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Euler System with a Polytropic Equation of State as a Vanishing Viscosity Limit
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Abstract. We consider the Euler system of gas dynamics endowed with the incomplete (e—p—p) equation of state relating the
internal energy e to the mass density ¢ and the pressure p. We show that any sufficiently smooth solution can be recovered
as a vanishing viscosity-heat conductivity limit of the Navier—Stokes—Fourier system with a properly defined temperature.
The result is unconditional in the case of the Navier type (slip) boundary conditions and extends to the no-slip condition
for the velocity under some extra hypotheses of Kato’s type concerning the behavior of the fluid in the boundary layer.
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1. Introduction

The FEuler system describing the evolution of the density o = o(t, ), the velocity u = u(t,z), and the
internal energy e = e(t,x) of a compressible inviscid fluid reads

Oro + div,(ou) = 0,
Ot(ou) + divy(pu®@u) + V,p =0,

Oy [;g|u|2 + ge} + div, <<Bgu2 + Qe} +p> u> =0. (1.1)

The fluid is confined to a bounded domain Q C R3, with impermeable boundary,
u- n|aQ =0. (1.2)

The system (1.1) rewritten in terms of the phase variables (p,u,e) is symmetric hyperbolic, see e.g.
Benzoni-Gavage and Serre [4, Chapter 13, Section 13.2.2]. The problem is formally closed by prescribing
a suitable equation of state (EOS). We consider a polytropic EOS

p = (7 — 1)oe with the adiabatic exponent v > 1. (1.3)

The equation of state (1.3) is incomplete, in particular, the (absolute) temperature ¢ is not uniquely
determined. Indeed Gibbs’ law asserts

1
9Ds = De + pD () , (1.4)
4
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where s is a new thermodynamic variable called entropy. Here D = (a%, 8%)' Plugging (1.3) in (1.4) we

obtain a first order system that can be integrated yielding

p(g,ﬁ)zﬁﬂlp<0fﬂl>, (1.5)

and, in accordance with (1.3), (1.4),
1
ANEVETSS 0 )
e(0,v) = P ,
(e:9) y-1 o (79711

s(o,0) =S (Ql) . S'(Z) = =

y—1

1 yP(2Z)-P(2)Z
1 72 ’

for an arbitrary function P. Thus the absolute temperature ¢ is determined by ¢ and e modulo the
function P, see Cowperthwaite [6], Miiller and Ruggeri [17], or [11, Chapters 2,3].

The Navier—Stokes—Fourier system describing the motion of a real viscous and heat conductive gas
can be viewed as a viscous regularization of (1.1):

Oro + divy(ou) = 0,
Ot (ou) + div,(ou ® u) + V,p = div,S,
ay_ 1L

(1.6)

: m7-9 T ;
O(0s) + divy(psu) + div, (5) 3 (S :D,u— a Z ) , Dyu= w’ (1.7)
with the viscous stress S given by Newton’s rheological law
~ 1 ~
S =2n (Dxu — ddivmuﬂ> + ndiv,ul, (1.8)
and the heat flux given by Fourier’s law
q=—kKV. (1.9)
The second law of thermodynamics requires the entropy production rate
1 q- V9
—(S:Dyu—
9 ( Ty )

to be non-negative; whence the diffusion transport coefficients p, 77, and k must be non-negative. Note
that, unlike in the Euler system (1.1), the knowledge of the temperature v is necessary to determine the
entropy as well as the heat flux in (1.7). The internal energy e can be evaluated in terms of g, ¥ through
(1.6). Thus solutions of the associated Navier—Stokes—Fourier system (1.7), that may be seen as a viscous
regularization of the Euler system (1.1), depend on the choice of P in (1.5).

We consider the vanishing dissipation limit of the Navier—Stokes—Fourier system, specifically, we
rescale

S, ~ Mnsa dn =~ Knq, Hn N0, kn N\ 0. (1'10)

Moreover, the existing mathematical theory of the Navier-Stokes—Fourier system (see [11]) is based on
the augmentation of the pressure, and, accordingly, the internal energy and entropy, by the radiation
component

4
pr= 50", en— %194, sk = 3—2193, a> 0. (1.11)

The parameter a is very small and usually neglected in the real world applications. Consistently with
(1.10), we therefore consider

a=ay, a, \,0. (1.12)

Suppose that v > 1 is given and that the Euler system (1.1)—(1.3) admits a smooth (C) solution on a
time interval [0, T]. Our goal is to identify the function P in (1.5) in such a way that any sequence of weak
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solutions to the Navier—Stokes—Fourier system (1.7)—(1.9) converges in the vanishing viscosity/radiation
limit (1.10)—(1.12) to the solution of the Euler system in (0,7") x Q. Moreover, we show that the conver-
gence is unconditional, if the boundary layer is eliminated by the choice of the complete slip boundary
conditions

u-njpn =0, (S-n) X njpg =0, (1.13)
where n denotes the outer normal vector to 0€2. In the case of the no-slip boundary conditions
u|ag = 0, (1.14)

the convergence is conditioned by extra hypotheses of Kato’s type [15], [16] identified in the compressible
setting by Sueur [21] and Wang and Zhu [22].

In comparison with the existing literature, notably [22], our result covers all admissible values of
the adiabatic coefficient v in (1.3) as well as general dependence of the transport coefficients on the
temperature in the spirit of the existence theory developed in [11].

The paper is organized as follows. In Sect. 2, we recall the necessary preliminary material concerning
the weak solutions to the Navier—Stokes—Fourier system including the relative energy inequality that
represents a crucial tool in the analysis. Section 3 contains the main results. In Sect. 4 we show consistency
of the vanishing viscosity approximation. Specifically, the viscous stress, the heat flux as well as the
radiation components of the pressure, internal energy, and entropy along with the associated fluxes
disappear in the regime specified in (1.10), (1.12). This process is “path dependent”, specifically certain
relations concerning the asymptotic behaviour of (uy, kn, a,) must be imposed in the spirit of [8]. The
convergence towards the strong solution of the Euler system is shown in Sect. 5.

2. Preliminary Material

We recall the existing theory of weak solutions to the Navier—Stokes—Fourier system.

2.1. Mathematical Theory of the Closed System

We suppose the fluid is mechanically insulated as we stipulate either the complete slip (1.13) or the
no-slip boundary condition (1.14). In view of our final objective, we require the fluid to be energetically
isolated, specifically

q-njpq = 0. (2.1)
The mathematical theory for closed systems relevant for future analysis was developed in [11]. Note
that the extension to open systems is also available in the recent works [5,12], see also the forthcoming
monograph [9].
A suitable weak formulation of the Navier—Stokes—Fourier system augmented by the radiative terms
proposed in [11] reads

Oro + div,(pu) = 0,
Or(ou) + div,(ou @ u) + V. (p + pr) = pdiv,S,
. q 1 q- Vv
2) > = . _
Ot(o(s+ sgr)) + dive(o(s + sgp)u) + KV, (19) Z 3 (,uS Dyu— & 3 ) ,
G | (GeluP + ofe+en)) do=o0 (2.2)
a ), 50lu ole +ep z =0, .

see [11, Chapter 3]. Note that we anticipate the influence of thermal radiation represented by the extra
terms pgr, er, and sg in (2.2). In accordance with (1.12), these terms will vanish in the asymptotic
limit. The energy balance appearing in the Euler system in (1.1) is replaced by the entropy inequality
supplemented with the total energy balance in (2.2).
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2.2. Transport Coefficients

In accordance with the molecular theory of gases (see e.g. Becker [1]), the transport coefficients depend
on the temperature. Specifically, we assume that g, 77, Kk are continuously differentiable functions of 1
satisfying

0<pu(l+9% <p@) <p(l+9%), a>0,

sup [i(9)] < oo,
Y€[0,00)

0<HW) <H(L+9%), 0<k(1+9°) <RW) <E(1+0°) (2.3)

for any ¥ > 0. Note that the cubic growth of « is motivated by the presence of the radiation terms, see
Oxenius [18].

2.3. Equation of State

A proper choice of the equation of state for the Navier—-Stokes—Fourier system plays of course a crucial
role in the present paper. Given v > 1, we have to identify the function P in (1.5). For p = p(p,9),
e = e(p,v), we recall the hypothesis of thermodynamic stability
Ip(e, V) de(0,9)
0o 0v
This imposes the following restrictions on P:

> 0, > 0. (2.4)

P'(Z) >0 for all Z >0,
~P(Z)— P'(Z)Z > 0 for all Z > 0. (2.5)
The following lemma shows existence of a suitable P.

Lemma 2.1. For all Z > 0 there exist functions P,S € C1[0,00) with properties (1.6), (2.5) and such
that

P(Z)=2Z foral Z€|0,Z]. (2.6)
Moreover P, S satisfy

P(0) =0, (2.7)

P(Z)-P(2)Z
i ()Z DZ ¢ forauz>o, (2.8)

. P2
Zh_rgo 7 >0, (2.9)
Jlim S(2) = 0. (2.10)

Note that according to (2.10), S from Lemma 2.1 is in accordance with the Third law of thermody-
namics, namely

s(0,9) — 0 as ¥ — 0+ for any fixed g > 0,
cf. Belgiorno [2,3].
Proof. Let us first consider the case Z = 1. Set P, S € C'[0, )
(L 125
v T
and

—log(Z)+1 if Z <1,

S@*:{; if Z > 1.
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It is then straightforward to check (1.6), (2.5), (2.6)—(2.10).
Let us now look at Z # 1. We define the P, S constructed above as P;, 57 and set

poen (L), s La(Z),

Again straightforward computations show that the properties (1.6), (2.5), (2.6)—(2.10) follow from the
corresponding property of P;, S7. [l

Note that for Z € [0, Z], according to (2.6) and (1.5) we simply obtain the Boyle-Mariotte law

p(0, V) = 0.

Hence the temperature for the Euler system (1.1) endowed with the incomplete EOS (1.3) can be recovered
by choosing Z in Lemma 2.1 appropriately, see Sect. 4.1 for details.

2.4. Relative Energy

The relative energy for the Navier—Stokes—Fourier system may be seen as a counterpart of Dafermos’
relative entropy for the (hyperbolic) Euler system, see [7]. Given a trio of “test functions”

r>0, ©>0, U, (2.11)
the relative energy reads

aHG) (’I", @)

90 (0 —1)— Ho(r,0), (2.12)

1
B (Q’ﬂau T, G’U) - §Q|u - U‘Z + H@<Q> 19) -

where
He(0,9) = e(e(e, V) — ©s(e,7))
is the ballistic free energy. In the context of the system (2.2) perturbed by the radiation terms, we have
He(o,9) = o((e +er)(e,¥) — O(s + sr)(0,7)).

The relative energy augmented by the radiation component will be denoted E,. We also introduce the
standard energy

1
E(p,9,u) = §g|u|2 + oe(o,9).

The following result was proved in [10]: Suppose that:

e (0,9, u) is a weak solution to the Navier—Stokes—Fourier system (2.2) in (0,7 x € with the no-flux
boundary conditions (2.1) and either the complete slip boundary conditions (1.13) or the no-slip
boundary condition (1.14).

e (r,0,U) is a trio of continuously differentiable test functions,

r>0, ©>0in[0,T] x Q,
where U satisfies either the impermeability boundary condition
U - nfpo =0,
or the no-slip boundary condition

Ulsq = 0.
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Then the relative energy inequality
| [ Ba(o.0.u[r,0,0) dx // <uSQ9Vmu) vzuﬁ‘w’w> dz dt
Q
< / o(u—-1U) -V, U (U—-u)dedt
//Sﬂvxu Vdedt—/{// ﬁVﬂ - VO dxdt
+/ /g((s—i—sR)(g,ﬁ) (s+sr)(r,0))(U—u) V,0dzdt
0o Jo
+/ /g(@tU+U~VIU>~(U—u)dmdt—/ /(p—i—pR)(g,z?)diszdxdt
0o Ja 0 Jo
—/ /g((s+sR)(g,z9)—(s+sR)(r,e))(ate+U.vz@) da dt
0o Ja
[ (1= 8) o+ o) 0) = Lu- Talp 4 pr),6)) ot (213)
0 Q r r

holds for a.a. 7 € (0,T).

Finally, we recall the fundamental properties of the relative energy that follow from the hypothesis of
thermodynamic stability (2.4). In accordance with hypothesis (2.11), fix

0<po< inf r< sup r<p,
- [0,T]xQ [0,T]xQ

0<¥< inf ©< sup O <,

[0,T]xQ [0,T]xQ
and define
[Fless = 2(0.9)F, [Flres = F — [Fless,
where
®eCl(0,00)? 0<P <1, (p,9) =1 whenever p<p<pandd <9 <9
Then
Eo (0.0 u)r.0,u) > E (0,0, ulr,0,u) > ¢ (lo - rJ2, + [7 - O3, + [u - UJ3,)
Eq (.9, ulr.0,u) > ¢(Les + lole + er) (0. D)]res + lel(s + 5) (0 9) s
B (0,9,u[r.0,u) = ¢ (Lres + [oe(0. D]res + lels(e. )]l (2.14)

where the constants depend on g, 9, ¥, and ¥, see e.g. [11] for details. As a consequence of the hypothesis of
thermodynamic stability (2.4), the relative energy expressed in terms of the conservative entropy variables
(0,m = pu, § = ps) is a strictly convex function and represents the so-called Bregman distance between
(0,m,S) and (r,rU,rs(r,©)), see e.g. [12]. Note carefully that the relative energy E, associated to the
Navier—Stokes—Fourier system (2.2) is augmented by the radiation component

4
a9t — %) + 3“@(@3 —93) > 0.
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3. Main Results

We state the main results in the physically relevant case Q C R3. We consider three vanishing parameters
in the asymptotic limit: the viscosity coefficient p,,, the heat conductivity coefficient k,,, and the radiation
parameter a,, cf. (1.10), (1.12).

3.1. Unconditional Convergence in the Absence of Boundary Layer

We start with the Navier—Stokes—Fourier system (2.2), with the complete slip boundary conditions (1.13),
and the no-flux boundary condition (2.1).

Theorem 3.1 (Unconditional convergence). Let Q C R? be a bounded Lipschitz domain. Suppose that the
Euler system (1.1)—(1.3), with v > 1, admits a strong solution

op, ep € CH[0,T] x Q), ug € C*([0,T] x Q; R?)
satisfying

inf pp >0, inf ep >0.
[0,T]x2 [0,T]xQ

Then there exists a (p-0-9) EOS p = p(p,0) that complies with Gibbs’ relation (1.4) as well as the
hypothesis of thermodynamic stability (2.4), with the associated internal energy EOS e = e(p,¥) and
entropy s = s(p,9) determined through (1.6), such that the following holds:

Let (0n,Un,upn)2; be a sequence of weak solutions to the Navier-Stokes—Fourier system (2.2), with
the complete slip boundary condition (1.13), and the no-flur boundary conditions (2.1), in the vanishing
dissipation/radiation regime:

Ln N\ 0, anzuﬁ, K—g—>0, (3.1)
an
where a € [%, 1] is the exponent in hypothesis (2.3). In addition, suppose that the initial data
On,0 = Qn(07 '); 'lgn,O = ﬁn(07 ')7 Up,0 = un<0a )
converge strongly to those of the Euler system, specifically,

0<o< inf 0,0< sup o0 <0 uniformly inn, ono— 0£(0,-) in L),

(0,T)xQ (0,T)xQ
0<d< inf ¥,0< sup Uno <9 uniformly inn, e(0n.0,9.0)(0, ) — er(0,) in L'(Q),
(0,T)xQ (0,T)x%
[, 0| <T@ uniformly in n, u, o — ug(0,-) in L'(; R?). (3.2)

Then
On — 0E, 0n€(0n,Pn) — oper in Ll((O,T) x Q), opu, — opug in Ll((O,T) x Q; R3). (3.3)

Remark 8.2. The reader may consult [11, Chapter 3] for the exact definition of a weak solution of the
Navier—Stokes—Fourier system emanating from the initial data (95,0, ¥n,0, Un,0)-

Remark 3.3. We strongly point out that Theorem 3.1 does not contain any claim concerning the existence
of weak solutions for the Navier—Stokes—Fourier system. The existence is known only in some particular
cases: y > %, a € [%, 1], see [11, Chapter 3, Theorem 3.1], and v > %, a =1, see Jesslé, Jin, and Novotny
[14, Theorem 2.1]. The best known results for the planar flows were obtained recently by Pokorny and
Skifsovsky [19].

Local in time existence of smooth solutions to the Euler system was established by Schochet [20].
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3.2. Conditional Result: Viscous Boundary Layer

The no-slip boundary condition (1.14) imposed on the viscous flow cannot be retained for the limit Euler
system and the well known problem of viscous boundary layer appears. We report conditional results a
la Kato in the spirit of Sueur [21] and Wang, Zhu [22]. Let

05 = {:v €0 ] dist[z, 9Q] < 5} .
Any vector field w can be decomposed into its normal and tangential component with respect to 0€2:
w(t,z) = wy(t,x) + w.(t, x),
wy(t,x) = (w - Vydistz, 0Q]) V,dist[z, 09, w,(t,z) = w(t,x) — wy,(t,x).
Note that |V dist[z, 0Q]| = 1, see Sect. 5.1.
We start with a result inspired by Sueur [21].

Theorem 3.4 (Conditional convergence, gradient criterion). Let Q C R3 be a bounded domain of class
C?*v. Suppose that the Euler system (1.1)—(1.3), with v > 1, admits a strong solution

op, eg € CH[0,T] x Q), ug € C1([0,T] x Q; R®)
satisfying

inf pop >0, inf egp>0.
[0,T]1x2 [0,T1xQ

Then there exists a (p-0-0) EOS p = p(o,9) that complies with Gibbs’ relation (1.4) as well as the
hypothesis of thermodynamic stability (2.4), with the associated internal energy FOS e = e(p,9) and
entropy s = s(p, V) determined through (1.6), such that the following holds:

Let (0, Un,upn)02; be a sequence of weak solutions to the Navier-Stokes—Fourier system (2.2), with
the no-slip boundary condition (1.14), and the no-flux boundary conditions (2.1), in the vanishing dissi-
pation/radiation regime:

tn N\ 0, anN,u“‘* H—gHO,
an
where « € [%, 1] is the exponent in hypothesis (2.3). In addition, suppose that the initial data
On,0 = Qn(oa ')7 7977,,0 = ﬂn(0> ')7 Up,0 = un(07 )
converge strongly to those of the Fuler system, specifically,

0<o< in)f 0n0 < SUP  0no < O uniformly inn, ono — 0£(0,-) in L*(Q),

(0,T)x%2 (0,T)xQ
0<¥< inf ¥,0< sup Vno <9 uniformly inn, e(0n.0,9n.0)(0,-) — er(0,-) in L' (Q),
(0,7)xQ (0,T)x%

[, 0| <T@ uniformly in n, u, o — ug(0,-) in L'(; R?).

/ / IS(9y,, Veuy,)|? dzdt — 0,

2 2 2
dlst [z,0Q]  dist*[z, 09]

Finally, suppose!

as n — Q.

INote, that we use the index n both for the sequence and the normal component. Throughout this paper u, denotes the
nth element of the sequence (u,)5%; and (uy, ), its normal component.
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Then
on = 0Bs 0n€(0n: V) — oper in L'((0,T) x Q), 0au, — opup in L'((0,T) x Q; R?).
Finally, we state a conditional result inspired by Wang and Zhu [22].

Theorem 3.5 (Conditional convergence). Let Q C R3 be a bounded domain of class C*TV. Suppose that
the Euler system (1.1)=(1.3), with v > 1, admits a strong solution

op, eg € CH[0,T] x Q), ug € C*([0,T] x Q; R®)
satisfying

inf op >0, inf er>0.
[0,T]xQ [0,T)x

Then there exists a (p-0-9) EOS p = p(p,9) that complies with Gibbs’ relation (1.4) as well as the
hypothesis of thermodynamic stability (2.4), with the associated internal energy FOS e = e(p,9¥) and
entropy s = s(p, V) determined through (1.6), such that the following holds:

Let (0n,Un,upn)52; be a sequence of weak solutions to the Navier-Stokes—Fourier system (2.2), with
the no-slip boundary condition (1.14), and the no-flux boundary conditions (2.1), in the vanishing dissi-
pation/radiation regime:

e R
Mn\oa an%:un 774)07
an
where a € [%, 1] is the exponent in hypothesis (2.3). In addition, suppose that the initial data
On,0 = Qn(oa ')7 7977,,0 = ’l9n(0, ')7 Un,0 = un(oa )
converge strongly to those of the Fuler system, specifically,

0<o< inf g,0< sup o0n,0 <2 uniformly inn, ono — 0p(0,-) in L'(Q),

(0,T)x%2 (0,T)xQ
0<¥< inf ¥,0< sup Vno <9 uniformly inn, e(0n.0,9.0)(0,-) — er(0,-) in L' (Q),
(0,T)x%2 0,T)x9

[, 0| <T@ uniformly in n, u, o — ug(0,-) in L'(; R?).
Finally, suppose there is a sequence 8, — 0 such that

Hn
On

1 /T
—/ 19}["“ dzdt <e,
On Jo Qs.,

— 0 as n — oo,

2

l—«

T
1 1 )
/0 (5 Hgn(u”)"”Lﬂiﬁ(Qan;RB) * 621 ”Q"(un)"”L%(an;RS) )) #4=0 (35

8
n Li-2(Qs,

uniformly for n — oo.
Then

0n — 01, one(on,Vn) — opep in L'((0,T) x ), opu, — opup in L'((0,T) x Q; R?).

Hypothesis (3.5) may seem awkward and much stronger than its counterpart by Wang and Zhu [22],
where only the case « = 1 is studied. In order to compare our result with [22], we are able to modify
Theorem 3.5 for &« = 1 and obtain the following.

Theorem 3.6 (Conditional convergence, a = 1). Let 2 C R® be a bounded domain of class C**V. Suppose
that the Euler system (1.1)—(1.3), with v > 1, admits a strong solution

op, ex € C([0,T] x ), ug € C1([0,T] x O R?)
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satisfying

infoE>O, inf7€E>0.
[0,T]xQ [0,T] x5

Then there exists a (p-0-9) EOS p = p(p,9) that complies with Gibbs’ relation (1.4) as well as the
hypothesis of thermodynamic stability (2.4), with the associated internal energy FOS e = e(p,9) and
entropy s = s(p, ) determined through (1.6), such that the following holds:

Let (0n,0n,upn)5, be a sequence of weak solutions to the Navier—Stokes—Fourier system (2.2), with
the no-slip boundary condition (1.14), and the no-flux boundary conditions (2.1), in the vanishing dissi-
pation/radiation regime with o = 1:

K
~ 12 n

i \, 0, Qn, = I, §—>O.

an

In addition, suppose that the initial data
On,0 = Q’I’L(O; '); 'lgn,O = ﬁn(07 ')7 Up,0 = un(oa )
converge strongly to those of the Fuler system, specifically,

0<o< inf 0,0< sup on0 < 0 uniformly inn, 0,0 — or(0,-) in L*(Q),
- (0,T)xQ (0,T)x$

0<d< inf ¥,0< sup Vno <9 uniformly inn, e(0n,0,9n,0)(0,) — er(0,-) in LY(Q),
(0,T)x € (0,T)x

[W,0| < W uniformly in n, u, o — ug(0,-) in L'(Q; R®).

Finally, suppose there is a sequence 6, — 0 such that

Mon,
5 — 0 asn — oo,
1 T
—/ / 19% dedt <e,
671 0 Qén
1 [T 9
; o ”Qn(un)n“m(ﬂan;Ri*) dt —0 (3.6)
as n — 0o.
Then

on = 08, 0n€(0n,Un) — opep in L'((0,T) x Q), gpu, — opug in L'((0,T) x O; R?).
Remark 3.7. Indeed hypothesis (3.6) and the assumptions in Wang and Zhu [22] are similar, though not
equivalent. Note furthermore, that Wang and Zhu alternatively consider an analogous assumption on the
tangential component of u,, instead of the normal component. In this paper we do not pursue anything
of that kind.

The rest of the paper is devoted to the proof of the above results.

4. Consistency of the Vanishing Dissipation/Radiation Approximation

As a preliminary step, we show consistency of the vanishing dissipation/radiation approximation.
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4.1. Temperature for the Euler System

First we introduce the temperature ¥ associated to the limit system. Without loss of generality, we may
fix the constants g, ¢ in (3.2) so that

0<po< inf porp < sup gg <0 (4.1)
- [bT]xQ [0,T]xQ

Next, in accordance with the hypotheses of Theorem 3.1,

0<e< inf eg< sup eg<e (4.2)
[0,T]x%2 [0,T]xQ

for certain constants e, €. Let us set

__ e

((y = De)™

and apply Lemma 2.1 to obtain suitable functions P, S. Furthermore we define

Z>

g = (v — 1eg.
Note that ¥ > (v — 1)e and hence
OE

1 <Z
(V)T

By virtue of (2.6), we have
E(QE,’lgE) = €g in [O,T] X ﬁ
Moreover, without loss of generality, we may suppose

0<d¥< inf ¥ < sup Vg <9, (4.3)
[0,T]x2 [0,T]xQ

with the same constants ¥, ¥ as in (3.2). From this moment on, the pressure law is fixed.
As p, e, and s comply with Gibbs’ relation, the smooth solution of the Euler system conserves the
entropy:

0i(ops(op,VE)) + dive(ops(op, Vp)ug) = 0, (4.4)
where s is given by (1.6).

4.2. Consistency

The Navier—Stokes—Fourier system (2.2) may be viewed as a singular perturbation of the Euler system
with the extra “error” terms

Gnp
Erlz =PR = ?19317

E?l = 1S, Vauy,) = (ﬁ(ﬁn) (qun + Viu, — gdivmunﬂ> + ﬁ(ﬁn)divmunﬂ> ,

da dayn 5 5 a ~ Va1
= 7" Tnﬁnun, E> = Fin g = Kk () ——"

We say that the approximation of the Euler system by the Navier—Stokes—Fourier system is consistent,
if the above “error” terms vanish in the asymptotic limit n — 0. As a matter of fact, we need a milder
form of consistency compatible with the relative energy inequality. More specifically, it is sufficient to

control the “errors” by the dissipation term

ﬁia Eﬁ = PSRU = , E,GL = peRp = anﬂﬁ. (4.5)

E3 = psp

n
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2 _
dx+un/ M|divmu|2 dz
o U

n

(9, 2
D, = /Jn/ % ‘Vmun + V;un - gdivzunﬂ
(9] n

RK(Uy
+’€n/ 592 )|VT’(97L|2 dx,
Q n

and the total energy

En

1
/ <2gn|un|2 + one(on, Un) + anﬂﬁ) de.
Q

For each error term E!, i =1,...,6 specified in (4.5) and € > 0, we have to find c(g) such that
IEL| 1) < €Dy + ()€, + c(e)wy, uniformly for n — oo, w, — 0. (4.6)

Obviously, E! = pgr, ES = gegr, and E3 = gsg satisfy (4.6) (with € = 0), it remains to handle the viscous
stress, the heat flux and the entropy convective flux term.

Moreover, we recall some basic estimates that follow directly from the hypotheses (1.6), (2.5), (2.7)—
(2.10):

0" + 09 < oe(o, ),
0 < os(o,9) S o1+ [log(o)|+ [log(9)] ") . (4.7)

4.2.1. Viscous Stress Consistency. By virtue of hypothesis (2.3),

/Q fin (V)

w9y 2.
< epn / D) ’qun + Vi, — Sdivou,
Q

2
V.u, + V;un — gdivzun]l dx

2

dz + c(s)un/ (1+9,7) da
Q

S EDn + C(E)/’Ln + C(E)Mn/ [19711""@] res da
Q

14+
< eDy, + c(e)pn + c(s)% / [an4 19;"’"‘} dz
4 (9] res

1
Qn

<Dy, + c(e)pn + c(a)/ [a,0p +1]  da,

Q

res

where the last inequality follows from hypothesis (3.1) and the simple fact that z!*® < ¢(2* 4 1). Thus
we obtain the desired estimate (4.6). The bulk viscosity term can be handled in a similar fashion.

4.2.2. Heat Flux Consistency. Similarly to the preceding part,

/Hn“w”)wmudx gmn/ 0 197,92 dx+0(s)f~”~n/ #(Un) dz
o Un o U7 @

< eDy,, + c(e)kn + C(E)Hn/ 93 dx < D, + c(e)kin + c(s)iz (/ an¥t d:v)
Q an Q

< Dy + &) in + c(e) 2 + c(e)En, (4.8)

an

whence (4.6) follows from hypothesis (3.1).
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4.2.3. Radiation Entropy Convective Flux Consistency. To close the circle of consistence estimates, we
have to handle the integral

an/ \un| dx < an||193||L3(Q)||un||L4(Q;RB),

that corresponds to the radiation entropy convective flux.
By virtue of Sobolev embedding theorem,

lunllLeosrs) S ||un|| e (iR as long as a >

W =

and, by a generalized Korn—Poincaré inequality [11, Theorem 11.23],

u, + n | Un dz | .
o0l ey ( PR A )

Another application of Holder’s inequality yields

V.u, + Viu, — 7d1vzun

2
Hvxun + V;un — gdikun]l

L5-a (Q;R9)

l-a a—1 2
< |[[9n7 | U2 (qun +Viu, — 3divxun]l>

LT (Q)

L2(Q;R)

Consequently,

[ D] o < 2], g Il ey S a0l ) [ oolual o

l1—a a—1 2
n 793 19712 19712 xUn ! n_*d. x n]I
a9l g o 1971, e (v et Vi, Sdiv,n ) o
< n 3112 2
< Do+ ele) I ol B A L / ouluy| dz.  (4.9)

Finally, by virtue of hypothesis (3.1)

T—a 1+a
2 1—a 2 7 i 1 _—
‘Ln” BU2s 9a2 | s _ (/ V4 dx) = (/ an¥t dx) <& T
fn, Li @ LT=a(Q)  pn \Ja Hon Q

The rightmost integral in (4.9) can be handled in a similar fashion. Since a € [3,1], we have in particular
0 < o < 3 and the desired conclusion (4.6) follows from the boundedness of the total energy.

5. Convergence

The proof of convergence consists of using the strong solution (¢, g, ug) of the Euler system as the
test functions r = gg, © = Y, U = ug in the relative energy inequality (2.13). This can be done in
a direct manner in the case of the complete slip boundary conditions (1.13) , whereas the velocity ug
must be modified to comply with the homogeneous Dirichlet boundary conditions in the case of no-slip
(1.14). We focus on the latter case as the proof in the case of the complete slip boundary conditions can
be performed in a way similar to [8].
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5.1. Velocity Regularization
If the solutions of the Navier—Stokes—Fourier system satisfy the no-slip boundary conditions, the velocity

ug is not eligible for the relative energy inequality (2.13) as its tangential component may not vanish on
0N. Instead we consider

U =ug — vy, (5.1)
where the perturbation v is given as
dist Q
vs(t,z) =¢& <IS[“§8]) up(t,(z)), 6> 0, (5.2)
where
E€C™R), ¢ <0, £d)=1ifd<0, £d)=0if&>1,
and

II(x) € 99 is the nearest point to z in 0S.
If 99 is of class C*, k > 2, then dist[x, 9] € C*(s) for any 0 < § < &y, and
x —1II(x)

= —n(II(z)) for any z € Qj,

see Foote [13].

5.2. Application of the Relative Energy Inequality

As U = ug — v, vanishes on 99, the trio (r = o, U = ug —vs,0 = ¥g) can be used as test functions in
the relative energy inequality (2.13). Recall that at this stage we have the following vanishing parameters:
Py Kny Gp, and 0 = 6.

We have
‘E (Qnaﬂvuun QE719E711E> - K (Q,ﬂ,u’QEﬁEﬂlE - Vé)‘ < lon(un —ug)-vs| + onlvsl*.  (5.3)

Seeing that
esssup ||o + esssup ||op1 2 <1, 5.4
t€(0,7T) H TLHLW(SZ) te(0,T) || " n||LWL1(Q;R3) ( )

we may infer that

RIS
Q

The first rather straightforward observation is that, under hypothesis (3.2) concerning the initial data,

/ Ean (QO,Tm 190,na uo,n
Q

Consequently, we can write (2.13) in the form

Ean Qnaﬂnaun
f e
+ﬁ/ / L <Mns(19n7Vmun) :Vauy, — Ky A(Wn, Vi) Vzﬁ") dz dt

0 Q 1971 1971

</()T/an(un—(uE—va))-Vz(uE—v5).(un—(uE_v5))dxdt

QE,’L9E,L1E> - F (g,ﬂ,u’gE,ﬁE,uE - w)‘ dr —0asd— 0. (5.5)

0or(0,-),9(0,-),ug(0,-) — vs(0, )) dxr — 0 for n — oo, 6 — 0.

QE)ﬂE7uE - V6) (T? ) dx

+Mn/ /S(ﬁn,kun):VI(uE—v(;)dxdt—nn/ /M-vadxdt
0 Q 0 Q ﬁn
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on((s+ 5R)(0n,Vn) — (s + 5r) (05, VE)) (ug — v5) —uy,) - Vodpdodt

On (&(uE —vs)+ (ug —v5) - Vi(ug — V5)) ((up — vs) —uy,)dedt

on((s 4 sgr)(0n,9n) — (s + sr)(0E. VE)) (815195; +(ug —vs) - VzﬁE) dz dt

[
[
_ /0 ’ /Q (0 + pr) (0, I )diva (up — vs) da dt
[,
[

((1 - Qn) 3t(p +pR)(QE‘,19E) - &un ' Vz(p +pR)(9E7'L9E)> dz dt + h(nvé)a (56)
OE OE

which holds for a.a. 7 € (0,T), where h denotes a generic sequence,
h(n,d) — 0 asn — oo, 0 — 0.

Our goal is to show

/QEan (gn, U, Uy

by means of a Gronwall type argument.

og,9g,ug — V5) (1,-) dz = h(n,d) uniformly for a.a. 7 € (0,7,

5.3. Integrals Controlled by the Consistency Estimates

Evoking the bounds obtained in Sect. 4.2 we get

[ LTI G,
Q

n = kn

/ RO G 9 V. 9p de
Q

Y In
< Kp / {W} Vi, -V dz| + Kk, / {W} V.0, -V, 0 dx
Q U ess Q Un res
< Dy + (e, [ Vadnl| o Jim + HvxﬂEanﬁn/ ["“; ”)] Vo da,
Q n res

where, by virtue of (4.8),

an\/ |:/M:| |Vzﬂn‘ d:]'j §€Dn+c(€)/ an[ﬂi]res d[I,'
Q 19" res Q

S <€,Z)n +C(5)/ Ean (Qnu'ﬂnaun QE719E7uE - V6) dx.
Q

Using the consistency estimates of Sect. 4.2, we can handle other integrals containing vanishing pa-
rameters. Accordingly, the inequality (5.6) simplifies to

Ean On, 19n7 up,
e
+ﬁ/ / i </J'TLS(197U qun) : qun — Rp q(ﬁn’ vxﬁn) : Vaﬂ%) dz dt

0 Q ?9774 ﬁn

< 7/7/ on(u, — (ug —vs)) - Vovs - (u, — (up — vg)) dadt
0o Jo

0E,VE,Ug — Va) (1,-) dz

—,un/ /S(ﬁn,vxun) : Vyvsdodt
0o Ja

+ /T/ on((s + 5r)(0n,9n) — (s + sr)(0E,9E)) (ug — vs) —uy,) - Vi g dodt
0o Ja
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+/ / (1 - > diplom, Vg) — Lu, - Vzp(gE,ﬁE)> dzdt
o Jo 0
+c/ /Ean On,Un, Uy, QE,ﬁE,uE—V(;) dz dt + h(n,d).

o Jo

Moreover, as ug - njgg = 0,

ldiv,vs|| L < 1 independently of 4,

and, consequently,
/Ean Qn719n7un
Q

+ 19/ / < S(On, Vouy) : Ve, — Ky q(ﬂn,Vmgn) : Vzﬁ") dz dt

QEaﬁEqu - V§) (Ta ) dx

_/ / Only - Vyvs - (un - (uE — Vg)) dx dt

0 Q

— un/ / S(¥n, Veuy,) : Vevsdaedt

+/ 0n[5(0ns Un) + res|tn || Vo0 p| da dt
O Q

1
+ On <8tuE +ug-V,ug + Q—pr(gE,ﬂE)) “(ug —u,) dxdt
E

T

_l’_
Nhhhc\
{3\:3\;3\{3\;\

On (&V(; +vs - Vg;uE) “((ug —vs) —uy,) dedt
(p(QE, Ig) — p(0n, ﬁn)>dikuE dz dt
Q"( (anﬁn) («QE; 19E)) (8ﬂ9E +ug - VIﬁE> dx dt

+ 1- ) (Op(0E,VE) +ug - Vap(op,Vg)) dedt

+ C/ Elan (Qru 797“ up,
0 Q

Finally, as (¢g,Yg, ug) solves the Euler system,

0, Vg, up — Va) da dt + h(n,0).

1
Owup +ugp - Vyug + ?VzP(QE, Vg) = 0.
E
In addition, it is easy to check that
10:vsllLe + || vs]lL~ < 1 independently of 4.

Consequently,

JMFM

(5.10)
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/ / On (&Vg + v - VIuE) ((ug —vs) —u,) dadt
o Ja

= / / gn(atv(s + vs - quE) “((ug —vs) —u,)dzdt - 0asd — 0
0o Jas
as both (¢, )n>0 and (0,0, )n>0 are equi-integrable in (0,7") x Q. Thus (5.9) reduces to

/E (gn,ﬁn,un 0g,9g, E—w;) (1,) do

+19/ / ( S(Wn, Veuy,) : Vmun—mnqw"’vg n) Ve 19") dz dt

_/ / Only - Vv - (un - (uE — V(S)) dx dt
—un/ S(Wn, Vauy) : Vyvs dodt
Q
+/ Qn Qn; n 1]res|un|‘vw19E|d$dt
0 Q

+/ (p(QE,ﬁE) —p(gn,ﬁn))divqu dadt
0 Q

A

0

+C/ Ean Qn7797uun
0 Q

5.4. Integrals Independent of the Boundary Layer

Qn Qm n) («QE; 19E)) (5}1915 +ug - VI§E> da dt

+

:3\:3\

1- ) (Owp(0m,VE) +ug - Vip(op,Vg)) drdt

05,0, up —V5) dadt + h(n, o). (5.11)

Now, we estimate the integrals on the right-hand side of (5.11) that are independent of vs. First, by
virtue of (4.7),

/ Qn[S(QTH'&n) + 1]res|un”vm’0E| dx
Q

g/[@n]res|un‘2 dx+/[@n]re552(gnﬂ9n) dx
Q Q
5/[Ean<9n719n7un)]res dl‘

Q

S/Ean (Qnaﬁ'ruun
Q

We point out that this step depends in an essential way on the fact that s satisfies the Third law of
thermodynamics.
Next, we recall two identities that follow from the specific form of EOS (1.3), (1.4), namely

OV +ug -V, 0 = —(’y — 1)19Edivqu,
Ow(0E,9E) +ug - Vop(op, 9g) = —yp(op, VE)div,ug.

05,5, up —vs) dr+h().  (5.12)

Consequently, we get

/ (p(QEa ﬂE) - p(@na ﬂn))diV:cuE dzr — / On (S(Qna ﬂn) - S(QEv ﬁE)) (aﬂ?E +ug - vr'ﬂE) dz
Q Q

_;_/Q <1 - QE) (Osp(0E,VE) +up - Vep(op,VE)) d
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= / divyup [p(QE719E) = p(on,9n) + (v — 1oV (s(on, In) — S(QEyﬁE))} dx
Q
—v [ divyug (1 - Q") p(og,VE) dx
Q OFE

Fr—1) /Q 95(on — 05) (5(0m 9n) — s(e5,0))divgup de. (5.13)

Finally, we use the identity

(5; - 1) vp(oE,9E) + (81)(@5&;19}3)(@19 — 0n) + M(ﬁE - 1971))
0

_(’7 - 1)QEQ9E <88(‘QaEQ719E)(QE - Qn) + T(ﬁE - 7~9n)> =

Plugging (5.14) into (5.13) yields the desired estimate. Thus (5.11) reduces to

/ Ean Qnﬂgnaun
Q

+19/ / < S, Vauy,) : Veu, — nnqw"’vxg") : vzﬁ") dz dt

(5.14)

QEa’l?Equ - V[;) (Ta ) dx

_/ / Only - Vv - (un - (uE — Vg)) dx dt
0 Q
0 Q

+C/ /Ean (Qn779'rnaun
0 Q

Note that inequality (5.15) almost completes the proof of Theorem 3.1, where we may take vs = 0. It
only remains to show the desired strong convergence claimed in (3.3). This will be done in Sect. 5.6.

However, in order to prove Theorems 3.4-3.6, where vs # 0, one has to estimate the first two integrals
on the right-hand side of (5.15), which is carried out in the following Sect. 5.5.

o0p, 9, up — v(;) dadt + h(n, o). (5.15)

5.5. Boundary Layer

It remains to control the first two integrals on the right-hand side of (5.15) that represent the effect of
the boundary layer.

5.5.1. Viscous Stress. Similarly to Sect. 4.2, we have

S(Vn, Veuy,) : Vevs do
Q

<Dy +c(@)ptn [ On (1 +92)|Vevs)? do
Q
where

~ 62 0

Consequently, when proving Theorems 3.5 and 3.6, the desired estimate follows from hypothesis (3.5) and
(3.6), respectively. Note that this type of estimates forces us to consider the thickness § of the boundary
layer asymptotically larger than pu,

n n 1
un/ﬂnuwg)mv(sﬁ a:<’L/ (1+ 0L+ dx5“<1+6/ yite dx).
Q Qs

@—>O.
n

Alternatively, in order to show Theorem 3.4 and following Sueur [21], we have (3.4), meaning

VER|[S(Un, Vaun) | L2(0,1)x 0, sr9) — 0.

M
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Setting ., ~ d0,, we get

T
L / /S(ﬂn,vgﬁun) : Vevs dadt
0o Jo

< VialS(On, Vaun)| 2201y x0,, B IVEV Vi, | L2007y %00, sr9) — 0- (5.16)
5.5.2. Convective Term. Finally, we consider

/ Oy - Vv - (u, — (ug — vs))de = / Only, - Vevs - (u, — (ugp — vy)) de in Q.
Q Qs

Recall that
w(t,x) = wy(t,z) + w.(t,z),
w,(t, ) = (w - Vydist[z, 09]) V,dist[z, 0Q], w,(t,z) = w(t,z) — w,(t,x).
Similarly, for a scalar function F', we decompose
V. F =V, F+V,F, V,F = (V,dist[z,09Q] - V. F) V,dist[z, 09].
In accordance with the definition of vg, we get

(Vo)n =0, [[Vovsllee S 1, [Vavslle S (5.17)

~5
Now,

/ Only - Vv - (un - (uE’ - Vé)) dx
Qs

= / Qn(un)n . vaﬁ . (un - (uE - V6)> dz +/ Qn(un)r . vwvé . (un - (uE - Vé)) dx
Qs

Qs

_ / on(tn)n - V(V)r - (tn — (g — vo)) da + / on(Wn)s - Vovs - (U — (ug — vs)) de,
Qs Qs

where, by virtue of (5.17),

/ Qn(un)T ' VTV5 : (un - (uE - V5)) dx
Qs

< [ B (e tum,

In view of (5.4), (0n)n>0, (OnUn)n>0 are equi-integrable; whence

/ / onlug — vslju, — (ug — vs)|dedt - 0as 6 — 0

QE719E711E—V5) d$+/ onlug — vs|[u, — (ug — vs)|dz.
Q

)

uniformly in n.
Thus it remains to handle the integral

[ enaa) Vo) - (an = (g = va)) o
Qs
Let us first look at Theorem 3.5. By Holder’s inequality and (5.17),

/ Qn(un)n . vn(vé)r : (un - (llE - Vts)) dz
Qs

1
<= HQn(un)nHLn?ﬁ}a ) [, — (up — V6)||L77E‘§a (Qs:R3) (5.18)
where 73‘;)& is the critical exponent in the Sobolev—Poincaré inequality
[y SIVaunll, s . (5.19)

L7= =7 (Qs:R3) ™~ @ (Qs;R?)

As u,|gq = 0, Korn’s inequality yields
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2
<V V.u, + un divzunﬂ

24 S
L7=3% (Q5;13)

[[wy |l

9
5:R%) ™ ‘ L5 (Qs;R9)

I e <vzun +V,ul, — 2divzun]l)
LT=2(Q5) 3

L2 (;R)
Note that the constants are independent of ¢ as u,, can be extended to be zero outside €.
Thus going back to (5.18) we deduce

/ Qn(un)n : vn(v6)7' . (lln - (uE — Vg)) dx
Qs

1—a |2

2
n

< %9 gu )l ORI

24 u 24
-9 "LTEsE (O55R%) 824, Onttn)nll | v¥5s (,:m%)
+ eD,,.

8
LT=a (Q5)

in accordance with hypothesis (3.5).
Next, in view of Theorem 3.6 we consider o = 1 and replace the critical exponent
the L2-norm. Consequently,

/Q Qn(un)n . vn(vé)‘r . (un - (uE - Vé)) dx

2L in (5.18) by

1
=3 ”Qn(un)nHm(QS;Rﬂ [up — (up — V6)||L2(95;R3)

1 1

g l[on(un)n HL2(§25 R3) ||un||L2(Q(5 JR3) % ||Qn(un)nHL2(QE;R3)

1 12 1 2

< lentundallzouen Tl + 5 (14 2 leawallaum ) - (620

Now, replacing (5.19) by Hardy—Sobolev inequality, we gain the multiplicative factor ¢,
lanll L2, r) S OlVattnllL2sre)- (5.21)

Thus the final inequality reads

/ Qn(un)n : vn(vé)T ' (un - (uE - Vé)) dx
Qs

o, 1 2 1 2
<@ (5 (14 2 loa @l ) + o ool s

+eD,,

in accordance with (3.6).
Finally, in order to show Theorem 3.4, one has to estimate the left-hand side of (5.18) using hypothesis

(3.4). This works exactly as in Sueur [21].

5.6. Strong Convergence

We have established the convergence

/ Ean (Qna 7-971,7 un
Q

uniformly for a.a. 7 € (0,7T). This obviously yields

/ E (anﬁn»un
Q

In addition, as the energy of the initial data converges and both Euler and the Navier—Stokes—Fourier
system conserve energy, we get

oE,VE,uE *V6n> (r,-) dz — 0asn — oo

QE,ﬁE,uE> (1,-) dz — 0 as n — oc.
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2

This yields the desired strong convergence claimed in (3.3).

1 1 .
/ (2Qn|un2 + Qne(gn,ﬂn)> dz — <9E|UE|2 + QEe(;QE719E)) dz in L*(0, 7).
Q Q
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