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Abstract We consider an extension of the macroscopic traffic model of Lighthill- Whitham and Richards
to a multispecies traffic model. As has already been observed by Benzoni-Gavage and Colombo [2003] the
system of PDEs lacks strict hyperbolicity. We study the Riemann Problem for the two species extension
with focus on the values around the umbilic point, where the eigenvalues coalesce. For this purpose, we
examine the behavior of the solutions around the critical point like it is done by Meltzer [2016]. Due to
the difficulty of the umbilic point, we are not able to prove well posedness analytically. But we provide an
understanding of the systems properties via numerical experiments which leads to the conjecture, that the
Riemann Problem has a unique solution on the whole set of definition.

1 Introduction

In this paper we consider a macroscopic traffic model which means that we assume a large number of
vehicles on the road and describe them through their density. A famous and well studied model describing
the traffic density and its evolution, is the model of Lighthill-Whitham and Richards (LWR). It is deduced
assuming the conservation of vehicles and that their speed depends solely on their density. The wish to
discriminate different types of vehicles, like for example cars and trucks, leads to the consideration of a
multi species extension of this model that has already been proposed in literature. This extension leads to
difficulties in proving well posedness already for two species, since it contains an umbilic point where the
system is not hyperbolic and hence we are not able to use the standard theory for hyperbolic systems. In
this paper, the solution to the Riemann problem is studied around the critical point to see how the lack of
hyperbolicity affects the solutions.

First of all, we introduce the LWR Model, its variables and the Greenshields velocity function which
was first studied by Lighthill and Whitham [1955] and Richards [1956]. From the macroscopic point of
view, there are three fundamental variables describing car traffic. As a first step, we consider a one-lane
road where all traffic participants are of one species and overtaking is forbidden. Then, we describe the

Rinaldo M. Colombo
INdAM Unit
Brescia University, Via Valotti 9, 25133 Brescia, Italy
e-mail: rinaldo.colombo@unibs.it

Christian Klingenberg
Dept. of Mathematics at Würzburg University
Emil Fischer Str. 40, Würzburg, 97074, Germany
e-mail: klingen@mathematik.uni-wuerzburg.de

Marie-Christine Meltzer
Dept. of Mathematics at Würzburg University
Emil Fischer Str. 40, Würzburg, 97074, Germany
e-mail: marie.meltzer@hotmail.de

1

rinaldo.colombo@unibs.it
klingen@mathematik.uni-wuerzburg.de
marie.meltzer@hotmail.de


2 Rinaldo M. Colombo, Christian Klingenberg and Marie-Christine Meltzer

velocity, the density and the traffic flow as functions of the space coordinate x ∈ R and of time t ∈ R+.
The velocity of cars is described by the velocity field u and the traffic density ρ measures the number of
vehicles per unit length of the road. Alternatively, ρ can be viewed as the occupancy, i.e., as the fraction of
road length occupied by vehicles. Finally, the traffic flow f is the third macroscopic variable, defined as the
number of cars passing a fixed point of the road in a given amount of time or, equivalently, as the product
of the density by the velocity: f = ρ u.

The LWR model is obtained from the postulate of conservation of vehicles, which yields to the nonlinear
partial differential equation

∂tρ +∂x f = 0, (1)

together with the assumption that the speed is a function of the density, namely

u(ρ) =V ψ(ρ) (2)

where the positive constant V is the vehicular maximal speed, while the function ψ describes how the
attitude of drivers depends on the local traffic speed, so that ψ is a monotone (weakly) decreasing C 1-
function, i.e. ψ ′ < 0, normalized so that ψ(0) = 1 and ψ(1) = 0.

Below, we use the usual Greenshields speed–density relation, namely

ψ(ρ) = 1− ρ

ρmax
(3)

where V > 0 is the maximal velocity and the maximal density ρmax is normalized to 1, coherently with its
interpretation as occupancy.

2 Multispecies Extension of the LWR Model

For the purpose of distinguishing different traffic participants, we extend the LWR model introduced above
obtaining a many–species model, see Benzoni-Gavage and Colombo [2003].

The extension to i populations, with i∈N+, of the conservation law (1) consists of the following system
of PDEs

∂tρ j +∂x (ρ j u j(ρ)) = 0 j = 1, . . . , i , (4)

where ρ = (ρ j)
i
j=1 is the vector of the populations’ densities. A natural extension of the choice (2) leads to

u j(ρ) =Vj ψ

(
i

∑
j=1

ρ j

)
j = 1, . . . , i , (5)

where we assume that the speeds are indexed so that Vj′ >Vj for j′ < j. With the choice (3), the system is
naturally defined on the simplex

S =
{
(ρ j)

i
j=1 | ρ j ≥ 0∀ j = 1, . . . , i and

i

∑
i=1

ρ j ≤ 1
}
.

In this paper we only focus on the two species extension of the LWR model, its peculiarity being that
it leads to one umbilic point and to a variety of unexpected features. Nevertheless, we mention that for
i > 2 there exist more than umbilic points. For example, in a three species case we obtain umbilic lines and
planes on the boundary of the set of definition. However, the most interesting properties of the multispecies
model (1)–(2)–(3) can already be seen in the two species case.

Setting i = 2 in (4)–(5), we obtain the two species model{
∂tρ1 +∂x(ρ1 V1ψ(r)) = 0
∂tρ2 +∂x(ρ2 V2ψ(r)) = 0

r = ρ1 +ρ2 . (6)
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First of all, we investigate the hyperbolicity of (6). The Jacobian J(ρ) of the system is given by

J(ρ) =
(

V1
(
ψ(r)+ρ1 ψ ′(r)

)
V1 ρ1 ψ ′(r)

V2 ρ2 ψ ′(r) V2
(
ψ(r)+ρ2 ψ ′(r)

)) (7)

with characteristical polynomial

πρ(λ ) = (β1−λ )(β2−λ )−α1α2 where
αi =Vi ρi ψ

′(r)

βi =Vi
(
ψ(r)+ρi ψ

′(r)
) and r = ρ1 +ρ2 . (8)

Then, the eigenvalues λ1/2(ρ) are found as the roots of πρ

λ1 =
1
2

[
(β1 +β2)−

√
(β1−β2)2 +4α1α2

]
. and λ2 =

1
2

[
(β1 +β2)+

√
(β1−β2)2 +4α1α2

]
.

Note that, with the above choice, λ1 ≤ λ2. Moreover, we see that there is no way to find a velocity function
ψ for which the eigenvalues of system (6) are distinct on the whole set S . The LWR model for two species
provides one umbilic point where the eigenvalues are the same and hence at this point the system is not
strictly hyperbolic. In the case of the Greenshield’s relation (3) we obtain the following theorem about the
system’s hyperbolicity.

Theorem 1. System (3)–(6) is strictly hyperbolic in S \{ρu}. At the umbilic point ρu, where

ρ
u = (ρu

1 ,0) with ρ
u
1 =

V1−V2

2V1−V2
, (9)

the eigenvalues λ1 and λ2 coalesce.

We now study the consequences of the existence of this point ρu on the well posedness of (6). Another
system, where hyperbolicity is not strictly given, is studied by Keyfitz and Kranzer [1979/80] and Liu et al.
[2016]. Yet, the model discussed here differs from the Keyfitz–Kranzer model because there the umbilic
point lies in the interior of the set of definition. In our case the umbilic point lies on the boundary of the
simplex S . Before we study the Riemann Problem of (6), we state some of it’s global features.

Mention that for ρ2 = 0 the eigenvalues are linear functions in ρ1 and coincide at ρu
1 . Indeed,

λ1(ρ1,0) =

{
V2(1−ρ1) for ρ1 < ρ

u
1

V1(1−2ρ1) for ρ1 > ρ
u
1 ,

λ2(ρ1,0) =

{
V1(1−2ρ1) for ρ1 < ρ

u
1

V2(1−ρ1) for ρ1 > ρ
u
1 .

(10)

With the above abbreviations (8), a choice of corresponding eigenvectors is given by

v1 =

(
λ1−β2−α1
λ1−β1−α2

)
, v2 =

(
−λ2 +β2−α1
λ2−β1 +α2

)
. (11)

Hence, we see that in the umbilic point the following holds.

Lemma 1. At the umbilic point ρu given in (9), the Jacobian matrix (7) is not diagonizable and, in addi-
tion to its eigenvalues, its eigenvectors (11) also coalesce. Hence, for this value there exists no basis of
eigenvectors for system (6).

The next proposition describes the corresponding characteristic fields. For the basic terminology we
refer to Serre [1999].

Proposition 1. In S \{ρu}, with reference to system (3)–(6), the first characteristic field is genuinely non-
linear; the second characteristic field is linearly degenerate for ρ1 +ρ2 = 1 and genuinely nonlinear else-
where.

For the proof of this statement we refer to Benzoni-Gavage and Colombo [2003]. Note that the standard
technique relying on the direct computation of dλi ·vi is not immediately of use, here.
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We recall the following classical result ensuring the invariance of subsets of R2, see Hoff [1985] for
more details.

Proposition 2. A set with regular boundary is locally invariant under a strictly hyperbolic and genuinely
nonlinear system of conservation laws if the domain is convex and the normal to the boundary is a left
eigenvector of the system.

We already know that (6) is not strictly hyperbolic and that along the line ρ1 +ρ2 = 1 it is linearly degen-
erate, so that Proposition 2 can not be applied to the simplex S . Nevertheless, by (7),

(1,1) J(ρ1,ρ2) = −(ρ1V1 +ρ2V2) (1,1) ρ1 +ρ2 = 1; ρ1,ρ2 ∈ [0,1];
(1,0) J(0,ρ2) = V1(1−ρ2) (1,0) ρ2 ∈ [0,1];
(0,1) J(ρ1,0) = V2(1−ρ1) (0,1) ρ1 ∈ [0,1].

(12)

Therefore, the normals to the convex set S are indeed left eigenvectors of the Jacobian J of (6). Thus, we
conjecture that S is invariant, which implies that for initial data inside S the solution lies inside S , too.
With the above discussion one can now study the Riemann Problem.

2.1 The Riemann Problem when a Species is Absent

After the examination of general features of the LWR model for two species for the Greenshields velocity
function, we investigate its well posedness. As we have already seen, the existence of the umbilic point
hinders us from using general existence, uniqueness and invariance theorems about hyperbolic conservation
laws. Hence, we start with the discussion of existence for particular Riemann Problems (RP). In the case
of i = 2 populations, the general (RP) consists of system (6) with initial datum

ρ(x,0) =

{
ρ

L = (ρL
1 ,ρ

L
2 ) for x < 0

ρ
R = (ρR

1 ,ρ
R
2 ) for x > 0

(13)

Since we know that (6) is not strictly hyperbolic, the question is whether the existence of the umbilic point
influences the solution to the RP (6)–(13) or not. Note, that if we define system (6) on S \{ρu}, then it
will indeed be strictly hyperbolic and thus the solution to the RP (6)–(13) can be found by following the
standard Lax theory Lax [1957]. Moreover, (6) is well posed on all initial data with small variation for all
times Bressan [2000]. But if we take the point ρu into account, it will not be clear whether the solution
to the RP problem is well defined. Nevertheless, we can use the Lax-theory to discover the Lax curves
and construct the solution to the RP taking care of what happens near the umbilic point. The algebraic
expressions are hard to handle and, to our knowledge, there exists no direct proof of well posedness. But
one can examine how the umbilic point affects the solution to the RP for a special case. Hence, consider
the situation where the slower species is absent at the beginning, i.e., ρL

2 ,ρ
R
2 = 0. This yields the RP on the

ρ1-axis, which is (6) together with (13) which now reads

ρ(x,0) =

{
ρ

L = (ρL
1 ,0) for x < 0 ,

ρ
R = (ρR

1 ,0) for x > 0 .
(14)

Then, we have to include ρu into the discussion since the initial data lies on the same axis as the umbilic
point. Given any point ρ in S , the Lax curves L i(ρ) are determined by the integral rarefaction curve of
the i-th eigenvector along increasing λi together with the Hugoniot shock curves.

As a next step we compute the solutions to the RP (6)–(14). Since the Greenshield’s function is concave
in each entry, the solution to the RP for one species consists of a shock if ρL

1 < ρR
1 and of a rarefaction

wave if ρL
1 > ρR

1 . First, we turn to the discontinuities. The shock curves are described with the help of the
Rankine Hugoniot (RH) condition.

Proposition 3. If the Riemann Problem (6)–(13) is solved by two shocks with mddle sate ρ , then the Rank-
ine Hugoniot condition
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σ(ρL−ρ) = f(ρL)− f(ρ)

γ(ρ−ρ
R) = f(ρ)− f(ρR)

(15)

has to be fulfilled, where σ ,γ ∈ R are the shock speeds and ρ ∈S .

If ρ belongs to the ρ1-axis, i.e. ρ = (ρ1,0), we are able to describe the the curves exiting ρ completely.
Recall that we call Hugoniot set through the point ρ0 ∈S the set

H (ρ0) = {(ρ1,ρ2) ∈ R2,σ ∈ R| (16) holds}

where {
ρ1
(
(1−ρ1−ρ2)V1−σ

)
= ρ

0
1
(
(1−ρ

0
1 −ρ

0
2 )V1−σ

)
ρ2
(
(1−ρ1−ρ2)V2−σ

)
= ρ

0
2
(
(1−ρ

0
1 −ρ

0
2 )V2−σ

) (16)

and, when nec essary, we distinguish between shocks of the first family (H 1) and of the second family
(H 2)., see Bressan [2000], Dafermos [2016] for more details. Whenever ρ0 lies along the 1 axis, that is
we have ρ0

2 = 0, equation (16) become{
ρ1
(
(1−ρ1−ρ2)V1−σ

)
= ρ

0
1
(
(1−ρ

0
1 )V1−σ

)
ρ2
(
(1−ρ1−ρ2)V2−σ

)
= 0 .

(17)

Proposition 4. For ρ0 = (ρ0
1 ,0) the Hugoniot curves exiting ρ0 can be described depending on where ρ0

1
lies along the ρ1-axis.

1. If ρ0
1 = 0, then H 2(ρ0) = {ρ2 = 0} and H 1(ρ0) = {ρ1 = 0}.

2. If ρ0
1 < ρu

1 , then H 2(ρ0) = {ρ2 = 0} and H 1(ρ0) is monotone in ρ1 and exits S at a point with ρ2 = 0
and ρ1 > ρu

1 .
3. If ρ∗1 > ρ0

1 > ρu
1 , then H 1(ρ0) = {ρ2 = 0} and H 2(ρ0) is monotone in ρ1 and exits S at a point with

ρ2 = 0 and 0 < ρ1 < ρu
1 .

4. If ρ0
1 > ρ∗1 , then H 1(ρ0) = {ρ2 = 0} and H 2(ρ0) is monotone in ρ1 and exits S at a point with ρ1 = 0

and 0 < ρ2 < 1.
5. If ρ0

1 = 1, then H 1(ρ0) = {ρ2 = 0} and H 2(ρ0) = {ρ1 +ρ2 = 1}.
where ρ∗1 = 1−V2/V1.

Proof. Study the Hugoniot set 17. The hyperbolæ are given by

ρ2(ρ1) =
(ρ1−ρ0

1 )((V1−V2)(1−ρ1)−ρ0
1V1)

(V1−V2)ρ1 +ρ0
1V2

.

In Figure (1) (a) one sees a sample of the Hugoniot curves for V1 = 1 and V2 = 0.75.

The next proposition confirms that the Hugoniot curves are tangent to the congestion axis ρ1 + ρ2 = 1,
except at the vertexes (1, 0) and (0, 1).

Proposition 5. Let ρ0 ∈S with ρ0
1 +ρ0

2 < 1. Then, the Hugoniot curves exiting ρ0 intersect the {ρ1+ρ2 =
1}-axis only for ρ0

1 = 0 or ρ0
1 = 1.

For the proof we refer to Meltzer [2016].
As a next step, we want to find solutions to the RH condition and see whether there is a solution to the

RP (6)–(14) consisting of shocks. From the first line in (15) we get the equations{
σ(ρL

1 −ρ1) = f1(ρ
L
1 ,ρ

L
2 )− f1(ρ1,ρ2)

σ(ρL
2 −ρ2) = f2(ρ

L
1 ,ρ

L
2 )− f2(ρ1,ρ2)

⇔

{
σ(ρL

1 −ρ1) =V1(ρ
L
1 −ρ1)(1−ρ

L
1 −ρ1)+V1ρ1ρ2

σρ2 = ρ2V2(1−ρ1−ρ2)
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0.0 0.2 0.4 0.6 0.8 1.0
ρ1

0.2

0.4

0.6

0.8

1.0
ρ2

(a) H 1-curves for ρ0
1 < ρu

1

0.0 0.2 0.4 0.6 0.8 1.0
ρ1

0.2

0.4

0.6

0.8

1.0
ρ2

(b) H 2-curves for ρ0
1 > ρu

1

Fig. 1 A sample of H 1 and H 2-curves where ρ0
2 = 0 with V1 = 1 and V2 = 0.75. (The umbilic point is ρu = (0.2, 0).)

where a first solution is given by ρ = (ρR
1 ,0) with the shock speed σ =V1(1−ρR

1 −ρL
1 ). The second line

of (15) yields {
γ(ρ1−ρ

R
1 ) = f1(ρ1,ρ2)− f1(ρ

R
1 ,ρ

R
2 )

γ(ρ2−ρ
R
2 ) = f2(ρ2,ρ2)− f2(ρ

R
1 ,ρ

R
2 )

⇔

{
γ(ρR

1 −ρ1) =V1(ρ
R
1 −ρ1)(1−ρ

R
1 −ρ1)+V1ρ1ρ2

γρ2 = ρ2V2(1−ρ1−ρ2)

A first solution is ρ = (ρL
1 ,0) with γ =V1(1−ρR

1 −ρL
1 ). One obtains that σ = γ . Thus, the solution of only

one shock connecting ρL and ρR may be possible.
From now on ρ2 6= 0 in (15). Hence, the solution to the Riemann Problem could also consist of two shock
curves. The 1-shock curve from ρL going to an intermediate state ρm = (ρm

1 ,ρ
m
2 ) ∈ S and the 2-shock

curve connecting ρm with ρR. It is necessary that ρm is an element of S . If it lies outside of S , the
solution cannot be constructed by two shock curves. Both shocks have to fulfill the RH condition{

σ(ρL
1 −ρ

m
1 ) = f1(ρ

L
1 ,ρ

L
2 )− f1(ρ

m
1 ,ρ

m
2 )

σ(ρL
2 −ρ

m
2 ) = f2(ρ

L
1 ,ρ

L
2 )− f2(ρ

m
1 ,ρ

m
2 )

⇔

σ =V1(1−ρ
L
1 −ρ

m
1 )+V1

ρm
1 ρm

2
ρL

1 −ρm
1

σ =V2(1−ρ
m
1 −ρ

m
2 )

where ρL
1 6= ρm

1 and {
γ(ρm

1 −ρ
R
1 ) = f1(ρ

m
1 ,ρ

m
2 )− f1(ρ

R
1 ,ρ

R
2 )

γ(ρm
2 −ρ

R
2 ) = f2(ρ

m
1 ,ρ

m
2 )− f2(ρ

R
1 ,ρ

R
2 )

⇔

γ =V1(1−ρ
R
1 −ρ

m
1 )+V1

ρm
1 ρm

2
ρR

1 −ρm
1

γ =V2(1−ρ
m
1 −ρ

m
2 )

where ρR
1 6= ρm

1 . Again, σ = γ and solving for ρm = (ρm
1 ,ρ

m
2 ) yields the intermediate state
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ρ
m
1 =

V2ρL
1 ρR

1
(V1−V2)(1−ρL

1 −ρR
1 )

,

ρ
m
2 =−

[
V1−V2

V2
(1−ρ

L
1 −ρ

R
1 )−ρ

L
1 −ρ

R
1 +

V2ρL
1 ρR

1
(V1−V2)(1−ρL

1 −ρR
1 )

] (18)

with
σ =V2(1−ρ

m
1 −ρ

m
2 )

=V1(1−ρ
L
1 −ρ

R
1 )

(19)

and V1 6=V2, ρL
1 +ρR

1 6= 1. The solution is given by two shock curves only if the middle state lies inside of
S . We have to check the condition under which this holds.

0.0 0.2 0.4 0.6 0.8 1.0
ρ1L

0.2

0.4

0.6

0.8

1.0
ρ1R

(a) V1 = 1 and V2 = 0.75
0.0 0.2 0.4 0.6 0.8 1.0

ρ1L

0.2

0.4

0.6

0.8

1.0
ρ1R

(b) V1 = 1 and V2 = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
ρ1L

0.2

0.4

0.6

0.8

1.0
ρ1R

(c) V1 = 1 and V2 = 0.9
0.0 0.2 0.4 0.6 0.8 1.0

ρ1L

0.2

0.4

0.6

0.8

1.0
ρ1R

(d) V1 = 1 and V2 = 0.5

Fig. 2 Values of initial data ρL
1 and ρR

1 (ρL
2 = ρR

2 = 0) for which condition (20) holds with different maximal velocities. The
red lines denote the umbilic point and hence restrict the possible values of the initial data. The blue and green line are the
values where equality holds in (20). Altogether, corollary 1 is fulfilled in the blue shaded region. Note that, differenet from
the other plots, we are in the ρL

1 -ρL
1 -plane.

Corollary 1. For ρL
1 < ρu

1 < ρR
1 the intermediate state ρm with coordinates (18) lies in the interior of the

simplex S and hence, the solution to the RP with data (ρL
1 ,0) and (ρR

1 ,0) consists of two intersecting
shock curves, if
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V1

V1−V2
ρ

L
1 +ρ

R
1 ≤ 1,

ρ
L
1 +

V1

V1−V2
ρ

R
1 ≥ 1.

(20)

for V1 6=V2.

Proof. It is clear that ρm lies inside S if ρm
1 + ρm

2 ≤ 1 and if ρm
1 ,ρ

m
2 > 0. Hence, by checking these

conditions one obtains (20).

The second condition is needed because for ρR
1 < V1−V2

V1
the curves of the second family exit the simplex

S on the ρ1-axis and not the ρ2-axis and hence may intersect with the curves of the first family on the axis,
i.e., on the boundary and not in the interior of S . Then, the middle state (18) does not lie in the interior,
either.

The set of values where (20) holds can be seen in Figure 2 for different maximal velocities. The blue
and green lines denote the values of ρL

1 and ρL
1 where equality holds in (20). The shaded region is the set

of values where the inequalities are fulfilled. Altogether, we can state the following.

Proposition 6. For a RP with ρL
1 < ρu

1 < ρR
1 and ρL

2 = ρR
2 = 0 the Rankine Hugoniot condition (15) yields

two solutions. The first consists of one shock with speed σ = V1(1−ρL
1 −ρR

1 ) connecting ρL to ρR. The
second solution contains one shock going from ρL to an intermediate state ρm and one from ρm to ρR with
the same speed σ . The coordinates of the middle state are

ρ
m
1 =

V2ρL
1 ρR

1
(V1−V2)(1−ρL

1 −ρR
1 )

ρ
m
2 =−V1−V2

V2
(1−ρ

L
1 −ρ

R
1 )+(ρL

1 +ρ
R
1 )−

V2ρL
1 ρR

1
(V1−V2)(1−ρL

1 −ρR
1 )

.

(21)

The second solution is restricted to initial data where ρm fulfills (20).

Depending on the position of ρL
1 on the ρ1-axis, the Hugoniot curves yield

1. ρL
1 < ρu

1 : then S2(ρ
L
1 ,0) = {ρ2 = 0} and S1(ρ

L
1 ,0) is monotone in ρ1

2. ρL
1 > ρu

1 : then S1(ρ
L
1 ,0) = {ρ2 = 0} and S2(ρ

L
1 ,0) is monotone in ρ1

Since ρR = (ρR
1 ,0), it follows that for

1. ρL
1 < ρR

1 < ρu
1 the solution consists only of S2 = {ρ2 = 0}, for

2. ρu
1 < ρL

1 < ρR
1 the solution consists of S1 = {ρ2 = 0} and for

3. ρL
1 < ρu

1 < ρR
1 the solution consists either only of S1 or of S1 and S2, intersecting at (21).

Note, that due to the behavior of the Hugoniot curves the solution consists either of one or two intersecting
shock curves, depending on the initial data. If both values of the RP lie left or right of the umbilic point, we
immediately get the same result as for the one species model. Here, the consistency with the LWR model
for one species is given.

As a next step, it is interesting to see how the intermediate state computed from the RH behaves de-
pending on the initial data. For this, we consider some special cases of RP. We start with values close to the
umbilic point and examine ρm.

Corollary 2. If the initial data is given by ρL
1 = ρu

1 − ε and ρR
1 = ρu

1 + ε with ε > 0, the intermediate state
has the coordinates

ρ
m
1 = ρ

u
1 −

ε2

ρu
1

ρ
m
2 =

ε2

ρu
1
.

(22)
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(a) ρL
1 = ρu

1 − ε and ρR
1 = ρu

1 + ε .
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0.1
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0.6
ρ2

(b) ρL
1 = ρu

1 − ε and ρR
1 = ρu

1 +2ε .

0.0 0.2 0.4 0.6 0.8 1.0
ρ1

0.2

0.4

0.6

0.8

1.0
ρ2

(c) ρL
1 = ρu

1 − ε and ρR
1 = ρu

1 +3ε .
0.0 0.2 0.4 0.6 0.8 1.0

ρ1

0.2

0.4

0.6

0.8

1.0
ρ2

(d) ρL
1 = ρu

1 − ε and ρR
1 = ρu

1 +4ε .

Fig. 3 Sample of intersecting Hugoniot curves for V1 = 1 and V2 = 0.75 and different initial data on the ρ1-axis. In the first
three pictures, the solution consists of two shock waves intersecting in the interior of S while in the last one, the solution is
given by one curve connecting ρL to ρR.

Then, one immediately sees that ε → 0 yields ρm = ρu. This is convenient since then both initial data
equal ρu. Now, if ε becomes bigger, the initial data lies more apart of the umbilic point and ρm wanders to
smaller ρ1 and bigger ρ2. This goes on until ε = ρu

1 and thus ρL
1 = 0. At this point, we have

ρ
L
1 = 0

ρ
R
1 = 2ρ

u
1

(23)

and ρm = (0,ρu
1 ). Here, the shock speed does not depend on ρL

1 and ρR
1

σ =V1(1−2ρ
u
1 ) =V2(1−ρ

u
1 ) (24)

and is always positive since ρu
1 < 1/2. Moreover, here the intermediate state lies in the interior of the

simplex S which is consistent with proposition 1 because the initial data fulfills (20). The described
behavior can be seen in Figure 3 where we also consider RP with inital data changing in a different relation
to each other.
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In Figure 3 (b) we see the intersecting Hugoniot curves for initial data with ρL
1 = ρu

1 − ε and ρR
1 =

ρu
1 +2ε . This means that the distance between the umbilic point and the right initial datum ρR

1 grows two
times faster than the one between ρu

1 and ρL
1 .

In the other two plots in Figure 3 (c) and (d) we see the same with 3ε and 4ε . In (d) we only see one
curve because here the equality of condition (20) holds. This implies that for these data there is one shock
curve connecting ρL

1 to ρR
1 . For data which does not fulfill (20) we have already seen that the solution

consists of only one shock curve. We conclude the continuous dependence of the intermediate state from
the initial data. Another special case is to start with initial data with nearly maximal distance in S . This
means that ρL

1 is nearly 0 or ρR
1 is nearly 1.

Corollary 3. Consider the RP with ρL
1 = 0 and ρR

1 = 1− ε with ε > 0. The coordinates of the middle state
are

ρ
m
1 = 0

ρ
m
2 = 1− ε

(
1− V1−V2

V2

)
.

(25)

Hence, ρm lies on the ρ2-axis and moves downward for bigger ε . The shock speed is given by

σ = εV1. (26)

We observe that for ε → 0 the middle state equals ρm = (0,1).
Altogether, we described the intermediate state for all values of ρL

1 and ρR
1 , respectively. There is con-

tinuity between Corollary 2 and Corollary 3. Mention, that the solution consists of two shocks with speed
σ =V1(1−ρL

1 −ρR
1 ) for both shocks. Hence, the solution does not attain the value ρm. For all initial data

with ρL
2 = ρR

2 = 0 the solution to the two species LWR model is given by ρ(x, t) = (ρ1(x, t),0) with

ρ1(x,0) =

{
ρ

L
1 for x < σt

ρ
R
1 for x > σt

. (27)

But before, one must check which of the solutions of Proposition 6 is admissible and to which family the
Hugoniot curves belong. For this purpose, the Lax condition must be checked.

Lemma 2. A shock of the i-th family, connecting ρL to ρR with speed σ , is admissible in the sense of Lax
[1957], if

λi(ρ
R)≤ σ ≤ λi(ρ

L) (28)

holds.

If both initial data lie either left or right of the umbilic point, the solution will consist of only one shock.
Checking the Lax inequality leads to

1. for ρL
1 < ρR

1 < ρu
1 the condition λ2(ρ

R
1 ,0)< σ < λ2(ρ

L
1 ,0) holds

2. for ρu
1 < ρL

1 < ρR
1 the condition λ1(ρ

R
1 ,0)< σ < λ1(ρ

L
1 ,0) holds.

For ρL
1 < ρu

1 < ρR
1 we have the same shock speed for both shocks and thus the Lax inequality (28) is

checked for only one shock from ρL to ρR. The Lax admissibility conditions are

λ1(ρ
R
1 ,0)< σ < λ1(ρ

L
1 ,0),

λ2(ρ
R
1 ,0)< σ < λ2(ρ

L
1 ,0).

(29)

with shock speed σ . The eigenvalues yield

λ1(ρ
L
1 ,0) =V2(1−ρ

L
1 ),

λ1(ρ
R
1 ,0) =V1(1−2ρ

R
1 ),

λ2(ρ
L
1 ,0) =V1(1−2ρ

L
1 ),

λ2(ρ
R
1 ,0) =V2(1−ρ

R
1 ).

(30)
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Hence, we get the next proposition.

Proposition 7. The Lax admissibility demands that for ρL
1 < ρu

1 < ρR
1 the shock connecting ρL to ρR with

speed σ is

• a 1-shock if ρR
1 > φ(ρL

1 ) and φ(ρR
1 )< ρL

1
• a 2-shock if ρR

1 < φ(ρL
1 ) and φ(ρR

1 )> ρL
1

• an over compressive shock if ρR
1 < φ(ρL

1 ) and φ(ρR
1 )< ρL

1

with the C 1-function

φ(ρ1) =
(1−ρ1)V1−V2

V1−V2
. (31)

with V1 6=V2.

Proof. From the expressions (30) one sees that

λ1(ρ
R
1 ,0)< σ

λ2(ρ
L
1 ,0)> σ .

(32)

The other inequalities are obtained by computation

σ < λ1(ρ
L
1 )⇔ φ(ρR

1 )< ρ
L
1

σ > λ2(ρ
R
1 )⇔ φ(ρL

1 )> ρ
R
1 .

(33)

We observe that the existence of the umbilic point leads to overcompressive shocks. This is also discussed
in Benzoni-Gavage and Colombo [2003]. Since we closed the case ρL

1 < ρR
1 we now propose that ρL

1 > ρR
1 .

0.2 0.4 0.6 0.8 1.0
ρ1

0.2

0.4

0.6

0.8

1.0

ρ2

(a) Sample of eigenvectors of first family
0.2 0.4 0.6 0.8 1.0

ρ1

0.2

0.4

0.6

0.8

1.0

ρ2

(b) Sample of eigenvectors of second family

0.05 0.10 0.15 0.20 0.25
ρ1

-0.02

0.02

0.04

ρ2

(c) Zoom of eigenvectors of first family around
the umbilic point ρu = (0.2,0).

0.05 0.10 0.15 0.20 0.25
ρ1

0.01
0.02
0.03
0.04
0.05
0.06

ρ2

(d) Zoom of eigenvectors of second family around
the umbilic point ρu = (0.2,0).

Fig. 4 Sample of eigenvectors with V1 = 1 and V2 = 0.75, oriented so that dλi ·vi > 0.

By Dafermos [2016], the solution to a single PDE consists of a rarefaction wave. Since we are in the
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case of the second species absent, we can use this. The question is, whether the existence of the umbilic
point affects the solution similarly to the previous discussed shock waves or not. The rarefaction waves are
obtained by integration along the eigenvectors.

A sample of eigenvectors can be seen in Figure 4, oriented so that dλi · vi > 0 for i = 1,2. Note that
from Theorem 1 both characteristic fields are genuinely nonlinear for data on the ρ1-axis. One has already
stated in Lemma 1 that the eigenvectors coalesce in the umbilic point, too. We observe this in Figure 4.
On the ρ1-axis the first eigenvector is parallel to the axis for ρ1 > ρu

1 while the second one is parallel for
ρ1 < ρu

1 . In the umbilic point (for the plots ρu
1 = 0.2) they coincide. Moreover, the eigenvectors change

continuously with the densities as can be seen in the zoom in Figure 4 (c) and (d). We do not integrate
the curves explicitly here, because of the complexity of the algebraic expressions of the eigenvectors. But
we are able to compute the eigenvectors on the ρ1-axis from equation (11) by using ρ2 = 0. Due to the
behavior of the eigenvalues in (10) we also have to make a distinction for the eigenvectors.

v1(ρ1,0) =


(

−V1ρ1
V2(1−ρ1)−V1(1−2ρ1)

)
for ρ1 < ρ

u
1(

V1(1−3ρ1)−V2(1−ρ1)
0

)
for ρ1 > ρ

u
1

(34)

v2(ρ1,0) =


(
−V1(1−2ρ1)+V2(1−ρ1)

0

)
for ρ1 < ρ

u
1(

−V1ρ1
−V1(1−2ρ1)+V2(1−ρ1)

)
for ρ1 > ρ

u
1

(35)

We have already seen that in the umbilic point the eigenvectors coalesce.

v1(ρ
u
1 ,0) = v2(ρ

u
1 ,0) =

(
−V1ρu

1
0

)
(36)

For ρu
1 < ρL

1 the rarefaction wave of the first family passing through ρL
1 is given by R1(ρ

L
1 ,0) = {ρ2 = 0}.

If ρR
1 < ρu

1 the 2-rarefaction wave is also described by R2(ρ
R
1 ,0) = {ρ2 = 0}. Hence, for ρR

1 < ρu
1 < ρL

1 and
ρR

2 = ρL
2 = 0 the solution consists of two rarefaction waves with intermediate state ρm = (ρu

1 ,0). Thereby,
R1(ρ

L
1 ,0) goes from ρL to ρm and R2(ρ

u
1 ,0) connects the middle state with ρR. The solution consists of

only one rarefaction curve in the case that both initial data lie left (second family) or right (first family) of
the umbilic point. This is consistent with Figure 4 and is the only admissible solution in the sense of Lax
[1957]. The two rarefaction curves are equal to each other and so the solution to the RP for the fast species
(ρL

2 = ρR
2 = 0) for the LWR model of two species can again be constructed with the help of the standard

LWR model. In the same way as for the shock curves we get ρ(x, t) = (ρ1(x, t),0), with

ρ1(x, t) =


ρ

L
1 for

x
t
<V1(1−2ρ

L
1 )

1
2
(1− x

Vt
) for V1(1−2ρ

L
1 )<

x
t
<V (1−2ρ

R
1 )

ρ
R
1 for

x
t
>V1(1−2ρ

R
1 )

. (37)

Again, we do not see the middle state because the solution does not attain this value. The existence of the
umbilic point does not affect the solution to the RP for rarefaction waves, either.

Closing this subsection, one has to mention that the existence of the solution to the general RP (6)–(14)
was not fully proved due to the fact that the expressions of eigenvalues, eigenvectors and shock curves are
hard to handle.
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2.2 Perturbation of the Riemann Problem

We now want to see whether the solution depends continuously on the initial data or not. Therefore, one
can look at a small perturbation ε > 0 of the Riemann Problem (6)–(14) which is (6) together with

ρ(x,0) =

{
ρ

L = (ρL
1 ,ε) for x < 0

ρ
R = (ρR

1 ,ε) for x > 0
. (38)

We assume that there is a small number of vehicles of the slower species on the road, too. Now we want to
examine how this small perturbation of the initial data affects the solution. We again examine the disconti-
nuities and rarefaction waves. Two shocks with speeds σ and γ , connecting ρL to ρm and ρm to ρR, have
to fulfill the RH condition {

σ(ρL
1 −ρ

m
1 ) = f1(ρ

L
1 ,ρ

L
2 )− f1(ρ

m
1 ,ρ

m
2 )

σ(ρL
2 −ρ

m
2 ) = f2(ρ

L
1 ,ρ

L
2 )− f2(ρ

m
1 ,ρ

m
2 )

⇔


σ =V1(1−ρ

L
1 −ρ

m
1 )+V1

ρm
1 ρm

2 − ερL
1

ρL
1 −ρm

1

σ =V2(1− ε−ρ
m
2 )+V2

ρm
1 ρm

2 − ερL
1

ε−ρm
2

(39)

{
γ(ρm

1 −ρ
R
1 ) = f1(ρ

m
1 ,ρ

m
2 )− f1(ρ

R
1 ,ρ

R
2 )

γ(ρm
2 −ρ

R
2 ) = f2(ρ

m
1 ,ρ

m
2 )− f2(ρ

R
1 ,ρ

R
2 )

⇔


γ =V1(1−ρ

R
1 −ρ

m
1 )+V1

ρm
1 ρm

2 − ερR
1

ρR
1 −ρm

1

γ =V2(1− ε−ρ
m
2 )+V2

ρm
1 ρm

2 − ερR
1

ε−ρm
2

(40)

Then, the two shock speeds are not equal. They differ by

γ−σ =V2ε
ρR

1 −ρL
1

ρm
2 − ε

. (41)

One observes that the speed of the 2-shock is always greater than the speed of the 1-shock. For ε → 0 the
speeds are the same again and equal to the shock speed of the unperturbed system. Here, different from
the RP ρ1-axis, the middle state appears in the solution. This is convenient because the second species is
present in this case. Now, the intermediate state ρm cannot be computed explicitly from (39) and (40) and
thus the exact shock speeds cannot be found either. We can only solve equation (39) and (40) by inserting
data for the RP. Moreover, the solution could consist of both, shocks and rarefactions because we are not
in a one species case anymore.

By plotting the Hugoniot curves in Figure 5, one sees that the Hugoniot curves depend continuously
on the initial data. For data close to the ρ1-axis the behavior of the curves changes only slightly. The
rarefaction curves are again obtained by integrating along the eigenvectors (4). We get solutions different
from the previous case, too, because the eigenvectors are not parallel to the {ρ2 = 0}-axis for data lying in
the interior of S .

2.3 Conclusion

In this contribution we have considered the Riemann problem for the two species extension of the Lighthill
Whitam traffic model given by Benzoni-Gavage and Colombo [2003]. We found a solution to the RP for
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(a) Sample of H 1-curves exiting a point near the
ρ1-axis, left of the umbilic point
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1.0
ρ2

(b) Sample of H 2-curves exiting a point near the
ρ1-axis, left of the umbilic point

Fig. 5 Sample of Hugoniot curves exiting a point near the ρ1-axis with the umbilic point (ρu = (0.2,0)) where V1 = 1 and
V2 = 0.75.

data on the {ρ2 = 0}−axis. We have seen that the solution depends continuously on the initial data, because
if we perturb the RP on the fast axis by ε > 0, small, we will observe a small variation in the Lax curves.

The general RP is defined in (6) – (13) for the LWR model for two species. The complexity of the
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(a) Hugoniot curves for the first family.
0.0 0.2 0.4 0.6 0.8 1.0
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0.8

1.0
ρ2

(b) Hugoniot curves for the second family.

Fig. 6 Sample of Hugoniot curves with V1 = 1 and V2 = 0.75 for initial data lying in the interior of S .

expressions hinders us from further general search for explicit expressions related to system (6). We know
that for initial data with small variation different from the umbilic point, the RP is well posed. But for a
general RP with data lying far apart, it is difficult to prove well posedness due to the complexity of the
expressions. The idea is to find a middle state ρm as the intersection of the two Lax curves L 1(ρL) and
L 2(ρR). Mention that now the solution can also contain both shocks and rarefaction waves and on the
{ρ1 +ρ2}-axis contact discontinuities.

In Figure 6 one sees samples of shock curves belonging to the first and second family. The rarefaction
waves are obtained by integrating along the eigenvectors, which have already been plotted in Figure 4.
These plots give no indication that the RP (6) should be ill posed, as was conjectured in by Benzoni-Gavage
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and Colombo [2003]. For data different from the umbilic point, the system is indeed strictly hyperbolic and
around ρu we solved the RP. Moreover, the simplex S is convex and because of (12) we assume its
invariance. But since we have no (global) proof of well posedness for all initial data, we cannot be sure that
the lack of global strict hyperbolicity does not lead to ill posedness.

To summarize, the extension of the LWR model to a two populations model proves to be difficult, since
global hyperbolicity is not given. There exists an umbilic point on the boundary of the set where we define
the system, meaning at the boundary the eigenvalues coalesce. To the best of our knowledge well-posedness
of a similar model (w. umbilic point on the boundary) has not been discussed in the literature. Moreover, the
model, although it is of simple structure, yields intricate expressions for the corresponding eigenvalues and
vectors. Even though our studies seem to hint at well-posedness of this model, a proof of well-posedness
of our model seems elusive.
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