πt(x,k) = πt,x(k)⊗ dx; (4.28)

(iv) for every t ∈ [0, T ], πt,x(k) is compactly supported, that is, there exists k0 > 0 such that

πt,x
(
[0,k0]c

)
= 0 ∀(t, x) ∈ [0, T ] ×R;

(v) πt,x is a measure-valued entropy solution in the sense of Definition 2.2 for any α ∈ [M0,∞), i.e.,

∂t
〈
πt,x;

∣∣k−mα(x)
∣∣〉 + ∂x

〈
πt,x;

∣∣h(k)λ(x)− α
∣∣〉 ! 0 (4.29)

in the sense of distributions on R2
+ for any α ∈ [M0,∞) or α ∈ (−∞,M0].

The last result follows from the entropy inequality at microscopic level in Theorem 4.1. Indeed, in
terms of the Young measures, the expression (4.16) of Proposition 4.1:

lim
l→∞

lim
N→∞

µN
t

{ ∞∫

0

1
N

∑

u

{
∂t H

(
t,

u
N

)∣∣∣∣η
l
t(u)−mα

(
u
N

)∣∣∣∣

+ ∂xH
(
t,

u
N

)∣∣∣∣λε(N)

(
u
N

)
h
(
ηl
t(u)

)
− α

∣∣∣∣

}
dt "−δ

}

= 1
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can be restated as

lim
l→∞

lim
N→∞

Q̃ N,l

{ T∫

0

(〈
πt(x,k);

∣∣k−mα(x)
∣∣∂t H(t, x)

〉

+
〈
πt(x,k);

∣∣λε(N)(x)h(k)− α
∣∣∂xH(t, x)

〉)
dt "−δ

}

= 1

for every smooth function H : (0, T ) × R )→ R+ with compact support, any α ∈ [M0,∞) or α ∈
(−∞,M0], and any δ > 0. Since Q̃ is a weak limit point concentrated on absolutely continuous mea-
sures and since we already proved that πt,x is concentrated on a compact set (and therefore the
integrand is a bounded function), we obtain from the last expression that

Q̃

{ T∫

0

∫ (〈
πt,x;

∣∣k−mα(x)
∣∣〉∂t H(t, x) +

〈
πt,x;

∣∣λ(x)h(k)− α
∣∣〉∂xH(t, x)

)
dxdt "−δ

}

= 1.

Letting δ → 0, we have that Q̃ a.s. (4.29) holds on (0, T ) × R in the sense of distributions for every
α ∈ [0,∞). This proves the uniqueness of Q̃ and thereby concludes the proof of Proposition 4.2. !

Then Theorem 4.1 follows immediately from this result since the measure-valued entropy solution
reduces to the Dirac mass concentrated on the unique entropy solution ρ(t, x) of (4.1)–(4.2) as we
noticed in Section 3.2.
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