Splitting methods for rotations: application to Vlasov equations

N. Crouseilles

Inria (MINGuS team) \& IRMAR, Univ. Rennes

Joint work with:
> J. Bernier (CNRS, Univ. Nantes, France)
> F. Casas (Univ. Jaume, Spain)
> Y. Li (Max Planck, IPP, Germany)

> Zoom seminar Wolfsburg, november 12th 2020.

Motivations:

$>$ rotation motions can be found in

- many physical models involving magnetic field (Schrödinger, Vlasov, spin-Vlasov, ...)
- imaging community
- fluid models involving Coriolis force
- ...
$>$ efficient numerical methods are important to improve physical codes (in terms of CPU time and accuracy)

Plan
$>$ splittings for $2 D$ rotations
$>$ application to the $1 d-2 v$ Vlasov-Maxwell equations
> conclusion

Splittings for $2 D$ rotations

Splitting methods

Main goal: efficient numerical methods for

$$
\partial_{t} u=J x \cdot \nabla_{x} u, \quad x \in \mathbb{R}^{2}, \quad u(t=0, x)=u^{i n}(x)
$$

where J is

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Obviously, the exact solution is known, but when $u^{\text {in }}$ is only known on a grid, we need a numerical method!
First natural idea: 2D Semi-Lagrangian method
solve the ODE system on $\left[t_{n}, t_{n+1}\right]$ backward in time

$$
\dot{x}(t)=-J x(t), \quad x\left(t_{n+1}\right)=x_{g}
$$

$>$ the solution is constant along the characteristics:

$$
u^{n+1}\left(x_{g}\right)=u^{n}\left(x\left(t_{n}\right)\right)=u^{n}\left(e^{\Delta t J} x_{g}\right)
$$

Second natural idea: splitting method Lie splitting

$$
u^{n+1}(x)=u^{n}\left(e^{A_{2}} e^{A_{1}} x\right)
$$

where

$$
e^{A_{1}}=\left(\begin{array}{cc}
1 & -\Delta t \\
0 & 1
\end{array}\right), e^{A_{2}}=\left(\begin{array}{cc}
1 & 0 \\
\Delta t & 1
\end{array}\right)
$$

$>$ solve $\partial_{t} u=x_{1} \partial_{x_{2}} u, \quad u(0, x)=u^{n}(x)$ to get

$$
u^{\star}(x)=u^{n}\left(x_{1}, x_{2}+\Delta t x_{1}\right)=u^{n}\left(e^{A_{2}} x\right)
$$

$>$ solve $\partial_{t} u=-x_{2} \partial_{x_{1}} u, u(0, x)=u^{\star}(x)$ to get

$$
u^{n+1}(x)=u^{\star}\left(x_{1}-\Delta t x_{2}, x_{2}\right)=u^{\star}\left(e^{A_{1}} x\right)=u^{n}\left(e^{A_{2}} e^{A_{1}} x\right)
$$

Strang splitting

$$
u^{n+1}(x)=u^{n}\left(e^{A_{1}} e^{A_{2}} e^{A_{1}} x\right)
$$

where

$$
e^{A_{1}}=\left(\begin{array}{cc}
1 & -\Delta t / 2 \\
0 & 1
\end{array}\right), e^{A_{2}}=\left(\begin{array}{cc}
1 & 0 \\
\Delta t & 1
\end{array}\right)
$$

For Lie, the trajectories are ellipses

$$
x_{1}^{2}+\Delta t x_{1} x_{2}+x_{2}^{2}=\text { cste }
$$

For Strang, the trajectories are ellipses

$$
x_{1}^{2}+\left(1-(\Delta t / 2)^{2}\right) x_{2}^{2}=\text { cste } .
$$

Moreover, for the two methods, the angular velocity is given by
$\omega_{\text {Strang }}(\Delta t)=\omega_{\text {Lie }}(\Delta t)=\frac{1}{\Delta t} \arcsin \left(\Delta t \sqrt{1-\Delta t^{2} / 4}\right)<1=\omega_{\text {ex }}$.
Two kinds of error
$>$ trajectory
> angular velocity
Can we improve one of the two errors ? the two errors ?

From the decomposition

$$
u^{n+1}(x)=u^{n}\left(e^{A_{1}} e^{A_{2}} e^{A_{1}} x\right)
$$

to be a directional splitting, we impose

$$
e^{A_{1}}=\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right), \quad e^{A_{2}}=\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)
$$

Find $a, b \in \mathbb{R}^{2}$ such that the two errors are improved ?
Considering $a=-\tan \frac{\Delta t}{2}$ and $b=\sin \Delta t$, we have

$$
e^{A_{1}} e^{A_{2}} e^{A_{1}}:=\left(\begin{array}{cc}
1 & -\tan \frac{\Delta t}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\sin \Delta t & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\tan \frac{\Delta t}{2} \\
0 & 1
\end{array}\right)=e^{\Delta t J}
$$

$\Longrightarrow 2 D$ rotation can be exactly decomposed into three shears ${ }^{1}$
${ }^{1}$ References in the image processing community: Paeth-Tanaka 86', Andres 96'. See also Bader-Blanes, 2011.

Full discretization

To numerically solve the PDE

$$
\partial_{t} u=J x \cdot \nabla_{x} u, \quad x \in[-R / 2, R / 2]^{2}
$$

we will use pseudo-spectral method to solve the following shears $(\alpha \in \mathbb{R}):$

$$
\partial_{t} u=\alpha x_{2} \partial_{x_{1}} u, \quad \partial_{t} u=\alpha x_{1} \partial_{x_{2}} u
$$

Let us consider the grid $\mathbb{G}=h \llbracket-\left\lfloor\frac{N-1}{2}\right\rfloor,\left\lfloor\frac{N}{2}\right\rfloor \rrbracket, \quad h=R / N$ and the DFT (in the first direction)

$$
\mathcal{F}_{1}: u \quad \mapsto \quad \mathcal{F}_{1}(u)_{\xi_{1}, g_{2}}:=h \sum_{g_{1} \in \mathbb{G}} \boldsymbol{u}_{g_{1}, g_{2}} e^{-i g_{1} \xi_{1}}
$$

Then, the shear operator for $\partial_{t} u=\alpha x_{2} \partial_{x_{1}} u$ is

$$
\mathcal{S}_{1}^{\alpha}:\left\{\begin{array}{ccc}
\mathbb{C}^{\mathbb{G}^{2}} & \rightarrow & \mathbb{C}^{\mathbb{G}^{2}} \tag{1}\\
u & \mapsto & \mathcal{F}_{1}^{-1}\left[e^{i \alpha \xi_{1} g_{2}} \mathcal{F}_{1} u\right]
\end{array}\right.
$$

Then, the splitting can be written as (denoting $u^{0}:=\left.u^{i n}\right|_{\mathbb{G}^{2}}$)

$$
\begin{align*}
& u^{n}=\left(\mathcal{L}_{\Delta t}\right)^{n} u^{0}:=\left(\mathcal{S}_{2}^{\Delta t} \mathcal{S}_{1}^{-\Delta t}\right)^{n} u^{0}, \tag{Lie}\\
& u^{n}=\left(\mathcal{T}_{\Delta t}\right)^{n} u^{0}:=\left(\mathcal{S}_{1}^{-\Delta t / 2} \mathcal{S}_{2}^{\Delta t} \mathcal{S}_{1}^{-\Delta t / 2}\right)^{n} u^{0}, \\
& u^{n}=\left(\mathcal{M}_{\Delta t}\right)^{n} u^{0}:=\left(\mathcal{S}_{1}^{-\tan (\Delta t / 2)} \mathcal{S}_{2}^{\sin (\Delta t)} \mathcal{S}_{1}^{-\tan (\Delta t / 2)}\right)^{n} u^{0} .
\end{align*}
$$

Theorem

For all $s>0$, there exists $C>0$ such that for all $R>0$, $u \in \mathscr{S}\left(\mathbb{R}^{2}\right), n \in \mathbb{N}$ and $\left.\Delta t \in\right]-\pi, \pi[$, we have

$$
\left\|\left(\mathcal{M}_{\Delta t}\right)^{n} u_{\mid \mathbb{G}^{2}}^{i n}-\left(u^{i n}\left(e^{t_{n} J} x\right)\right)_{\mid \mathbb{G}^{2}}\right\|_{L^{2}\left(\mathbb{G}^{2}\right)} \leq C n \Delta t \frac{R^{-s}+h^{s}}{\sqrt{h}}\|u\|
$$

Numerical results

Illustration of the error $\mathcal{S}_{1}^{\alpha} u_{\mid \mathbb{G}^{2}}-u\left(x_{1}-\alpha x_{2}, x_{2}\right)_{\mid \mathbb{G}^{2}}$.
$R=15, \alpha=10^{-2}$

Figure: Solution $u\left(T=10^{5}, x\right), \Delta t \approx 0.139, x \in[-2,2]^{2}, N=243^{2}$. Left: Exact solution.
Middle: Numerical solution obtained by the new splitting. Right: Numerical solution obtained by the Strang splitting.

Figure: Time history of the relative L^{2} errors between the exact solution and the numerical solution obtained by the different splittings.

One can compute the "recurrence" time \bar{T} from

$$
\left(\omega-\omega_{\text {Lie }}\right) \bar{T}=k \pi, \quad k \in \mathbb{Z},
$$

where $\omega=1$ and $\omega_{\text {Lie }}=\mu_{\Delta t, \Delta t}=\frac{\arcsin \left(\Delta t \sqrt{1-(\Delta t)^{2} / 4}\right)}{\Delta t \sqrt{1-(\Delta t)^{2} / 4}}$.
With $\Delta t \approx 0.139$, we have $\bar{T} \approx 3888$.

10 times faster !

Extension to multi-dimensional transport equation of the form

$$
\begin{equation*}
\partial_{t} u=M \mathbf{x} \cdot \nabla u, \quad x \in \mathbb{R}^{n}, \quad M_{i, i}=0 \tag{2}
\end{equation*}
$$

We have the following decomposition [2, 3]

$$
e^{\Delta t M \mathbf{x} \cdot \nabla}=e^{\Delta t\left(y^{(l)} \cdot \mathbf{x}\right) \partial_{x_{i}}}\left(\prod_{k=1(k \neq i)}^{n} e^{\Delta t\left(y^{(k)} \cdot \mathbf{x}\right) \partial_{x_{k}}}\right) e^{\Delta t\left(y^{(r)} \cdot \mathbf{x}\right) \partial_{x_{i}}}
$$

with $y^{(\ell)}, y^{(k)}, y^{(r)} \in \mathbb{R}^{n}$ such that $y_{i}^{(\ell)}=y_{i}^{(r)}=0$ and $y_{k}^{(k)}=0$ [4] \Longrightarrow Equation (2) is split exactly into $(n+1)$ shears (a Strang splitting needs $(2 n-1)$ shears).
${ }^{2}$ J. Bernier, Exact splitting methods for semigroups generated by inhomogeneous quadratic differential operators.
${ }^{3}$ J. Bernier, N. Crouseilles, Y. Li, Exact splitting methods for kinetic and Schrodinger equations, accepted in JSC
${ }^{4}$ The vectors $y^{(\ell)}, y^{(r)}, y^{(k)}$ are computed numerically for a given Δt.

Example with $n=3$

$$
\text { Let consider } M=\left(\begin{array}{ccc}
0 & -0.36 & -0.679 \\
0.36 & 0 & -0.758 \\
0.679 & 0.758 & 0
\end{array}\right) \text {. }
$$

Then, we have: $\quad e^{\Delta t M \mathbf{x} \cdot \nabla}=e^{\Delta t\left(y^{(l)} \cdot \mathbf{x}\right) \partial_{x_{3}}} e^{\Delta t\left(y^{(2)} \cdot \mathbf{x}\right) \partial_{x_{1}}} e^{\Delta t\left(y^{(3)} \cdot \mathbf{x}\right) \partial_{x_{2}}} e^{\Delta t\left(y^{(r)} \cdot \mathbf{x}\right) \partial_{x_{3}}}$,
with $y^{(\ell)} \simeq\left(\begin{array}{c}0.345 \ldots \\ 0.379 \ldots \\ 0\end{array}\right), y^{(2)} \simeq\left(\begin{array}{c}0 \\ -0.036 \ldots \\ -0.664 \ldots\end{array}\right), y^{(3)} \simeq\left(\begin{array}{c}0.036 \ldots \\ 0 \\ -0.742 \ldots\end{array}\right), y^{(r)} \simeq\left(\begin{array}{c}0.339 \ldots \\ 0.384 \ldots \\ 0\end{array}\right)(\Delta t=0.3)$.

Extension to quadratic PDEs

We consider PDEs of the form

$$
\left\{\begin{array}{cll}
\partial_{t} u(t, \mathbf{x}) & =-p^{w} u(t, \mathbf{x}), & \\
t \geq 0, \mathbf{x} \in \mathbb{R}^{n} \\
u(0, \mathbf{x}) & =u_{0}(\mathbf{x}), & \\
\mathbf{x} \in \mathbb{R}^{n}
\end{array}\right.
$$

Correspondance between the operator p^{w} and the polynomial p
$p^{w}=\binom{\mathbf{x}}{-i \nabla} Q\binom{\mathbf{x}}{-i \nabla}+{ }^{\mathrm{t}} Y\binom{\mathbf{x}}{-i \nabla}+c \longleftrightarrow p(\mathbf{x}, \boldsymbol{\xi})=\binom{\mathbf{x}}{\boldsymbol{\xi}} Q\binom{\mathbf{x}}{\boldsymbol{\xi}}+{ }^{\mathrm{t}} Y\binom{\mathbf{x}}{\boldsymbol{\xi}}+c$
where $\mathbf{x}, \boldsymbol{\xi} \in \mathbb{R}^{n}, Q \in \mathcal{S}_{2 n}(\mathbb{C}), Y \in \mathbb{C}^{2 n}$ and $c \in \mathbb{C}$.
Example: Schrödinger, Fokker-Planck, Vlasov, transport, ...

$$
i \frac{\partial \psi(\mathbf{x}, t)}{\partial t}=-\frac{1}{2} \Delta \psi(\mathbf{x}, t)-i(B \mathbf{x}) \cdot \nabla \psi(\mathbf{x}, t)+|\mathbf{x}|^{2} \psi(\mathbf{x}, t)
$$

We have $p(\mathbf{x}, \boldsymbol{\xi})=i \frac{|\boldsymbol{\xi}|^{2}}{2}+i B \mathbf{x} \cdot \boldsymbol{\xi}+i|\mathbf{x}|^{2}$, i.e. $Q=\frac{i}{4}\left(\begin{array}{cc}4 \boldsymbol{I}_{n} & { }^{\mathrm{t}} B \\ B & 4 \boldsymbol{I}_{n}\end{array}\right), Y=0, c=0$.

Exact splittings

Quadratic PDEs can be split exactly into simple operators

$$
\begin{equation*}
e^{\alpha \partial_{x_{j}}}, e^{i \alpha x_{j}}, e^{i a(\nabla)}, e^{i a(\mathrm{x})}, e^{\alpha x_{k} \partial_{x_{j}}}, e^{-b(\mathrm{x})}, e^{b(\nabla)}, e^{\gamma} \tag{3}
\end{equation*}
$$

with $\alpha \in \mathbb{R}, \gamma \in \mathbb{C}, a, b: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are some real quadratic forms, b is nonnegative and $j, k \in \llbracket 1, n \rrbracket$ and $k \neq j$.

Remark: "simple" means it can be solved easily using pseudo-spectral methods for instance.
More details in
> mathematical framework: J. Bernier, Exact splitting methods for semigroups generated by inhomogeneous quadratic differential operators.
> Numerical examples: J. Bernier, N. Crouseilles, Y. Li, Exact splitting methods for kinetic and Schrödinger equations, accepted in JSC.

Application to the $1 d-2 v$
Vlasov-Maxwell equations

$1 d-2 v$ Vlasov-Maxwell equations

Let consider $f\left(t, x_{1}, v_{1}, v_{2}\right), B\left(t, x_{1}\right)$ and $E\left(t, x_{1}\right)=\left(E_{1}, E_{2}\right)\left(t, x_{1}\right)$ with $\left(x_{1}, v_{1}, v_{2}\right) \in L \times \mathbb{R}^{2}$, solution of

$$
\begin{align*}
& \partial_{t} f+v_{1} \partial_{x_{1}} f+E \cdot \nabla_{v} f-B J v \cdot \nabla_{v} f=0 \\
& \partial_{t} B=-\partial_{x_{1}} E_{2}, \\
& \partial_{t} E_{2}=-\partial_{x_{1}} B-\int_{\mathbb{R}^{2}} v_{2} f\left(t, x_{1}, v\right) d v+\overline{\mathcal{J}}_{2}(t), \tag{4}\\
& \partial_{t} E_{1}=-\int_{\mathbb{R}^{2}} v_{1} f\left(t, x_{1}, v\right) d v+\overline{\mathcal{J}}_{1}(t), \\
& \partial_{x_{1}} E_{1}=\int_{\mathbb{R}^{2}} f\left(t, x_{1}, v\right) d v-1, \quad \text { [Gauss relation] }
\end{align*}
$$

where $v=\left(v_{1}, v_{2}\right), \overline{\mathcal{J}}_{i}(t)=1 /|L| \int_{L} \int_{\mathbb{R}^{2}} v_{i} f\left(t, x_{1}, v\right) d x_{1} d v, i=1,2$ and J denotes

$$
J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

When $\vec{B}=(0,0, B)$, the Lorentz force reduces to $B J_{v} \cdot \nabla_{v} f$.

Splitting for VM^{5}

The following decomposition will be used
$\partial_{t}\left(\begin{array}{c}f \\ E_{1} \\ E_{2} \\ B\end{array}\right)=-\left(\begin{array}{c}v_{1} \partial_{\times_{1}} f \\ \int_{\mathbb{R}^{2}} v_{1} f \mathrm{~d} v-\overline{\mathcal{J}}_{1} \\ \int_{\mathbb{R}^{2}} v_{2} f \mathrm{~d} v-\overline{\mathcal{J}}_{2} \\ 0\end{array}\right)-\left(\begin{array}{c}E \cdot \nabla_{v} f \\ 0 \\ 0 \\ \partial_{\chi_{1}} E_{2}\end{array}\right)+\left(\begin{array}{c}B J v \cdot \nabla_{v} f \\ 0 \\ -\partial_{x_{1}} B \\ 0\end{array}\right)$.
Denoting $\mathcal{Z}=\left(f, E_{1}, E_{2}, B\right)$, we rewrite the VM system as

$$
\partial_{t} \mathcal{Z}+\mathcal{H}_{f}(\mathcal{Z})+\mathcal{H}_{E}(\mathcal{Z})+\mathcal{H}_{B}(\mathcal{Z})=0
$$

which suggests a first order splitting method

$$
\chi_{\Delta t}=\varphi_{\Delta t}^{\left[\mathcal{H}_{E}\right]} \circ \varphi_{\Delta t}^{\left[\mathcal{H}_{f}\right]} \circ \varphi_{\Delta t}^{\left[\mathcal{H}_{B}\right]}
$$

where $\varphi_{\Delta t}^{\left[\mathcal{H}_{f, E, B}\right]}$ denotes the exact solution of each subpart.
${ }^{5}$ C., Einkemmer, Faou, JCP 2015.
See also Li et al, JCP 2019 and Krauss et al, JPP 2017.

Each step can be solved exactly in time.
In particular, for $\varphi_{\Delta t}^{\left[\mathcal{H}_{B}\right]}$, we have

$$
\partial_{t}\left(\begin{array}{c}
f \\
E_{1} \\
E_{2} \\
B
\end{array}\right)=\left(\begin{array}{c}
B J v \cdot \nabla_{v} f \\
0 \\
-\partial_{x_{1}} B \\
0
\end{array}\right)
$$

with the IC: $\left(f(0), E_{1}(0), E_{2}(0), B(0)\right)$.
We can compute the solution exactly in time
$>B\left(\Delta t, x_{1}\right)=B\left(0, x_{1}\right)$ and $E_{1}\left(\Delta t, x_{1}\right)=E_{1}\left(0, x_{1}\right)$
$>E_{2}\left(\Delta t, x_{1}\right)=E_{2}\left(0, x_{1}\right)-\Delta t \partial_{x_{1}} B\left(0, x_{1}\right)$
$>$ use the new splitting for rotation part since B is frozen

Remark: Strang splitting can be also used !

High order splittings for systems split into three parts

Instead of using composition of exact flows, we shall consider composition of
$\chi_{\Delta t}:=\varphi_{\Delta t}^{\left[\mathcal{H}_{E}\right]} \circ \varphi_{\Delta t}^{\left[\mathcal{H}_{f}\right]} \circ \varphi_{\Delta t}^{\left[\mathcal{H}_{B}\right]} \quad$ and $\quad \chi_{\Delta t}^{\star}:=\varphi_{\Delta t}^{\left[\mathcal{H}_{B}\right]} \circ \varphi_{\Delta t}^{\left[\mathcal{H}_{f}\right]} \circ \varphi_{\Delta t}^{\left[\mathcal{H}_{E}\right]}$
More specifically, we construct integrators within the family

$$
\begin{aligned}
\psi_{\Delta t}^{[s]} & =\Pi_{i=1}^{s}\left(\chi_{\alpha_{2 i-1} \Delta t} \circ \chi_{\alpha_{2 i} \Delta t}^{\star}\right) \\
& =\chi_{\alpha_{1} \Delta t} \circ \chi_{\alpha_{2} \Delta t}^{\star} \circ \cdots \circ \chi_{\alpha_{2 s-1} \Delta t} \circ \chi_{\alpha_{2 s} \Delta t}^{\star}
\end{aligned}
$$

with $\alpha_{2 s+1-i}=\alpha_{i}, \quad i=1, \ldots, s$ to ensure time-symmetry.

Some remarks

$>\psi_{\Delta t}^{[s]}$ can be of order p even if it only involves first-order approximations to the flows $\varphi_{\Delta t}^{\left[\mathcal{H}_{E}\right]}, \varphi_{\Delta t}^{\left[\mathcal{H}_{f}\right]}$, and $\varphi_{\Delta t}^{\left[\mathcal{H}_{B}\right]}$
$>$ one needs to construct its adjoint $\chi_{\Delta t}^{\star}$ (easy when flows are exact in time)
$>$ methods involving the minimum number of maps (or stages) do not usually provide the best efficiency.

Considering additional stages \Longrightarrow some free parameters How to fix the free parameters ?
To determine the coefficients $\left.\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{2 s}\right) \in \mathbb{R}^{2 s}\right)$, we decide to minimize the following objective functions

$$
\mathcal{E}_{1}(\boldsymbol{\alpha})=\sum_{i=1}^{2 s}\left|\alpha_{i}\right| \quad \text { and } \quad \mathcal{E}_{2}(\boldsymbol{\alpha})=2 s\left|\sum_{i=1}^{2 s} \alpha_{i}^{5}\right|^{1 / 4}
$$

\mathcal{E}_{1} has an influence on the CFL condition, \mathcal{E}_{2} is usually the dominant error term for a number of problems.

Some examples

The integrator with $s=3$ reads

$$
\psi_{\Delta t}^{[3]}=\chi_{\alpha_{1} \Delta t} \circ \chi_{\alpha_{2} \Delta t}^{\star} \circ \chi_{\alpha_{3} \Delta t} \circ \chi_{\alpha_{3} \Delta t}^{\star} \circ \chi_{\alpha_{2} \Delta t} \circ \chi_{\alpha_{1} \Delta t}^{\star}
$$

and the unique (real) solution to the order conditions $w_{1}=1$, $w_{3}=w_{12}=0$ is given by

$$
\alpha_{1}=\alpha_{2}=\frac{1}{2\left(2-2^{1 / 3}\right)}, \quad \alpha_{3}=\frac{1}{2}-2 \alpha_{1} .
$$

If $\chi_{\Delta t}=\varphi_{\Delta t}^{\left[\mathcal{H}_{E}\right]} \circ \varphi_{\Delta t}^{\left[\mathcal{H}_{f}\right]} \circ \varphi_{\Delta t}^{\left[\mathcal{H}_{B}\right]}$, then it involves 13 maps (the minimum number), and the values of the objective functions are

$$
\mathcal{E}_{1}(\boldsymbol{\alpha})=4.40483, \quad \mathcal{E}_{2}(\boldsymbol{\alpha})=4.55004
$$

This is the Yoshida method ${ }^{6}$

[^0]Fourth order methods can be designed in this spirit by increasing the number of stages s
$>s=4$ (17 maps), the composition is

$$
\begin{aligned}
& \psi_{\Delta t}^{[4]}=\chi_{\alpha_{1} \Delta t}{ }^{\circ} \chi_{\alpha_{2} \Delta t}^{\star} \circ \chi_{\alpha_{3} \Delta t} \circ \chi_{\alpha_{4} \Delta t}^{\star} \chi_{\alpha_{4} \Delta t} \circ \chi_{\alpha_{3} \Delta t}^{\star} \chi_{\alpha_{2} \Delta t} \circ \chi_{\alpha_{1} \Delta t}^{\star}, \\
& \mathcal{E}_{1}(\boldsymbol{\alpha})=2.9084, \quad \mathcal{E}_{2}(\boldsymbol{\alpha})=3.1527 .
\end{aligned}
$$

$>s=5$ (21 maps), the composition is

$$
\begin{aligned}
& \psi_{\Delta t}^{[5]}=\chi_{\alpha_{1} \Delta t} \circ \chi_{\alpha_{2} \Delta t}^{\star} \circ \chi_{\alpha_{3} \Delta t} \circ \chi_{\alpha_{4} \Delta t}^{\star} \circ \chi_{\alpha_{5} \Delta t} \circ \chi_{\alpha_{5} \Delta t}^{\star} \cdots \circ \chi_{\alpha_{2} \Delta t} \circ \chi_{\alpha_{1} \Delta t}^{\star} \\
& \mathcal{E}_{1}(\boldsymbol{\alpha})=2.3159, \mathcal{E}_{2}(\boldsymbol{\alpha})=2.6111 .
\end{aligned}
$$

$s=6$ (25 maps), the composition is

$$
\begin{aligned}
& \psi_{\Delta t}^{[6]}=\chi_{\alpha_{1} \Delta t} \circ \chi_{\alpha_{2} \Delta t}^{\star} \circ \cdots \circ \chi_{\alpha_{6} \Delta t}^{\star} \circ \chi_{\alpha_{6} \Delta t} \circ \cdots \chi_{\alpha_{2} \Delta t} \circ \chi_{\alpha_{1} \Delta t}^{\star} . \\
& \mathcal{E}_{1}(\boldsymbol{\alpha})=2.0513, \quad \mathcal{E}_{2}(\boldsymbol{\alpha})=2.4078 .
\end{aligned}
$$

Numerical results

To do so, we consider the following initial condition for VM

$$
f\left(0, x_{1}, v_{1}, v_{2}\right)=\frac{1}{\pi v_{\mathrm{th}^{2}} \sqrt{T_{r}}} e^{-\left(v_{1}^{2}+v_{2}^{2} / T_{r}\right) / v_{\mathrm{th}}}\left(1+\alpha \cos \left(k x_{1}\right)\right)
$$

and $B\left(0, x_{1}\right)=10+3 \cos \left(k x_{1}\right), \quad E_{2}\left(0, x_{1}\right)=0$.
$>\alpha=10^{-4}, k=0.4, v_{t h}=0.02, k=0.4$ and $T_{r}=12$.
$>N_{x}=32$ and $N_{v}=513^{2}$
$>$ final time $T=2$
$>$ different values of Δt between 10^{-3} to 0.4.
We look at the error

$$
\operatorname{err}(\Delta t):=\max _{t \in[0, T]}\left|\frac{\mathcal{H}_{\Delta t}(t)-\mathcal{H}(0)}{\mathcal{H}(0)}\right|
$$

with
$\mathcal{H}_{\Delta t}(t) \approx \int_{0}^{L}|E(t, x)|^{2} d x+\int_{0}^{L}|B(t, x)|^{2} d x+\int_{[0, L] \times \mathbb{R}^{2}}|v|^{2} f(t, x, v) d v d x$

Figure: Efficiency diagrams for the different composition methods $\psi_{\Delta t}^{[s]}, s=2,3,4,5,6$. The number of maps for each method is indicated into parenthesis.

Figure: Efficiency diagrams for (i) $\tilde{\psi}_{\Delta t}^{[2]}$ and $\psi_{\Delta t}^{[2]}$; (ii) $\tilde{\psi}_{\Delta t}^{[5]}$ and $\psi_{\Delta t}^{[5]}$.

Conclusions

$>$ exact splitting for 2D rotations
> application to Vlasov-Maxwell equations: construction of new high order splitting methods
$>$ extension to nD transport equations

$$
\partial_{t} f+M x \cdot \nabla f=0, \quad x \in \mathbb{R}^{n}, \quad M_{i, i}=0
$$

In particular, 3D rotations can be decomposed into four 1D linear advections of the form

$$
\partial_{t} f-\left(b v_{x}+a v_{z}\right) \partial_{v_{y}} f=0
$$

Perspectives

$>$ spin-Vlasov models $f(t, \mathbf{x}, \mathbf{v}, \mathbf{s}), \mathbf{s} \in \mathbb{S}^{2}$ or $\mathbf{f}(t, \mathbf{x}, \mathbf{v}) \in \mathbb{R}^{4}$
$>$ magnetic Schrödinger equation

[^0]: ${ }^{6}$ Yoshida 90 '

