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Žitná 25, CZ-115 67 Praha 1, Czech Republic

Department of Mathematics, Würzburg University, Germany

Abstract

The Euler system in fluid dynamics is a model of a compressible inviscid fluid incorporating
the three basic physical principles: Conservation of mass, momentum, and energy. We show
that the Cauchy problem is basically ill–posed for the L∞-initial data in the class of weak
entropy solutions. As a consequence, there are infinitely many measure–valued solutions for
a vast set of initial data. Finally, using the concept of relative energy, we discuss a singular
limit problem for the measure–valued solutions, where the Mach and Froude number are
proportional to a small parameter.
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1 Introduction

The Euler system is a model describing the time evolution of an inviscid fluid, the state of which
is characterized by the mass density %, the (absolute) temperature ϑ, and the macroscopic velocity
field u. The problem can be written in the Eulerian coordinate system in the form:

∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = %∇xΦ, (1.2)

∂t

(
1

2
%|u|2 + %e(%, ϑ)

)
+ divx

[(
1

2
%|u|2 + %e(%, ϑ)

)
u

]
+ divx (p(%, ϑ)u) = %∇xΦ · u, (1.3)

where p is the pressure and e the (specific) internal energy interrelated by Gibbs’ equation

ϑDs = De+ pD

(
1

%

)
= 0. (1.4)

The quantity s = s(%, ϑ) in (1.4) is the (specific) entropy. Any smooth solution of (1.1–1.4) satisfies
the entropy balance

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) = 0. (1.5)

The potential Φ describes the external force. In the absence of external forces, i.e. if Φ = 0, we
call the Euler system (1.1-1.3) homogeneous. The non–homogeneous case was studied numerically
e.g. in [1], [5].

Sometimes it is more convenient to rewrite the system (1.1–1.3) in the conservative variables

%, m ≡ %u, E ≡ Ekin + Eint, Ekin ≡
1

2
%|u|2 =

1

2

|m|2

%
, Eint ≡ %e(%, ϑ);
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∂t%+ divxm = 0, (1.6)

∂tm + divx

(
m⊗m

%

)
+∇xp(%, E) = %∇xΦ, (1.7)

∂tE + divx

[
(E + p(%, E))

m

%

]
= ∇xΦ ·m. (1.8)

In the real world applications, the fluid occupies a physical domain Ω ⊂ RN , N = 1, 2, 3. For
the sake of simplicity, we consider only the natural impermeability boundary conditions

u · n|∂Ω = 0. (1.9)

The original state of the fluid is determined by the initial conditions

%(0, ·) = %0, ϑ(0, ·) = ϑ0, u(0, ·) = u0. (1.10)

Solutions of (1.1–1.3), (1.9), (1.10) are known to develop singularities (shock waves) in a finite
time for a rather generic class of the initial data, see the classical monograph by Smoller [30] or
the more recent treatment by Benzoni–Gavage and Serre [2]. To study the problem in the long
run, the weak solutions must be considered. Unlike their classical counterparts, the weak solution
may not satisfy the entropy balance (1.5) that must be relaxed to the inequality

∂t(%s) + divx(%su) ≥ 0. (1.11)

The weak solutions satisfying (1.11) are called entropy solutions whereas relation (1.11) plays the
role of a selection principle to identify the physically relevant solution, cf. Dafermos [11], [12].

The entropy inequality (1.11) and its analogues for general hyperbolic systems proved to be
efficient admissibility criterion in the simple 1-D setting. In particular, Chen and Frid [6], [7]
showed well–posedness of the 1-D Riemann problem for the system (1.1–1.3) in the class of entropy
solutions. The situation in the physically relevant multidimensional case N = 2, 3 turned out to be
more delicate. In a series of papers, De Lellis and Székelyhidi [15], [16], [17] adapted the method of
convex integration to problems in fluid dynamics. Their effort culminated by the complete proof
of the celebrated Onsager’s conjecture by Isett [25] and Buckmaster et al. [4]. As a byproduct,
new unfortunately mostly negative results have been obtained concerning well–posedness of the
isentropic Euler system describing the motion of a compressible fluid with constant entropy, see
De Lellis and Székelyhidi [14]. Finally, Chiodaroli, De Lellis and Kreml [9] (see also [10] for a
more sophisticated example) showed that the isentropic Euler system is essentially ill–posed in
the class of entropy (weak) solutions for Lipschitz initial data. To the best of our knowledge,
analogous results for the (full) Euler system (1.1–1.3) are not available. Note that the isentropic
Euler system, where p = p(%), contains only two unknowns, namely the density % and the velocity
u, whereas the entropy balance (1.11) is replaced by the energy inequality

∂t

(
1

2
%|u|2 + P (%)

)
+ divx

[(
1

2
%|u|2 + P (%)

)
u

]
+ divx (p(%)u) ≤ 0, P (%) = %

∫ %

1

p(z)

z2
dz.

3



This paper studies system (1.1–1.3) in the context of weak and more general measure–valued
solutions. Combining a simple idea by Luo, Xie, and Xin [27] with a general framework developed
in [20] we show that the Euler system (1.1–1.3), (1.9), (1.10), supplemented with the entropy
inequality (1.11), admits infinitely many weak solutions for a large class of bounded initial data,
see Section 2. This observation implies that the same problem admits genuine measure–valued
solutions, meaning measure–valued solutions that do not coincide with a Dirac mass supported
by a weak solution, see Section 3. This kind of measure–valued solutions fits in the class dissipa-
tive measure valued solutions introduced in [3], but they are also the “standard” measure–valued
solutions in the sense of Fjordholm, Mishra and Tadmor [24].

Finally, in Section 4, using the relative energy inequality for the measure–valued solutions [3],
we study the singular limit problem for strongly stratified driven fluids described via the scaled
system:

∂t%+ divx(%u) = 0, (1.12)

∂t(%u) + divx(%u⊗ u) +
1

ε2
∇xp(%, ϑ) =

1

ε2
%∇xΦ, (1.13)

∂t

(
1

2
%|u|2 +

1

ε2
%e(%, ϑ)

)
+ divx

[(
1

2
%|u|2 +

1

ε2
%e(%, ϑ)

)
u

]
+ divx

(
1

ε2
p(%, ϑ)u

)
=

1

ε2
%∇xΦ · u.

(1.14)
We consider the well–prepared initial data, where the density and the temperature are small
perturbations of the isothermal equilibrium state

%s = %s(x), Θ > 0− a positive constant, ∇xp(%s,Θ) = %s∇xΦ.

We identify the limit system and show convergence of the dissipative measure valued solutions of
(1.12–1.14) for ε→ 0.

2 Well/ill posedness

We start by a definition of a weak solution to problem (1.1–1.3), (1.9), (1.10). To this end, it is
more convenient to use the formulation (1.6–1.8) based on conservative variables.

Definition 2.1. Let Ω ⊂ RN , N = 1, 2, 3 be a bounded domain. We say that a trio [%,m, E] is
an entropy (weak) solution of problem (1.6–1.10) if

• % ≥ 0 a.e. and the integral identity∫ T

0

∫
Ω

[%∂tϕ+ m · ∇xϕ] dx dt = −
∫

Ω

%0ϕ(0, ·) dx (2.1)

holds for any ϕ ∈ C∞c ([0, T )×RN);
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• m = 0 whenever % = 0, and the integral identity∫ T

0

∫
Ω

[
m · ∂tϕ +

m⊗m

%
: ∇xϕ + p(%, E)divxϕ

]
dx dt

= −
∫

Ω

m0 ·ϕ(0, ·) dx−
∫ T

0

∫
Ω

%∇xΦ ·ϕ dx dt

(2.2)

holds for any ϕ ∈ C∞c ([0, T )× Ω;RN), ϕ · n|∂Ω = 0;

• the integral identity∫ T

0

∫
Ω

[
E∂tϕ+ (E + p(%, E))

m

%
· ∇xϕ

]
dx dt = −

∫
Ω

E0ϕ(0, ·) dx−
∫ T

0

∫
Ω

∇xΦ ·mϕ dx dt

(2.3)
holds for any ϕ ∈ C∞c ([0, T )×RN);

• the entropy inequality∫ T

0

∫
Ω

[%Z (s(%, E)) ∂tϕ+ Z (s(%, E)) m · ∇xϕ] dx dt ≤ −
∫

Ω

%0Z(s(%0, E0))ϕ(0, ·) dx

(2.4)
holds for any ϕ ∈ C∞c ([0, T ) × RN), ϕ ≥ 0, and any Z ∈ C2(R), Z ′(s) ≥ 0, Z ′′(s) ≤ 0,
Z(s) ≤ Z∞ for any s ∈ R.

Remark 2.2. Here we have tacitly assumed that all integrals are well defined.

Remark 2.3. The entropy inequality is satisfied in the renormalized sense, similarly to Chen and
Frid [7].

2.1 Homogeneous Euler system

In this section we consider the case Φ = 0. Furthermore, let Q ⊂ RN , N = 2, 3 be a bounded
domain, and % > 0, p > 0 positive constants. The nowadays standard result based on convex
integration (Chiodaroli [8], Feireisl [20, Theorem 13.6.1]) asserts that there exists m0 ∈ L∞(Q;RN)
and a positive constant Λ > 0 such that the problem

divxm = 0 (2.5)

∂tm + divx

(
m⊗m

%
− 1

N

|m|2

%
I
)

= 0 (2.6)

m(0, ·) = m0 (2.7)
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supplemented with the “no–flux” boundary conditions admits infinitely many weak solutions m.
In addition, these solutions satisfy

Ekin =
1

2

|m|2

%
= Λ− N

2
p a.e. in (0, T )×Q, E0,kin =

1

2

|m0|2

%
= Λ− N

2
p. (2.8)

By a weak solution with no–flux boundary conditions we mean a function

m ∈ L∞((0, T )×Q;RN) ∩ Cweak([0, T ];L2(Q;RN)) (2.9)

satisfying ∫ T

0

∫
Q

m · ∇xϕ dx dt = 0 (2.10)

for any ϕ ∈ C∞c ([0, T ]×RN)∫ T

0

∫
Q

[
m · ∂tϕ +

(
m⊗m

%
− 1

N

|m|2

%
I
)

: ∇xϕ

]
dx dt = −

∫
Q

m0 ·ϕ(0) dx (2.11)

for any ϕ ∈ C∞c ([0, T )×RN ;RN).

Remark 2.4. As a matter of fact, the method of convex integration provides infinitely many weak
solutions for any bounded initial momentum m0 that may, and do in many cases, experience an
initial jump of the kinetic energy. Here, the momentum m0 gives rise to infinitely many weak
solutions for which the initial energy is conserved.

Remark 2.5. It is important that the momentum balance in (2.11) holds for any smooth test
function ϕ, in particular, the normal trace of ϕ need not vanish on ∂Q. In particular, as observed
by Luo, Xie, and Xin [27], solutions may be defined piecewise on any finite union of mutually
disjoint domains Qi.

As % > 0 we can define a velocity field u = m/%. Moreover, we may assume p = p(%, ϑ) for
another positive constant ϑ. Furthermore, using (2.8), (2.10), (2.11) we easily deduce∫ T

0

∫
Q

[%∂tϕ+ %u · ∇xϕ] dx dt = −
∫
Q

%ϕ(0) dx (2.12)

for any ϕ ∈ C∞c ([0, T )×RN)∫ T

0

∫
Q

[
%u · ∂tϕ +

(
%u⊗ u + p(%, ϑ)I− 2

N
ΛI
)

: ∇xϕ

]
dx dt = −

∫
Q

m0 ·ϕ(0) dx (2.13)

for any ϕ ∈ C∞c ([0, T )×RN ;RN).

Finally, we introduce the total energy,

E =
1

2
%|u|2 + %e(%, ϑ) = Ekin + %e(%, ϑ),
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where, in accordance with (2.8), Ekin is a positive constant as long as Λ > N/2 p. The quantities
E and p being constant in (0, T )×Q, we easily deduce from (2.10) the energy balance∫ T

0

∫
Q

[(
1

2
%|u|2 + %e(%, ϑ)

)
∂tϕ+

[(
1

2
%|u|2 + %e(%, ϑ) + p(%, ϑ)

)
u · ∇xϕ

]]
dx dt

= −
∫
Q

Eϕ(0) dx for any ϕ ∈ C∞c ([0, T )×RN),

(2.14)

together with the entropy balance∫ T

0

∫
Q

[%Z(s(%, ϑ))∂tϕ+ %Z(s(%, ϑ))u · ∇xϕ] dx dt = −
∫
Q

%Z (s(%, ϑ))ϕ(0) dx

for any Z as in (2.4) and any ϕ ∈ C∞c ([0, T )×RN).

(2.15)

Finally, restricting the class of test functions ϕ in the momentum equation to those satisfying
the boundary condition ϕ · n|∂Q = 0 we may eliminate the Λ dependent term in (2.13). Thus we
have shown that for any constant initial data % = %0 > 0, ϑ = ϑ0 > 0, there exists u0 ∈ L∞ such
that the complete Euler system, supplemented with the impermeability condition u · n|∂Q = 0,
admits infinitely many weak entropy solutions.

As observed by Luo, Xie and Xin [27], the previous argument can be localized and the result
extended to piecewise–constant initial data %0, ϑ0. It is also easy to observe that the parameter Λ
can be taken the same on the whole domain Ω. We say that a function v ∈ L∞(Ω) is piece–wise
constant if

Ω = ∪Ii=1Qi, Qi ⊂ RN domains, |∂Qi| = 0, Qi ∩Qj = ∅ for i 6= j, v|Qi
= vi - a constant.

Theorem 2.6. Let Ω ⊂ RN , N = 2, 3 be a bounded domain. Let the initial data %0 > 0, ϑ0 > 0
be given piecewise constant functions in L∞(Ω).

Then there exists u0 ∈ L∞(Ω;RN) such that the complete Euler system (2.1–2.4), with Φ = 0,
admits infinitely many weak solutions originating from [%0,m0, E0],

m0 = %0u0, E0 =
1

2
%0|u0|2 + %0e(%0, ϑ0).

In addition the renormalized entropy balance (2.4) holds as equality, meaning the test functions
need not be non-negative.

We easily deduce from Theorem 2.6 that the set of initial densities and temperatures that gives
rise to infinitely many solutions for certain u0 is dense in, say, L2(Ω). Regularity properties of the
corresponding momentum m0 are not obvious. Note that the recent results concerning Onsager’s
conjecture do not apply directly to problem (2.5–2.7) as the pressure term in (2.6) must be taken
in a very particular form.

On the other hand, we report the following result proved by S. Markfelder and C. Klingenberg
[29]: There exists Lipschitz initial data for the isentropic Euler system which gives rise to infinitely
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many weak solutions that conserve energy. It is an easy observation that these energy conserving
solutions are entropy solutions to the full Euler system, too (set ϑ such that s = const.). In other
words there is Lipschitz data for the full Euler system (1.1–1.3) such that the Cauchy problem
(1.1–1.3), (1.10) has infinitely many entropy solutions. These entropy solutions are similar to
those in Definition 2.1 with the only difference that the impermeability boundary conditions are
not fulfilled.

2.2 Driven fluids

Next we consider driven fluids, i.e. Φ 6= 0. Now we restrict ourselves to a 2-d bounded domain
Ω ⊂ R2. Let again % > 0, p > 0 positive constants. As in the homogeneous case, the starting point
is the convex integration result for the incompressible Euler equations described above: There
exists m0 ∈ L∞(Ω;R2) and a positive constant Λ > 0 such that there are infinitely many solutions
m like in (2.9) fulfilling (2.10), (2.11) and

Ekin =
1

2

|m|2

%
= Λ− p+ %Φ a.e. in (0, T )× Ω, E0,kin =

1

2

|m0|2

%
= Λ− p+ %Φ. (2.16)

Note that this is a difference to (2.8) in the homogeneous case. Hence we deduce for the velocity
field u = m/% from (2.10), (2.11) and (2.16)∫ T

0

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt = −
∫

Ω

%ϕ(0) dx (2.17)

for any ϕ ∈ C∞c ([0, T )×R2)∫ T

0

∫
Ω

[%u · ∂tϕ + (%u⊗ u + p(%, ϑ)I− ΛI− %ΦI) : ∇xϕ] dx dt = −
∫

Ω

m0 ·ϕ(0) dx (2.18)

for any ϕ ∈ C∞c ([0, T )×R2;R2),

where again ϑ > 0 is such that p = p(%, ϑ).
Finally, we introduce the total energy,

E =
1

2
%|u|2 + %e(%, ϑ)− %Φ = Ekin + %e(%, ϑ)− %Φ,

where, in accordance with (2.16), Ekin is positive as long as Λ > p− %Φ. The quantities E and p
being constant in (0, T )× Ω, we deduce from (2.10)∫ T

0

∫
Ω

[(
1

2
%|u|2 + %e(%, ϑ)− %Φ

)
∂tϕ+

[(
1

2
%|u|2 + %e(%, ϑ) + p(%, ϑ)− %Φ

)
u · ∇xϕ

]]
dx dt

= −
∫

Ω

(
1

2
%|u|2 + %e(%, ϑ)− %Φ

)
ϕ(0) dx for any ϕ ∈ C∞c ([0, T )×R2),

(2.19)
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together with the entropy balance∫ T

0

∫
Ω

[%Z(s(%, ϑ))∂tϕ+ %Z(s(%, ϑ))u · ∇xϕ] dx dt = −
∫

Ω

%Z (s(%, ϑ))ϕ(0) dx

for any Z as in (2.4) and any ϕ ∈ C∞c ([0, T )×R2).

(2.20)

Restricting to test functions ϕ in (2.18) satisfying ϕ ·n|∂Ω, we get rid of the term depending on
Λ and we can apply integration by parts in the term containing the potential Φ. This procedure
yields the correct momentum equation of Definition 2.1.

Remark 2.7. If we tried to consider piece–wise constant instead of constant densities as in the
homogeneous case, we would get a problem. As above we can eliminate the term containing Λ if
we choose it the same on the whole domain. But the integration by parts of the term containing
the potential Φ yields a boundary term that makes problems.

In addition it is easy to derive the energy equation of Definition 2.1 from (2.19) if we apply
integration by parts to the term containing Φ and if we notice that %Φ does not depend on the
time t.

Hence we proved the following:

Theorem 2.8. Let Ω ⊂ R2 be a bounded domain. Let the initial data %0 > 0, ϑ0 > 0 be given
constants.

Then there exists u0 ∈ L∞(Ω;R2) such that the complete Euler system (2.1–2.4) admits in-
finitely many weak solutions originating from [%0,m0, E0],

m0 = %0u0, E0 =
1

2
%0|u0|2 + %0e(%0, ϑ0).

In addition the renormalized entropy balance (2.4) holds as equality, meaning the test functions
need not be non-negative.

Remark 2.9. The results of Section 2, i.e. Theorems 2.6 and 2.8, extend to unbounded domains
with obvious modifications.

3 Measure–valued solutions

The so–called measure valued solutions have been introduced in fluid dynamics in the pioneering
paper by DiPerna and Majda [18], and revisited recently in the context of numerical analysis
by Fjordholm, Mishra, and Tadmor [23], [24]. The measure–valued solutions capture possible
oscillations and concentrations that may appear in families of (approximate) solutions to the
Euler system. Roughly speaking, the exact values of non–linear compositions are replaced by their
expectations with respect to a probability measure (Young measure). Theorem 2.6 above indicates
that the measure–valued solutions may be indeed relevant in the context of inviscid fluids. Indeed
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any weak solution [%, ϑ,u] of problem (2.1–2.4) can be interpreted as a measure–valued solution
represented by the Dirac measure

δ%(t,x),ϑ(t,x),u(t,x)

supported by the weak solution. In view of Theorem 2.6, the Euler system (2.1–2.4) admits
infinitely many solutions [%i, ϑi,ui], i ∈ I for certain initial data. In particular, the family of
parameterized measures

I0∑
i=1

λiδ%i(t,x),ϑi(t,x),ui(t,x),

I0∑
i=1

λi = 1

represents a (genuine) measure–valued solution of the same problem (cf. Definition 3.1 below).
A proper definition of measure–valued solution to the full Euler system is a delicate issue.

As uniform L∞ a priori bounds are not known and possibly not available, the effect of possible
concentrations must be taken into account. Unfortunately, the Lp−framework developed in [24]
does not apply either as the fluxes are not dominated by the conserved quantities. To avoid this
difficulty, we follow the approach [3], where the energy equation (2.3) is “integrated” with respect
to the space variable and the entropy balance kept in its renormalized form (2.4). In such a way,
we eliminate the difficulties connected with the lack of a priori bounds that would control the
convective terms in (2.3), (2.4).

3.1 Dissipative measure–valued solutions

Following [3] we define the measure–valued solutions to the Euler system in terms of variables

%, m, and Eint = %e(%, ϑ)

assuming that ∂ϑe(%, ϑ) > 0. Accordingly, we consider the phase space

F =
{

[%,m, Eint]
∣∣∣ % ≥ 0, m ∈ RN , Eint ≥ 0

}
.

Definition 3.1. [Dissipative measure-valued solution]
A parameterized family of probability measures {Yt,x}(t,x)∈(0,T )×Ω,

(t, x) 7→ Yt,x ∈ L∞weak−(∗)((0, T )× Ω;P(F)),

and a non-negative function D ∈ L∞(0, T ) called dissipation defect represent a dissipative measure-
valued solution of the Euler system (1.1–1.3), (1.9), (1.11) with the initial data Y0,x if:
• [∫

Ω

〈Yt,x; %〉ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[〈Yt,x; %〉 ∂tϕ+ 〈Yt,x; m〉 · ∇xϕ] dx dt (3.1)

for a.a. τ ∈ (0, T ) and for any ϕ ∈ C1([0, T ]×RN);

10



• [∫
Ω

〈Yt,x; m〉 ·ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[
〈Yt,x; m〉 ·ϕ +

〈
Yt,x;

m⊗m

%

〉
: ∇xϕ + 〈Yt,x; p(%, Eint)〉 divxϕ

]
dx dt

+

∫ τ

0

∫
Ω

∇xϕ : dµR +

∫ τ

0

∫
Ω

〈Yt,x; %〉∇xΦ ·ϕ dx dt

(3.2)

for a.a. τ ∈ (0, T ) and for any ϕ ∈ C1([0, T ]× Ω;RN), ϕ · n|∂Ω = 0, where

µR ∈M([0, T ]× Ω;RN×N)

is a signed (tensor–valued) Radon measure on [0, T ]× Ω;
•[∫

Ω

〈Yt,x; %Z (s)〉ϕ dx

]t=τ
t=0

≥
∫ τ

0

∫
Ω

[
〈Yt,x; %Z (s)〉 ∂tϕ+ 〈Yt,x;Z (s) m〉 · ∇xϕ

]
dx dt (3.3)

for a.a. τ ∈ (0, T ), any ϕ ∈ C∞([0, T ]×RN), ϕ ≥ 0, Z ′ ≥ 0, Z ′′ ≤ 0, Z ≤ Z∞ <∞;
• [∫

Ω

〈
Yt,x;

1

2

|m|2

%
+ Eint

〉
dx

]t=τ
t=0

+D(τ) =

∫ τ

0

∫
Ω

〈Yt,x; m〉 · ∇xΦ dx dt (3.4)

where the dissipation defect D dominates the measure µR,

‖µR‖M([0,τ)×Ω;RN×N ) ≤ c

∫ τ

0

D(t) dt (3.5)

for a.a. τ ∈ (0, T ).

The existence of measure valued solutions for given initial data and global in time can be easily
shown, for instance by the method of artificial viscosity. They can be also identified as limits of
certain numerical schemes, cf. [23], [24].

3.2 Relative energy

The dissipative measure–valued solutions enjoy certain stability properties, in particular within
the class of smooth solutions - the weak–strong uniqueness property shown in [3]. The key tool is
the relative energy inequality.

We start by introducing the relative energy written in the variables [%, Eint,m] as

EZ
(
%, Eint,m

∣∣∣r,Θ,U) =
1

2
%

∣∣∣∣m% −U

∣∣∣∣2 + Eint −Θ%Z(s(%, Eint))−
∂HΘ(r,Θ)

∂%
(%− r)−HΘ(r,Θ),

(3.6)
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where HΘ is the ballistic free energy,

HΘ(%, ϑ) = %e(%, ϑ)−Θ%s(%, ϑ).

It is worth noting that the relative energy (with Z(s) = s) coincides, up to a multiplicative factor
Θ, with the relative entropy functional introduced by Dafermos [13], see [19].

The important tool in the analysis of the Euler system is the relative energy inequality proved
in [3]:

[∫
Ω

〈
Yt,x; EZ

(
%, Eint,m

∣∣∣r,Θ,U)〉 dx

]t=τ
t=0

+D(τ)

≤ −
∫ τ

0

∫
Ω

[〈Yt,x; %Z (s(%, Eint))〉 ∂tΘ + 〈Yt,x;Z (s(%, Eint)) m〉 · ∇xΘ] dx dt

+

∫ τ

0

∫
Ω

[〈Yt,x; %〉 s(r,Θ)∂tΘ + 〈Yt,x; m〉 · s(r,Θ)∇xΘ] dx dt

+

∫ τ

0

∫
Ω

[
〈Yt,x; %U−m〉 · ∂tU +

〈
Yt,x; (%U−m)⊗ m

%

〉
: ∇xU− 〈Yt,x; p(%, Eint)〉 divxU

]
dx dt

+

∫ τ

0

∫
Ω

[
〈Yt,x; r − %〉

1

r
∂tp(r,Θ)− 〈Yt,x; m〉 ·

1

r
∇xp(r,Θ)

]
dx dt

+

∫ τ

0

∫
Ω

∇xΦ · 〈Yt,x; m− %U〉 dx dt−
∫ τ

0

∇xU : dµR

(3.7)

for any trio of test functions [r,Θ,U] belonging to the class

r > 0, Θ > 0, r,Θ ∈ C1([0, T ]× Ω), U ∈ C1([0, T ]× Ω;RN), U · n|∂Ω = 0.

Remark 3.2. As a matter of fact, relation (3.7) was proved in [3] for the periodic boundary
conditions and for the homogeneous case Φ = 0. Adaptation to other kinds of boundary conditions
like impermeable boundary and to driven fluids, i.e. Φ 6= 0 is straightforward.

4 A singular limit problem

We illustrate the strength of the theory considering a singular limit problem for strongly stratified
fluids arising in meteorology or astrophysics, see Majda [28].

4.1 Scaled system

We consider a scaled system driven by an external gradient type force:

12



∂t%+ divxm = 0 (4.1)

∂tm + divx

(
m⊗m

%

)
+

1

ε2
∇xp(%, Eint) =

1

ε2
%∇xΦ (4.2)

∂t

(
1

2

|m|2

%
+

1

ε2
Eint

)
+ divx

[(
1

2

|m|2

%
+

1

ε2
Eint +

1

ε2
p(%, Eint)

)
m

%

]
=

1

ε2
∇xΦ ·m (4.3)

where Φ = Φ(x) is a given potential.
For the sake of simplicity, we focus on the physically relevant case, where the thermodynamic

functions correspond to the perfect gas,

Eint = cv%ϑ, p = %ϑ, s = log

(
ϑcv

%

)
, cv > 0− specific heat at constant volume.

We consider the spatial domain to be an infinite slab,

Ω = T 2 × (0, 1), T 2 = [0, 1]|{0,1} − the two dimensional torus,

meaning the all quantities are space–periodic (with period 1) with respect to the horizontal variable
xh = (x1, x2). The differential operators acting only on the horizontal variables will be denoted
∇h, divh, etc. We denote z = x3 the vertical variable. We impose the impermeability condition
on the lateral boundary,

m(xh, z) · n = m3(xh, z) = 0 for z = 0, 1.

Finally, we assume
Φ = Φ(z) = −z, ∇xΦ = [0, 0,−1]. (4.4)

Our goal is to study the singular limit for ε → 0 in the isothermal regime characterized by
constant temperature. More specifically, we consider solutions close to the static state [%s,Θ],

∇x(%sΘ) = %s∇xΦ, Θ > 0 a given constant. (4.5)

In view of the ansatz (4.4), the static problem (4.5) admits a solution determined uniquely by its
total mass. Accordingly, there exists a constant c0 > 0 such that

%s = c0 exp

(
− z

Θ

)
.

13



4.2 Identifying the asymptotic limit, the main result

Plugging % = %s, ϑ = Θ in (4.1) and the entropy inequality (1.11) we obtain

divxm = 0, divx(s(%s,Θ)m) ≥ 0.

In addition, in view of the boundary conditions satisfied by m, the second inequality reduces to
equality. Using the specific form of %s we easily deduce

∇xs(%s,Θ) ·m = −∇xΦ(z) ·m
Θ

=
m3

Θ
= 0,

meaning the limit momentum (velocity) possesses only the horizontal component, while

divhm = 0.

Accordingly, the limit velocity field U = [U1, U2, 0] =: [Uh, 0] can be taken as the unique
solution of the 2-d incompressible Euler system

∂tUh + Uh · ∇hUh +∇xΠ = 0, divhUh = 0, xh ∈ T 2, (4.6)

supplemented be the initial data

U(0, x) = U0(xh, z) = [U1
0 (xh, z), U

2
0 (xh, z), 0] = [Uh,0(xh, z), 0]. (4.7)

The following result is standard, see e.g. Kato [26].

Proposition 4.1. Let Uh,0 = Uh,0(xh) be given,

Uh,0 ∈ W k,2(T 2;R2), divhUh,0 = 0, k > 2.

Then problem (4.6), (4.7) admits a (strong) solution [Uh,Π] unique in the class

Uh ∈ C([0, T ];W k,2(T 2;R2)), ∂tUh, ∂tΠ,∇hΠ ∈ C([0, T ];W k−1(T 2;R2)),

∫
T 2

Π dxh = 0.

We are ready to formulate the main result concerning the singular limit in the system (4.1–4.3).

Theorem 4.2. Let the initial data be given such that

%0,ε = %s + ε%
(1)
0,ε, ϑ0,ε = Θ + εϑ

(1)
0,ε, u0,ε,

where

‖%(1)
0,ε‖L∞(Ω) + ‖ϑ(1)

0,ε‖L∞(Ω) + ‖u0,ε‖L∞(Ω;RN ) ≤ c,

%(1)
ε → 0, ϑ

(1)
0,ε → 0, u0,ε → U0 in L1(Ω) as ε→ 0,
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and where
U0 ∈ W k,2(Ω;R3), k > 3, U0 = [U1

0 , U
2
0 , 0], divhU0 = 0.

Let {Y ε
t,x}(t,x)∈(0,T )×Ω, Dε be a family of dissipative measure–valued solutions to the scaled system

(4.1–4.3), with the initial data
Y ε

0,x = δ%0,ε,%0,εu0,ε,cv%0,εϑ0,ε ,

and satisfying the compatibility condition (3.5) with a constant c independent of ε.
Then

Dε → 0 in L∞(0, T ),

and
Y ε → δ%s,%sU,cv%sΘ in L∞(0, T ;M+(F)weak−(∗)),

where [%s,Θ] is the static state and U is the unique solution to the Euler system (4.6), (4.7).

The rest of the section is devoted to the proof of Theorem 4.2. The initial data considered in
Theorem 4.2 are well–prepared, meaning adapted to the limit system. In particular, the effect of
acoustic waves is eliminated. Note that the limit problem is rather different from the isentropic
case studied in [21].

4.3 Rescaled relative energy

Definition 3.1 can be easily adapted to the scaled driven system (4.1–4.3). The relevant relative
energy functional reads

Eε,Z
(
%, Eint,m

∣∣∣r,Θ,U)
=

1

2
%

∣∣∣∣m% −U

∣∣∣∣2 +
1

ε2

[
Eint −Θ%Z(s(%, Eint))−

∂HΘ(r,Θ)

∂%
(%− r)−HΘ(r,Θ)

]
.

(4.8)

along with the relative energy inequality[∫
Ω

〈
Yt,x; Eε,Z

(
%, Eint,m

∣∣∣r,Θ,U)〉 dx

]t=τ
t=0

+Dε(τ)

≤ − 1

ε2

∫ τ

0

∫
Ω

[〈Yt,x; %Z (s(%, Eint))〉 ∂tΘ + 〈Yt,x;Z (s(%, Eint)) m〉 · ∇xΘ] dx dt

+
1

ε2

∫ τ

0

∫
Ω

[〈Yt,x; %〉 s(r,Θ)∂tΘ + 〈Yt,x; m〉 · s(r,Θ)∇xΘ] dx dt

+

∫ τ

0

∫
Ω

[
〈Yt,x; %U−m〉 · ∂tU +

〈
Yt,x; (%U−m)⊗ m

%

〉
: ∇xU−

1

ε2
〈Yt,x; p(%, Eint)〉 divxU

]
dx dt

+
1

ε2

∫ τ

0

∫
Ω

[
〈Yt,x; r − %〉

1

r
∂tp(r,Θ)− 〈Yt,x; m〉 ·

1

r
∇xp(r,Θ)

]
dx dt

+
1

ε2

∫ τ

0

∫
Ω

∇xΦ · 〈Yt,x; m− %U〉 dx dt−
∫ τ

0

∇xU : dµRε .

(4.9)
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4.4 Uniform bounds

Our goal is to establish uniform bounds for the family Y ε, Dε of measure–valued solutions satisfying
the hypotheses of Theorem 4.2. For Θ = Θ > 0, r = %s the solution of the stationary problem
(4.5), the relative energy inequality simplifies to∫

Ω

〈
Y ε
τ,x; Eε,Z

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)

≤
∫ τ

0

∫
Ω

[〈
Y ε
t,x; %U−m

〉
· ∂tU +

〈
Y ε
t,x; (%U−m)⊗ m

%

〉
: ∇xU−

1

ε2

〈
Y ε
t,x; p(%, Eint)

〉
divxU

]
dx dt

− 1

ε2

∫ τ

0

∫
Ω

〈
Y ε
t,x; %

〉
∇xΦ ·U dx dt−

∫ τ

0

∇xU : dµRε

+

∫
Ω

Eε,Z
(
%0,ε, cv%0,εϑ0,ε, %0,εu0,ε

∣∣∣ %s,Θ,U(0, ·)
)

dx.

Thanks to our choice of the initial data, the right–hand side of the above inequality is bounded
independently of the cut–off function Z, and we get∫

Ω

〈
Y ε
τ,x; Eε

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)

≤
∫ τ

0

∫
Ω

[〈
Y ε
t,x; %U−m

〉
· ∂tU +

〈
Y ε
t,x; (%U−m)⊗ m

%

〉
: ∇xU−

1

ε2

〈
Y ε
t,x; p(%, Eint)

〉
divxU

]
dx dt

− 1

ε2

∫ τ

0

∫
Ω

〈
Y ε
t,x; %

〉
∇xΦ ·U dx dt−

∫ τ

0

∇xU : dµRε

+

∫
Ω

Eε
(
%0,ε, cv%0,εϑ0,ε, %0,εu0,ε

∣∣∣ %s,Θ,U(0, ·)
)

dx.

(4.10)

where

Eε
(
%, Eint,m

∣∣∣r,Θ,U)
=

1

2
%

∣∣∣∣m% −U

∣∣∣∣2 +
1

ε2

[
Eint −Θ%s(%, Eint)−

∂HΘ(r,Θ)

∂%
(%− r)−HΘ(r,Θ)

]
.

4.4.1 Entropy estimates

As the initial data are well prepared, we have

s(%0,ε, ϑ0,ε) ≥ s0 > −∞ uniformly for ε→ 0.

Taking the cut–off function Z,

Z ′(s) ≥ 0, Z ′′(s) ≤ 0, Z(s) < 0 for all s < s0, Z(s) = 0 whenever s ≥ s0.
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we deduce from the entropy inequality (3.3) that∫
Ω

〈
Y ε
τ,x; %Z(s)

〉
dx ≥ 0 for τ ≥ 0.

Consequently,

supp[Y ε
τ,x] ⊂

{
[%, Eint,m]

∣∣∣ % ≥ 0, Eint ≥ 0, s(%, Eint) ≥ s0

}
,

or, equivalently,

supp[Y ε
τ,x] ⊂

{
[%, Eint,m]

∣∣∣ 0 ≤ %1+ 1
cv ≤ c(s0)Eint

}
for a.a. (τ, x). (4.11)

4.4.2 Energy estimates

For U = 0 relation (4.10) gives rise to∫
Ω

〈
Y ε
τ,x;

1

2

|m|2

%
+

1

ε2

[
Eint −Θ%s(%, Eint)−

∂HΘ(%s,Θ)

∂%
(%s − r)−HΘ(%s,Θ)

]〉
dx ≤ c (4.12)

uniformly for ε→ 0.
Following [3] we fix a compact set K ⊂ (0,∞)2 containing all points [%s(x),Θ], x ∈ Ω and

denote by K̃ ⊂ (0,∞)2 its image in the new phase variables

(%, ϑ) 7→ [%, cv%ϑ] : (0,∞)2 → (0,∞)2.

Next, we consider a function Ψ = Ψ(%, Eint),

Ψ ∈ C∞c (0,∞)2, 0 ≤ Ψ ≤ 1,Ψ|U = 1, where U is an open neighborhood of K̃ in (0,∞)2.

Finally, for a measurable function G(%, Eint,m), we set

G = Gess +Gres, Gess = Ψ(%, Eint)G(%, Eint,m), Gres = (1−Ψ(%, Eint))G(%, Eint,m).

We report the estimate [22, Chapter 3, Proposition 3.2]

1

2

|m|2

%
+

1

ε2

[
Eint −Θ%s(%, Eint)−

∂HΘ(%s,Θ)

∂%
(%s − r)−HΘ(%s,Θ)

]
≥ c

(∣∣∣∣m%
∣∣∣∣2 +

[∣∣∣∣%− %sε

∣∣∣∣2 +

∣∣∣∣Eint − cv%sΘ
ε

∣∣∣∣2
]

ess

+

[
1 + %+ %|s(%, Eint)|+ Eint

ε2

]
res

)
,

(4.13)

where c is a structural constant independent of ε.
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Thus relation (4.12) gives rise to ∫
Ω

〈
Y ε
τ,x;
|m|2

%

〉
dx ≤ c (4.14)

and ∫
Ω

〈
Y ε
τ,x; [%− %s]2ess + |[%− %s]res|

〉
dx ≤ ε2c, (4.15)∫

Ω

〈
Y ε
τ,x;
[
Eint − cv%sΘ

]2
ess

+
∣∣[Eint − cv%sΘ

]
res

∣∣〉 dx ≤ ε2c, (4.16)

uniformly in τ ∈ [0, T ], ε→ 0.

4.4.3 Momentum estimates

In view of the estimates established in Section 4.4.2, we may suppose that

ξε =
〈
Y ε
t,x; m

〉
→ ξ weakly-(*) in L∞(0, T ;Lα(Ω)), for some α > 1, (4.17)

passing to a subsequence as the case may be.
Indeed we have 〈

Y ε
t,x; m

〉
=

〈
Y ε
t,x;
√
%
|m|
√
%

〉
.

By Jensen’s inequality

∣∣〈Y ε
t,x; m

〉∣∣α ≤ 〈Y ε
t,x; %

α/2

(
|m|
√
%

)α〉
<∼
〈
Y ε
t,x;
|m|2

%

〉
+
〈
Y ε
t,x; %

α/(2−α)
〉
.

Thus taking α > 1 close to 1 we may use (4.11), (4.14) to obtain the desired conclusion.

4.5 The limit for ε→ 0

Let Y ε
t,x, Dε be a family of measure–valued solutions satisfying the hypotheses of Theorem 4.2. In

view of the coercivity properties (4.13), the conclusion of Theorem 4.2 follows as soon as we show
that∫

Ω

〈
Y ε
τ,x; Eε

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)→ 0 as ε→ 0 uniformly for a.a. τ ∈ (0, T ).

To see this, we apply a Gronwall type argument to inequality (4.10), where we take U the solution
of the limit problem (4.6), (4.7).
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4.5.1 Momentum limit

With (4.17) in mind, we look at (3.1), which is equivalent to[∫
Ω

〈
Y ε
t,x; %− %s

〉
ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[〈
Y ε
t,x; %− %s

〉
∂tϕ+

〈
Y ε
t,x; m

〉
· ∇xϕ

]
dx dt

because [∫
Ω

%sϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

%s∂tϕ dx dt.

Using the uniform estimates (4.15) we obtain in the limit ε→ 0:∫ τ

0

∫
Ω

ξ · ∇xϕ dx dt = 0

or, equivalently,
divxξ = 0, ξ · n|∂Ω = 0 in the sense of distributions. (4.18)

Similarly, using (4.15), (4.16), we may pass to the limit in the entropy balance (3.3):

divx
(
s(%s,Θ)ξ

)
≥ 0

but since ξ has zero normal trace, this reduces to

divx
(
s(%s,Θ)ξ

)
= 0. (4.19)

Of course all these relations are understood in the sense of distributions.
Relations (4.18), (4.19) are compatible only if

divxξ = 0, ∇x%s · ξ = 0 a.e. in (0, T )× Ω,

in other words,
ξ3 = 0, divhξ = 0 a.e. in (0, T )× Ω. (4.20)

4.5.2 Geometry and the limit problem

For U - the solution of the limit problem - inequality (4.10) simplifies considerably yielding∫
Ω

〈
Y ε
τ,x; Eε

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)

≤
∫ τ

0

∫
Ω

[〈
Y ε
t,x; %U−m

〉
· ∂tU +

〈
Y ε
t,x; (%U−m)⊗ m

%

〉
: ∇xU

]
dx dt

+ c

∫ τ

0

[∫
Ω

〈
Y ε
τ,x; Eε

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)

]
dt+ ω(ε),

(4.21)
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where ω = ω(ε) denotes a generic function enjoying the property ω(ε)→ 0 as ε→ 0.
Next, we may replace m

%
by U keeping (4.21) still valid. Moreover, in accordance with (4.15),

we may also replace % by %s thus obtaining∫
Ω

〈
Y ε
τ,x; Eε

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)

≤
∫ τ

0

∫
Ω

(
%sU−

〈
Y ε
t,x; m

〉)
(∂tU + U · ∇xU) dx dt

+ c

∫ τ

0

[∫
Ω

〈
Y ε
τ,x; Eε

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)

]
dt+ ω(ε).

(4.22)

As U satisfies (4.6), relation (4.22) reduces to∫
Ω

〈
Y ε
τ,x; Eε

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)

<∼
∫ τ

0

∫
Ω

(ξ − %sU) · ∇hΠ dx dt

+

∫ τ

0

[∫
Ω

〈
Y ε
τ,x; Eε

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)

]
dt+ ω(ε).

(4.23)

Finally, thanks to (4.6), (4.20),∫
Ω

(ξ − %sU) · ∇hΠ dx = 0.

Thus the desired convergence∫
Ω

〈
Y ε
τ,x; Eε

(
%, Eint,m

∣∣∣%s,Θ,U)〉 dx+Dε(τ)→ 0 as ε→ 0 uniformly in τ ∈ (0, T )

follows from Gronwall’s lemma. We have proved Theorem 4.2.

Remark 4.3. With only minor modifications in the proof, it is also possible to show the same
convergence result as in Theorem 4.2 for the homogeneous Euler system in two space dimensions.
In this case - since Φ = 0 - the limit system is the 2-d incompressible Euler system, too.
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[14] C. De Lellis and L. Székelyhidi, Jr. On admissibility criteria for weak solutions of the Euler
equations. Arch. Ration. Mech. Anal., 195(1):225–260, 2010.
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[17] C. De Lellis and L. Székelyhidi, Jr. Dissipative Euler flows and Onsager’s conjecture. J. Eur.
Math. Soc. (JEMS), 16(7):1467–1505, 2014.

21



[18] R. J. DiPerna and A. J. Majda. Oscillations and concentrations in weak solutions of the
incompressible fluid equations. Comm. Math. Phys., 108(4):667–689, 1987.

[19] E. Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete Contin.
Dyn. Syst., 32(9):3059–3080, 2012.

[20] E. Feireisl. Weak solutions to problems involving inviscid fluids. In Mathematical Fluid Dy-
namics, Present and Future, volume 183 of Springer Proceedings in Mathematics and Statis-
tics, pages 377–399. Springer, New York, 2016.
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