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Abstract. The present paper concerns the derivation of numerical schemes

to approximate the weak solutions of the Ripa model, which is an extension of
the shallow-water model where a gradient of temperature is considered. Here,

the main motivation lies in the exact capture of the steady states involved in

the model. Because of the temperature gradient, the steady states at rest, of
prime importance from the physical point of view, turn out to be very non-

linear and their exact capture by a numerical scheme is very challenging. We
propose a relaxation technique to derive the required scheme. In fact, we ex-

hibit an approximate Riemann solver that satisfies all the needed properties

(robustness and well-balancing). We show three relaxation strategies to get a
suitable interpretation of this adopted approximate Riemann solver. The re-

sulting relaxation scheme is proved to be positive preserving, entropy satisfying

and to exactly capture the nonlinear steady states at rest. Several numerical
experiments illustrate the relevance of the method.

1. Introduction

The present work is devoted to simulate shallow-water flows where the temper-
ature fluctuations are of prime importance. To model such flows, we adopt the
Ripa model as introduced in [19, 37, 38] to investigate ocean currents. In one space
dimension, the Ripa model is governed by the following set of partial differential
equations:

∂th+ ∂xhu = 0,(1.1a)

∂thu+ ∂x

(
hu2 + gΘ

h2

2

)
= −gΘh∂xz,(1.1b)

∂thΘ + ∂xhΘu = 0,(1.1c)

where h(x, t) > 0 denotes the water height, u(x, t) ∈ R is the velocity and Θ(x, t) >
0 designates a potential temperature field. Here, g is the positive gravity constant
and z(x) stands for a given smooth topography function.

In fact this system improves the so-called shallow-water model by inserting
the horizontal temperature gradient. From now on, we emphasize that the usual
shallow-water model, with a gravity constant given by gΘ, is recovered as soon as
the potential temperature Θ is assumed to be constant.

Here we have imposed a positive water height instead of nonnegative. In this
work, we will stay far away from dry areas in order to focus on the difficulties coming
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from the steady state approximation. Actually, the resulting scheme we will obtain
easily extends to deal with dry regions by adopting some known techniques [7].

To shorten the notations, we rewrite the system (1.1) in the following condensed
form:

(1.2) ∂tw + ∂xf(w) = S(w),

with

w =

 h
hu
hΘ

 , f(w) =

 hu
hu2 + gΘh2/2

hΘu

 , S(w) =

 0
−gΘh∂xz

0

 ,

where the unknown state vector w is assumed to belong to the set of admissible
states given by

Ω = {w ∈ R; h > 0, u ∈ R, Θ > 0} .
When derivating numerical schemes to approximate the weak solutions of (1.1),

a particular attention is paid on the steady state solutions because of their physical
interest. As a consequence, an important property to be satisfied by the derived
numerical scheme is to accurately approximate such steady solutions. For the Ripa
model (1.1), the steady solutions are defined by the following set of partial differ-
ential equations:

(1.3)


∂xhu = 0,

∂x

(
hu2 + gΘ

h2

2

)
= −gΘh∂xz,

∂xhΘu = 0.

Providing the velocity does not vanish, we easily get the following steady states:
hu = const,

Θ = const,

u2

2
+ gΘ(h+ z) = const .

However, considering states at rest, i.e. u ≡ 0, the system (1.3) cannot be explicitly
solved, and thus the steady states at rest are now characterized as follows:

(1.4)


u = 0,

∂xΘ
h2

2
+ hΘ∂xz = 0.

The main discrepancy between the well-known shallow-water model and the
Ripa model lies in the definition of the steady states at rest. Indeed, the Ripa
model involves steady states at rest governed by an unsolvable PDE system (1.4).
Nonetheless, solutions of (1.4) can be reached by enforcing assumptions on h, Θ
and z. These specific steady states at rest are physically relevant and they are given
by:

(1.5)


u = 0,

Θ = const,

h+ z = const,

or


u = 0,

z = const,

h2Θ = const,

or


u = 0,

h = const,

z +
h

2
ln Θ = const .
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The aim to the present paper is to derive a finite volume numerical scheme able
to accurately approximate the weak solutions of (1.1) and the steady states at
rest given by (1.4), and to exactly capture the particular steady states defined by
(1.5). During the last decade, numerous well-balanced schemes have been designed
to accurately or exactly capture the lake at rest coming from the shallow-water
steady states. For instance, the reader is referred to [28, 1, 7, 35, 21, 40, 23, 24].
Since the structures of both the Ripa model and the shallow-water model are very
close, we can easily suppose that all these well-balanced schemes find extensions to
approximate the weak solutions of the Ripa model. Moreover, since the shallow-
water model is recovered provided a constant temperature Θ, it is clear that these
extensions would preserve exactly the lake at rest with constant Θ for the Ripa
model. However, there are no reason that such extensions would be able to exactly
restore the two other steady states of physical interest defined by (1.5).

Recently, Chertock et al. [17] have derived a central upwind scheme to approx-
imate the weak solutions of (1.1). Their scheme is based on an interface tracking
method as introduced in [16]. The numerical technique proposed in [17] turns out
to be very relevant since the obtained scheme is accurate, positive preserving and
it exactly captures both steady states at rest involving a constant temperature or
a constant topography (see (1.5)). However, the last lake at rest type steady state,
involving constant water height, is only approximated and can never be exactly
restored.

In order to derive relevant well-balanced numerical schemes exactly preserving
the steady states (1.5), we suggest to derive a Godunov-type Riemann solver [27].
After, for instance [7, 10, 12, 20, 3, 25, 11], the expected well-balanced property
can be reached as soon as the associated approximate Riemann solver contains, in
a sense to be prescribed, the topography source term.

Following ideas introduced in [7, 12] in order to derive approximate Riemann
solvers relevant for topography source terms, we adopt a Suliciu relaxation type
strategy [29, 18, 15, 14]. The resulting numerical scheme turns out to be positive
preserving, entropy satisfying and well-balanced with the exact capture of the three
lake at rest steady states (1.5).

The paper is organized as follows. For the sake of completeness, the next section
is devoted to the presentation of the algebraic properties satisfied by the system
(1.1). A particular attention will be paid on the Riemann invariants of the model
since they participate in the characterization of the steady states of interest. More-
over, we consider the entropy inequalities. We remark that the usual energy esti-
mate does not yield an entropy. To correct such a failure, we are obliged to recast
the model in an equivalent formulation to get the required entropy stability.

Next, to derive suitable numerical strategies satisfying the needed properties, we
suggest the derivation of relaxation schemes (for instance, see [29, 18, 15, 14, 5, 4,
34]). To address such an issue, we first need to develop relaxation models. Section 3
concerns the definition of the adopted relaxation model. Here, we decide to modify
the Suliciu relaxation model designed for the shallow-water equations [7], to enforce
a transport property to be satisfied by the relaxation model. Such a modification
makes easier the algebraic analysis of the model than the one coming from the
usual Suliciu model [7]. Unfortunately, the suggested modification makes the Rie-
mann problem under-resolved. To correct this failure, we enforce the well-balanced
property, in a sense to be prescribed, and thus we obtain the required Riemann
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solution of the suggested relaxation model. As a consequence, we get an approxi-
mate Riemann solver for the entropy reformulated Ripa model, which contains the
topography source terms. In fact, the enforcement of the well-balanced property
inside the Riemann solution can be reformulated as relaxation equations. Hence,
we give a full relaxation model, which admits a unique Riemann solution. In addi-
tion, we show that both relaxation approaches give the same approximate Riemann
solver for (1.1). We conclude this section by some comments concerning the Cargo-
LeRoux’s source term reformulation [11] for shallow-water with linear topography
function. Recently, extensions have been proposed by Chalons et al. [12] where a
Suliciu relaxation model is derived according to the Cargo-LeRoux shallow-water
reformulation. From now on, let us underline that the Cargo-LeRoux reformula-
tion cannot be applied here because of the nonlinear topography. However, we show
that a relaxation model can be developed in the spirit of the work by Chalons et
al. [12] and the resulting approximate Riemann solver for the Ripa model (1.1)
once again coincides to those derived below. Section 4 concerns the presentation
of the Godunov-type scheme associated to the above approximate Riemann solver.
In addition, we establish that the scheme is positive preserving, entropy satisfying
and well-balanced. In fact, the resulting numerical procedure exactly preserves the
steady states at rest given by (1.5). Finally, Section 5 is devoted to illustrate the
relevance of the suggested Godunov-type scheme and several numerical experiments
are performed. A short conclusion concludes the paper.

2. Basic properties of the Ripa model and entropic reformulation

For the sake of completeness of the present paper, we here give the basic algebraic
properties satisfied by the Ripa model (1.1). Since the topography function z does
not depend on the time, we have

∂tz = 0.

Then, we rewrite the system Ripa (1.1) in the following equivalent form:

(2.1)



∂th+ ∂xhu = 0,

∂thu+ ∂x

(
hu2 + gΘ

h2

2

)
= −gΘh∂xz,

∂thΘ + ∂xhΘu = 0,

∂tz = 0.

Involving the primitive state vector U = t(h, u,Θ, z), the system (2.1) writes in the
following quasi-linear form:

∂tU +A(U)∂xU = 0,

where we have set

A(U) =


h h 0 0
gΘ u gh/2 gΘ
0 0 u 0
0 0 0 0

 .

The eigenvalues of A(U) are

λ−(U) = u− c, λu(U) = u, λ0(U) = 0, λ+(U) = u+ c,
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where c =
√
gΘh denotes the sound speed. The associated eigenvectors are given

by

r−(U) =


h
−c
0
0

 , ru(U) =


h
0
−2Θ

0

 , r0(U) =


h
−u
0

u2

gΘ
− h

 , r+(U) =


h
c
0
0

 .

It is worth noticing that the eigenvectors define a basis of R4 provided that u 6= ±c.
As a consequence, the system under consideration is hyperbolic as long as u 6= ±c.
In the present work, we do not consider the resonant regime characterized by u =
±c. In the case of the shallow-water model, the reader is referred to [32] where the
resonant regime is studied. Up to our knowledge, resonant regimes for the Ripa
model (1.1) were not analyzed.

Next, the characteristic fields associated with λ+(U) and λ−(U) are genuinely
nonlinear, while the characteristic fields associated with λ0(U) and λu(U) are lin-
early degenerated (see [22, 39, 7, 30] for further details). Indeed, straightforward
calculations give

∇Uλ−(U) · r−(U) = −3

2
c, ∇Uλ+(U) · r+(U) =

3

2
c,

∇Uλu(U) · ru(U) = 0, ∇Uλ0(U) · r0(U) = 0.

We next exhibit the Riemann invariants. We denote by (I
(`)
− )`=1,2,3, (I

(`)
+ )`=1,2,3,

(I
(`)
u )`=1,2,3 and (I

(`)
0 )`=1,2,3 the Riemann invariants associated with λ−, λ+, λu and

λ0, respectively. The Riemann invariants being defined by (see [22, 39, 30]):

∇UI(`) · r = 0, ` = 1, 2, 3,

we easily obtain

I
(1)
± = u− (±c), I

(2)
± = Θ, I

(3)
± = z,

I(1)
u = h2Θ, I(2)

u = u, I(3)
u = z,

I
(1)
0 = hu, I

(2)
0 = Θ, I

(3)
0 = (h+ z) +

u2

2gΘ
.

Since the system (1.1) is hyperbolic, discontinuous solutions may occur in a finite
time. In order to rule out unphysical solutions, the system is endowed with entropy
inequalities.

Lemma 2.1. Let w be a smooth solution of (1.1). Then w satisfies the following
additional conservation law:

(2.2) ∂t (η(w) + gΘhz) + ∂x (G(w) + gΘhzu) = 0,

where we have set

η(w) = h
u2

2
+ gΘ

h2

2
,(2.3)

G(w) =

(
h
u2

2
+ gΘh2

)
u.(2.4)
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Proof. From the momentum equation (1.1b), we get the relation satisfied by the
kinetic energy as follows:

(2.5) ∂t
u2

2
+ u∂x

u2

2
+
u

h
∂xgΘ

h2

2
+ gΘu∂xz = 0.

Next, multiplying the water height equation (1.1a) by gΘ/2, and multiplying the
transport temperature equation (1.1c) by gh/2, we respectively get

Θ∂tg
h

2
+ Θu∂xg

h

2
+ gΘ

h

2
∂xu = 0,(2.6)

g
h

2
∂tΘ + g

h

2
u∂xΘ = 0.(2.7)

The sum of (2.5)-(2.6)-(2.7) easily gives

∂t

(
u2

2
+ gΘ

h

2

)
+ u∂x

(
u2

2
+ gΘ

h

2

)
+

1

h
∂xgΘ

h2

2
+ gΘu∂xz = 0.

Next, by combining the above relation with the water height equation (1.1a) mul-

tiplied by

(
u2

2
+ gΘ

h

2

)
, we directly obtain

(2.8) ∂t

(
h
u2

2
+ gΘ

h2

2

)
+ ∂x

(
h
u2

2
+ gΘh2

)
u+ ghΘu∂xz = 0.

Since we have ∂tz = 0, we deduce from (1.1c) the following relation:

(2.9) ∂tgΘhz + z∂xgΘhu = 0.

The required relation (2.2) comes from the sum of (2.8) and (2.9). The proof is
thus achieved. �

As a consequence of the above result, the pair

(η(w) + gΘhz,G(w) + gΘhzu)

stands for a good candidate to define an entropy pair. After [7], we get the required
entropy pair provided that the partial entropy function w 7→ η(w) is a convex
function.

Unfortunately, the function w 7→ η(w) is neither convex nor concave. In fact,
involving a suitable equivalent reformulation, the system (1.1) can be endowed with
a convex entropy. It is worth noticing that, because discontinuous solutions may
occur, nonlinear changes of variables do not preserve, in general, the weak solutions
of nonlinear hyperbolic systems. However, since the temperature Θ is governed by
a transport equation (1.1c), nonlinear reformulation of Θ can be performed. As a
consequence, the Ripa model (1.1) admits nonlinear equivalent reformulations as
now stated.

Lemma 2.2. Let ϕ : R→ R+ be a smooth invertible function. Let us set

(2.10) Θ = ϕ(θ),

then the weak solutions of (1.1) defines weak solutions of the following system:

∂th+ ∂xhu = 0,(2.11a)

∂thu+ ∂x

(
hu2 + gϕ(θ)

h2

2

)
= −gϕ(θ)h∂xz,(2.11b)

∂thθ + ∂xhθu = 0.(2.11c)
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Reversely, the weak solutions of (2.11) are also weak solutions of (1.1).

Proof. First, let us consider smooth solutions. Since Θ satisfies (1.1c), it also
satisfies the following transport equation

∂tΘ + u∂xΘ = 0.

By definition of θ, given by (2.10), we easily get

∂tθ + u∂xθ = 0,

and thus hθ satisfies the conservation law (2.11c). As a consequence, we have estab-
lished the equivalence between both systems (1.1) and (2.11) for smooth solutions.

Now, we turn considering weak solutions. In fact, the proof will be achieved as
soon as the equivalence is established for discontinuous solutions. Let us consider a
discontinuity connecting wL to wR and propagating with velocity σ. This discon-
tinuity is governed by the well-known Rankine-Hugoniot relations (see [39, 22, 33,
30]). Since the topography function is assumed to be smooth, it does not enter the
Rankine-Hugoniot relations and thus the triple (wL, wR, σ) satisfies

− σ(hR − hL) + (hRuR − hLuL) = 0,(2.12a)

− σ(hRuR − hLuL) +

(
hRu

2
R + gΘR

h2
R

2
− hLu2

L − gΘL
h2
L

2

)
= 0,(2.12b)

− σ(hRΘR − hLΘL) + (hRΘRuR − hLΘLuL) = 0.(2.12c)

From (2.12a), we have

hR(uR − σ) = hL(uL − σ) = M,

to rewrite (2.12b) and (2.12c) as follows:

M(uR − uL) + g

(
ΘR

h2
R

2
−ΘL

h2
L

2

)
= 0,

M(ΘR −ΘL) = 0.

Next, by involving the definition of θ given by (2.10), we have to recover the
Rankine-Hugoniot relations satisfied by (2.11):

− σ(hR − hL) + (hRuR − hLuL) = 0,(2.13a)

− σ(hRuR − hLuL) +

(
hRu

2
R + gϕ(θR)

h2
R

2
− hLu2

L − gϕ(θL)
h2
L

2

)
= 0,(2.13b)

− σ(hRθR − hLθL) + (hRθRuR − hLθLuL) = 0.(2.13c)

If M = 0, the equivalence between (2.12) and (2.13) is immediate. If M 6= 0, we
get ΘR = ΘL to write

ϕ(θR) = ϕ(θL).

Since ϕ is invertible, we obviously obtain θR = θL and the required equivalence is
established. �

To make concise the notations, let us introduce

w̃ =

 h
hu
hθ

 , f̃(w̃) =

 hu

hu2 + gϕ(θ)
h2

2
hθu

 , S̃(w̃) =

 0
−gϕ(θ)h∂xz

0

 ,
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so that the equivalent system (2.11) rewrites as follows:

(2.14) ∂tw̃ + ∂xf̃(w̃) = S̃(w̃),

where the state vector w̃ belongs to the phase space

(2.15) Ω̃ =
{
w̃ ∈ R3; h > 0

}
.

Equipped with this new formulation of the Ripa model, we are able to exhibit
the needed convex entropy.

Lemma 2.3. The smooth solutions of (2.11) satisfy the following additional con-
servation law:

∂t (η̃(w̃) + gϕ(θ)hz) + ∂x

(
G̃(w̃) + gϕ(θ)hzu

)
= 0,(2.16)

η̃(w̃) = h
u2

2
+ gϕ(θ)

h2

2
,(2.17)

G̃(w̃) =

(
h
u2

2
+ gϕ(θ)h2

)
u.(2.18)

Moreover, the partial entropy function w̃ 7→ η̃(w̃) is convex as soon as the function
ϕ : R→ R+ satisfies for all θ ∈ R:

(2.19)
ϕ′′(θ)ϕ(θ)− 1

2
ϕ′(θ)2 > 0,

ϕ(θ)− θϕ′(θ) +
θ2

2
ϕ′′(θ) > 0.

Proof. The additional law (2.16) satisfied by the smooth solutions of (2.11) is a
direct consequence of the equivalence between (1.1) and (2.11), and the additional
law (2.2) satisfied by the smooth solutions of (1.1). Next, the condition to enforce
the convexity of w̃ 7→ η̃(w̃) comes from a straightforward evaluation of the Hessian
matrix of η̃. �

From now on, let us emphasize that functions ϕ which satisfy the assumptions
(2.19) can be easily reached. For instance, we can select

ϕ(θ) = eθ .

To summarize this section, in order to exhibit entropy requirements, we have
introduced a reformulation of the Ripa model. This reformulation, given by (2.11),
is equivalent to the initial system (1.1) for the weak solutions. Moreover, the Ripa
reformulated model is endowed with an entropy pair.

3. Relaxation models

Our objective is to derive accurate numerical schemes to approximate the weak
solutions of the Ripa model (1.1). According to the results stated in the above
section, we now consider the entropic reformulated Ripa model (2.11).

Following the work by Harten, Lax and van Leer [26], we suggest to develop
finite volume methods based on a suitable approximate Riemann solver. The main
purpose of this section is to design an approximate Riemann solver by adopting
relaxation techniques.

We propose to approximate the weak solutions of the system (2.11) by the weak
solutions of a first-order system with singular perturbations, namely the relaxation
model. After the work by Chen et al. [15] (for instance, see also [29, 18, 14, 36, 2]),
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we introduce relaxation models which restore the initial system within the limit of
a relaxation parameter. Here, we present three relaxation strategies but they lead
to the same approximate Riemann solver.

3.1. An incomplete Suliciu-type model. Involving the work by Bouchut [7] (see
also [12, 13, 18, 2]) concerning the derivation of the Suliciu relaxation model for
shallow-water equations, we suggest to linearize the hydrostatic pressure gϕ(θ)h2/2.
To address such an issue, we approximate the hydrostatic pressure by a new un-
known π governed by the following PDE:

∂tπ + u∂xπ +
a2

h
∂xu =

1

ε

(
gϕ(θ)

h2

2
− π

)
.

The relaxation parameter a > 0 will be restricted according to robustness and
stability conditions detailed later on.

Now, unlike the original Suliciu model proposed in [7] for the shallow-water equa-
tions, we decide to approximate the topography. In general, the exact topography
equation,

∂tz = 0,

is considered within the relaxation model. But such a topography stationary equa-
tion may introduce some nonlinearities in the relaxation model which makes difficult
the resolution of the associated Riemann problem. As a consequence, we propose
to approximate the topography by a new unknown Z governed by a transport
relaxation equation as follows:

∂tZ + u∂xZ =
1

ε
(z − Z).

We will see that this approximation makes easy the algebra of the adopted relax-
ation model, but will result in a missing relation to solve the Riemann problem. In
fact, an additional relation, related to the steady states, will be considered to solve
the Riemann problem.

As suggested, we approximate the entropy weak solutions of (2.11) by the weak
solutions of the following relaxation model:

(3.1)



∂th+ ∂xhu = 0,

∂thu+ ∂x
(
hu2 + π

)
+ gϕ(θ)h∂xZ = 0,

∂thθ + ∂xhθu = 0,

∂thπ + ∂x(hπ + a2)u =
h

ε

(
gϕ(θ)

h2

2
− π

)
,

∂thZ + ∂xhZu =
h

ε
(z − Z).

It is worth noticing that, as soon as the relaxation parameter ε goes to zero, from
the equations governing (h, hu, hθ) in (3.1), we formally recover the initial model
(2.11).

For the sake of clarity in the notations, we set

(3.2) W = t(h, hu, hθ, hπ, hZ)

to designate the state vectors in the following phase space:

O =
{
W ∈ R5; h > 0

}
.
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In the limit of ε to zero, an equilibrium state is reached; namely for all w̃ ∈ Ω̃:

(3.3) W eq(w̃) = t

(
h, hu, hθ, hgϕ(θ)

h2

2
, hz

)
.

Concerning the algebra of the homogeneous system extracted from (3.1), with
clear notations denoted by (3.1)ε=∞, we have the following easy statement given
without proof (for instance, see [12, 2, 5]):

Lemma 3.1. Let a > 0 be given. The homogeneous system extracted from (3.1)
is hyperbolic for all W ∈ O. The eigenvalues of the system are λ± = u± a/h and
λu = u. The eigenvalue λu = u is of multiplicity three. All the fields are linearly
degenerated.

Now, we are interested in solving the Riemann problem associated to (3.1)ε=∞.
We thus consider an initial data made of two constant states separated by a dis-
continuity located at x = 0 as follows:

(3.4) W0(x) =

{
WL if x < 0,

WR if x > 0.

We note that, if the solution of the Riemann problem for (3.1)ε=∞exists, then it is
made of four constant states separated by three contact discontinuities. Hence, we
consider solutions in the form

(3.5) WR

(x
t

;WL,WR

)
=


WL if x/t < λ−,

W ?
L if λ− < x/t < λu,

W ?
R if λu < x/t < λ+,

WR if x/t > λ+.

Since a contact discontinuity is defined by the continuity of the Riemann invariants
associated with the characteristic field under consideration, we now exhibit the
Riemann invariants.

For the characteristic fields defined by λ±, we easily get the following Riemann
invariants:

(3.6) I±1 (W ) = u± a
h
, I±2 (W ) = π−(±au), I±3 (W ) = θ, I±4 (W ) = Z.

Concerning the characteristic field with eigenvalue λu = u, since the multiplicity is
three, we are waiting for two independent Riemann invariants.

Lemma 3.2. The characteristic field of (3.1)ε=∞defined by the eigenvalue λu = u
admits only one Riemann invariant given by

Iu1 (W ) = u.

Proof. First, since the derivation of the Riemann invariants is free from any changes
of variables, it is here convenient to rewrite (3.1)ε=∞in the following quasi-linear
form:

∂tV +B(V )∂xV = 0 with V = t(h, u, θ, π, Z),

where the matrix B(V ) finds an easy explicit form. After straightforward compu-
tations, the eigenspace associated with λu = u is defined by the following three
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eigenvectors:

ru1 (V ) =


1
0
0
0
0

 , ru2 (V ) =


0
0
1
0
0

 , ru3 (V ) =


0
0
0

−gϕ(θ)h
1

 .

By definition of the Riemann invariants, we look for functions Iu(V ) such that
∇V Iu(V ) · rui (V ) = 0 with i = 1, 2 and 3. We directly see that the function
V u1 (V ) = u is the only function that satisfies the Riemann invariant definition. �

As a consequence of the above result, it is not possible to solve the Riemann
problem associated with (3.1)ε=∞. Indeed, the intermediate states W ?

L and W ?
R are

solutions of the following system:

(3.7)

I−i (W ?
L) = I−i (WL), i = 1, 2, 3, 4,

I+
i (W ?

R) = I+
i (WR), i = 1, 2, 3, 4,

Iu1 (W ?
L)=I

u
1 (W ?

R),

and thus one relation is missing. To close the system (3.7), we arbitrarily impose
the following relation:

(3.8) π?R − π?L = −gϕ(θ̄(WL,WR))h̄(WL,WR)(Z?R − Z?L),

where the functions h̄ : O × O → R+ and θ̄ : O × O → R denote h-average and
θ-average functions, respectively. At this stage, we only assume that these two
functions satisfy the consistency property

hL = hR = h ⇒ h̄(WL,WR) = h and θL = θR = θ ⇒ θ̄(WL,WR) = θ

and the symmetry property

h̄(WR,WL) = h̄(WL,WR) and θ̄(WR,WL) = θ̄(WL,WR).

A precise definition of h̄ and θ̄ will be given later on in order to get the required
well-balanced property.

From now on, let us underline that the additional relation (3.8) has been fixed
according to the definition of the steady states at rest given by (1.4)-(2.10):

(3.9) u = 0 and ∂x

(
gϕ(θ)

h2

2

)
= −gϕ(θ)∂xz.

Indeed, since both relaxation unknowns π and Z will have the behavior of gϕ(θ)h2/2
and z, we notice that the identity (3.8) can be understood, in a sense to be pre-
scribed, as an approximation of (3.9).

We are now able to give the full characterization of the Riemann solution of
(3.1)ε=∞-(3.4) supplemented by the relation (3.8).

Lemma 3.3. The Riemann solution of the system (3.1)ε=∞-(3.4) completed by the
relation (3.8) is given by (3.5) where the intermediate states W ?

L and W ?
R are given
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by

θ?L = θL, θ?R = θR,(3.10a)

Z?L = ZL, Z?R = ZR,(3.10b)

u? = u?L = u?R

=
1

2
(uL + uR)− 1

2a
(πR − πL)

− g

2a
ϕ(θ̄(WL,WR))h̄(WL,WR)(ZR − ZL),

(3.10c)

π?L = πL + a(uL − u?), π?R = πR + a(u? − uR),(3.10d)

1

h?L
=

1

hL
+

1

a
(u? − uL),

1

h?R
=

1

hR
+

1

a
(uR − u?).(3.10e)

Proof. The intermediate states are solutions of the system (3.7)-(3.8). A straight-
forward calculation gives the expected result. �

In fact, when derivating the full discrete scheme, the main numerical properties
will be implied by the Riemann solution (3.5)-(3.10) with an initial data given
by (3.4) satisfying the equilibrium condition (3.3). For the sake of clarity in the
notations, we note

(3.11) w̃eq
(x
t

; w̃L, w̃R

)
= W

(h,hu,hθ)
R

(x
t

;W eq(w̃L),W eq(w̃R)
)
,

such a specific approximate solution. From now on, let us underline that w̃eq is
nothing but an approximate Riemann solver for (2.11).

Now, we establish the main properties satisfied by w̃eq. First, we prove the
robustness of this approach.

Lemma 3.4. Let w̃L and w̃R be two constant states in Ω̃, given by (2.15). Assume
that the relaxation parameter a is large enough to endure the following estimations:

(3.12) uL −
a

hL
< u? < uR +

a

hR
,

where u? is defined by (3.10c). Then w̃eq(x/t; w̃L, w̃R) belongs to Ω̃.

Proof. First, because of the definition of u? given by (3.10c), we immediately remark
that (3.12) is satisfied provided a is large enough.

Next, by definition of the Riemann invariants (3.6), we have

uL −
a

hL
= u∗ − a

h∗L
and uR +

a

hR
= u∗ +

a

h∗R
,

so that (3.12) rewrites −h∗L < 0 < h∗R. As a consequence, we obtain the positiveness
of the intermediate water heights and the proof is thus completed. �

Next, we exhibit a specific behavior of the approximate Riemann solver w̃eq, as
soon as w̃L and w̃R satisfy steady state at rest type conditions.

Lemma 3.5. (i) Let w̃L and w̃R be given in Ω̃ such that

uL = uR = 0,(3.13)

ϕ(θR)
h2
R

2
− ϕ(θL)

h2
L

2
+ ϕ(θ̄eq(w̃L, w̃R))h̄eq(w̃L, w̃R)(zr − zL) = 0,(3.14)
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where we have set

h̄eq(w̃L, w̃R) = h̄(W eq(w̃L),W eq(w̃R)),

θ̄eq(w̃L, w̃R) = θ̄(W eq(w̃L),W eq(w̃R)).

Then we get w̃eq at rest:

(3.15) w̃eq(x/t; w̃L, w̃R) =

{
w̃L if x < 0,

w̃R if x > 0.

(ii) Let w̃L and w̃R be in Ω̃ such that

uL = uR = 0,

θL = θR,

hL + zL = hR + zR.

In addition, assume

(3.16) h̄eq(w̃L, w̃R) =
1

2
(hL + hR).

Then we get w̃eq at rest given by (3.15).

(iii) Let w̃L and w̃R in Ω̃ such that

uL = uR = 0,

zL = zR,

ϕ(θL)h2
L = ϕ(θR)h2

R.

In addition, assume that h̄eq is given by (3.16). Then we get w̃eq at rest
given by (3.15).

(iv) Let w̃L and w̃R in Ω̃ such that

uL = uR = 0,

hL = hR,

zL +
hL
2

lnϕ(θL) = zR +
hR
2

lnϕ(θR).(3.17)

In addition, assume that θ̄eq is defined as follows:

(3.18) θ̄eq(w̃L, w̃R) =

ϕ−1

(
ϕ(θR)− ϕ(θL)

ln(ϕ(θR))− ln(ϕ(θL))

)
, if θL 6= θR,

θL if θL = θR.

Then we get w̃eq at rest given by (3.15).

Proof. To establish that w̃eq stays at rest, since uL = uR = 0 and because of the
definition of the intermediate states given by (3.10), it suffices to proof that u? = 0.
By involving equilibrium left and right non-moving states, u? is now defined by

u? = − g

2a

(
ϕ(θR)

h2
R

2
− ϕ(θL)

h2
L

2
+ ϕ(θ̄eq(w̃L, w̃R))h̄(w̃L, w̃R)(zR − zL)

)
.

The statement (i) immediately comes from (3.14).
Concerning the statement (ii), since θL = θR, we have θ̄(w̃L, w̃R) = θL = θR.

Then, we rewrite u? as follows:

u? = − g

2a
θR

(
(hR − hL)

hL + hR
2

+ h̄eq(w̃L, w̃R)(zR − zL)

)
,
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to deduce u? = 0 from (3.16) and hL + zL = hR + zR.
Next statement (iii) is obtained in a similar way.
To establish the last statement (iv), since hL = hR, we get h̄(w̃L, w̃R) = hL = hR.

Then u? now reads

u? = − g

2a
hR

(
hR
2

(ϕ(θR)− ϕ(θL)) + ϕ(θ̄eq(w̃L, w̃R))(zR − zL)

)
.

But from (3.17), we have

zR − zL = −hR
2

(ln(ϕ(θR))− ln(ϕ(θL))) .

Then we immediately deduce u? = 0 from the definition of the θ-average (3.18).
The proof is thus achieved. �

The derivation of an approximate Riemann solver based on an incomplete relax-
ation model may appear a bit cavalier. We now exhibit additional interpretation
of w̃eq coming from complete relaxation model.

3.2. A complete Suliciu relaxation model. We suggest to modify the relax-
ation model (3.1) in order to obtain a well-posed relaxation system. In fact, the
ill-posed failure of (3.1) comes from the topography source term gϕ(θ)h∂xz. As a
consequence, we propose to introduce new relaxation variables to enforce a stronger
linearization. We thus adopt the following equation to govern the relaxation mo-
mentum:

∂thu+ ∂x(hu2 + π) + gϕ(θ̄(X−, X+))h̄(X−, X+)∂xZ = 0,

where h̄ : O × O → R+ and θ̄ : O × O → R designate the average functions
introduced in (3.8). The new variables X± must represent WL and WR according
to (3.2). To address such an issue, we adopt the following law to govern X±:

∂tX
+ + (u+ δ)∂xX

+ =
1

ε
(W −X+),

∂tX
− + (u− δ)∂xX− =

1

ε
(W −X−),

where δ > 0 is a small parameter to be fixed later on.
We are now able to give the full relaxation model:

(3.19)



∂th+ ∂xhu = 0,

∂thu+ ∂x
(
hu2 + π

)
+ gϕ(θ̄(X−, X+))h̄(X−, X+)∂xZ = 0,

∂thθ + ∂xhθu = 0,

∂thπ + ∂x(hπ + a2)u =
h

ε

(
gϕ(θ)

h2

2
− π

)
,

∂thZ + ∂xhZu =
h

ε
(z − Z),

∂thX
+ + ∂xhX

+u+ δh∂xX
+ =

h

ε
(W −X+),

∂thX
− + ∂xhX

−u− δh∂xX− =
h

ε
(W −X−).

To simplify the notations, let us set

W = t(W,hX+, hX−).
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In order to exhibit the Riemann solution associated to the system (3.19), we
first give the algebra of the first-order system extracted from (3.19), that we note
(3.19)ε=∞.

Lemma 3.6. Let a > 0 be given. Then the homogeneous system (3.19)ε=∞is
hyperbolic for all W ∈ O×R5×R5. The eigenvalues of the system are λ± = u± a

h

(single), λu = u (triple) and λ±δ = u ± δ (multiplicity five). All the fields are
linearly degenerated.

To solve the Riemann problem made of (3.19)ε=∞with an initial data given by

(3.20) W0(x) =

{WL, if x < 0,

WR, if x > 0,

we need the Riemann invariants for each fields.
For the characteristic fields associated with the eigenvalues λ±, the Riemann

invariants are I±j , 1 ≤ j ≤ 4, defined by (3.6) completed by

I±5 = X−, I±6 = X+.

Concerning the Riemann invariants coming from the field with eigenvalue λu = u,
we have

Iu1 = u, Iu2 = X+, Iu3 = X−, Iu4 = π + gϕ(θ̄(X−, X+))h̄(X−, X+)Z.

Finally, the Riemann invariants associated to λ±δ are

I±δ1 = h, I±δ2 = u, I±δ3 = θ, I±δ4 = π, I±δ5 = Z, I±δ6 = X∓.

Lemma 3.7. Assume a > 0 large enough such that the order condition (3.12) is
satisfied. Moreover, assume δ > 0 small enough to satisfy

uL −
a

hL
< u? − δ < u? < u? + δ < uR +

a

hR
,

where u? is defined by (3.10c). Then the Riemann problem (3.19)ε=∞-(3.20) admits
a unique solution denoted by WR(x/t;WL,WR).

In addition, both Riemann solutions of (3.19)ε=∞-(3.20) and (3.1)ε=∞-(3.4) co-
incide in the following sense:

(3.21) W(h,hu,hθ,hπ,hZ)
R

(x
t

;WL,WR

)
= WR

(x
t

;WL,WR

)
,

provided we have

WL,R = t(WL,R, hL,RWL,R, hL,RWL,R).

As a consequence, we obtain the same approximate Riemann solver (3.11):

WL = t (W eq(w̃L), hLW
eq(w̃L), hLW

eq(w̃L)) ,

WR = t (W eq(w̃R), hRW
eq(w̃R), hRW

eq(w̃R)) ,

W(h,hu,hθ)
R

(x
t

;WL,WR

)
= w̃eq

(x
t

; w̃L, w̃R

)
.

Proof. Since (3.19)ε=∞is hyperbolic with only linearly degenerated fields, the Rie-
mann solution is made of six constant states separated by contact discontinuities.
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By involving the trivial Riemann invariants, we easily obtain a Riemann solution
in the following form:

WR
(x
t

;WL,WR

)
=



WL if
x

t
< λ−,

t(W ?
L, h

?
LWL, h

?
LWL) if λ− <

x

t
< λ−δ,

t(W ?
L, h

?
LWR, h

?
LWL) if λ−δ <

x

t
< λu,

t(W ?
R, h

?
RWR, h

?
RWL) if λu <

x

t
< λ+δ,

t(W ?
R, h

?
RWR, h

?
RWR) if λ+δ <

x

t
< λ−,

WR if
x

t
> λ+,

where W ?
L,R are defined according to (3.5). We here skip the details of computa-

tions, but the continuity of the Riemann invariants across each contact wave gives
a system made of (3.7) and (3.8) to solve the intermediate states W ?

L and W ?
R. As

a consequence, we exactly recover the same definition of W ?
L and W ?

R as stated
Lemma 3.3. The equivalence relation (3.21) is thus established and the proof is
completed. �

3.3. A Cargo-LeRoux’s formulation [11]. We now propose a last reformulation
of the approximate Riemann solver (3.11). It is based on an interpretation of the
source term introduced by Cargo and LeRoux [11] and recently revisited by Chalons
et al. [12]. In fact, the Cargo-LeRoux’s reformulation concerns linear topography
functions. Hence, such an approach is not directly available here since we deal with
general topography functions.

However, for the sake of simplicity in the forthcoming developments, let us mo-
mentarily assume

z(x) = x.

By introducing a potential function q(x, t) as follows:

(3.22) ∂xq = gϕ(θ)h,

it is possible to establish the following law satisfied by q:

(3.23) ∂thq + ∂xhqu = 0.

Then, by extension of the work by Cargo and LeRoux [11], the weak solutions of
the Ripa model (2.11) are solutions of the Ripa model with potential:

∂th+ ∂xhu = 0,

∂thu+ ∂x

(
hu2 + gϕ(θ)

h2

2

)
+ ∂xq = 0,

∂thθ + ∂xhθu = 0,

∂thq + ∂xhqu = 0.
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By adopting this equivalent formulation, Chalons et al. [12] have derived (for the
Euler with friction equations) a Suliciu relaxation model as follows:

(3.24)



∂th+ ∂xhu = 0,

∂thu+ ∂x
(
hu2 + π

)
+ ∂xq = 0,

∂thθ + ∂xhθu = 0,

∂thq + ∂xhqu = 0,

∂thπ + ∂x(hπ + a2)u =
h

ε

(
gϕ(θ)

h2

2
− π

)
.

Now, since the present work is devoted to the Ripa model with general topogra-
phy function, we have to consider a potential in the form:

∂xq = gϕ(θ)h∂xz.

Because of ∂xz 6= 1, the relation (3.23) is no longer satisfied by the potential
function q. Hence, the natural derivation of the Suliciu-type model (3.24) cannot
be performed. However, we suggest to consider the model (3.24) but for a suitable
relaxation of q. The relaxation model under consideration thus reads:

(3.25)



∂th+ ∂xhu = 0,

∂thu+ ∂x
(
hu2 + π

)
+ ∂xq = 0,

∂thθ + ∂xhθu = 0,

∂thπ + ∂x(hπ + a2)u =
1

ε

(
gϕ(θ)

h2

2
− π

)
,

∂thq + ∂xhqu =
h

ε

(∫ x

gϕ(θ)h∂xz dx− q
)
.

We set

W̃ = t(h, hu, hθ, hπ, hq),

in the open set

Õ =
{
W̃ ∈ R5; h > 0

}
.

It is worth noticing the very specific form of the equilibrium reached as soon as
ε goes to zero. Indeed, we get the following equilibrium state:

W̃eq = t

(
h, hu, hθ, h

∫ x

gϕ(θ)h∂xz dx, gϕ(θ)
h2

2

)
,

where the primitive function
∫ x

gϕ(θ)h∂xz dx will be approximated later on.
Once again, let us denote (3.25)ε=∞the homogeneous first-order system extracted

from (3.25). We now solve the Riemann problem with an initial data given by

(3.26) W̃0(x) =

{
W̃L if x < 0,

W̃R if x > 0.

Lemma 3.8. The system (3.25)ε=∞is hyperbolic. The eigenvalues are λ− = uL −
a/hL, λu = u? and λ+ = uR + a/hR, where u? is defined by

(3.27) u? =
1

2
(uL + uR)− 1

2a
(πR + qR − πL − qL).
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The eigenvalue λu = u? is of multiplicity three. Moreover, assume that the re-
laxation parameter satisfies (3.12). Then the Riemann problem (3.25)ε=∞-(3.26)
admits a unique solution

W̃R
(x
t

; W̃L, W̃R

)
=



W̃L if
x

t
< λ−,

W̃?
L if λ− <

x

t
< λu,

W̃?
R if λu <

x

t
< λ+,

W̃R if
x

t
> λ+,

where the intermediate states are given by the relations (3.10a), (3.10b), (3.10d),
(3.10e) and (3.27).

We skip the proof of this result which turns out to be fully similar to the estab-
lishment of Lemma 3.3 or Lemma 3.7. The reader is also referred to [2, 13, 5, 6, 8, 9].

Next, we remark that the Riemann solution solely involves the quantity qR− qL
where q is defined as a primitive function. To approximate the relaxation unknown
q, we adopt the following formula:

(3.28) qR − qL = gϕ(θ̄(WL,WR))h̄(WL,WR)(zR − zL),

where h̄ and θ̄ are average functions once again defined according to (3.8). As a
consequence of this approximation, we immediately recover the introduced approx-
imate Riemann solver

W̃(h,hu,hθ)
R

(x
t

; t(W eq(w̃L), hLqL), t(W eq(w̃R), hRqR)
)

= w̃eq
(x
t

; w̃L, w̃R

)
,

where qL and qR satisfy (3.28).

4. The relaxation scheme

We adopt w̃eq(x/t; w̃L, w̃R) as the approximate Riemann solver to derive the
relaxation numerical scheme to approximate the weak solutions of (2.11). To dis-
cretize space, we consider a uniform mesh made of cells (xi−1/2, xi+1/2) with a
constant size ∆x. Similarly, the time is discretized by considering constant step ∆t
so that tn+1 = tn + ∆t with n ∈ N. The time step will be restricted according to a
CFL condition to be defined.

At time tn , we assume known a piecewise constant approximation of the solution
of (2.11) given by

w̃n(x, tn) = w̃ni , x ∈ (xi−1/2, xi+1/2).

To evolve in time this approximation, we consider the juxtaposition of the approx-
imate Riemann solver at each interface xi+1/2:

w̃n(x, tn + t) = w̃eq
(x
t

; w̃ni , w̃
n
i+1

)
, x ∈ (xi, xi+1) t ∈ (0,∆t).

Moreover, the relaxation parameter a is fixed locally interface by interface. At
interface xi+1/2, where the approximate Riemann solver is considered to connect
w̃ni and w̃ni+1, the local relaxation parameter is denoted by ai+1/2 and it is fixed
according to the order condition (3.12).
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The time step ∆t > 0 is chosen small enough to avoid some interaction be-
tween the approximate Riemann solvers. As a consequence, we impose a CFL like
condition given by

(4.1)
∆t

∆x
max
i∈Z

(
uni −

ai+1/2

hni
, uni+1 +

ai+1/2

hni+1

)
≤ 1

2
.

Next, the updated state at time tn+1 is defined as the following average:

(4.2) w̃n+1
i =

1

∆x

∫ xi+1/2

xi−1/2

w̃n(x, tn + ∆t)dx.

After a straightforward computation (for instance, see [29, 5, 7, 8]), we obtain the
following explicit three-point scheme:

(4.3) w̃n+1
i = w̃ni −

∆t

∆x

(
f̃i+1/2 − f̃i−1/2

)
+

∆t

2

(
S̃i+1/2 + S̃i−1/2

)
,

where the numerical source term reads:

(4.4) S̃i+1/2 = t

(
0,−gϕ(θ̄(w̃ni , w̃

n
i+1))h̄(w̃ni , w̃

n
i+1)

zi+1 − zi
∆x

, 0

)
.

Concerning the numerical flux function f̃i+1/2 := f̃∆(w̃ni , zi, w̃
n
i+1, zi+1), we have

set

(4.5) f̃∆(w̃L, zL, w̃R, zR) =

t
(
hLuL, hLu

2
L + gϕ(θL)

h2
L

2
+ sLR, hLθLuL

)
if uL −

a

hL
> 0,

t
(
h?Lu

?, h?L(u?)2 + π?L + sLR, h
?
LθLu

?
)

if uL −
a

hL
< 0 < u?,

t
(
h?Ru

?, h?R(u?)2 + π?R − sLR, h?RθRu?
)

if u? < 0 < uR +
a

hR
,

t
(
hRuR, hRu

2
R + gϕ(θR)

h2
R

2
− sLR, hRθRuR

)
if uR +

a

hR
< 0,

where we have introduced

sLR = −g
2
ϕ(θ̄(wL, wR))h̄(wL, wR)(zR − zL)

and the intermediate states are defined according to (3.10).
Now, applying the main properties satisfied by the approximate Riemann solver

w̃eq, stated in Lemma 3.4 and Lemma 3.5, we prove the robustness and the well-
balanced properties satisfied by the scheme (4.3).

Theorem 4.1. For all i in Z, assume that the local relaxation parameter ai+1/2

satisfies

(4.6) uni −
ai+1/2

hni
< u?i+1/2 < uni+1 +

ai+1/2

hni+1

,

where u?i+1/2 is defined by (3.10c) with clear notations. Assume w̃ni belongs to Ω̃

for all i ∈ Z. Then, under the CFL condition (4.1), we get w̃n+1
i in Ω̃ for all i in

Z.
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Proof. In fact, we have just to prove that the updated water height hn+1
i stays pos-

itive. Because of the update formula (4.2), the positiveness requirement is obtained
as soon as the intermediate water heights, involved within the approximate Rie-
mann solver, are positive. Since we have imposed (4.6), Lemma 3.4 can be applied
and the proof is achieved. �

Concerning the well-balanced property, let us first establish the exact preserva-
tion of steady states given by (1.5)-(2.10).

Theorem 4.2. Assume the average functions h̄ and θ̄ are respectively given by
(3.16) and (3.18). Let us consider an initial data w̃0

i given by one of the steady
states at rest (1.5)-(2.10):

u0
i = 0,

θ0
i = θ,

h0
i + zi = H,

or


u0
i = 0,

zi = Z,

(h0
i )

2ϕ(θ0
i ) = P,

or


u0
i = 0,

h0
i = H,

zi +
h0
i

2
ln(ϕ(θ0

i )) = P,

where θ, H, Z and P denote constants. Then the updated state w̃n+1
i stays at rest:

w̃n+1
i = w̃ni , ∀i ∈ Z, n ∈ N.

Proof. Since h̄ and θ̄ are respectively defined by (3.16) and (3.18), we can apply
Lemma 3.5 at each interface. By adopting an immediate induction, let us assume
that, at time tn, w̃ni satisfies for all i ∈ Z one of the three following rest properties:

uni = 0,

θni = θ,

hni + zi = H,


uni = 0,

zi = Z,

(hni )2ϕ(θni ) = P,


uni = 0,

hni = H,

zi +
hni
2

ln(ϕ(θni )) = P.

The proof is established as soon as we show w̃n+1
i = w̃ni . From Lemma 3.5, we

deduce that each approximate Riemann solver stays at rest, given by (3.15). With
the updated state w̃n+1

i defined by (4.2), the proof is easily achieved. �

Theorem 4.2 states the preservation of particular steady states given by (1.5).
In fact, this result can be extended to more general steady states at rest accord-
ing to (1.4)-(2.10). Concerning such steady states, the main question is: What
approximation of (1.4)-(2.10) is preserved by the scheme?

Actually, suppose an initial data w̃0
i which approximate (1.4)-(2.10) as follows

for all i ∈ Z:

(4.7)
1

∆x

(
ϕ(θ0

i+1)
(h0
i+1)2

2
− ϕ(θ0

i )
(h0
i )

2

2

)
+ ϕ(θ̄(w̃0

i , w̃
0
i+1))h̄(w̃0

i , w̃
0
i+1)

1

∆x
(zi+1 − zi) = 0.

We easily see that (w̃0
i )i∈Z coincides with, at least, a first-order approximation of

the solution of (1.4). We now establish that initial data at rest such that (4.7) holds
true are exactly preserved by the scheme (4.3).

Theorem 4.3. At time t = 0, assume (w̃0
i )i∈Z satisfies u0

i = 0 and (4.7) for all i
in Z. Then, the approximate solution by (4.3) stays at rest:

w̃n+1
i = w̃ni , ∀i ∈ Z, n ∈ N.



WELL-BALANCED SCHEMES FOR THE RIPA MODEL 21

Proof. At each interface, the initial data satisfies (3.13)-(3.14) and Lemma 3.5 can
be applied. As a consequence, at each interface the approximate Riemann solver
stays at rest. Since the updated state w̃1

i , at time t = ∆t, is defined by (4.2), we
immediately deduce the equality

w̃1
i = w̃0

i ∀i ∈ Z.

Arguing an induction procedure, the proof is then completed. �

For the sake of completeness, we conclude this section by proving that the derived
numerical scheme (4.3) is entropy preserving. From now on, let us mention that
the result stated below is probably not optimal and the conditions to obtain the
required stability must be improved. However, the entropy statement which is now
established emphasize the relevance of the derived numerical scheme.

In order to shorten the notations, we introduce

η(w̃, z) = η̃(w̃) + gϕ(θ)hz,(4.8)

G(w̃, z) = G̃(w̃) + gϕ(θ)hzu,(4.9)

where the partial entropy η̃ and the partial entropy flux G̃ are defined by (2.17) and
(2.18), respectively. Here, we directly apply the entropy stability condition given
by Harten, Lax and van Leer [27]. We begin by giving a local entropy estimation
satisfied by the Riemann solver w̃eq in case the left and right velocities are different.

Lemma 4.4. Assume the left and right velocities satisfy uL 6= uR. Then we can
choose the relaxation parameter a large enough so that the following estimation
holds:

(4.10)
1

∆x

∫ ∆x/2

−∆x/2

η
(
w̃eq

( x

∆t
; w̃L, w̃R

))
dx− η(w̃L) + η(w̃R)

2

+
∆t

∆x

(
G(w̃R)−G(w̃L)

)
≤ 0.

Proof. A straightforward first-order expansion of the left-hand side of (4.10) with
respect to a leads to

1

∆x

∫ ∆x/2

−∆x/2

η
(
w̃eq

( x

∆t
; w̃L, w̃R

))
dx− η(w̃L) + η(w̃R)

2

+
∆t

∆x

(
G(w̃R)−G(w̃L)

)
= −a∆t

∆x

(uR − uL)2

4
+O(1).

Since uL 6= uR, we can easily find a large enough such that (4.10) holds. �

Let us notice that (4.10) is exactly the entropy consistency relation introduced
in [27], which is sufficient to ensure the required entropy stability of the scheme.
Unfortunately, Lemma 4.4 does not hold true as soon as the velocities uL and uR
are equal. In this case we can only obtain the following weaker result.

Lemma 4.5. Assume the left and right velocities satisfy uL = uR. Then we can
choose the relaxation parameter a large enough so that the following estimation
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holds:

(4.11)
1

∆x

∫ ∆x/2

−∆x/2

η
(
w̃eq

( x

∆t
; w̃L, w̃R

))
dx− η(w̃L) + η(w̃R)

2

+
∆t

∆x

(
G(w̃R)−G(w̃L)

)
≤ O(zR − zL).

Proof. Let us compute the expansion of the left-hand side of (4.11) with respect to
zR − zL to get

1

∆x

∫ ∆x/2

−∆x/2

η
(
w̃eq

( x

∆t
; w̃L, w̃R

))
dx− η(w̃L) + η(w̃R)

2
+

∆t

∆x

(
G(w̃R)−G(w̃L)

)
= − 1

4a
(pR − pL)2 +

∞∑
k=2

(pR − pL)k

2ka2k−1

(
pLh

k−1
L + (−1)kpRh

k−1
R

)
+O(zR − zL).

We can obviously find a such that the constant term will be nonpositive and the
result is proven. �

In order to prove that a converged solution is entropy satisfying, the well-known
Lax-Wendroff theorem (see [31, 22, 33]) usually requires the scheme to satisfy a dis-
crete entropy inequality like (4.10). However, we can easily check that the following
weaker inequality is actually sufficient to apply the Lax-Wendroff theorem:

(4.12)
1

∆x

∫ ∆x/2

−∆x/2

η
(
w̃eq

( x

∆t
; w̃L, w̃R

))
dx− η(w̃L) + η(w̃R)

2

+
∆t

∆x

(
G(w̃R)−G(w̃L)

)
≤ O(∆x1+ε),

where ε is a positive number. As a consequence, we immediately deduce from
Lemmas 4.4 and 4.5 the following stability result.

Theorem 4.6. Assume there exists a positive number ε such that the topography
function z is Hölder continuous with exponent 1 + ε:

(4.13) ∃C > 0 such that |z(y)− z(x)| ≤ C|y − x|1+ε, ∀x, y ∈ R.

Then the scheme (4.3) is entropy preserving in the sense of the Lax-Wendroff the-
orem: If the approximations given by the scheme (4.3) are uniformly bounded and
converge in L1,loc to a function w, then w satisfies the entropy inequality (2.16).

Classically, the topography function is only required to be continuous, which
corresponds to 1-Hölder continuity. Here we need a little more regularity, which is
unusual. But as stated before this condition can certainly be improved.

5. Numerical experiments

We now turn illustrating the relevance of the derived numerical scheme (4.3)-
(4.4)-(4.5). First, we present three experiments introduced in [17]: a dam-break
over a flat bottom, a dam-break over a non-flat bottom and a perturbation of a
lake at rest solution. In order to underline the fact that the relaxation scheme
(4.3) is able to preserve more complex steady states, we conclude by studying a
perturbation of a nonlinear steady state. In all the numerical experiments, the
gravity constant is fixed at g = 1.
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5.1. Dam break over a flat bottom. We consider a dam break problem over a
flat topography (z ≡ 0) with the following initial condition:

(h, u,Θ)(x, 0) =

{
(5, 0, 3) if x < 0,

(1, 0, 5) if x > 0.

Figure 1. Dam break problem over a flat bottom. Results in
height h (top left), temperature Θ (top right) and pressure p (bot-
tom) at time t = 0.2. Solid line: reference solution.

We use 200 cells to discretize the computational domain [−1, 1]. On Figure 1, we
show the solution obtained at time t = 0.2 for the water height h, the temperature
Θ and the pressure p = gΘh2/2. The results are compared to a reference solution
computed with 20.000 cells.

The general shape of the solution is well captured, although there is quite a lot
of diffusion, which is expected for a first-order scheme.

5.2. Dam break over a non-flat bottom. We focus again on a dam break
problem, but this time with a non-constant topography term, given by (see top left
of Figure 2)

z(x) =


2(cos(10π(x+ 0.3)) + 1) if − 0.4 ≤ x ≤ 0.2,

0.5(cos(10π(x− 0.3)) + 1) if 0.2 ≤ x ≤ 0.4,

0 otherwise.
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We use the following initial data:

(h, u,Θ)(x, 0) =

{
(5− z(x), 0, 1) if x < 0,

(1− z(x), 0, 5) if x > 0.

The solution is computed over the computational domain [−1, 1] with 200 cells.
On Figure 2, we display the results at time t = 0.2 for the free surface h + z, the
temperature Θ and the pressure p = gΘh2/2. We also present a reference solution
computed with 20.000 cells.

First, let us notice that initially the area near x = 0.3 is almost dry. As expected,
the relaxation scheme preserves the positivity of the water height h. The results
show that the scheme behave well in presence of a topography term. Although
the solution is not very accurate in the vicinity of the discontinuities due to the
numerical viscosity of the scheme, the shape of the solution is in good agreement
with [17].

Figure 2. Dam break problem over a non-flat bottom. Results in
free surface h+z (top left), temperature Θ (top right) and pressure
p (bottom) at time t = 0.2. Solid line: reference solution.

5.3. Perturbation of a lake at rest solution. We consider here a topography
with two isolated bumps:

z(x) =


0.85(cos(10π(x+ 0.9)) + 1) if − 1 ≤ x ≤ −0.8,

1.25(cos(10π(x− 0.4)) + 1) if 0.3 ≤ x ≤ 0.5,

0 otherwise.
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We can easily check that the solution

(hs, us,Θs)(x) =

{
(6− z(x), 0, 4) if x < 0,

(4− z(x), 0, 9) if x > 0

is a non-moving steady state, made of two lakes at rest connected by a stationary
contact discontinuity. Of course, after Theorem 4.2, the relaxation scheme exactly
preserves this solution. As a consequence there is not much interest to simulate
this solution. Instead, we investigate the behaviour of a perturbation of this steady
state by considering the initial data

(h, u,Θ)(x, 0) = (hs, us,Θs)(x) + (0.1, 0, 0)χ[−1.5,−1.4](x),

where χ[−1.5,−1.4] is the indicator function of the set [−1.5,−1.4]. This perturbation
split into two waves moving in opposite directions. The one propagating towards
the right successively crosses the first bump, the stationary contact discontinuity
and the second bump.

The computational domain [−2, 2] is discretized using 100 cells. The results in
free surface h+z and in pressure p = gΘh2/2 at time t = 0.1 are shown in Figure 3.
First, we notice that the relaxation scheme captures perfectly the stationary contact
discontinuity despite the perturbation. All numerical schemes are not able to do
this (see [17]). Moreover the scheme does not create spurious oscillations near the
bumps. Additionally the size of the waves created by the perturbation decrease
with time. This shows the stability of the relaxation scheme with respect to the
lake at rest solutions.

Figure 3. Perturbation of a lake at rest solution. Results in free
surface h + z (left) and pressure p (right) at time t = 0.1. Solid
line: steady state solution, without the perturbation.

5.4. Perturbation of a nonlinear steady state. We are now interested in a
more complex steady state than the lake at rest described before. On the compu-
tational domain [−1, 1], we consider a topography given by

z(x) = 6− 2 exp(x).

We can easily check that the solution

(hs, us,Θs)(x) = (exp(x), 0, exp(2x))
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is a steady state at rest. We introduce a perturbation by defining the initial data
as follows:

(h, u,Θ)(x, 0) = (hs, us,Θs)(x) + (0.1, 0, 0)χ[−0.1,0](x).

Figure 4 shows the evolution of the perturbation in water height h − hs and in
velocity u−us. The results are computed at time t = 0.2 and t = 0.4 using 200 cells.
We can see the initial perturbation splitting into two waves propagating in oppo-
site directions. Once again, there is no spurious oscillations and the perturbation
decreases with time. This result underlines the importance of the well-balancing
property satisfied by the relaxation scheme (4.3).

Figure 4. Perturbation of a nonlinear steady state. Results in
perturbation of the free surface h − hs (left) and perturbation of
the velocity u− us (right). Solid line: initial perturbation.

6. Conclusion

In this work, we have derived a numerical scheme to approximate the weak so-
lutions of the Ripa model, which is an extension of the well-known shallow-water
model but with a gradient of temperature. Exhibiting the basic algebraic proper-
ties, we have show that the initial formulation of the model does not satisfy the
required entropy estimations. In fact, involving a suitable change of variables, the
entropy inequalities can be restored. Moreover, the considered change of variables
is admissible and it preserves the weak solutions of the Ripa model. Based on this
new interpretation of the set of partial differential equations under consideration,
we have designed a numerical scheme able to accurately/exactly evaluate the steady
states. Indeed, the Ripa model comes with very specific steady states governed by a
non-solvable partial differential equation. Enforcing additional conditions to be sat-
isfied by the steady states (constant free surface for instance), some explicit classes
of steady states have been exhibited. One of the objective is to get a numerical
scheme able to exactly capture these classes of lake at rest type. To address such an
issue, we have considered a Suliciu relaxation-type model. In order to simplify the
algebra coming with such a relaxation model, we have imposed a transport property
to be satisfied by the topography. This model modification makes the associated
Riemann problem under-resolved and a closure law must be added. This additional
closure law is fixed according to the required steady states. In order to give more
convenient interpretation of this Suliciu relaxation model supplemented by a closure
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law, we have proposed two interpretations of the relaxation model. The first one
exactly enters the Suliciu formalism but for a more complex model in order to take
into account the additional closure law. The second one coincides with a relaxation
model derived in the framework of the Cargo-LeRoux’s source term reformulation.
Of course, the three presented models lead to the same approximate Riemann solver
next considered to develop the numerical scheme. Nonetheless, from our point of
view, the approach based on an under-resolved relaxation model supplemented by
a closure law may offer more opportunities. Indeed, we have here decided to fix the
closure law according to the needed steady states preservation. But, other closure
law derivation can be argued to get distinct properties than well-balancing. Finally,
from the relaxation approximate Riemann solver, we derive a fully discrete numeri-
cal scheme. This method is proved to be positive preserving, entropy satisfying and
well-balanced. More precisely, we prove that the three classes of steady states are
exactly preserved. Several numerical tests are performed to attest the relevance of
the derived numerical scheme.

The relaxation framework developed here in the case of the Ripa model can be
extended to other systems with source terms. In particular the derivation of well-
balanced relaxation schemes for the Euler equations with gravitational effects will
be the purpose of a forthcoming sequel to this paper.
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