Neural Networks and numerical analysis of PDEs

with M. Ancellin (post-doc CEA), thanks to O. Pironneau and H. Jourdren.
B. Després (LJLL-SU)

Neural Networks, Machine Learning, IA, ...

- Modern ML softwares: TensorFlow (Google 15'), Keras (Chollet 18'), ScikitLEarn (Inria 10'), Pytorch (Facebook), Julia, Matlab, ...

Scientific computing Hesthaven 18', Zaleski 19', D.-Jourdren 20', ..., Numerical analysis: Yarotsky 17', Daubechies-DeVore et al 19', ...

- Main objectives of this presentation :
- presentation of a functional equation with strong contraction properties, its solution having a Neural Network/FEM interpretation.
- show some new FV schemes for $\partial_{t} \alpha+\mathbf{a} \cdot \nabla \alpha=0$

Dataset

- Take a large dataset : $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right), i=1, \ldots\right\} \subset \mathbb{R}^{m} \times \mathbb{R}^{n}$

Postulate : the dataset corresponds to an objective function

$$
f^{\mathrm{obj}}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}
$$

with $x_{i} \in \mathbb{R}^{m}, y_{i}=f^{\text {obj }}\left(x_{i}\right)+\varepsilon_{i} \in \mathbb{R}^{n}$, and noise $\varepsilon_{i} \in \mathbb{R}^{n}$ (hopefully small).

- Examples:
a) MNIST : $x_{i} \in \mathbb{R}^{28 \times 28}$ and $y_{i} \in[0,1]^{10}$ with $\sum_{i} y_{i}=1$. Here $m=784$ and $n=10$.
b) Takagi and $f^{\circ \mathrm{Obj}}(x)=x^{2}, m=n=1$.
c) $f^{\mathrm{obj}} \in P^{r}[0,1]$ where $r \in \mathbb{N}, m=n=1$.

Supervised learning of the objective function

- Take a linear function f with weight $W \in \mathcal{M}_{m n}(\mathbb{R})$ and bias $b \in \mathbb{R}^{n}$

$$
\begin{array}{rll}
f: & \mathbb{R}^{m} & \longrightarrow \mathbb{R}^{n}, \tag{1}\\
& x & \longmapsto f(x)=W x+b
\end{array}
$$

- Consider the convex cost function $J(W, b)=\frac{1}{\operatorname{card\mathcal {D}}} \sum_{(x, y) \in \mathcal{D}}|f(x)-y|^{2}$. An optimal value satisfies $J\left(W_{*}, b_{*}\right) \leq J(W, b) \quad \forall(W, b)$.

Let y and $p(z)$ be discrete probabilities:
$y_{i} \in[0,1], \sum y_{j}=1 ; p_{i}=\frac{\exp z_{i}}{\sum_{j=1}^{n} \exp z_{j}} \in(0,1)$.
For classification, one takes cross-entropy (Kullback-Leibler divergence)

$$
J(W, b)=-\sum_{(x, y) \in \mathcal{D}}(\log p(f(x)), y) \geq 0
$$

This cost function is convex.

Cucumis sativus L.

Concombre ou Cornichon

Two more ideas: recursivity and non linearity

- Recursivity=composition of functions.
$a_{0}=m$ is the input layer
$a_{p+1}=n$ is the output layer $\left(a_{1}, a_{2}, \ldots, a_{p}\right) \in \mathbb{N}^{p}$ are the (dense) hidden layers with neurons
- Consider

$$
\begin{array}{rll}
f_{r}: & \mathbb{R}^{a_{r}} & \longrightarrow \mathbb{R}^{a_{r+1}}, \\
& X_{r} & \longmapsto f_{r}\left(X_{r}\right)=W_{r} X_{r}+b_{r}
\end{array}
$$

and the function $f=f_{p} \circ f_{p-1} \ldots f_{2} \circ f_{1} \circ f_{0}$.

Depth $=p$ is the number of layers.
Width $=$ max $_{r} a_{r}$ is the maximal number of neurons per layer.

Non linearity

- Non linearity is added with an activation function.

Sigmoid $\in C^{1}(\mathbb{R})$. A sigmoid $S=\sigma$ is monotone, $0<\sigma^{\prime}<1$, with limit value 0 at $-\infty$ and limit value 1 at $+\infty$.
$\operatorname{ReLU} \in C^{0}(\mathbb{R})$. It is defined by $R(x)=\max (0, x)$.
Thresholding yields $T(x)=\min (R(x), 1)$.
Generalization component wise to activation functions $\mathbb{R}^{q} \rightarrow \mathbb{R}^{q}$.

A function defined through a generic neural network is

$$
f=f_{p+1} \circ\left\{\begin{array}{c}
R \\
S \\
T
\end{array}\right\} \circ f_{p} \circ \cdots \circ\left\{\begin{array}{c}
R \\
S \\
T
\end{array}\right\} \circ f_{1} \circ\left\{\begin{array}{l}
R \\
S \\
T
\end{array}\right\} \circ f_{0}
$$

Connection with Finite Element

Finite Element function : hat/ P_{1} function

$$
\begin{aligned}
\varphi_{j}(x) & =R\left(R\left(\frac{x-x_{j-1}}{h}\right)-2 R\left(\frac{x-x_{j}}{h}\right)\right) \\
& =T\left(T\left(\frac{x-x_{j-1}}{h}\right)+T\left(\frac{x_{j+1}-x}{h}\right)-1\right) .
\end{aligned}
$$

Take $f(x)=\sum_{j \in \mathbb{Z}} f_{j} \varphi_{j}(x)$ with $f_{j}=f^{\text {obj }}\left(x_{j}\right)$. Then

$$
\left\|f^{\mathrm{obj}}-f\right\|_{L_{\mathrm{loc}}^{2}} \leq C h^{2}\left\|\frac{d^{2}}{d x^{2}} f^{\mathrm{obj}}\right\|_{L_{\mathrm{loc}}^{2}}
$$

But of course, $f_{j} \neq f^{\mathrm{obj}}\left(x_{j}\right)$ in NNs.

Takagi function and power of depth

Let $g:[0,1] \longrightarrow[0,1]$ be the hat function in dimension one $g(x)=1-|1-2 x|=2 R(x)-4 R\left(x-\frac{1}{2}\right)$ for $0 \leq x \leq 1$. Starting from $g_{1}=g$, one defines $g_{r+1}=g \circ g_{r}$

Set $h_{r}=\sqrt{3}\left(g_{r}-\frac{1}{2}\right)$, then

$$
\int_{0}^{1} h_{r}(x) h_{s}(x) d x=\delta_{r s}
$$

Also

$$
\int_{0}^{1} g_{r}^{\prime}(x) g_{s}^{\prime}(x) d x=2^{2 r} \delta_{r s}
$$

Takagi 1901' : An example of the continuous function without derivative $\overline{f^{\text {Tak }}}(x)=\sum_{r \geq 1} \frac{1}{2^{r}} g_{r}(x)$. Note $f^{\text {Tak }} \notin H^{1}(a, b)$ for all $0 \leq a<b \leq 1$.

Yarostky 17' (and many others) : $x^{2}=x-\sum_{r \geq 1} \frac{1}{4^{r}} g_{r}(x)$. So $\left\|x^{2}-\left(x-\sum_{r=1}^{p} \frac{1}{4^{r}} g_{r}(x)\right)\right\|_{L^{\infty}(0,1)} \leq \sum_{p+1 \leq n} \frac{1}{4^{r}}=\frac{1}{3 \times 4^{p}}$.

The multiplication $x \rightarrow x^{2}$ is obtained on a dense neural network

Input Layer $\in \mathbb{R}^{1}$
Width $=3$, depth $=p:$ accuracy $\varepsilon=O\left(4^{-p}\right)$, cost $=O(p) \approx C|\log \varepsilon|$.
Polarization formula
\Longrightarrow The same for $x \rightarrow x^{3}=\frac{1}{4}\left(x+x^{2}\right)^{2}-\frac{1}{4}\left(x-x^{2}\right)^{2}$ and for $x \rightarrow x^{n}$
\Longrightarrow The same for $(x, y) \rightarrow x y=\frac{1}{4}(x+y)^{2}-\frac{1}{4}(x-y)^{2}, \ldots$

Set $F_{n, d}=\left\{f \in W^{n, \infty}\left([0,1]^{d}\right),\|f\|_{W^{n, \infty}\left([0,1]^{d}\right)} \leq 1\right\}$

Theorem

For any d, n and $\varepsilon \in(0,1)$, there is a ReLU network architecture that

- is capable to express any function in $F_{n, d}$ with error ε
- has the depth at most $c(\log 1 / \varepsilon+1)$ and at most $c \varepsilon^{-d / n}(\log 1 / \varepsilon+1)$ weights and computation units, with some constant $c=c(d, n)$.
- Yarotsky 17' : Error bounds for approximations with deep ReLU networks.
- Daubechies, DeVore et al 19' : Nonlinear App. and (Deep) ReLU Networks.
- Opschoor, Petersen, Schwab 19' : Deep relu networks and high-order finite element methods.
- He/.../Zheng 20' : Relu deep neural networks and linear finite elements.
- M. Hata, M. Yamaguti 83' :, Weierstrass's function and chaos.
- Hata, Yamaguti 84' : The Takagi Function and Its Generalization.

A functional equation for polynomials/no polarization

$I=[0,1]$ and $C^{0}(I)$ with norm $\|f\|_{L \infty(I)}=\max _{i \in I}|f(x)|$.
Weierstrass theorem $\overline{\cup P^{n}}=C^{0}(I)$, where $P^{n}=\{\operatorname{deg}(p) \leq n\}$.

Figure - Objective is $f^{\text {obj }}=H \in P^{n}$.
$V_{h}=\left\{u \in C^{0}(I), u_{\mid\left(x_{j}, x_{j+1}\right)} \in P^{1}\right.$ for all $\left.0 \leq j \leq m-1\right\}$. $E_{h}=\left\{e \in V_{h}: e(I) \subset I, e\right.$ non constant on exactly one int. $\} \subset V_{h}$.

Functional equation

Problem : Find $\left(e_{0}, e_{1}, \ldots, e_{r}, \beta_{1}, \ldots, \beta_{r}\right) \in V_{h} \times\left(E_{h}\right)^{r} \times \mathbb{R}^{r}$ such that the identity below holds

$$
H(x)=e_{0}(x)+\sum_{i=1}^{r} \beta_{i} H\left(e_{i}(x)\right), \quad x \in I
$$

with the contraction condition $K<1, \quad K=\sum_{i=1}^{r}\left|\beta_{i}\right|$.

Theorem (D.+Ancellin 20')

Existence of solution for well chosen $e_{i} \in E_{h}$ and m large enough.

Example : set $e_{1}(x)=\min (2 x, 1)$ and $e_{2}(x)=\min (2(1-x), 1)$ with $e_{1}, e_{2} \in E_{h}$ for $h=1 / 2$. Then $H_{1}(x)=x(1-x)$ satisfies

$$
H_{1}(x)=\frac{1}{4}(g(x)-1)+\frac{1}{4} H_{1}\left(e_{1}(x)\right)+\frac{1}{4} H_{1}\left(e_{2}(x)\right), \quad e_{1}, e_{2} \in E_{h} .
$$

Once $\left(e_{0}, e_{1}, \ldots, e_{r}, \beta_{1}, \ldots, \beta_{r}\right) \in V_{h} \times\left(E_{h}\right)^{r} \times \mathbb{R}^{r}$ are determined, it is a functional equation with H as a solution.

Structure of the proof $1 / 3$

Generically one has $e_{i}(x)=a_{i}+\left(b_{i}-a_{i}\right) \frac{x-x_{j}}{h}$ for $x_{j} \leq x \leq x_{j+1}$.
The global problem is equivalent to local problems where $p=H^{\prime \prime} \in P^{n-2}$.

For all subintervals (index is $j=0,1 \ldots, m-1$):
find triples $\left(a_{i}, b_{i}, \gamma_{i}\right)_{i=1}^{s} \in(I \times I \times \mathbb{R})^{s}$ such that $b_{i}-a_{i} \neq 0$ for all i and

$$
p\left(x_{j}+h y\right)=\sum_{i=1}^{s} \gamma_{i} p\left(a_{i}+\left(b_{i}-a_{i}\right) y\right), \quad 0 \leq y \leq 1
$$

\Longrightarrow : The correspondance is $\gamma_{i}=\beta_{i}\left(\frac{b_{i}-a_{i}}{h}\right)^{2}$.
$\Longleftarrow:$ For $b_{i, j}-a_{i, j} \neq 0$ define

$$
\begin{aligned}
& \quad e_{i, j}(x)= \begin{cases}a_{i, j} & \text { for } 0 \leq x \leq x_{j}, \\
a_{i, j}+\frac{b_{i, j}-a_{i, j}}{h}\left(x-x_{j}\right) & \text { for } x_{j} \leq x \leq x_{j+1}=x_{j}+h, \\
b_{i, j} & \text { for } x_{j+1} \leq x \leq 1,\end{cases} \\
& \beta_{i, j}=\frac{h^{2}}{\left(b_{i, j}-a_{i, j}\right)^{2}} \gamma_{i, j} \text { and } e_{0}(x)=H(x)-\sum_{j} \sum_{i} \beta_{i, j} H\left(e_{i, j}(x)\right) . \\
& \text { Then } e_{0} \in V_{h} .
\end{aligned}
$$

By differentiation, the problem is equivalent to the square linear system

$$
\begin{equation*}
M_{j} X_{j}=b_{j}, \quad 0 \leq j \leq m-1 \tag{2}
\end{equation*}
$$

The square $(n-1) \times(n-1)$ matrix is

$$
M_{j}=\left(\begin{array}{cccc}
p\left(a_{1, j}\right) & p\left(a_{2, j}\right) & \cdots & p\left(a_{n-1, j}\right) \tag{3}\\
c_{1, j} p^{\prime}\left(a_{1, j}\right) & c_{2, j} p^{\prime}\left(a_{2, j}\right) & \cdots & c_{n-1, j} p^{\prime}\left(a_{n-1, j}\right) \\
\cdots & \cdots & \cdots & \cdots \\
c_{1, j}^{n-2} p^{(n-2)}\left(a_{1, j}\right) & c_{2, j}^{n-2} p^{(n-2)}\left(a_{2, j}\right) & \cdots & c_{n-1, j}^{n-2} p^{(n-2)}\left(a_{n-1, j}\right)
\end{array}\right)
$$

where $c_{i, j}=b_{i, j}-a_{i, j}$.
The unknown of the linear system is $X_{j}=\left(\gamma_{1, j}, \gamma_{2, j}, \ldots, \gamma_{n-1, j}\right)^{T} \in \mathbb{R}^{n-1}$.
The RHS of the linear system is $b_{j}=\left(p\left(x_{j}\right), h p^{\prime}\left(x_{j}\right), \ldots, h^{n-1} p^{(n-1)}\left(x_{j}\right)\right)^{T}$ which is bounded uniformly with respect to m

$$
\left\|b_{j}\right\|_{\infty} \leq C_{1}
$$

End of the proof $3 / 3$

Take $\mu=\frac{1}{2(n-1)}$. For $1 \leq i \leq n-1$, set

$$
a_{i, j}=i \mu \text { and } b_{i, j}=(i+1) \mu
$$

Then

- the RHS is bounded $\left\|b_{j}\right\|_{\infty} \leq C_{1}(p)$,
- the matrix M_{j} is independent of the sub-interval index j,
- the matrix M_{j} is Vandermonde and $\left\|M_{j}^{-1}\right\| \leq C_{2}$,
- the solution is bounded $\left\|\gamma_{j}\right\|_{\infty} \leq C_{3}=C_{1} C_{2}$,
- the constant is

$$
\begin{aligned}
& K=\sum_{j=0}^{m-1} \sum_{i=1}^{n-1}\left|\beta_{i, j}\right| \leq \sum_{j=0}^{m-1} \sum_{i=1}^{n-1} \frac{h^{2}\left|\gamma_{i, j}\right|}{\left(b_{i}-a_{i}\right)^{2}} \\
& \leq \sum_{j=0}^{m-1} \sum_{i=1}^{n-1} \frac{h^{2} C_{3}}{\mu^{2}} \leq m(n-1) \frac{h^{2} C_{3}}{\mu^{2}}=\frac{C_{4}}{m} .
\end{aligned}
$$

Therefore the contraction property is satisfied for $m \geq C_{4}=C_{4}(H)$.

Interpretation

Solution of a fixed point equation \Longrightarrow Neural Network with ReLU

$$
\left\{\begin{array}{l}
H_{0}=0 \\
H_{k+1}=e_{0}+\sum_{1 \leq i \leq r} \beta_{i} H_{k} \circ e_{i}
\end{array}\right.
$$

$$
H_{k}=e_{0}+\sum_{p=1}^{k-1}\left(\sum_{1 \leq i_{1}, \ldots, i_{p} \leq r}\left(\beta_{i_{1}} \ldots \beta_{i_{p}}\right) e_{0} \circ e_{i_{1}} \circ \cdots \circ e_{i_{p}}\right), \quad k \geq 1
$$

One has

$$
\begin{equation*}
\left\|H_{k}-H\right\|_{L^{\infty}(I)} \leq K^{k}\|H\|_{L^{\infty}(I)}, \quad K=\sum_{1 \leq i \leq r}\left|\beta_{i}\right|<1 \tag{4}
\end{equation*}
$$

[^0]
Exponential structure of the NN

This NN is fully non standard with respect to the literature (Goodfellow et al, Deep Learning, 2016).

The Network can be flattened.

Training tests

Training $=$ find the best weights/coefficients to fit the objective function.

$$
\begin{aligned}
& W:=\text { all degrees of freedom } \\
& W \mapsto J(W)=\left\|H_{k}(W)-H\right\|_{L^{2}(I)}
\end{aligned}
$$

Keras-Tensorflow Degrees of Freedom $=$ all weights W_{r}, b_{r}

Julia

Degrees of Freedom $=\beta_{i}$ for $1 \leq i \leq r$ and $e_{0} \in V_{h}$.
The basis functions $e_{i} \in E_{h}$ for $i \geq 1$ chosen in advance do not belong to the degrees of freedom.

$$
f^{o b j}(x)=x^{2}
$$

Tensorflow/training+testing/initialization $W^{0}=0 \Rightarrow$ huge problems.

Lemma : Take $p \geq 1$ and $\left(W_{r}^{0}, b_{r}^{0}\right)=0$ for all r. Then $\nabla_{W_{r}^{0}} f=0$ for all r and $\nabla_{b_{r}^{0}} f=0$ for all $r \geq 1$. (proof for $p=1$ comes from $f(x)=W_{1} R\left(W_{0} x+b_{0}\right)+b_{1}$.)

Julia/ $\beta^{0}=0 \Rightarrow$ convergence

k	1	2	3	4	5	6	7	8
$E(k)$	$2.5 \mathrm{e}-2$	$6.2 \mathrm{e}-3$	$1.5 \mathrm{e}-3$	$3.9 \mathrm{e}-4$	$9.6 \mathrm{e}-5$	$2.4 \mathrm{e}-5$	$6.0 \mathrm{e}-6$	$1.5 \mathrm{e}-6$
$K(k)$	0	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Volume of Fluid algorithms

Essential for fluid-structure interaction, bubble flows, multiphase flows, ... (inspired by Hesthaven 18', Zaleski 19')
Model equation is advection

$$
\partial_{t} \alpha+\mathbf{a} \cdot \nabla \alpha=\partial_{t} \alpha+\nabla \cdot(\mathbf{a} \alpha)=0, \quad \mathbf{a}=(1,1)
$$

Needs: a) maximum principle, b) conservative, c) super-efficient for

$$
\alpha_{0}(x)=\mathbf{I}_{\omega}(x) \text { an indicatrix function } \in B V
$$

Idea of VOF

Horizontal direction $\partial_{t} \alpha+\partial_{\star} \alpha=0$ with $a=1$
$-\Omega_{i j}=[(i-1) \Delta x, i \Delta x] \times[(j-1) \Delta x, j \Delta x]$

- Swept $:=[(1-\beta) \Delta x<x<\Delta x]$
$-\beta=a \frac{\Delta t}{\Delta x}$ the horizontal measure of the Swept region

$$
\alpha_{i j}=\frac{\left|\Omega_{i j} \bigcap \omega\right|}{\left|\Omega_{i j}\right|} \in[0,1], \quad \alpha_{*}=\frac{\mid \Omega_{00} \bigcap \text { Swept } \bigcap \omega \mid}{\mid \Omega_{00} \bigcap \text { Swept } \mid} \in[0,1]
$$

Consider $f^{\text {obj }}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ with $m=5^{2}+1$ and $n=1$

$$
f^{\mathrm{obj}}\left(\alpha_{1}, \ldots, \alpha_{25}, \beta\right)=\alpha_{*} .
$$

Advection of Zalezak profile

 FV/NN

[^1]
Conclusion

- Numerical methods for PDEs (FEM, FV, ...) offer a natural avenue to understand NNs
- A new functional equation explains that for univariate polynomials, NNs=fixed point iterations.
- Production of new very non linear numerical methods (FV so far).

[^0]: - D.-Ancellin, CRAS 2020, hal preprint https://hal.sorbonne-universite.fr/hal-02959678

[^1]: - D.+Jourdren : Machine Learning design of Volume of Fluid schemes for compressible flows, JCP 20'.

