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Motivations:

ä rotation motions can be found in

many physical models involving magnetic field
(Schrödinger, Vlasov, spin-Vlasov, . . . )
imaging community
fluid models involving Coriolis force
. . .

ä efficient numerical methods are important to improve physical
codes (in terms of CPU time and accuracy)

Plan

ä splittings for 2D rotations

ä application to the 1d-2v Vlasov-Maxwell equations

ä conclusion



Splittings for 2D rotations



Splitting methods

Main goal: efficient numerical methods for

∂tu = Jx · ∇xu, x ∈ R2, u(t = 0, x) = uin(x),

where J is (
0 −1
1 0

)
.

Obviously, the exact solution is known, but when uin is only known
on a grid, we need a numerical method !

First natural idea: 2D Semi-Lagrangian method

ä solve the ODE system on [tn, tn+1] backward in time

ẋ(t) = −Jx(t), x(tn+1) = xg

ä the solution is constant along the characteristics:

un+1(xg ) = un(x(tn)) = un(e∆t Jxg )



Second natural idea: splitting method
Lie splitting

un+1(x) = un(eA2eA1x)

where

eA1 =

(
1 −∆t
0 1

)
, eA2 =

(
1 0

∆t 1

)
,

ä solve ∂tu = x1∂x2u, u(0, x) = un(x) to get
u?(x) = un(x1, x2 + ∆tx1) = un(eA2x)

ä solve ∂tu = −x2∂x1u, u(0, x) = u?(x) to get
un+1(x) = u?(x1 −∆tx2, x2) = u?(eA1x) = un(eA2eA1x)

Strang splitting

un+1(x) = un(eA1eA2eA1x)

where

eA1 =

(
1 −∆t/2
0 1

)
, eA2 =

(
1 0

∆t 1

)
,
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For Lie, the trajectories are ellipses

x2
1 + ∆tx1x2 + x2

2 = cste.

For Strang, the trajectories are ellipses

x2
1 + (1− (∆t/2)2)x2

2 = cste.

Moreover, for the two methods, the angular velocity is given by

ωStrang (∆t) = ωLie(∆t) =
1

∆t
arcsin(∆t

√
1−∆t2/4) < 1 = ωex .

Two kinds of error

ä trajectory

ä angular velocity

Can we improve one of the two errors ? the two errors ?



From the decomposition

un+1(x) = un(eA1eA2eA1x)

to be a directional splitting, we impose

eA1 =

(
1 a
0 1

)
, eA2 =

(
1 0
b 1

)
.

Find a, b ∈ R2 such that the two errors are improved ?

Considering a = − tan ∆t
2 and b = sin ∆t, we have

eA1eA2eA1:=

(
1 − tan ∆t

2
0 1

)(
1 0

sin∆t 1

)(
1 − tan ∆t

2
0 1

)
=e∆tJ

=⇒ 2D rotation can be exactly decomposed into three shears1

1References in the image processing community: Paeth-Tanaka 86’, Andres
96’. See also Bader-Blanes, 2011.



Full discretization

To numerically solve the PDE

∂tu = Jx · ∇xu, x ∈ [−R/2,R/2]2,

we will use pseudo-spectral method to solve the following shears
(α ∈ R):

∂tu = αx2∂x1u, ∂tu = αx1∂x2u.

Let us consider the grid G = h
q
−
⌊
N−1

2

⌋
,
⌊
N
2

⌋y
, h = R/N and

the DFT (in the first direction)

F1 : u 7→ F1(u)ξ1,g2 := h
∑
g1∈G

ug1,g2 e
−ig1ξ1 ,

Then, the shear operator for ∂tu = αx2∂x1u is

Sα1 :

{
CG2 → CG2

u 7→ F−1
1

[
e iαξ1g2F1u

] (1)



Then, the splitting can be written as (denoting u0 := uin|G2)

un = (L∆t)
n u0 := (S∆t

2 S
−∆t
1 )n u0, (Lie)

un = (T∆t)
n u0 := (S−∆t/2

1 S∆t
2 S

−∆t/2
1 )n u0, (Strang)

un = (M∆t)
n u0 := (S− tan(∆t/2)

1 Ssin(∆t)
2 S− tan(∆t/2)

1 )n u0. (New)

Theorem

For all s > 0, there exists C > 0 such that for all R > 0,
u ∈ S (R2), n ∈ N and ∆t ∈]− π, π[, we have

‖(M∆t)
nuin|G2 −

(
uin(etnJx)

)
|G2
‖L2(G2) ≤ C n∆t

R−s + hs√
h
‖u‖.



Numerical results

Illustration of the error Sα1 u|G2 − u(x1 − αx2, x2)|G2 .

R = 15, α = 10−2
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Figure: Solution u(T = 105, x), ∆t ≈ 0.139, x ∈ [−2, 2]2, N = 2432.
Left: Exact solution.
Middle: Numerical solution obtained by the new splitting.
Right: Numerical solution obtained by the Strang splitting.
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Figure: Time history of the relative L2 errors between the exact solution
and the numerical solution obtained by the different splittings.



One can compute the ”recurrence” time T from

(ω − ωLie)T = kπ, k ∈ Z,

where ω = 1 and ωLie = µ∆t,∆t =
arcsin(∆t

√
1−(∆t)2/4)

∆t
√

1−(∆t)2/4
.

With ∆t ≈ 0.139, we have T ≈ 3888.
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Extension to multi-dimensional transport equation of the form

∂tu = Mx · ∇u, x ∈ Rn, Mi ,i = 0. (2)

We have the following decomposition [2, 3]

e∆tMx·∇ = e∆t(y (`)·x)∂xi

 n∏
k=1(k 6=i)

e∆t(y (k)·x)∂xk

 e∆t(y (r)·x)∂xi

with y (`), y (k), y (r) ∈ Rn such that y
(`)
i = y

(r)
i = 0 and y

(k)
k = 0 [4]

=⇒ Equation (2) is split exactly into (n + 1) shears
(a Strang splitting needs (2n − 1) shears).

2J. Bernier, Exact splitting methods for semigroups generated by
inhomogeneous quadratic differential operators.

3J. Bernier, N. Crouseilles, Y. Li, Exact splitting methods for kinetic and
Schrodinger equations, accepted in JSC

4The vectors y (`), y (r), y (k) are computed numerically for a given ∆t.



Example with n = 3

Let consider M =

 0 −0.36 −0.679
0.36 0 −0.758

0.679 0.758 0

 .

Then, we have: e∆tMx·∇ = e∆t(y (`)·x)∂x3 e∆t(y (2)·x)∂x1 e∆t(y (3)·x)∂x2 e∆t(y (r)·x)∂x3 ,

with y (`) '

0.345...
0.379...

0

 , y (2) '

 0
-0.036...
-0.664...

 , y (3) '

 0.036...
0

-0.742...

 , y (r) '

0.339...
0.384...

0

 (∆t = 0.3).
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Extension to quadratic PDEs

We consider PDEs of the form{
∂tu(t, x) = −pwu(t, x), t ≥ 0, x ∈ Rn

u(0, x) = u0(x), x ∈ Rn

Correspondance between the operator pw and the polynomial p

pw=
t(

x
-i∇

)
Q

(
x

-i∇

)
+tY

(
x

-i∇

)
+c ←→ p(x, ξ)=

t(
x
ξ

)
Q

(
x
ξ

)
+tY

(
x
ξ

)
+c

where x, ξ ∈ Rn, Q ∈ S2n(C), Y ∈ C2n and c ∈ C.

Example: Schrödinger, Fokker-Planck, Vlasov, transport, . . .

i
∂ψ(x, t)

∂t
= −1

2
∆ψ(x, t)− i(Bx) · ∇ψ(x, t) + |x|2ψ(x, t),

We have p(x, ξ)= i
|ξ|2

2
+iBx·ξ+i |x|2, i.e. Q =

i

4

(
4I n tB
B 4I n

)
,Y =0, c =0.



Exact splittings

Quadratic PDEs can be split exactly into simple operators

eα∂xj , e iαxj , e ia(∇), e ia(x), eαxk∂xj , e−b(x), eb(∇), eγ (3)

with α ∈ R, γ ∈ C, a, b : Rn → R are some real quadratic forms, b
is nonnegative and j , k ∈ J1, nK and k 6= j .

Remark: ”simple” means it can be solved easily using
pseudo-spectral methods for instance.
More details in

ä mathematical framework: J. Bernier, Exact splitting methods
for semigroups generated by inhomogeneous quadratic
differential operators.

ä Numerical examples: J. Bernier, N. Crouseilles, Y. Li, Exact
splitting methods for kinetic and Schrödinger equations,
accepted in JSC.



Application to the 1d -2v
Vlasov-Maxwell equations



1d-2v Vlasov-Maxwell equations

Let consider f (t, x1, v1, v2), B(t, x1) and E (t, x1) = (E1,E2)(t, x1)
with (x1, v1, v2) ∈ L× R2, solution of

∂t f + v1∂x1f + E · ∇v f − BJv · ∇v f = 0,
∂tB = −∂x1E2,

∂tE2 = −∂x1B −
ˆ
R2

v2f (t, x1, v)dv + J 2(t),

∂tE1 = −
ˆ
R2

v1f (t, x1, v)dv + J 1(t),

∂x1E1 =

ˆ
R2

f (t, x1, v)dv − 1, [Gauss relation]

(4)

where v = (v1, v2), J i (t) = 1/|L|
´
L

´
R2 vi f (t, x1, v)dx1dv , i = 1, 2

and J denotes

J =

(
0 −1
1 0

)
.

When ~B = (0, 0,B), the Lorentz force reduces to BJv · ∇v f .



Splitting for VM5

The following decomposition will be used

∂t


f
E1

E2

B

 = −


v1∂x1f´

R2 v1f dv − J 1´
R2 v2f dv − J 2

0

−

E · ∇v f

0
0

∂x1E2

+


BJv · ∇v f

0
−∂x1B

0

 .

Denoting Z = (f ,E1,E2,B), we rewrite the VM system as

∂tZ +Hf (Z) +HE (Z) +HB(Z) = 0,

which suggests a first order splitting method

χ∆t = ϕ
[HE ]
∆t ◦ ϕ

[Hf ]
∆t ◦ ϕ

[HB ]
∆t

where ϕ
[Hf ,E ,B ]
∆t denotes the exact solution of each subpart.

5C., Einkemmer, Faou, JCP 2015.
See also Li et al, JCP 2019 and Krauss et al, JPP 2017.



Each step can be solved exactly in time.

In particular, for ϕ
[HB ]
∆t , we have

∂t


f
E1

E2

B

 =


BJv · ∇v f

0
−∂x1B

0


with the IC: (f (0),E1(0),E2(0),B(0)).

We can compute the solution exactly in time

ä B(∆t, x1) = B(0, x1) and E1(∆t, x1) = E1(0, x1)

ä E2(∆t, x1) = E2(0, x1)−∆t∂x1B(0, x1)

ä use the new splitting for rotation part since B is frozen

Remark: Strang splitting can be also used !



High order splittings for systems split into three parts

Instead of using composition of exact flows, we shall consider
composition of

χ∆t := ϕ
[HE ]
∆t ◦ ϕ

[Hf ]
∆t ◦ ϕ

[HB ]
∆t and χ?∆t := ϕ

[HB ]
∆t ◦ ϕ

[Hf ]
∆t ◦ ϕ

[HE ]
∆t

More specifically, we construct integrators within the family

ψ
[s]
∆t = Πs

i=1

(
χα2i−1∆t ◦ χ?α2i∆t

)
= χα1∆t ◦ χ?α2∆t ◦ · · · ◦ χα2s−1∆t ◦ χ?α2s∆t ,

with α2s+1−i = αi , i = 1, . . . , s to ensure time-symmetry.



Some remarks

ä ψ
[s]
∆t can be of order p even if it only involves first-order

approximations to the flows ϕ
[HE ]
∆t , ϕ

[Hf ]
∆t , and ϕ

[HB ]
∆t

ä one needs to construct its adjoint χ?∆t (easy when flows are
exact in time)

ä methods involving the minimum number of maps (or stages)
do not usually provide the best efficiency.

Considering additional stages =⇒ some free parameters
How to fix the free parameters ?
To determine the coefficients α = (α1, . . . , α2s) ∈ R2s), we decide
to minimize the following objective functions

E1(α) =
2s∑
i=1

|αi | and E2(α) = 2s

∣∣∣∣∣
2s∑
i=1

α5
i

∣∣∣∣∣
1/4

.

E1 has an influence on the CFL condition,
E2 is usually the dominant error term for a number of problems.



Some examples

The integrator with s = 3 reads

ψ
[3]
∆t = χα1∆t ◦ χ?α2∆t ◦ χα3∆t ◦ χ?α3∆t ◦ χα2∆t ◦ χ?α1∆t

and the unique (real) solution to the order conditions w1 = 1,
w3 = w12 = 0 is given by

α1 = α2 =
1

2(2− 21/3)
, α3 =

1

2
− 2α1.

If χ∆t = ϕ
[HE ]
∆t ◦ ϕ

[Hf ]
∆t ◦ ϕ

[HB ]
∆t , then it involves 13 maps (the

minimum number), and the values of the objective functions are

E1(α) = 4.40483, E2(α) = 4.55004.

This is the Yoshida method6

6Yoshida 90’



Fourth order methods can be designed in this spirit by increasing
the number of stages s

ä s = 4 (17 maps), the composition is

ψ
[4]
∆t = χα1∆t◦χ?α2∆t◦χα3∆t◦χ?α4∆t◦χα4∆t◦χ?α3∆t◦χα2∆t◦χ?α1∆t ,

E1(α) = 2.9084, E2(α) = 3.1527.

ä s = 5 (21 maps), the composition is

ψ
[5]
∆t = χα1∆t◦χ?α2∆t◦χα3∆t◦χ?α4∆t◦χα5∆t◦χ?α5∆t · · ·◦χα2∆t◦χ?α1∆t

E1(α) = 2.3159, E2(α) = 2.6111.

ä s = 6 (25 maps), the composition is

ψ
[6]
∆t = χα1∆t ◦ χ?α2∆t ◦ · · · ◦ χ?α6∆t ◦ χα6∆t ◦ . . . χα2∆t ◦ χ?α1∆t .

E1(α) = 2.0513, E2(α) = 2.4078.



Numerical results

To do so, we consider the following initial condition for VM

f (0, x1, v1, v2) =
1

πvth2

√
Tr

e−(v2
1 +v2

2 /Tr )/vth(1 + α cos(kx1)),

and B(0, x1) = 10 + 3 cos(kx1), E2(0, x1) = 0.

ä α = 10−4, k = 0.4, vth = 0.02, k = 0.4 and Tr = 12.
ä Nx = 32 and Nv = 5132

ä final time T = 2
ä different values of ∆t between 10−3 to 0.4.

We look at the error

err(∆t) := max
t∈[0,T ]

∣∣∣H∆t(t)−H(0)

H(0)

∣∣∣.
with

H∆t(t) ≈
ˆ L

0
|E (t, x)|2dx+

ˆ L

0
|B(t, x)|2dx+

ˆ
[0,L]×R2

|v |2f (t, x , v)dvdx
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Figure: Efficiency diagrams for the different composition methods

ψ
[s]
∆t , s = 2, 3, 4, 5, 6. The number of maps for each method is indicated

into parenthesis.
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Conclusions

ä exact splitting for 2D rotations

ä application to Vlasov-Maxwell equations : construction of new
high order splitting methods

ä extension to nD transport equations

∂t f + Mx · ∇f = 0, x ∈ Rn, Mi ,i = 0

In particular, 3D rotations can be decomposed into four 1D
linear advections of the form

∂t f − (bvx + avz)∂vy f = 0.



Perspectives

ä spin-Vlasov models f (t, x, v, s), s ∈ S2 or f(t, x, v) ∈ R4

ä magnetic Schrödinger equation
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