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Abstract. We consider the Euler equations with gravitational source term and propose a new

well-balanced unstaggered central finite volume scheme, which can preserve the hydrostatic
balance state exactly. The proposed scheme evolves a non-oscillatory numerical solution on a

single grid, avoids the time consuming process of solving Riemann problems arising at the cell

interfaces, and is second-order accurate both in time and space. Furthermore, the numerical
scheme follows a well balanced discretization that first discretizes the gravitational source term

according to the discretization of the flux terms, and then mimics the surface gradient method

and discretizes the density and energy according to the discretization of steady state density
and energy functions, respectively. Finally, several numerical experiments demonstrating the

performance of the well-balanced schemes in both one and two spatial dimensions are presented.

The results indicate that the new scheme is accurate, simple, and robust.

1. Introduction

1.1. The model. Many interesting physical phenomena are modeled by the Euler equations with
gravitational source terms. These equations express the conservation of mass, momentum and
energy, which take the form in two dimensions

(1.1)


ρt + (ρu)x + (ρv)y = 0,

(ρu)t +
(
ρu2 + p

)
x

+ (ρuv)y = −ρφx,
(ρv)t + (ρuv)x +

(
ρv2 + p

)
y

= −ρφy,
Et + ((E + p)u)x + ((E + p)v)y = −ρuφx − ρvφy.

Here, ρ denotes the fluid density, (u, v) is the velocity field, p represents the pressure, and E =
1
2ρ(u2 + v2) + p/(γ − 1) is the non-gravitational energy which includes the kinetic and internal
energy of the fluid. Furthermore, γ is the ratio of specific heats and φ = φ(x, y) is the time
independent gravitational potential. When the variation of the unknowns in the y-direction are
negligible, one may find the one-dimensional version of (1.1) by setting v and all the derivatives
in the y-direction to zero, thus obtaining the system

(1.2)


ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p

)
x

= −ρφx,
Et + ((E + p)u)x = −ρuφx.

Equation (1.2) has been used to study the atmospheric phenomena that are essential in numer-
ical weather prediction[2], and in climate modeling as well as in a wide variety of contexts in
astrophysics such as modeling solar climate or simulating supernova explosions[11, 7].

The Euler equation with gravitation (1.1) amounts to a system of balance laws,

(1.3) Ut + F(U)x + G(U)y = −S(U),
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where

U =


ρ
ρu
ρv
E

 , F =


ρu

ρu2 + p
ρuv

(E + p)u

 , G =


ρv
ρuv

ρv2 + p
(E + p)v

 , and S =


0
ρφx
ρφy

ρuφx + ρvφy

 .

Here U denotes the vector of unknowns, F and G are the flux vectors, and S is the source vector.
The special case of S = 0 reads

(1.4) Ut + F(U)x + G(U)y = 0,

which is termed a system of conservation law.
It is well-known that solutions of conservation law (1.4), and likewise, solutions of the balance

law (1.3), can develop shock discontinuities in a finite time, independent of whether the initial
data is smooth or not. Hence the solutions of balance laws (1.3) are considered in the weak sense
and are well-defined as long as source S remains uniformly bounded. Furthermore, these weak
solutions may not be unique. Additional admissibility criteria or entropy conditions need to be
imposed in order to select the physically relevant solution.

1.2. Steady States. An important issue which arises in connection with balance laws such as
the Euler equation with gravitation (1.2) is the simulation of their steady states. A steady state
for (1.2) is a solution that is constant in time, in which the source term is exactly balanced by the
flux gradient. The importance of near steady state flows occurs in astrophysics, in particular in
the simulation of core-collapse supernova explosions, where the nascent neutron star slowly settles
to an equilibrium albeit the explosion, taking place in a highly dynamic environment just above
the nascent neutron star, does not set in for another few hundreds of ms [7]. Here, the interest is
in accurate long term simulations of near stationary states.

For the static gravitational potential φ(x), we are interested in preserving the following station-
ary solution for (1.2): The velocity is zero, i.e. u = 0 and the pressure exactly balance gravitational
force

(1.5) px = −ρφx
The above steady state models the so-called mechanical equilibrium and is incomplete to some ex-
tent as the density and pressure stratifications are not uniquely specified. Another thermodynamic
is needed (e.g. entropy or temperature) to uniquely determine the equilibrium. Two important
classes of stable hydrostatic equilibria are given by constant entropy, i.e. isentropic, and constant
temperature, i.e. isothermal, respectively. As a concrete example, we will concentrate on the
isothermal case [17].

In what follows, we consider a special steady state solution to (1.2)

(1.6) ρ = ρ(x), u = 0, px = −ρφx,

with a constant temperature and zero velocity. For an ideal gas, we have the relation

(1.7) p = ρRT,

where R is the gas constant, and T is the temperature. Substituting (1.7) in the steady state
equation px = −ρφx yields

(1.8) ρ(x) = ρ0 exp

(
− φ

RT

)
,

which essentially leads to the special steady state

(1.9) ρ(x) = ρ0 exp

(
− φ

RT

)
, u = 0, p = ρRT = RTρ0 exp

(
− φ

RT

)
.

The simplest and most commonly encountered case in literature is the linear gravitational potential
field, i.e. dφ/dx = g, with the corresponding hydrostatic balance

(1.10) ρ(x) = ρ0 exp

(
−gρ0x

p0

)
, u = 0, p = ρRT = p0 exp

(
−gρ0x

p0

)
.
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The importance of steady states such as the above equilibrium (1.10) lies in the fact that in many
situations of interest, the dynamics is realized as a perturbation of the steady states. As examples,
consider the simulation of small perturbations on a gravitationally stratified atmosphere such as
those arising in numerical weather prediction [2] and the simulation of waves in steller atmospheres
[11, 6].

1.3. Well-Balanced Schemes. A challenge in the numerical analysis of balance laws is to main-
tain these steady states, and to compute their perturbations accurately. Indeed, if a scheme
cannot balance the effects of convective fluxes and source term, it may introduce spurious oscil-
lations near equilibria, unless the mesh size is extremely refined. Many astrophysical problems
involve the hydrodynamical evolution in a gravitational field, therefore it is essential to correctly
capture the effect of gravitational force in the simulations, especially if a long-time integration is
involved, for example in modeling star and galaxy formulation. Standard numerical schemes with
naive discretizations of the source term might not preserve the steady state. This implies that the
scheme does not keep a discrete form of (1.10) stationary in time. The error can be at least of
the order of truncation error for each time step and can lead to large deviations from the steady
state for long time scales. Furthermore, computing small perturbations of (1.10) is not possible
due to lack of balancing. A numerical scheme which preserves a discrete version of a steady state
like (1.10) is termed well-balanced with respect to the steady state. Well-balanced schemes are
essential for computing perturbations of steady states.

Well balanced schemes for system of balance laws (1.3) are still undergoing extensive develop-
ment. In fact, the pioneering paper of LeVeque[12] was one of the first to propose a well-balanced
scheme for the shallow water equations with bottom topography. Then a variety of well balanced
schemes have been designed to approximate the ocean at rest steady state that arises in the shal-
low water equations with non-trivial bottom topography. A very limited list of references includes
[11, 1, 3, 9, 10, 15] and other references therein. Furthermore, LeVeque and Bale[13] proposed the
quasi-steady wave propagation methods for an ideal gas object to a static gravitational field. A
Riemann problem is introduced in the center of each grid cell such that the flux difference exactly
cancels the source term. A different strategy for the construction of well-balanced discretizations
with respect to dominant hydrostatics has been proposed by Botta et al.[2] for the nearly hydro-
static flows belonging to a certain class of solutions. Well-balanced scheme that preserve a discrete
version of some hydrostatic steady states of (1.2) has been presented in [6, 11, 13, 17].

The key principle underlying the design of most of the aforementioned well-balanced schemes
consisted of replacing the piecewise constant cell averages, used to inputs to finite volume schemes,
with values constructed from a local discrete hydrostatic equilibrium. This results in a first-order
scheme. The design of a second-order scheme requires using a well-balanced piece-wise linear recon-
struction with respect of the local discrete hydrostatic equilibrium. Recently, in [8], well-balanced
high-order finite volume schemes were designed which preserve discrete equilibria, corresponding
to a large class of physically stable hydrostatic steady states.

Finally, we mention the paper by Desveaux et al. [5]. They developed an approximate Riemann
solver using the formalism of Harten, Lax and van Leer, which takes into account the source term.
The well-balanced solver is based on a finite volume method, where the source term is somehow
incorporated into the Riemann solver. The resulting numerical scheme was proven to be robust,
to preserve exactly the hydrostatic atmosphere and to preserve an approximation of all the other
steady state solutions.

1.4. Aim of this paper. We aim to develop a new unstaggered central scheme which is a unstag-
gered adaptation of the Nessyahu and Tadmor [14] scheme. Briefly, this new method is based on a
careful projection of the numerical solution obtained on the staggered cells, back onto the original
cells. In this paper we construct, analyze and implement a new unstaggered, well-balanced, non-
oscillatory, and second order accurate central scheme for the one and two-dimensional systems
of Euler equations with gravitation. Two main features characterize the proposed well-balanced
schemes: first a special discretization of the source term according to the discretization of the
flux divergence, and second, a proper projection of the numerical solution obtained on the dual
cells, back onto the original cells. The latter step is performed according to the surface gradient
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method discussed in [18, 4]. Note that in contrast to conventional data recontruction methods
based on conservative variables, the steady state conservative variables are chosen as the basis for
data reconstruction.

The main advantages of the proposed schemes are

(a) It is a second-order accurate approximation of the one and two dimensional syatems (1.2)
and (1.1).

(b) It avoids the time consuming process of solving the Riemann problems arising at the cell
interfaces.

(c) It is well-balanced; exactly maintains the steady state requirement at the discrete level.

The proposed well-balanced scheme is successfully applied and classical Euler equations with
gravitation problems are solved, both in one and two-space dimensions. The steady state re-
quirement is exactly satisfied at the discrete level and the obtained numerical results are in good
agreement with corresponding ones appearing in the recent literature, thus confirming the poten-
tial of the proposed method.

The rest of the paper organized as follows: The well-balanced, unstaggered, finite volume one
dimensional scheme is presented in Section 2, and two dimensional scheme is presented in Section
3. Numerical results are presented in Section 4 and finally a brief summary of this paper is
presented in Section 5.

2. Schemes for one-dimensional Euler equations with gravitation

In this section we develop a second-order accurate central unstaggered well-balanced finite
volume method for the Euler with gravity systems that preserves the steady state requirement of
type (1.9) in the case of a linear gravitational field (1.10):

(2.1) ρ = exp (−gx), u = 0, p = exp (−gx).

Remark 2.1. Note that, in general, the steady state requirement (1.10) can be recast as follows:
For any α, β > 0,

ρ = α exp (−βgx), u = 0, p =
α

β
exp (−βgx).

In this presentation we have chosen to work with α = β = 1 to avoid unnecessary redundancy.

We first rewrite the source term following the approach proposed in [17] and reformulate the
Euler with gravity system (1.2) as follows

(2.2)

{
ut + f(u)x = S(u), x ∈ Ω, t > 0,

u(x, 0) = u0(x),

where Ω ⊂ R is a bounded spatial domain, and

u =

 ρ
ρu
E

 , f(u) =

 ρu(
ρu2 + p

)
(E + p)u

 , andS(u) =

 0
ρ exp(gx) (exp(−gx))x
ρu exp(gx) (exp(−gx))x

 .

Here we have replaced the gravitational source term −ρg by ρ exp(gx) (exp(−gx))x, and also the
term −ρug is treated in a similar fashion. The main advantage of such a change is to let the source
term and the corresponding flux term enjoy similar form in case of a steady state solution.

2.1. The grid and notation. We start by introducing some notation needed to define the fully-
discrete finite volume schemes. Throughout this paper we reserve ∆x and ∆t to denote small
positive numbers that represent the spatial and temporal discretization parameters, respectively,
of the numerical schemes. Given ∆x,∆t > 0, let D±, D0 denote the discrete forward, backward
and central differences, respectively, in spatial direction, i.e.,

D±g(x) = ± 1

∆x
(g(x±∆x)− g(x)) ,

D0g(x) =
1

2
(D+g(x) +D−g(x)) ,
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for any function g : R → R admitting point values. For i ∈ Z, we set xi = i∆x and for
n = 1, · · · , N , where N∆t = T for some fixed time horizon T > 0, we set tn = n∆t.

For any function g = g(x) admitting point values we write gi = g(xi), and similarly for any
function h = h(x, t) admitting point values we write hni = h(xi, t

n). Moreover, we introduce the
spatial and temporal grid cells

Ci = [xi+1/2, xi+1/2], Di+1/2 = [xi, xi+1], and Rn
i+1/2 = Di+1/2 × [tn, tn+1],

where xi±1/2 = xi ±∆x/2 with ∆x = xi+1/2 − xi−1/2 = xi+1 − xi.
Furthermore we introduce the jump, and respectively, the average of any grid function ρ across

the interfaces xi+ 1
2

and xi

ρi+ 1
2

:=
ρi + ρi+1

2
, ρi :=

ρi+ 1
2

+ ρi− 1
2

2
, JρKi+ 1

2
:= ρi+1 − ρi, JρKi := ρi+ 1

2
− ρi− 1

2
.

Finally, we shall slightly abuse the notation to denote the following:

JρKsi := ρsi+ 1
2
− ρsi− 1

2
, J(ρs)′Ki :=

(
ρsi+ 1

2

)′
−
(
ρsi− 1

2

)′
.

2.2. One-dimensional scheme. To this end, we construct a unstaggered central scheme which
preserves the steady state requirement (2.1). This method we develop computes the numerical
solution on a single grid but uses “ghost” staggered cells to avoid the resolution of the Riemann
problems at the cell interfaces when updating the numerical solution. Piecewise linear reconstruc-
tions of the numerical solution defined at the center of the ghost cells send back the updated
solution to the original grid.

In what follows, without any loss of generality, we assume that the numerical solution un
i to

system (2.2) is known at time tn at the centers xi of the control cells Ci. To construct the numerical
solution un+1

i at time tn+1 = tn + ∆t on the control cells Ci, we shall follow a standard finite
volumes procedure; we first define the piecewise linear interpolants Li(x, t

n) that approximate the
exact solution u(x, tn) on the cells Ci as follows

(2.3) Li(x, t
n) = un

i + (x− xi)
(un

i )′

∆x
, ∀x ∈ Ci,

where (un
i )′/∆x is a limited numerical gradient that approximates the spatial partial derivative

∂
∂xu(x, tn)|x=xi

. Throughout this paper, we have used van Leer’s monotonized centered limiter
(MC-θ), where the slope of the reconstruction is chosen as

(un
i )′ = minmod

[
θJuKni− 1

2
,
un
i+1 − un

i−1
2

, θJuKni+ 1
2

]
,

where θ is chosen such that 1 ≤ θ ≤ 2, and minmod function is defined by

minmod(a, b, c) =

{
sign(a) min{|a|, |b|, |c|}, if sign(a) = sign(b) = sign(c),

0, otherwise.

It is worth mentioning that to overcome disadvantage of excessive numerical viscosity, present in
case of first order piecewise constant interpolants, we use high resolution MUSCL-type interpolants
(2.3). We now integrate the balance law (2.2) on the rectangle Rn

i+1/2 and apply Green’s theorem

to the integral to the left to obtain∫ ∫
Rn

i+1
2

[ut + f(u)x]dR =

∫ ∫
Rn

i+1
2

S(u)dR

∮
∂Rn

i+1
2

(f(u)dt− udx) =

∫ tn+1

tn

∫ xi+1

xi

S(u)dxdt

Performing elementary calculations, we obtain

(2.4) −
∫ xi+1

xi

u(x, tn)dx+

∫ tn+1

tn
f (u(xi+1, t)) dt+

∫ xi+1

xi

u(x, tn+1)dx
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−
∫ tn+1

tn
f (u(xi, t)) dt =

∫ tn+1

tn

∫ xi+1

xi

S(u)dxdt

Assuming that the solution u(x, tn+1) ≈ L(x, tn+1) is a piecewise linear function defined at the
centre of the cells Di+1/2; the Mean-Value theorem leads to∫ xi+1

xi

u(x, tn+1)dx = ∆xL(xi+ 1
2
, tn+1) = ∆x un+1

i+ 1
2

On the other hand the solution u(x, tn) ≈ L(x, tn) is a piecewise linear function defined at the
centre of the cells Ci; the Mean-Value theorem leads to

(2.5)

∫ xi+1

xi

u(x, tn)dx =

∫ xi+1/2

xi

u(x, tn)dx+

∫ xi+1

xi+1/2

u(x, tn)dx

=
∆x

2
Li(xi+ 1

4
, tn) +

∆x

2
Li+1(xi+ 3

4
, tn) := ∆x un

i+ 1
2

Therefore, the forward projected solution un
i+ 1

2

at time tn is calculated as follows

(2.6) un
i+ 1

2
=

1

2

(
Li

(
xi +

∆x

4
, tn
)

+ Li+1

(
xi+1 −

∆x

4
, tn
))

= un
i+ 1

2
− 1

8
J(un)′Ki+ 1

2
.

Substituting in equation (2.4), we obtain
(2.7)

un+1
i+ 1

2

= un
i+ 1

2
− 1

∆x

[∫ tn+1

tn
f (u(xi+1, t)) dt−

∫ tn+1

tn
f (u(xi, t)) dt

]
+

1

∆x

∫ tn+1

tn

∫ xi+1

xi

S(u)dxdt

We see from equation (2.7) that the numerical solution un+1
i+ 1

2

, computed at time tn+1, is obtained

at the centre of the control cells Di+1/2.
On the other hand the flux integrals in equation (2.7) are approximated with second-order of

accuracy using the midpoint quadrature rule, leading to

(2.8) un+1
i+ 1

2

= un
i+1/2 −∆tD+f(u

n+ 1
2

i ) +
1

∆x

∫ tn+1

tn

∫ xi+1

xi

S (u(x, t))) dxdt,

where the predicted solution values at time tn+1/2 are obtained using a first-order Taylor expansion
in time as well as the balance law as

(2.9)
u(xi, t

n+ 1
2 ) ≈ u(xi, t

n) +
∆t

2
ut(xi, t

n) ≈ un
i +

∆t

2

(
− f(u)x|(xi,tn) + S(u)|(xi,tn)

)
≈ un

i +
∆t

2

(
− f ′i

∆x
+ Sn

i

)
:= u

n+ 1
2

i ,

where f ′i/∆x is an approximate flux derivative and Sn
i ≈ S(un

i ) is a second-order approximation
of the source term at time tn on the cell Ci and is defined using a sensor function as follows:

(2.10) Sn
i = Sn

i,L + Sn
i,R + Sn

i,C ,

with

Sn
i,L =

s2i (1− si) (2− si)
6

 0
θρni exp(gxi)D−(exp(−gxi))
θρni u

n
i exp(gxi)D−(exp(−gxi))

 ,

Sn
i,R =

s2i (1 + si) (2− si)
2

 0
θρni exp(gxi)D+(exp(−gxi))
θρni u

n
i exp(gxi)D+(exp(−gxi))

 ,
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Sn
i,C =

si (si + 1) (si − 1)

6

 0
ρni exp(gxi)D0(exp(−gxi))
ρni u

n
i exp(gxi)D0(exp(−gxi))

 .

Note that the sensor function si, appearing in the discretization of the source term, forces the
discretization of the term “(exp(−gx))x” to follow the same discretization of the term px appears
in the flux function and is defined by:

(2.11) si =


−1 if p′i = θ D−pi,

1 if p′i = θ D+pi,

0 if p′i = 0,

2 if p′i = D0pi,

where 1 ≤ θ ≤ 2 is the parameter of the MC-θ limiter.
As for the integral of the source term in equation (2.8), it is also approximated with second-order

of accuracy using centered differences and the midpoint quadrature rule as follows∫ tn+1

tn

∫ xi+1

xi

S (u(x, t))) dx dt ≈ ∆t∆xS(u
n+ 1

2
i ,u

n+ 1
2

i+1 )

with

(2.12) S(u
n+ 1

2
i ,u

n+ 1
2

i+1 ) =

 0

ρn+1/2 exp(gx)
∣∣
i+ 1

2

D+ exp(−gxi)
ρn+1/2 exp(gx)

∣∣
i+ 1

2

un
i+ 1

2
D+ exp(−gxi)

 .

Finally, we proceed with a backward projection step of the obtained numerical solution un+1
i+1/2

back onto the cells Ci and generate the numerical solution un+1
i as follows

(2.13) un+1
i = un+1

i − 1

8
J(un+1)′Ki,

where (un+1
i+1/2)′ denotes a limited numerical gradient that approximates the spatial partial deriv-

ative ∂
∂xu(x, tn+1)|x=x

i+1
2

. This finishes the description of the central finite volume scheme.

To show that the proposed finite volume scheme (2.13) preserves steady state (2.1), we first
show that un+1

i+1/2 = un
i+1/2. In that context, we have the following theorem

Theorem 2.1. Let the numerical solution un
i of the one-dimensional Euler with gravity system

is updated using the finite volume method (2.8) and (2.13). Moreover, assume that at time tn the
steady state requirement (2.1) is satisfied by un

i , i.e.,

(2.14) uni = 0, and ρni = exp(−gxi) = pni .

Then

(a) The predicted solution given by (2.9) satisfies u
n+1/2
i = un

i .

(b) The forward projected solution given by (2.8) and (2.12) satisfies un+1
i+1/2 = un

i+1/2.

Proof. To prove (a), we first recall that the prediction step is obtained from equation (2.9). Observe
that, if for example (px)ni is discretized by the MC-θ parameter using the backwards difference,
i.e., p′i = θD−pi, then the sensor function si takes on the value -1, and the discretized source term
becomes Sn

i = Sn
i,L. Furthermore, since un

i satisfies the steady state requirement, then uni = 0
and therefore the first and third components in the flux divergence as well as in the source term

in equation (2.9) are zero. Thus the first and third components of u
n+1/2
i are the same as those

of un
i . The second component of u

n+1/2
i is computed as follows:

(ρu)
n+1/2
i = (ρu)ni +

∆t

2
(−p′i + ρni exp(gxi)θD− exp(−gxi))

= (ρu)ni +
∆t

2
(−θD−pni + ρni exp(gxi)θD− exp(−gxi))
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and since un
i satisfies the steady state requirement (2.14), then

(ρu)
n+1/2
i = (ρu)ni +

∆t

2∆x
θ (−D−pni +D− exp(−gxi)) = (ρu)ni ,

and therefore we conclude that u
n+1/2
i = un

i holds.

Next we move on to the proof of (b), i.e., we show that un+1
i+1/2 = un

i+1/2 provided the solution

un
i satisfies the steady state requirement (2.14). From equation (2.8), we know that

un+1
i+ 1

2

= un
i+1/2 −

∆t

∆x

[
f(u

n+ 1
2

i+1 )− f(u
n+ 1

2
i )

]
+ ∆tS(u

n+ 1
2

i ,u
n+ 1

2
i+1 )

But since u
n+1/2
i = un

i , then the first and third components of the flux as well as the first and
third components of the source term are all identically zero. This means that the corresponding
first and third components of both un+1

i+ 1
2

and un
i+ 1

2

are equal. As for the second component of

un+1
i+ 1

2

, it is updated as follows (keeping in mind that p
n+1/2
i = ρ

n+1/2
i = pni = ρni = exp(−gxi))

(ρu)n+1
i+1/2 = (ρu)ni+1/2 −∆tD+p

n+1/2
i + ∆t ρn+1/2 exp(gx)

∣∣
i+ 1

2

D+ exp(−gxi)

= (ρu)ni+1/2.

Thus we conclude that whenever the numerical solution un
i satisfies the steady state requirement

at time tn, then the updated numerical solution un+1
i+1/2 on the staggered dual cells Di+1/2 remains

unchanged, i.e., un+1
i+1/2 = un

i+1/2, for all i. �

Observe that from Theorem 2.1, it is easy to conclude that if the steady state requirement was
satisfied at the discrete level at time tn at the center of the cells Ci, it will remain as such at
time tn+1 but only at the center of the staggered cells Di+1/2. However, the back-projection step

prescribed in equation (2.9) fails in general to fulfill the steady state requirement at time tn+1 at
the center of the cells Ci and therefore an additional treatment is required. In this presentation,
we extend the surface gradient method [18] initially developed for the shallow water equations in
[16], [22], and later adapted for the Ripa system in [23], to the case of systems of Euler equations
with gravity.

Since in the steady state case the velocity component is zero, the forward and backward pro-
jection steps based on the surface gradient method will be performed to both the first component
ρ and and third component E of the numerical solution un

i . We first assume that the numerical
solution un

i obtained at time tn satisfies the steady state requirement (2.14) and we define the
steady state density function ρsi+1/2 at the interfaces of the cells Ci (or at the centers of the cells

Di+1/2) needed for the forward projection of ρni and En
i . Similarly, we define the steady state

energy function Es
i+1/2 needed for the forward projection of third component En

i . We first describe

the forward projection step of the first component ρni and then we argue similarly for the third
component En

i . In what follows, knowing ρsi+1/2 at the points xi+1/2 we linearize the steady state

density function ρs on the cells Ci as

(2.15) ρs(x) = ρsi +
1

∆x
(x− xi)JρKsi , ∀x ∈ Ci

Note that at the cell centers the relation ρsi = ρsi remains valid. Since both ρn : Ci → R and
ρs : Ci → R are linear on the control cells Ci, we follow the surface gradient method and define
the function H(x) = ρn(x) − ρs(x). The linearization H(x) = Hi + H ′i(x − xi) on the cells Ci

is obtained by using a limiting procedure of the numerical derivatives of Hi = ρni − ρsi . We then
calculate the numerical gradient (ρni )′ indirectly using both ρsi and Hi as follows

(2.16) (ρni )′ = H ′i +
1

∆x
JρKsi .

Similarly, for the projection step of ρn+1
i+1/2 back onto the original cells Ci at time tn+1, we consider

the surface gradient method and linearize ρn+1
i+1/2 in terms of ρ̃si+1/2 and H̃i+1/2 = ρn+1

i+1/2 − ρ̃
s
i+1/2,
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and calculate the numerical gradient (ρn+1
i+1/2)′ (required in equation (2.13)) as follows

(2.17) (ρn+1
i+1/2)′ = H̃ ′i+1/2 +

1

∆x
JρKsi+ 1

2
,

where ρ̃si+1/2 is the corrected steady state function value on the staggered cells Di+1/2 defined as

follows

(2.18) ρ̃si+1/2 = ρsi+1/2 −
1

2

(
ρsi+1/2 − ρ

s
i+ 1

2

)
=

1

2

(
ρsi+1/2 + ρsi+ 1

2

)
.

The reason of this correction in the steady state density function is due to the fact the steady
state is linear only on the cells Ci but not on the cells Di+1/2.

The forward and backward projection steps of the energy component follow a similar procedure.
For the forward projection step we linearize the energy En

i using the function Hi = En
i −Es

i and
calculate its numerical gradient as follows

(2.19) (En
i )′ = H′i +

1

∆x
JEKsi ,

while for the back projection step the linearization is performed using the corrected values of the

steady state energy Ẽi+1/2

(2.20) (En+1
i+1/2)′ = H̃′i+1/2 +

1

∆x
JρKsi+ 1

2
,

where H̃i+1/2 = En+1
i+1/2 − Ẽ

s
i+1/2 and Ẽs

i+1/2 is the corrected steady state energy on the dual cells

(2.21) Ẽs
i+1/2 = Es

i+1/2 −
1

2

(
Es

i+1/2 − E
s

i+ 1
2

)
=

1

2

(
Es

i+1/2 + E
s

i+ 1
2

)
.

We are now in a position to state and prove the theorem that confirms preservation of a discrete
version of steady state (1.10) by the approximate solution un

i .

Theorem 2.2. Let the approximate solution un
i of Euler with gravity system (2.2) updated using

the finite volume method (2.8) and under the hypotheses of Theorem 2.1 along with the surface
gradient based forward projection step (2.6), (2.16), (2.19) and backward projection step (2.13),
(2.17), and (2.20). Then the scheme (2.8) has the following properties

(a) Accuracy: It is second-order accurate approximation of the Euler with gravity system (2.2).
(b) Well-balanced: It preserves the steady state (1.10), i.e., if un

i satisfies (1.10) then the
updated solution un+1

i also satisfies (1.10).

Proof. First, we mention that second-order accuracy of the scheme is guaranteed if the numerical
gradient vector satisfies

1

∆x
u′i =

∂

∂x
u(x, t)|x=xi

+O(∆x)

In fact, a straightforward truncation error analysis shows that the local truncation error is O(∆x2)
which confirms (a). To prove (b), we first calculate the forward projected solution ρni+1/2 using

(2.6)

(2.22) ρni+1/2 = ρni+ 1
2
− ∆x

8
J(ρn)′Ki+ 1

2
,

where (ρni )′ is a numerical gradient obtained using equation (2.16). Taking into account that
ρni = ρsi , then H ′i vanishes and equation (2.22) becomes

(2.23) ρni+1/2 = ρni+ 1
2
− 1

8

(
JρKsi+1 − JρKsi

)
,

But since ρsi+1/2 is assumed to be linear inside the control cells Ci, then JρKsi = 2(ρsi+1/2 − ρ
s
i ) =

2(ρsi − ρsi−1/2), thus equation (2.23) becomes

(2.24) ρni+1/2 = ρni+ 1
2

+
1

2

(
ρsi+1/2 − ρ

s
i+ 1

2

)
.
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Next, the back projection of ρn+1
i+1/2 is performed using equation (2.13) as follows

(2.25) ρn+1
i = ρn+1

i − ∆x

8
J(ρn+1)′Ki,

where (ρn+1
i+1/2)′ is calculated using the corrected steady state density function as described in

equation (2.17). Note that equations (2.18) and (2.24) yield

H̃i+1/2 = ρn+1
i+1/2 − ρ̃

s
i+1/2 = ρni+1/2 − ρ̃

s
i+1/2 = ρni+ 1

2
+

1

2

(
ρsi+1/2 − ρ

s
i+ 1

2

)
− ρ̃si+1/2(2.26)

= ρni+ 1
2
− ρsi+ 1

2
=

1

2
(ρni − ρsi ) +

1

2

(
ρni+1 − ρsi+1

)
= 0.

Equations (2.17), (2.25), (2.24), and (2.26) give

ρn+1
i = ρn+1

i − ∆x

8
J(ρn+1)′Ki = ρni −

1

8

(
JρKsi+ 1

2
− JρKsi− 1

2

)
=

1

2

(
ρni+ 1

2
+

1

2

(
ρsi+1/2 − ρ

s
i+ 1

2

)
+ ρni− 1

2
+

1

2

(
ρsi−1/2 − ρ

s
i− 1

2

))
− 1

8

(
JρKsi+ 1

2
− JρKsi− 1

2

)
=

1

2
(ρni + ρsi ) = ρni ,

because the steady state (2.14) is maintained at time tn and thus ρni−1 − ρsi−1 = ρni − ρsi =
ρni+1 − ρsi+1 = 0.

To keep the presentation fairly short we have only provided details for the component ρ. How-
ever, we note that the same proofs apply mutatis mutandis also for the component E. Hence, we
conclude that En+1

i = En
i . �

3. Schemes for two-dimensional Euler equations with gravitation

In this section, we develop a second-order accurate central unstaggered well-balanced finite
volume method for Euler with gravitation system in two space dimensions (1.1). Note that the
hydrostatic balance we would like to preserve at the discrete level is the constant temperature and
zero velocity steady state solution:

(3.1) ρ = ρ0 exp

(
− φ

RT

)
, u = v = 0, p = ρRT = RTρ0 exp

(
− φ

RT

)
,

and the steady state solution corresponding to the linear gravitational potential field:

dφ

dx
= g1, and

dφ

dy
= g2,

takes the form

(3.2) ρ = exp(−(g1x+ g2y)), u = v = 0, p = exp(−(g1x+ g2y)).

As before, the gas dynamics equations (1.1) can be reformulated in the form of a balance law as
follows

(3.3) ut + ∂xf(u) + ∂yg(u) = S(u), (x, y) ∈ Ω, t > 0

where Ω ⊂ R2 is a bounded spatial domain, and

u =


ρ
ρu
ρv
E

 , f(u) =


ρu

ρu2 + p
ρuv

(E + p)u

 , g(u) =


ρv
ρuv

ρv2 + p
(E + p)v

 , and

S(u) =


0

ρ exp(g1x+ g2y) (exp(−g1x− g2y))x
ρ exp(g1x+ g2y) (exp(−g1x− g2y))y

exp(g1x+ g2y)
(
ρu (exp(−g1x− g2y))x + ρv (exp(−g1x− g2y))y

)
 ,

along with the initial condition u(x, y, t = 0) = u0(x, y), for all (x, y) ∈ Ω.
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3.1. The grid and notation. We start by introducing some notation needed to define the fully-
discrete finite volume schemes. We reserve ∆x, ∆y and ∆t to denote small positive numbers that
represent the spatial (in x and y directions respectively) and temporal discretization parameters,
respectively, of the numerical schemes. Given ∆x,∆y,∆t > 0, let Dx

±, D
y
±, D

x
0 , D

y
0 denote the

discrete forward, backward and central differences, respectively, in spatial directions, i.e.,

Dx
±g(x, y) = ± 1

∆x
(g(x±∆x, y)− g(x, y)) , Dx

0g(x, y) =
1

2

(
Dx

+g(x, y) +Dx
−g(x, y)

)
,

Dy
±g(x, y) = ± 1

∆y
(g(x, y ±∆y)− g(x, y)) , Dy

0g(x, y) =
1

2

(
Dy

+g(x, y) +Dy
−g(x, y)

)
,

for any function g : R × R → R admitting point values. For i, j ∈ Z, we set xi = i∆x, yj = j∆y
and for n = 1, · · · , N , where N∆t = T for some fixed time horizon T > 0, we set tn = n∆t.

For any function g = g(x, y) admitting point values we write gi,j = g(xi, yj), and similarly for
any function h = h(x, y, t) admitting point values we write hni,j = h(xi, yj , t

n). Moreover, let us
introduce the spatial and temporal grid cells

Ci,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2], Di+1/2,j+1/2 = [xi, xi+1]× [yj , yj+1],

and Rn
i+1/2,j+1/2 = Di+1/2,j+1/2 × [tn, tn+1],

where xi±1/2 = xi ± ∆x/2, yj±1/2 = yj ± ∆y/2 with ∆x = xi+1/2 − xi−1/2 = xi+1 − xi and
∆y = yj+1/2 − yj−1/2 = yj+1 − yj .

Furthermore we introduce the jump, and respectively, the average of any grid function ρ across
the interfaces xi+ 1

2
, yj+ 1

2
, xi and yj

ρi,j+ 1
2

:=
ρi,j + ρi,j+1

2
, ρi+ 1

2 ,j
:=

ρi,j + ρi+1,j

2
, ρi,(j) :=

ρi,j+ 1
2

+ ρi,j− 1
2

2
,

ρ(i),j :=
ρi+ 1

2 ,j
+ ρi− 1

2 ,j

2
, JρKi,j+ 1

2
:= ρi,j+1 − ρi,j , JρKi+ 1

2 ,j
:= ρi+1,j − ρi,j ,

JρKi,(j) := ρi,j+ 1
2
− ρi,j− 1

2
, JρK(i),j := ρi+ 1

2 ,j
− ρi− 1

2 ,j
.

3.2. Two-dimensional scheme. Following the same strategy, as explained for the one dimen-
sional scheme, we construct an un-staggered central scheme which preserves the steady state
requirement (3.2). To do that, we assume that the numerical solution un

i to system (3.3) is known
at time tn at the centers (xi, yj) of the control cells Ci,j . To construct the numerical solution

un+1
i at time tn+1 = tn + ∆t on the control cells Ci,j , we shall follow a standard finite volumes

procedure; we first define the piecewise linear interpolants Li,j(x, y) that approximate the exact
solution of system (3.3) on the cells Ci,j as

(3.4) Li,j(x, y, t
n) := un

i,j + (x− xi)
(un,x

i,j )′

∆x
+ (y − yj)

(un,y
i,j )′

∆y
, ∀(x, y) ∈ Ci,j

where (un,x
i,j )′/∆x and (un,x

i,j )′/∆x are limited numerical gradients that approximates the spatial

partial derivative ∂
∂xu(x, yj , t

n)|x=xi and ∂
∂yu(xi, y, t

n)|y=yj respectively, using the van Leer’s MC-

θ limiter. Next, we integrate the balance law (3.3) on the rectangular box Rn
i+1/2,j+1/2 to get

(3.5)

∫
Rn

i+1/2,j+1/2

(∂tu + ∂xf(u) + ∂yg(u)) dV =

∫
Rn

i+1/2,j+1/2

S(u) dV

Invoking Green’s theorem and taking into account that u(x, y) ≈ Li,j(x, y) on the cells Ci,j , we
obtain

(3.6) un+1
i+ 1

2 ,j+
1
2

= un
i+ 1

2 ,j+
1
2
− 1

∆x∆y

∫ tn+1

tn

∫
∂D

i+1
2
,j+1

2

f(u) · nx dAdt

− 1

∆x∆y

∫ tn+1

tn

∫
∂D

i+1
2
,j+1

2

g(u) · ny dAdt+
1

∆x∆y

∫ ∫ ∫
Rn

i+1
2
,j+1

2

S(u) dV
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where (nx, ny) is the outer unit normal vector to ∂Di+1/2,j+1/2. The integral of the source term
is approximated to second-order of accuracy using the midpoint quadrature rule∫ ∫ ∫

Rn

i+1
2
,j+1

2

S(u)dV ≈ ∆t∆x∆y S
(
u
n+ 1

2
i,j ,u

n+ 1
2

i+1,j ,u
n+ 1

2
i,j+1,u

n+ 1
2

i+1,j+1

)
Expanding the spatial flux integrals in equation (3.6) and applying the midpoint quadrature rules
to the time integrals we obtain

un+1
i+ 1

2 ,j+
1
2

= un
i+ 1

2 ,j+
1
2
− ∆t

2

[
Dx

+f(u
n+ 1

2
i,j ) +Dx

+f(u
n+ 1

2
i,j+1)

]
(3.7)

− ∆t

2

[
Dy

+g(u
n+ 1

2
i,j ) +Dy

+g(u
n+ 1

2
i+1,j)

]
+ ∆t · S

(
u
n+ 1

2
i,j ,u

n+ 1
2

i+1,j ,u
n+ 1

2
i,j+1,u

n+ 1
2

i+1,j+1

)
,

where un
i+1/2,j+1/2 is the projected solution at time tn on the staggered dual cells Di+1/2,j+1/2,

and is evaluated using a Taylor expansion in space as follows

un
i+1/2,j+1/2 =

1

2

(
un
i+ 1

2 ,j
+ un

i+ 1
2 ,j+1

)(3.8)

− ∆x

16

(
Jun,xKi+ 1

2 ,j
+ Jun,xKi+ 1

2 ,j+1

)
− ∆y

16

(
Jun,yKi,j+ 1

2
+ Jun,yKi+1,j+ 1

2

)
.

The solution at time tn+1 on the cells Cij of the original grid is then obtained using a back
projection step as follows:

un+1
i,j =

1

2

(
un+1
i,j− 1

2

+ un+1
i,j+ 1

2

)(3.9)

− ∆x

16

(
Jun+1,xK(i),j− 1

2
+ Jun+1,xK(i),j+ 1

2

)
− ∆y

16

(
Jun+1,yKi− 1

2 ,(j)
+ Jun+1,yKi+ 1

2 ,(j)

)
,

where (un+1,x
i+1/2,j+1/2)′ and (un+1,y

i+1/2,j+1/2)′ denote a limited numerical gradient that approximates

the spatial partial derivative ∂
∂xu(x, yj+ 1

2
, tn+1)|x=x

i+1
2

and ∂
∂yu(xi+ 1

2
, y, tn+1)|y=y

j+1
2

respectively.

On another hand, the predicted solution values u
n+1/2
i,j at the intermediate time step tn+1/2

in equation (3.7) are estimated using a first-order Taylor expansion in time and the balance law
(3.3):

(3.10) u
n+ 1

2
i,j = un

i,j +
∆t

2

(
−
f ′i,j
∆x
−
g′i,j
∆y

+ Sn
i,j

)
,

where f ′i,j/∆x and g′i,j/∆y are approximate flux derivatives and Sn
i,j ≈ S(un

i,j) is a second-order
approximation of the source term at time tn on the cell Ci,j and is defined using a sensor function
as follows:

Sn
i,j ≈


S1 = 0
S2

S3

S4

 ,(3.11)

where

S2 =


ρni,j exp(g1xi + g2yj)ΘD

x
− (exp(−g1xi − g2yj)) , if s2 = −1,

0, if s2 = 0 ,

ρni,j exp(g1xi + g2yj)ΘD
x
+ (exp(−g1xi − g2yj)) , if s2 = 1,

ρni,j exp(g1xi + g2yj)D
x
0 (exp(−g1xi − g2yj)) , if s2 = 2.

(3.12)
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S3 =


ρni,j exp(g1xi + g2yj)ΘD

y
− (exp(−g1xi − g2yj)) , if s3 = −1,

0, if s3 = 0,

ρni,j exp(g1xi + g2yj)ΘD
y
+ (exp(−g1xi − g2yj)) , if s3 = 1,

ρni,j exp(g1xi + g2yj)D
y
0 (exp(−g1xi − g2yj)) , if s3 = 2.

S4 = uni,jS2 + vni,jS3.

Note that the above parameters s2 and s3 are two sensor parameters that forces the discretiza-
tion of (exp(−g1x− g2y))x and (exp(−g1x− g2y))y according to the discretizations of px and py,
respectively. They are defined as

(3.13) s2 =


−1, if (pxi,j)

′ = ΘDx
−pi,j ,

0, if (pxi,j)
′ = 0,

1, if (pxi,j)
′ = ΘDx

+pi,j ,

2, if (pxi,j)
′ = Dx

0 pi,j .

and s3 =


−1, if (pyi,j)

′ = ΘDy
−pi,j ,

0, if (pyi,j)
′ = 0,

1, if (pyi,j)
′ = ΘDy

+pi,j ,

2, if (pyi,j)
′ = Dy

0 pi,j .

The parameter 1 ≤ Θ ≤ 2 appearing in the formulae for S2 and S3 is the MC-Θ limiter parameter.
Finally, we discretize the integral of the source term in using the midpoint quadrature rule in

order to ensure second order of accuracy both in space and time

(3.14) S(u
n+ 1

2
i,j ,u

n+ 1
2

i+1,j ,u
n+ 1

2
i,j+1,u

n+ 1
2

i+1,j+1) =


S1 = 0
S2
S3
S4


with

S1 = 0

S2 =
1

2

(
ρn+1/2 exp(g1x+ g2y)

∣∣
i+ 1

2 ,j
Dx

+ exp(−g1xi − g2yj)

+ ρn+1/2 exp(g1x+ g2y)
∣∣
i+ 1

2 ,j+1
Dx

+ exp(−g1xi − g2yj+1)

)

S3 =
1

2

(
ρn+1/2 exp(g1x+ g2y)

∣∣
i,j+ 1

2

Dy
+ exp(−g1xi − g2yj)

+ ρn+1/2 exp(g1x+ g2y)
∣∣
i+1,j+ 1

2

Dy
+ exp(−g1xi+1 − g2yj)

)

S4 =
1

2

(
ρn+1/2 exp(g1x+ g2y)

∣∣
i+ 1

2 ,j
u
n+1/2

i+ 1
2 ,j

Dx
+ exp(−g1xi − g2yj)

+ ρn+1/2 exp(g1x+ g2y)
∣∣
i+ 1

2 ,j+1
u
n+1/2

i+ 1
2 ,j+1

Dx
+ exp(−g1xi − g2yj+1)

+ ρn+1/2 exp(g1x+ g2y)
∣∣
i,j+ 1

2

v
n+1/2

i,j+ 1
2

Dy
+ exp(−g1xi − g2yj)

+ ρn+1/2 exp(g1x+ g2y)
∣∣
i+1,j+ 1

2

v
n+1/2

i+1,j+ 1
2

Dy
+ exp(−g1xi+1 − g2yj)

)
Note that special discretization of the source term will help us to show that the updated solution

un+1
i+1/2,j+1/2 at time tn+1 is equal to the forward projected solution un

i+1/2,j+1/2 at time tn. In

fact, we have the following theorem:
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Theorem 3.1. Let the numerical solution un
i,j of the two-dimensional Euler with gravity system

is updated using the finite volume method (3.7) and (3.9). Moreover, assume that at time tn the
steady state (3.2) is satisfied by un

i,j at the discrete level, i.e.,

(3.15) ρni,j = pni,j = exp(−g1xi − g2yj), and uni,j = vni,j = 0.

Then

(a) The predicted solutions given by (3.10) satisfies u
n+1/2
i,j = un

i,j.

(b) The solutions given by (3.7) and (3.8) satisfies un+1
i+1/2,j+1/2 = un

i+1/2,j+1/2.

Proof. To prove (a), we proceed component wise. In what follows, we first show that ρ
n+1/2
i,j = ρni,j .

From equation (3.10) we have (keeping in mind that uni,j = vni,j = 0 in an equilibrium state)

ρ
n+1/2
i,j = ρni,j +

∆t

2

[
−
(
(ρu)n,xi,j

)′ − ((ρv)n,yi,j

)′
+ S1

]
= ρni,j .

Next, we show that (ρu)
n+1/2
i,j = (ρu)ni,j . Again from equation (3.10) and taking into account that

uni,j = vni,j = 0 in the case of an equilibrium state, we obtain

(3.16)
(ρu)

n+1/2
i,j = (ρu)ni,j +

∆t

2

[
−
(
(ρu2 + p)n,xi,j

)′ − ((ρuv)n,yi,j

)′
+ S2

]
= (ρu)ni,j +

∆t

2

[
−
(
pxi,j
)′

+ S2

]
if
(
pxi,j
)′

is discretized using the backwards difference (i.e., s2 = −1 in equation (3.13)), then
equation (3.12) leads to

S2 = ρni,j exp(g1xi + g2yj)ΘD
x
− exp(−g1xi − g2yj)

Then using (3.15), equation (3.16) leads to (ρu)
n+1/2
i,j = 0 = (ρu)ni,j . In a similar fashion, we

show that (ρu)
n+1/2
i,j = 0 = (ρu)ni,j if s2 takes other values. We argue similarly to show that

(ρv)
n+1/2
i,j = 0 = (ρv)ni,j .

Finally, we have to show that E
n+1/2
i,j = En

i,j . In fact, from equation (3.10) and (3.15) we obtain

E
n+1/2
i,j = En

i,j +
∆t

2

[
−
(
u(E + p))n,xi,j

)′ − (v(E + p))n,yi,j

)′
+ S4

]
= En

i,j .

This concludes the proof of (a).
To prove (b), we also proceed component wise. Observe that, from equation (3.7), (3.14), and

(3.15) we have

ρn+1
i+1/2,j+1/2 = ρni+1/2,j+1/2 −

∆t

2

[
Dx

+(ρu)
n+1/2
i,j +Dx

+(ρu)
n+1/2
i,j+1

]
− ∆t

2

[
Dy

+(ρv)
n+1/2
i,j +Dy

+(ρv)
n+1/2
i+1,j

]
+ ∆tS1 = ρni+1/2,j+1/2.

Likewise we have

(ρu)n+1
i+1/2,j+1/2 = (ρu)ni+1/2,j+1/2 −

∆t

2

[
Dx

+(ρu2 + p)
n+1/2
i,j +Dx

+(ρu2 + p)
n+1/2
i,j+1

]
(3.17)

− ∆t

2

[
Dy

+(ρuv)
n+1/2
i,j +Dy

+(ρuv)
n+1/2
i+1,j

]
+ ∆tS2

Keeping in mind that the predicted solution is invariant in time (u
n+1/2
i,j = un

i,j) and equilibrium

condition (3.15), the term S2 can be rewritten as

S2 =
1

2

(
Dx

+p
n+1/2
i,j +Dx

+p
n+1/2
i,j+1

)
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Therefore equation (3.17) becomes

(ρu)n+1
i+1/2,j+1/2 = (ρu)ni+1/2,j+1/2 −

∆t

2

(
Dx

+p
n+1/2
i,j +Dx

+p
n+1/2
i,j+1

)
+ ∆tS2

= (ρu)ni+1/2,j+1/2.

Similarly, from (3.7), we have

(ρv)n+1
i+1/2,j+1/2 = (ρv)ni+1/2,j+1/2 −

∆t

2

[
Dy

+(ρv2 + p)
n+1/2
i,j +Dy

+(ρu2 + p)
n+1/2
i+1,j

]
(3.18)

− ∆t

2

[
Dx

+(ρuv)
n+1/2
i,j +Dy

+(ρuv)
n+1/2
i,j+1

]
+ ∆tS3

Again, keeping in mind that u
n+1/2
i,j = un

i,j and equilibrium condition (3.15), the term S3 can be
rewritten as

S3 =
1

2

(
Dy

+p
n+1/2
i,j +Dy

+p
n+1/2
i+1,j

)
Therefore equation (3.18) becomes

(ρv)n+1
i+1/2,j+1/2 = (ρv)ni+1/2,j+1/2 −

∆t

2

[
Dy

+p
n+1/2
i,j +Dy

+p
n+1/2
i+1,j

]
+ ∆tS3

= (ρv)ni+1/2,j+1/2.

Finally, from (3.7), we have

En+1
i+1/2,j+1/2 = En

i+1/2,j+1/2 −
∆t

2

[
Dx

+((E + p)u)
n+1/2
i,j +Dx

+((E + p)u)
n+1/2
i,j+1

]
(3.19)

− ∆t

2

[
Dy

+((E + p)v)
n+1/2
i,j +Dy

+((E + p)v)
n+1/2
i+1,j

]
+ ∆tS4

Again, (3.15) implies that S4 = 0, and equation (3.19) becomes

En+1
i+1/2,j+1/2 = En

i+1/2,j+1/2

Thus, we conclude the updated numerical solution un+1
i+1/2,j+1/2 is equal to the forward projected

solution at time tn i.e., un+1
i+1/2,j+1/2 = un

i+1/2,j+1/2. �

Next, we extend the surface gradient method to two-dimensional central schemes for the Euler
with gravity systems in order to perform the forward and backward projection steps. As in the one-
dimensional case, we introduce the new function Hn(x, y) = ρn(x, y) − ρs(x, y) where ρs(x, y) =
exp(−g1x− g2y) is the steady state density. Then we calculate (ρn,xi,j )′ and (ρn,yi,j )′ indirectly using

the newly introduced function Hn
i,j as (ρn,xi,j )′ = (Hn,x

i,j )′ + (ρs,xi,j )′ and (ρn,yi,j )′ = (Hn,y
i,j )′ + (ρs,yi,j )′

using a limiting procedure of numerical gradients. Recall that this only necessary for the forward
projection step of ρni,j , i.e., for the calculation of ρni+1/2,j+1/2 through equation (3.8). We assume

that ρs is initially given at the cell interfaces i.e., the ρsi+1/2,j+1/2 are known and then we define

the cell centered values to be

(3.20) ρsi,j =
1

2

(
ρs(i),j−1/2 + ρs(i),j+1/2

)
and then we define the function H(x, y) as

Hn(x, y) = Hn
i,j + (Hn,x

i,j )′(x− xi) + (Hn,y
i,j )′(y − yj),

where ∇Hn
i,j =

(
(Hn,x

i,j )′, (Hn,y
i,j )′

)
is a limited numerical gradient of Hn

i,j Next, we calculate the

numerical spatial partial derivatives of ρni,j as follows

(3.21) (ρn,xi,j )′ = (Hn,x
i,j )′ +

1

2∆x

(
JρKs(i),j+1/2 + JρKs(i),j−1/2

)
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and

(3.22) (ρn,yi,j )′ = (Hn,y
i,j )′ +

1

2∆y

(
JρKsi+1/2,(j) + JρKsi−1/2,(j)

)
Note that in the case of the an equilibrium solution un

i,j only the values of Hn
i,j vanish but not

necessarily the values of Hn
i+1/2,j+1/2 unless we correct the values of ρsi+1/2,j+1/2 in the back

projection step while calculating the values of ρn+1
i,j using equation (3.9). The correction we apply

in this work is as follows:

ρ̃si+1/2,j+1/2 = ρsi+1/2,j+1/2 −
1

2

[
ρsi+1/2,j+1/2 −

ρs(i),j−1/2 + ρs(i),j+1/2

2

]
(3.23)

and then we define the function H̃n+1
i+1/2,j+1/2 = ρn+1

i+1/2,j+1/2 − ρ̃
s
i+1/2,j+1/2. The numerical spa-

tial derivatives of ρn+1
i+1/2,j+1/2 can now be indirectly computed using the numerical gradient of

H̃n+1
i+1/2,j+1/2 as follows

(ρn+1,x
i+1/2,j+1/2)′ = (H̃n+1,x

i+1/2,j+1/2)′ +
JρKs(i),j+1/2 + JρKs(i+1),j+1/2

2∆x
(3.24)

and similarly

(ρn+1,y
i+1/2,j+1/2)′ = (H̃n+1,y

i+1/2,j+1/2)′ +
JρKsi+1/2,(j) + JρKsi+1/2,(j+1)

2∆y
(3.25)

Note that the forward and backward projection steps of energy component are handled in a similar
way.
In the forward projection step we linearize the energy En

i,j at time tn using the function Hi,j =
En

i,j − Es
i,j and then calculate the spatial numerical derivatives as follows

(En,x
i,j )′ = (Hn,x

i,j )′ +
1

2∆x

(
JEKs(i),j+1/2 + JEKs(i),j+1/2

)
and

(En,y
i,j )′ = (Hn,y

i,j )′ +
1

2∆y

(
JEKsi+1/2,(j) + JEKsi−1/2,(j)

)
Here we assume that the Es

i+1/2,j+1/2 is the energy of the equilibrium solution and is initially given

at the cells corners and satisfying the equation Es
i+1/2,j+1/2 = psi+1/2,j+1/2/(γ− 1). We define the

cell centered equilibrium state energy to be

Es
i,j =

1

2

(
E

s

(i),j−1/2 + E
s

(i),j+1/2

)
For the back projection step the linearization is performed using the corrected values of the
equilibrium energy defined as follows:

Ẽs
i+1/2,j+1/2 = Es

i+1/2,j+1/2 −
1

2

[
Es

i+1/2,j+1/2 −
1

2

(
E

s

i+1/2,j + E
s

i+1/2,j+1

)]
Then we introduce the function H̃n+1

i+1/2,j+1/2 = En+1
i+1/2,j+1/2 − Ẽs

i+1/2,j+1/2 and calculate the

numerical spatial partial derivatives of En+1
i+1/2,j+1/2 indirectly using numerical derivatives of the

discrete functions H̃n+1
i+1/2,j+1/2 and Es

i,j as follows.

(En+1,x
i+1/2,j+1/2)′ = (H̃n+1,x

i+1/2,j+1/2)′ +
1

2∆x

(
JEKs(i),j+1/2 + JEKs(i+1),j+1/2

)
and similarly

(En+1,y
i+1/2,j+1/2)′ = (H̃n+1,y

i+1/2,j+1/2)′ +
1

2∆y

(
JEKsi+1/2,(j) + JEKsi+1/2,(j+1)

)
To complete the derivation of the two-dimensional well-balanced central scheme for the Euler
with gravity system we still need to show that if the numerical solution un

i,j corresponds to an

equilibrium state solution, then the updated solution un+1
i,j remains as such i.e. un

i,j = un+1
i,j .

Regarding this, we have the following theorem:
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Theorem 3.2. Let the approximate solution un
i,j of Euler with gravity system (3.3) updated using

the finite volume method (3.7) and (3.9) and under the hypotheses of Theorem 3.1 along with
the surface gradient based forward projection step and backward projection step. Then the scheme
(3.9) has following properties

(a) Accuracy: It is second-order accurate approximation of the Euler with gravity system (3.3).
(b) Well-balanced: It preserves the steady state (3.2), i.e., if un

i satisfies (3.2) then the updated
solution un+1

i also satisfies (3.2).

Proof. A straightforward truncation error analysis shows that the local truncation error is O(∆x2)
which confirms (a). To prove (b), we shall proceed component wise and show that ρni,j = ρn+1

i,j

and En
i,j = En+1

i,j . Note that the equations ρuni,j = ρun+1
i,j and ρvni,j = ρvn+1

i,j follow immediately
because in the equilibrium state we have uni,j = vni,j = 0.

In what follows, we first calculate the forward projected solution. Recall that for both the first
and fourth components of un

i,j , the forward projection step (3.8) is performed using the surface
gradient method. The forward projection step of ρni,j at time time is performed using equations
(3.8), (3.21), and (3.22) as follows

ρni+ 1
2 ,j+

1
2

=
1

4

(
ρni,j + ρni+1,j + ρni,j+1 + ρni+1,j+1

)
(3.26)

+
∆x

16

(
(Hn,x

i,j )′ + (Hn,x
i,j+1)′

+
1

2∆x

(
JρKs(i),j− 1

2
+ JρKs(i),j+ 1

2
+ JρKs(i),j+ 1

2
+ JρKs(i),j+ 3

2

))
− ∆x

16

(
(Hn,x

i+1,j)
′ + (Hn,x

i+1,j+1)′

+
1

2∆x

(
JρKs(i+1),j− 1

2
+ JρKs(i+1),j+ 1

2
+ JρKs(i+1),j+ 1

2
+ JρKs(i+1),j+ 3

2

))
+

∆y

16

(
(Hn,y

i,j )′ + (Hn,y
i+1,j)

′

+
1

2∆y

(
JρKsi− 1

2 ,(j)
+ JρKsi+ 1

2 ,(j)
+ JρKsi+ 1

2 ,(j)
+ JρKsi+ 3

2 ,(j)

))
− ∆y

16

(
(Hn,y

i,j+1)′ + (Hn,y
i+1,j+1)′

+
1

2∆y

(
JρKsi− 1

2 ,(j+1) + JρKsi+ 1
2 ,(j+1) + JρKsi+ 1

2 ,(j+1) + JρKsi+ 3
2 ,(j+1)

))
Since at time tn the numerical solution un

i,j corresponds to an equilibrium solution then the
relation Hn

i,j = ρni,j − ρsi,j = 0 is maintained for all i, j, and therefore all spatial partial numerical
derivatives of Hn

i,j in equation (3.26) are zero. Furthermore, equation (3.20) leads to

JρKs(i),j− 1
2

+ JρKs(i),j+ 1
2

= 2
((
ρsi+ 1

2 ,j−
1
2

+ ρsi+ 1
2 ,j+

1
2

)
− 2ρsi,j

)
(3.27)

JρKs(i),j+ 1
2

+ JρKs(i),j+ 3
2

= 2
((
ρsi+ 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

3
2

)
− 2ρsi,j+1

)
JρKs(i+1),j− 1

2
+ JρKs(i+1),j+ 1

2
= 2

(
2ρsi+1,j −

(
ρsi+ 1

2 ,j−
1
2

+ ρsi+ 1
2 ,j+

1
2

))
JρKs(i+1),j+ 1

2
+ JρKs(i+1),j+ 3

2
= 2

(
2ρsi+1,j+1 −

(
ρsi+ 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

3
2

))
and similarly using equation (3.20) we get the following relations

JρKsi− 1
2 ,(j)

+ JρKsi+ 1
2 ,(j)

= 2
((
ρsi− 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

1
2

)
− 2ρsi,j

)
(3.28)

JρKsi+ 1
2 ,(j)

+ JρKsi+ 3
2 ,(j)

= 2
((
ρsi+ 1

2 ,j+
1
2

+ ρsi+ 3
2 ,j+

1
2

)
− 2ρsi+1,j

)
JρKsi− 1

2 ,(j+1) + JρKsi+ 1
2 ,(j+1) = 2

(
2ρsi,j+1 −

(
ρsi− 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

1
2

))
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JρKsi+ 1
2 ,(j+1) + JρKsi+ 3

2 ,(j+1) = 2
(

2ρsi+1,j+1 −
(
ρsi+ 1

2 ,j+
1
2

+ ρsi+ 3
2 ,j+

1
2

))

Substituting the relations (3.27) and (3.28) in equation (3.26) while taking into account the Hn
i,j =

0, we obtain

ρni+ 1
2 ,j+

1
2

=
1

4

(
ρni,j + ρni+1,j + ρni,j+1 + ρni+1,j+1

)
(3.29)

+
1

16

(
(ρsi+ 1

2 ,j−
1
2

+ ρsi+ 1
2 ,j+

1
2
)− 2ρsi,j

)
+

1

16

(
(ρsi+ 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

3
2
)− 2ρsi,j+1

)
− 1

16

(
2ρsi+1,j − (ρsi+ 1

2 ,j−
1
2

+ ρsi+ 1
2 ,j+

1
2
)
)
− 1

16

(
2ρsi+1,j+1 − (ρsi+ 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

3
2
)
)

+
1

16

(
(ρsi− 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

1
2
)− 2ρsi,j

)
+

1

16

(
(ρsi+ 1

2 ,j+
1
2

+ ρsi+ 3
2 ,j+

1
2
)− 2ρsi+1,j

)
− 1

16

(
2ρsi,j+1 − (ρsi− 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

1
2
)
)
− 1

16

(
2ρsi+1,j+1 − (ρsi+ 1

2 ,j+
1
2

+ ρsi+ 3
2 ,j+

1
2
)
)

which simplifies leading to

ρni+ 1
2 ,j+

1
2

=
1

4

(
ρni,j + ρni,j+1 + ρni+1,j + ρni+1,j+1

)
− 1

4

(
ρsi,j + ρsi,j+1 + ρsi+1,j + ρsi+1,j+1

)
+

1

8

(
4ρsi+ 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

3
2

+ ρsi+ 1
2 ,j−

1
2

+ ρsi− 1
2 ,j+

1
2

+ ρsi+ 3
2 ,j+

1
2

)
Similarly, for the back-projection step (3.9), we follow the surface gradient method. Keeping in

mind that H̃n+1
i+1/2,j+1/2 = ρn+1

i+1/2,j+1/2− ρ̃
s
i+1/2,j+1/2 and using equations (3.24) and (3.25) we get

ρn+1
i,j =

1

4

(
ρn+1
i− 1

2 ,j−
1
2

+ ρn+1
i+ 1

2 ,j−
1
2

+ ρn+1
i− 1

2 ,j+
1
2

+ ρn+1
i+ 1

2 ,j+
1
2

)
(3.30)

+
∆x

16

(
(H̃n+1,x

i−1/2,j−1/2)′ + (H̃n+1,x
i−1/2,j+1/2)′

+
1

2∆x

(
JρKs(i−1),j− 1

2
+ JρKs(i),j− 1

2
+ JρKs(i−1),j+ 1

2
+ JρKs(i),j+ 1

2

))
− ∆x

16

(
(H̃n+1,x

i+1/2,j−1/2)′ + (H̃n+1,x
i+1/2,j+1/2)′

+
1

2∆x

(
JρKs(i),j− 1

2
+ JρKs(i+1),j− 1

2
+ JρKs(i),j+ 1

2
+ JρKs(i+1),j+ 1

2

))
+

∆y

16

(
(H̃n+1,y

i−1/2,j−1/2)′ + (H̃n+1,y
i+1/2,j−1/2)′

+
1

2∆y

(
JρKsi− 1

2 ,(j−1)
+ JρKsi− 1

2 ,(j)
+ JρKsi+ 1

2 ,(j−1)
+ JρKsi+ 1

2 ,(j)

))
− ∆y

16

(
(H̃n+1,y

i−1/2,j+1/2)′ + (H̃n+1,y
i+1/2,j+1/2)′

+
1

2∆y

(
JρKsi− 1

2 ,(j)
+ JρKsi− 1

2 ,(j+1) + JρKsi+ 1
2 ,(j)

+ JρKsi+ 1
2 ,(j+1)

))
Note that when Hi,j = ρni,j − ρsi,j = 0, then H̃n+1

i+ 1
2 ,j+

1
2

= ρn+1
i+ 1

2 ,j+
1
2

− ρ̃s
i+ 1

2 ,j+
1
2

remains zero and

therefore (H̃n+1,x

i+ 1
2 ,j+

1
2

)′ = (H̃n+1,y

i+ 1
2 ,j+

1
2

)′ = 0; equation (3.30) becomes.

ρn+1
i,j =

1

2

(
ρ̃
s

(i),j− 1
2

+ ρ̃
s

(i),j+ 1
2

)
+

1

32

(
JρKs(i),j− 1

2
+ JρKs(i−1),j− 1

2
+ JρKs(i),j+ 1

2
+ JρKs(i−1),j+ 1

2

)
− 1

32

(
JρKs(i),j− 1

2
+ JρKs(i+1),j− 1

2
+ JρKs(i),j+ 1

2
+ JρKs(i+1),j+ 1

2

)
+

1

32

(
JρKsi− 1

2 ,(j−1)
+ JρKsi− 1

2 ,(j)
+ JρKsi+ 1

2 ,(j−1)
+ JρKsi+ 1

2 ,(j)

)
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− 1

32

(
JρKsi− 1

2 ,(j)
+ JρKsi− 1

2 ,(j+1) + JρKsi+ 1
2 ,(j)

+ JρKsi+ 1
2 ,(j+1)

)
which reduces to

ρn+1
i,j =

1

2

(
ρ̃
s

(i),j− 1
2

+ ρ̃
s

(i),j+ 1
2

)
(3.31)

− 1

16

(
ρs(i−1),j− 1

2
+ ρs(i−1),j+ 1

2
+ ρs(i+1),j− 1

2
+ ρs(i+1),j+ 1

2

)
+

1

16

(
ρs(i),j− 1

2
+ ρs(i),j+ 1

2
+ ρs(i),j− 1

2
+ ρs(i),j+ 1

2

)
− 1

16

(
ρsi− 1

2 ,(j−1)
+ ρsi+ 1

2 ,(j−1)
+ ρsi− 1

2 ,(j)
+ ρsi+ 1

2 ,(j)

)
+

1

16

(
ρsi− 1

2 ,(j)
+ ρsi+ 1

2 ,(j)
+ ρsi− 1

2 ,(j)
+ ρsi+ 1

2 ,(j)

)
But from equation (3.20) we know that

ρsi,j =
1

2

(
ρs(i),j− 1

2
+ ρs(i),j+ 1

2

)
, ρsi−1,j =

1

2

(
ρs(i−1),j− 1

2
+ ρs(i−1),j+ 1

2

)
(3.32)

ρsi+1,j =
1

2

(
ρs(i+1),j− 1

2
+ ρs(i+1),j+ 1

2

)
, ρsi,j−1 =

1

2

(
ρsi− 1

2 ,(j−1)
+ ρsi+ 1

2 ,(j−1)

)
ρsi,j+1 =

1

2

(
ρsi− 1

2 ,(j+1) + ρsi+ 1
2 ,(j+1)

)
Thus equation (3.31) becomes

(3.33) ρn+1
i,j =

1

2

(
ρ̃
s

(i),j− 1
2

+ ρ̃
s

(i),j+ 1
2

)
− 1

4

(
ρsi−1,j + ρsi+1,j + ρsi,j−1 + ρsi,j+1 − 4ρsi,j

)
.

On the other using equation (3.23) we write the following equations

ρ̃si+1/2,j+1/2 =
1

8

(
4ρsi+ 1

2 ,j+
1
2

+ ρsi+ 1
2 ,j+

3
2

+ ρsi+ 1
2 ,j−

1
2

+ ρsi− 1
2 ,j+

1
2

+ ρsi+ 3
2 ,j+

1
2

)
ρ̃si−1/2,j−1/2 =

1

8

(
4ρsi− 1

2 ,j−
1
2

+ ρsi− 1
2 ,j+

1
2

+ ρsi− 1
2 ,j−

3
2

+ ρsi− 3
2 ,j−

1
2

+ ρsi+ 1
2 ,j−

1
2

)
ρ̃si−1/2,j+1/2 =

1

8

(
4ρsi− 1

2 ,j+
1
2

+ ρsi− 1
2 ,j+

3
2

+ ρsi− 1
2 ,j−

1
2

+ ρsi− 3
2 ,j+

1
2

+ ρsi+ 1
2 ,j+

1
2

)
ρ̃si+1/2,j−1/2 =

1

8

(
4ρsi+ 1

2 ,j−
1
2

+ ρsi+ 1
2 ,j+

1
2

+ ρsi+ 1
2 ,j−

3
2

+ ρsi− 1
2 ,j−

1
2

+ ρsi+ 3
2 ,j−

1
2

)
Adding together and using the relations in (3.32), we obtain(

ρ̃
s

(i),j− 1
2

+ ρ̃
s

(i),j+ 1
2

)
=

1

16

(
4ρsi,j−1 + 4ρsi−1,j + 4ρsi,j+1 + 4ρsi+1,j + 16ρsi,j

)
Therefore equation (3.33) becomes

ρn+1
i,j =

1

32

[
4ρsi,j−1 + 4ρsi−1,j + 4ρsi,j+1 + 4ρsi+1,j + 16ρsi,j

]
− 1

8

(
ρsi,j−1 + ρsi−1,j + ρsi,j+1 + ρsi+1,j − 4ρsi,j

)
= ρsi,j = ρni,j .(3.34)

This means that if the numerical solution ρni,j at time tn is an equilibrium state solution, then the

updated solution ρn+1
i,j is such that ρn+1

i,j = ρni,j .
To keep the presentation fairly short we have only provided details for the component ρ. How-

ever, the proofs for the component E are similar and we omit the proofs for brevity in the expo-
sition. Hence, combining all the results, we conclude that un+1

i,j = un
i,j .

�
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4. Numerical experiments

The fully discrete finite volume schemes developed in Section 2 and Section 3 has been tested
on suitable numerical experiments in order to demonstrate its effectiveness.

4.1. One-dimensional experiments. We first validate the one-dimensional well-balanced cen-
tral scheme for the Euler with gravity equations and solve some classical problems from the recent
literature. In what follows, we compare our results with the numerical results of a fifth order
well-balanced finite difference WENO method given in [17]. Note that, as it is the case in central
finite volume methods, and for stability purposes of the numerical scheme, the time step ∆t is
dynamically calculated using the eigenvalues λk, k = 1 · · · p of the jacobian matrix ∂f(u)/∂u as
follows

∆t = CFL
∆x

max(|λk|)
,

where 0 ≤ CFL ≤ 0.5 is the stability parameter.

4.1.1. Shock tube under gravitational field. We consider for our first numerical experiment Sod’s
standard shock tube problem with gravitational field as considered in [17]. The computational
domain is the interval [0, 1], and the initial conditions feature two constant states Ul = [1, 0, 1] if
x ≤ 0.5 and Ur = [0.125, 0, 0.1] if x ≥ 0.5, where U = [ρ, u, p]. The gravitational field φ is such that

0 0.5 1
0

0.5

1

1.5

P

 

 

0 0.5 1
0

0.5

1

1.5

ρ

0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

ρ
 u

0 0.5 1
−0.5

0

0.5

1

u

100 cells

200 cells

400 cells

Figure 4.1. Solution of the one-dimensional shock tube problem with gravity at
time t=0.2.

φx = g = 1 and the gas adiabatic constant γ is equal to 1.4. The well-balanced scheme is applied
with reflective boundary conditions, and the numerical solution is computed at time t = 0.2 on
100, 200, and 400 grid points. The obtained results are reported in figure 4.1 where we plot the
pressure, density, momentum, and velocity. It is worth mentioning that the obtained numerical
results are in good agreement with those presented in [17] in the sense that we also see that due to
the gravitational force, the density distribution is pulling towards the left direction, and negative
velocity appears in some regions. In order to validate the proposed numerical scheme we solved
this same shock tube problem but with zero gravity; the resulting problem is the classical Sod
shock tube problem. The obtained numerical at the final time time tf = 0.164 using the proposed
scheme (dotted curve) are compared to the exact solution (solid curve) of the Riemann problem
and are reported in figure 4.2
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Figure 4.2. Solution of the one-dimensional Sod shock tube problem without
gravity at time t=0.164.

4.1.2. Isothermal equilibrium solution. In this experiment, we validate the well-balancing property
of the proposed scheme. This test case was initially proposed by LeVeque and Bale in [21] and
later considered in [19] and [20] in order demonstrate the capability of the numerical scheme to
capture small perturbations of a steady state. The computational domain is the interval [0, 1],
and a linear gravitational field is considered with φx = g = 1 . Furthermore, we assume an
ideal gas with constant γ = 1.4; the corresponding isothermal equilibrium solution is therefore
ρ(x, t) = ρ0(x) = exp(−x), p(x, t) = p0(x) = exp(−x), and u0(x) = 0 for all x, t ≥ 0. The initial
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Figure 4.3. Solution of the one-dimensional equilibrium state problem at time
t = 0.2 on 200 gridpoints.

conditions are taken to be exactly as the steady state solution; we compute the numerical solution
on 200 gridpoints until the final time t = 0.25. Figure 4.3 shows the profile of the density ρ (top
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left), momentum (top right), energy (bottom left), and pressure (bottom right) obtained using the
proposed well-balanced scheme (dotted curve); the reference solution (solid curve) is the graph of
the exact solution (steady state solution). The numerical solution remains in perfect match with
the reference solution, thus confirming the well-balancing property of the proposed scheme. From
the graph of the momentum, we see that the solution curve remains stationary with a velocity
does not exceed the 2× 10−15 in absolute value. The L1 error and the order of convergence of the
mass density and pressure on an increasing mesh were computed; the obtained results reported
in Table 4.1 validate the order of convergence of the numerical scheme. Moreover, we see that L1

errors are comparable with the L1 errors presented in Table 5.1 of [17].

Table 4.1. L1 errors

N L1error ρ Order L1error ρu Order L1error ρE Order
100 3.48E-15 1.90E-15 7.22E-13
200 9.39E-16 1.89 5.25E-16 1.86 1.97E-13 1.87
400 2.33E-16 2.01 1.34E-16 1.97 5.01E-14 1.98

4.1.3. Perturbation of an equilibrium solution. Our next experiment features a perturbation of the
equilibrium state to demonstrate the effectiveness of our scheme. The perturbation is imposed on
the initial pressure and the initial conditions are set as follows

ρ(x, t = 0) = ρ0(x) = exp(−x), p(x, t = 0) = p0(x) = exp(−x) + η exp(−100(x− 0.5)2),

and the initial velocity is u(x, t = 0) = u0(x) = 0. As in [17] we set η = 0.01 and compute
the numerical solution until time t = 0.25 on 200, 400 gridpoints. The disturbance due to the
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Figure 4.4. Perturbation of an equilibrium state; profile of the pressure distur-
bance at time t = 0.2 on 100 and 200 gridpoints.

perturbation splits into two waves propagating towards the endpoints of the computational domain
where simple transmissive boundary conditions are set. The obtained results are shown in figure
4.3, where we plot the pressure perturbation. Moreover, these results confirm that our method
is good enough to capture small as well as big perturbations with a coarse mesh of 200 mesh
points. We have also compared the numerical results obtained using our proposed scheme to those
obtained using the solver proposed in [5] on 20,000 points. The comparison is reported in figure 4.5
where we show the graph of the pressure perturbation on 100 grid points (dotted-dashed curve),
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200 grid points (dotted curve) and the reference solution obtained on 20,000 grid points (solid
curve). An almost perfect match between the results is observed in figure 4.5.
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Figure 4.5. Perturbation of an equilibrium state; profile of the pressure distur-
bance at time t = 0.2 on 100 and 200 gridpoints. The reference solution was
obtained using a fine grid in the method described in [5].

4.2. Two-dimensional experiments. We now validate the two-dimensional well-balanced cen-
tral scheme we developed for the Euler equations with gravity and solve classical problems from
the recent literature.

4.2.1. Two-dimensional shock-tube problem. This experiment features a two-dimensional extension
of the shock tube problem considered in [17]. The computational domain is the square [0, 1]2, and
the initial conditions feature two constant states Ul = [1, 0, 0, 1] if x ≤ 0.5 and Ur = [0.125, 0, 0, 0.1]
if x ≥ 0.5, where U = [ρ, u, v, p]. The numerical solution is computed at the final time tf = 0.2
using reflective boundary conditions, and the obtained numerical results are reported in figure 4.6
where we show the profiles of the mass density (left) and the pressure (right) along the x−axis
(solid curve); the solution of the corresponding one-dimensional problem is also shown in the
graphs and both one and two dimensional schemes show a perfect agreement.

4.2.2. Isothermal equilibrium solution. This test case is used to validate the well-balanced property
of the proposed two-dimensional scheme i.e., its capability of maintaining equilibrium states at
the discrete level. As in [17], we consider for our computational domain the unit square [0, 1]2,
we set the gas constant γ = 1.4, and we set the gravitational constants g1 and g2 to be one. The
isothermal equilibrium state under consideration takes then the form

ρ(x, y) = ρ0 exp

(
−ρ0
p0

(g1x+ g2y)

)
, u(x, y) = v(x, y) = 0,

p(x, y) = p0 exp

(
−ρ0
p0

(g1x+ g2y)

)
,

with the parameters ρ0 = 1.21 and p0 = 1. We set the initial conditions to be exactly the
equilibrium state solution of the problem and we compute the numerical solution on 60 × 60
gridpoints. The obtained numerical results at time tf = 0.25 are reported in figure 4.7 showing
the profile of the pressure at the final time (left) and the pressure’s deviation from its equilibrium
state (right). Figure 4.7 (right) shows that the obtained numerical solution satisfies the steady state
requirement at the discrete level and the pressure remains within the 10−7 from its equilibrium
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Figure 4.6. Two-dimensional shock tube problem: comparison between a cross
section along the x-axis of the two dimensional solution versus the solution of the
one-dimensional problem, both computed on 200 gridpoints.

Figure 4.7. Profiles of the pressure at the final time (left), and the pressure’s
deviation from its steady state (right) on 60× 60 gridpoints.

state value, thus confirming the capability of the proposed scheme to handle the problem of
equilibrium state solution for the Euler with gravity system.

4.2.3. Perturbation of an isothermal equilibrium solution. In this test case, we introduce a pertur-
bation to the equilibrium problem. We follow the same configuration as in the previous test case,
as well as in [17] and we consider the pressure perturbation

p(x, y, t = 0) = p0 exp

(
−ρ0
p0

(g1x+ g2y)

)
+ η exp

(
−100ρ0

p0
((g1x− 0.3)2 + (g2y − 0.3)2)

)
centered at the point (0.3, 0.3), with η is non-zero parameter and set as 0.001 in this experiment.
We compute the numerical solution until time tf = 0.15 on 50 × 50 grid points and we consider
simple transmissive boundary conditions. The obtained numerical results are reported in figure 4.8
where we show the profile of density perturbation (left) and its contour lines (right) and in figure
4.9 where we show the profile of the pressure perturbation (left) and its contour lines (right). The
obtained numerical results are in perfect agreement with those presented in [17], thus confirming
the potential of the proposed scheme to handle small perturbations of equilibrium solutions.

4.2.4. Unidirectional perturbation of an equilibrium solution. In this test case, we consider a two-
dimensional extension of the one-dimensional perturbation problem of an equilibrium state con-
sidered previously. We consider for our computational domain the unit square which we discretize
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Figure 4.9. Profile of the perturbation of an equilibrium state; pressure distur-
bance at time t = 0.25 on 50× 50 gridpoints.

using 50 gridpoints. A unidirectional gravitational field is considered with constants g1 = 1 and
g2 = 0. The corresponding isothermal equilibrium solutions for the density and the pressure are
ρ(x, y, t) = ρ0(x, y, t = 0) = exp(−g1x) and p(x, y, t) = p0(x, y, t = 0) = exp(−g1x), respectively.
The initial conditions are set to be the equilibrium solution for the density, u = v = 0, and a small
perturbation of the equilibrium pressure defined by

p0(x, y, t = 0) = exp(−g1x) + η exp(−100(x− 0.5)2),

with η = 0.001. The numerical solution is computed at the final time tf = 0.25, and the obtained
results are reported in figure 4.10 where we show the density perturbation (left) and the pressure
perturbation (right). A comparison between a cross section along the line y = 0.5 of the pres-
sure perturbation (dotted curve) and the solution of the corresponding one-dimensional problem
(dashed curve) is given in figure 4.11; both curves are in perfect match and are in very good agree-
ment with the reference solution (solid line) obtained using the solver developed in [5] on 20,000
grid points, thus confirming the potential of the proposed schemes to handle two-dimensional Euler
with gravity problems.

4.2.5. Circular Riemann problem. For the final experiment, we consider a circular Riemann prob-
lem subject to a gravitational field. The computational domain is the unit square which we
discretize using 1002 gridpoints, and the initial conditions feature two constant states Uin =
[ρ, ρu, ρv, E] = [1, 0, 0, 1] and Uout = [0.125, 0, 0, 0.1] separated by the circle centered at the point
(0.5, 0.5) with a radius r = 0.1. The gravitational constants are g1 = g2 = 1. The numerical
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Figure 4.10. Profile of the pressure perturbation of the equilibrium state prob-
lem obtained at time t = 0.25 on 50× 50 gridpoints.
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Figure 4.11. Cross section of the pressure perturbation along the line y=0.5
obtained using the two-dimensional numerical scheme (� curve); the solid curve
is the solution of the corresponding one dimensional problem with η = 0.001.

solution is computed at the final time tf = 0.2 using the proposed well-balanced scheme and
the obtained results are reported in figures 4.12 and 4.13 where we show the profiles of the mass
density at different times. The solution at time t = 0.0742 (figure 4.12 left) shows two circular
shocks propagating outward and a rarefaction wave is propagating towards the center of the com-
putational domain. The shock waves are further developed at time t = 0.144 (figure 4.12 right)
and the rarefaction is about to become a downward shock wave. We note that the oscillations
appearing on the circular fronts are main characteristics of circular Riemann problems. Figure
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Figure 4.12. Circular Riemann problem: profile of the density at time t =
0.0724 (left) and t = 0.144 (right) on 50× 50 gridpoints. Two circular shock
waves are propagating outward and an rarefaction wave is moving towards the
center of the computational domain to form a downward shock wave.

4.13 (left) shows the profile of the density at the final time tf = 0.2. Figure 4.13 (right) shows
two cross sections of the mass density along the line y = x obtained on 602 and 2002 gridpoints.
Both curves show a perfect match and agreement thus confirming the potential of the proposed
scheme to handle Euler with gravity problems.
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Figure 4.13. Circular Riemann problem: profile of the density at the final time
tf = 0.2 (left) and two cross sections of the density along the line y = x obtained
on 602 and 2002 gridpoints.

5. Conclusion

In this work we developed a well-balanced unstaggered central finite volume method for the
numerical solution of systems of Euler equations with gravity in one and two space dimensions.
The proposed method is shown to satisfy exactly the isothermal equilibrium at the discrete level
and is characterized by its simplicity. In fact the proposed method avoids the resolution of the
Riemann problems arising at the cell interfaces thanks to staggered dual cells intermediately used
while updating the numerical solution. Careful projections of the updated solutions back onto
the original cells retrieves the solution values at the cell centers. To ensure well-balancing sensor
functions are carefully used to discretize the source term of the Euler with gravity system according
to the discretization of the divergence of the flux function; furthermore a special adaptation of
the surface gradient method is employed for the forward and backward projections of the linearly
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defined numerical solution. The proposed scheme is then validated and successfully applied to
solve classical problems arising in the recent literature; the obtained numerical results are in very
good agreement with their corresponding ones appearing in the literature thus confirming the
potential of the proposed schemes to handle isothermal systems of Euler with gravity equations
for gas dynamics.
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[16] N.Črnjarić-Žic S. Vuković, L. Sopta, Balanced Central NT Schemes for the Shallow Water Equations, 2005,
Proc. Conf. App. Math. Sc. Comp., pp. 171-185.

[17] Y. Xing, and C. -W. Shu. High order well-balanced WENO scheme for the gas dynamics equations under

gravitational fields, Journal of Scientific Computing, 54(2013), no: 2-3, 645-662.

[18] J. G. Zhou, D. M. Causon, C. G. Mingham, and D. M. Ingram. The surface gradient method for the treatment
of source terms in the shallow water equations, Journal of Computational Physics, 168(2001), 1-25.

[19] J. Luo, K. Xu, and N. Liu. A well-balanced symplecticity-preserving gas-kinetic scheme for hydrodynamic
equations under gravitational field, SIAM J. Sci. Comp. 33, 5, (2011) 2356-2381.

[20] C. T. Tian, K. Xu, K. L. Chan, and L. C. Deng. A three-dimensional multidimensional gas-kinetic scheme for

the navier-stokes equations under gravitational elds. J. Comp. Phys., 226, (2007) 2003-2027.
[21] R. J. LeVeque and D. S. Bale. Wave propagation methods for conservation laws with source terms. In Pro-

ceedings of the 7th International Conference on Hyperbolic Problems, pages 609-618,1998.

[22] R. Touma, S. Khankan, Well-balanced unstaggered central schemes for one and two-dimensional shallow water
equation systems, App. Math. Comp., 2012, 218, 5948-5960.

[23] R. Touma and C. Klingenberg, Well-balanced central finite volume methods for the Ripa system, submitted

to Computers & Mathematics with Applications, January 2014.



WELL-BALANCED SCHEMES 29

(Rony Touma)

Computer Science and Mathematics,

Lebanese American University,
P.O. Box 13-5053, Chouran,

Beirut, Lebanon.

E-mail address: rony.touma@lau.edu.lb

(Ujjwal Koley)

Tata Institute of Fundamental Research Centre,
Centre For Applicable Mathematics,

Post Bag No. 6503, GKVK Post Office,

Sharada Nagar, Chikkabommasandra,
Bangalore 560065, India.

E-mail address: ujjwal@math.tifrbng.res.in

(Christian Klingenberg)

Institut für Mathematik,

Julius-Maximilians-Universität Würzburg,
Campus Hubland Nord, Emil-Fischer-Strasse 30,

97074, Würzburg, Germany.

E-mail address: klingenberg@mathematik.uni-wuerzburg.de

rony.touma@lau.edu.lb
ujjwal@math.tifrbng.res.in
klingenberg@mathematik.uni-wuerzburg.de

	1. Introduction
	1.1. The model
	1.2. Steady States
	1.3. Well-Balanced Schemes
	1.4. Aim of this paper

	2. Schemes for one-dimensional Euler equations with gravitation
	2.1. The grid and notation
	2.2. One-dimensional scheme

	3. Schemes for two-dimensional Euler equations with gravitation
	3.1. The grid and notation
	3.2. Two-dimensional scheme

	4. Numerical experiments
	4.1. One-dimensional experiments
	4.2. Two-dimensional experiments

	5. Conclusion
	References

