Lagrangian schemes with topology changes and well balanced techniques for the solution of hyperbolic partial differential equations

Elena Gaburro

DICAM, University of Trento, Italy

5 November 2020

GOAL: preserving at **discrete level** the physical properties of the **continuum model**

● Lagrangian schemes (ALE) → Galilean and rotational invariance Better track of contact discontinuities and material interfaces, reduced errors on convective terms

Applications: geophysics, magnetohydrodynamics, continuum mechanics

 Well balanced schemes (WB) → Equilibria preservation More accurate simulation of small perturbations

 $\mbox{Applications:}$ astrophysics from Newtonian E+G to relativistic GRMHD and FO-CCZ4

• ALE + WB

Applications: Euler equations with gravity (E+G)

Research domain: mathematical context

Hyperbolic partial differential equations $\partial_t \mathbf{Q} + \nabla \cdot \mathbf{F}(\mathbf{Q}) + \mathbf{B}(\mathbf{Q}) \cdot \nabla \mathbf{Q} = \mathbf{S}(\mathbf{Q}), \ \mathbf{x} \in \Omega \subset \mathbb{R}^3, \ t \in \mathbb{R}_0^+$

- $\mathbf{Q} = (q_1, q_2, \dots, q_{\nu}) \in \Omega_Q \quad \rightarrow \quad \text{vector of conserved variables}$ (densities, velocities, magnetic field, energy, ...)
- $\mathbf{F} = (\mathbf{f}, \mathbf{g}, \mathbf{h}) \longrightarrow \text{non linear flux}$
- $\mathbf{B} = (\,\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3\,) \qquad \qquad \rightarrow \quad \text{non conservative terms}$
 - \rightarrow **non linear** source term

Multiphysics:

S

Research domain: numerical context

Direct ALE WB FV-DG for hyperbolic PDEs

Well balanced Arbitrary-Lagrangian-Eulerian Finite Volume and Discontinous Galerkin schemes for nonlinear hyperbolic equations

$$\begin{split} \mathbf{Q} &= (q_1, q_2, \dots, q_{\nu}) \in \Omega_Q & \to & \text{vector of conserved variables} \\ & \text{(densities, velocities, magnetic field, energy, } \dots) \end{split}$$
 $\mathbf{F} &= (\mathbf{f}, \mathbf{g}, \mathbf{h}) & \to & \text{non linear flux} \\ \mathbf{B} &= (\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3) & \to & \text{non conservative terms} \\ \mathbf{S} & \to & \text{non linear source term} \end{split}$

Multiphysics:

Research domain: numerical context

Direct ALE WB FV-DG for hyperbolic PDEs

High order Finite Volume and Discontinous Galerkin schemes unified framework \rightarrow FV robustness + DG resolution

- $\mathbf{Q} = (q_1, q_2, \dots, q_{\nu}) \in \Omega_Q \quad \rightarrow \quad \text{vector of conserved variables}$ (densities, velocities, magnetic field, energy, ...)
- $\mathbf{F} = (\mathbf{f}, \mathbf{g}, \mathbf{h}) \longrightarrow \text{non linear flux}$
- $\mathbf{B} = (\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3) \qquad \rightarrow \quad \text{non conservative terms}$
 - \rightarrow **non linear** source term

Multiphysics:

S

Direct ALE FV-DG for hyperbolic PDEs

Direct Arbitrary-Lagrangian-Eulerian schemes reduce convective errors + interface tracking + higher quality meshes

 $\begin{aligned} \mathbf{Q} &= (q_1, q_2, \dots, q_{\nu}) \in \Omega_Q & \to & \text{vector of conserved variables} \\ & \text{(densities, velocities, magnetic field, energy, } \dots) \end{aligned}$ $\mathbf{F} &= (\mathbf{f}, \mathbf{g}, \mathbf{h}) & \to & \text{non linear flux} \\ \mathbf{B} &= (\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3) & \to & \text{non conservative terms} \\ \mathbf{S} & \to & \text{non linear source term} \end{aligned}$

Multiphysics:

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

ALE methods: moving domain discretization

Unstructured moving meshes: made of triangles or polygons

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

ALE methods: moving domain discretization

Unstructured moving meshes: made of triangles or polygons

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

ALE methods: moving domain discretization

Unstructured moving meshes: made of triangles or polygons

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

ALE methods: moving domain discretization

Unstructured moving meshes: made of triangles or polygons

ALE methods: moving domain discretization

Degenerated crazy control volumes

Change of shape, new and dead elements

Direct ALE FV-DG scheme

The governing PDE is reformulated in a space-time divergence form

$$\tilde{\nabla} \cdot \tilde{\mathbf{F}} = \mathbf{S}$$
 with $\tilde{\nabla} = (\partial_x, \, \partial_y, \, \partial_z, \, \partial_t)^T$ and $\tilde{\mathbf{F}} = (\mathbf{F}, \, \mathbf{Q})$

and is **integrated in space and time** against a set of test functions φ_k

$$\int_{C_i^n} \varphi_k \tilde{\nabla} \cdot \tilde{\mathbf{F}} \, d\mathbf{x} dt = \int_{C_i^n} \varphi_k \, \mathbf{S} \, d\mathbf{x} dt$$

Direct ALE FV-DG scheme

The governing PDE is reformulated in a space-time divergence form

$$\tilde{
abla} \cdot \tilde{\mathbf{F}} = \mathbf{S}$$
 with $\tilde{
abla} = (\partial_x, \, \partial_y, \, \partial_z, \, \partial_t)^T$ and $\tilde{\mathbf{F}} = (\mathbf{F}, \, \mathbf{Q})$

and is integrated in space and time against a set of test functions φ_k

$$\int_{C_i^n} \varphi_k \tilde{\nabla} \cdot \tilde{\mathbf{F}} \, d\mathbf{x} dt = \int_{C_i^n} \varphi_k \, \mathbf{S} \, d\mathbf{x} dt$$

Then using the Gauss theorem

ALE FV-DG scheme i.e. ALE P_NP_M scheme

$$\int_{\partial \boldsymbol{C}_{i}^{n}} \varphi_{k} \, \tilde{\boldsymbol{\mathsf{F}}} \cdot \tilde{\boldsymbol{\mathsf{n}}} \, dSdt - \int_{\boldsymbol{C}_{i}^{n}} \tilde{\nabla} \varphi_{k} \cdot \tilde{\boldsymbol{\mathsf{F}}} \, d\mathbf{x} dt = \int_{\boldsymbol{C}_{i}^{n}} \varphi_{k} \, \mathbf{\mathsf{S}} \, d\mathbf{x} dt$$

Direct ALE FV-DG scheme

ALE FV-DG scheme

$$\int_{\partial C_i^n} \varphi_k \, \tilde{\mathsf{F}} \cdot \tilde{\mathsf{n}} \, dS dt - \int_{C_i^n} \tilde{\nabla} \varphi_k \cdot \tilde{\mathsf{F}} \, d\mathsf{x} dt = \int_{C_i^n} \varphi_k \, \mathsf{S} \, d\mathsf{x} dt$$

$$\int_{T_{i}^{n+1}} \varphi_{k} \mathbf{Q}_{i}^{n+1} d\mathbf{x} = \int_{T_{i}^{n}} \varphi_{k} \mathbf{Q}_{i}^{n} d\mathbf{x} - \int_{\partial C_{ij}^{n}} \varphi_{k} \mathcal{F}(\mathbf{q}_{h}^{-}, \mathbf{q}_{h}^{+}) \cdot \tilde{\mathbf{n}} dS dt$$

$$+ \int_{C_{i}^{n}} \tilde{\nabla} \varphi_{k} \cdot \tilde{\mathbf{F}}(\mathbf{q}_{h}) d\mathbf{x} dt$$

$$+ \int_{C_{i}^{n}} \varphi_{k} \tilde{\mathbf{S}}(\mathbf{q}_{h}) d\mathbf{x} dt$$
Geometric conservation law (GCL) respected by construction

Υ

Direct ALE FV-DG scheme

ALE FV-DG scheme

$$\int_{\partial C_i^n} \varphi_k \, \tilde{\mathsf{F}} \cdot \tilde{\mathsf{n}} \, dS dt - \int_{C_i^n} \tilde{\nabla} \varphi_k \cdot \tilde{\mathsf{F}} \, d\mathsf{x} dt = \int_{C_i^n} \varphi_k \, \mathsf{S} \, d\mathsf{x} dt$$

$$\int_{T_{i}^{n+1}} \varphi_{k} \mathbf{Q}_{i}^{n+1} d\mathbf{x} = \int_{T_{i}^{n}} \varphi_{k} \mathbf{Q}_{i}^{n} d\mathbf{x} - \int_{\partial C_{ij}^{n}} \varphi_{k} \mathcal{F}(\mathbf{q}_{h}^{-}, \mathbf{q}_{h}^{+}) \cdot \tilde{\mathbf{n}} dS dt$$

$$+ \int_{C_{i}^{n}} \tilde{\nabla} \varphi_{k} \cdot \tilde{\mathbf{F}}(\mathbf{q}_{h}) d\mathbf{x} dt$$

$$+ \int_{C_{i}^{n}} \varphi_{k} \tilde{\mathbf{S}}(\mathbf{q}_{h}) d\mathbf{x} dt$$

$$\varphi_{k} = 1, \ \mathbf{Q}_{i} = \text{constant} \rightarrow \mathbf{FV}$$

Direct ALE FV-DG scheme

ALE FV-DG scheme

$$\int_{\partial C_i^n} \varphi_k \, \tilde{\mathbf{F}} \cdot \tilde{\mathbf{n}} \, dS dt - \int_{C_i^n} \tilde{\nabla} \varphi_k \cdot \tilde{\mathbf{F}} \, d\mathbf{x} dt = \int_{C_i^n} \varphi_k \, \mathbf{S} \, d\mathbf{x} dt$$

$$\int_{T_{i}^{n+1}} \varphi_{k} \mathbf{Q}_{i}^{n+1} d\mathbf{x} = \int_{T_{i}^{n}} \varphi_{k} \mathbf{Q}_{i}^{n} d\mathbf{x} - \int_{\partial C_{ij}^{n}} \varphi_{k} \mathcal{F} \left(\mathbf{q}_{h}^{-}, \mathbf{q}_{h}^{+} \right) \cdot \tilde{\mathbf{n}} dS dt$$

$$+ \int_{C_{i}^{n}} \tilde{\nabla} \varphi_{k} \cdot \tilde{\mathbf{F}} (\mathbf{q}_{h}) d\mathbf{x} dt$$

$$+ \int_{C_{i}^{n}} \varphi_{k} \tilde{\mathbf{S}} (\mathbf{q}_{h}) d\mathbf{x} dt$$

$$\varphi_{k} = poly, \ \mathbf{Q}_{i}^{n/n+1} = \sum_{l=1}^{N} \varphi_{l} (\mathbf{x}) \hat{\mathbf{u}}_{l,i}^{n/n+1} \rightarrow \mathbf{DG}$$

Direct ALE FV-DG scheme

ALE FV-DG scheme

$$\int_{\partial C_i^n} \varphi_k \, \tilde{\mathbf{F}} \cdot \tilde{\mathbf{n}} \, dS dt - \int_{C_i^n} \tilde{\nabla} \varphi_k \cdot \tilde{\mathbf{F}} \, d\mathbf{x} dt = \int_{C_i^n} \varphi_k \, \mathbf{S} \, d\mathbf{x} dt$$

$$\int_{T_{i}^{p+1}} \varphi_{k} \mathbf{Q}_{i}^{n+1} d\mathbf{x} = \int_{T_{i}^{n}} \varphi_{k} \mathbf{Q}_{i}^{n} d\mathbf{x} - \int_{\partial C_{ij}^{n}} \varphi_{k} \mathcal{F} \left(\mathbf{q}_{h}^{-}, \mathbf{q}_{h}^{+} \right) \cdot \tilde{\mathbf{n}} dS dt$$

$$+ \int_{C_{i}^{n}} \tilde{\nabla} \varphi_{k} \cdot \tilde{\mathbf{F}} (\mathbf{q}_{h}) d\mathbf{x} dt$$

$$+ \int_{C_{i}^{n}} \varphi_{k} \tilde{\mathbf{S}} (\mathbf{q}_{h}) d\mathbf{x} dt$$
ALE Numerical Flux: Riemann solver

o'

ALE numerical flux

 $\mathcal{F}(\mathbf{q}_h^-, \mathbf{q}_h^+) \cdot \tilde{\mathbf{n}}$ represents the ALE numerical flux between two neighbors across the intermediate space-time lateral surface ∂C_{ii}^n

Example: Rusanov -type ALE scheme

$$\mathcal{F}(\mathbf{q}_{h}^{-},\mathbf{q}_{h}^{+})\cdot\tilde{\mathbf{n}}=\frac{1}{2}\left(\tilde{\mathbf{F}}(\mathbf{q}_{h}^{+})+\tilde{\mathbf{F}}(\mathbf{q}_{h}^{-})\right)\cdot\tilde{\mathbf{n}}_{ij}-\frac{1}{2}\lambda_{max}\left(\mathbf{q}_{h}^{+}-\mathbf{q}_{h}^{-}\right)$$

 $\bullet~A^V_n(Q)$ is the ALE Jacobian matrix w.r.t. the normal direction in space, i.e.

$$\mathbf{A}_{\mathbf{n}}^{\mathbf{V}}(\mathbf{Q}) = \left(\sqrt{\tilde{n}_{x}^{2} + \tilde{n}_{y}^{2}}\right) \left[\frac{\partial \mathbf{F}}{\partial \mathbf{Q}} \cdot \mathbf{n} - (\mathbf{V} \cdot \mathbf{n}) \mathbf{I}\right], \quad \mathbf{n} = \frac{(\tilde{n}_{x}, \tilde{n}_{y})^{T}}{\sqrt{\tilde{n}_{x}^{2} + \tilde{n}_{y}^{2}}}$$

with $\boldsymbol{\mathsf{I}}$ representing the identity matrix and $\boldsymbol{\mathsf{V}}\cdot\boldsymbol{n}$ denoting the local normal mesh velocity.

Direct ALE FV-DG scheme

ALE FV-DG scheme

$$\int_{\partial C_i^n} \varphi_k \, \tilde{\mathbf{F}} \cdot \tilde{\mathbf{n}} \, dS dt - \int_{C_i^n} \tilde{\nabla} \varphi_k \cdot \tilde{\mathbf{F}} \, d\mathbf{x} dt = \int_{C_i^n} \varphi_k \, \mathbf{S} \, d\mathbf{x} dt$$

$$\int_{T_{i}^{n+1}} \varphi_{k} \mathbf{Q}_{i}^{n+1} d\mathbf{x} = \int_{T_{i}^{n}} \varphi_{k} \mathbf{Q}_{i}^{n} d\mathbf{x} - \int_{\partial C_{ij}^{n}} \varphi_{k} \mathcal{F}(\mathbf{q}_{h}^{-}, \mathbf{q}_{h}^{+}) \cdot \tilde{\mathbf{n}} dS dt$$

$$+ \int_{C_{i}^{n}} \tilde{\nabla} \varphi_{k} \cdot \tilde{\mathbf{F}}(\mathbf{q}_{h}) d\mathbf{x} dt$$

$$+ \int_{C_{i}^{n}} \varphi_{k} \tilde{\mathbf{S}}(\mathbf{q}_{h}) d\mathbf{x} dt$$
High order polynomial in space and time

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

FV high order in space: CWENO

$$\mathbf{FV} \quad \mathbf{Q}_i^n \longrightarrow \mathbf{w}_h(\mathbf{x}, t^n) = \sum_{l=1}^{\mathcal{M}} \psi_l(\mathbf{x}) \hat{\mathbf{w}}_{l,i}^n \quad \mathcal{M} = \frac{1}{d!} \prod_{k=1}^d (M+k)$$

High order polynomial in space

impose integral conservation on each element of the stencil

$$\frac{1}{|\mathcal{T}_j^n|}\int_{\mathcal{T}_j^n}\psi_l(\mathbf{x})\hat{\mathbf{w}}_{l,i}^{n,s}=\mathbf{Q}_j^n,\quad\forall\mathcal{T}_j^n\in S_i^s$$

CWENO:

one central big stencil and several smaller stencils

and compute their nonlinear combination

$$\hat{oldsymbol{w}}_{l,i}^n = \sum_s \omega_s \hat{oldsymbol{w}}_{l,i}^{n,s}, \quad ext{with } \omega_s ext{ nonlinear CWENO weights}$$

DG high order in space

$$\mathsf{DG} \quad \mathbf{Q}_i^n \ \to \ \mathbf{u}_h(\mathbf{x},t^n) = \sum_{\ell=1}^{\mathcal{N}} \varphi_\ell(\mathbf{x},t) \hat{\mathbf{u}}_\ell^n \quad \mathcal{N} = \frac{1}{d!} \prod_{k=1}^d (N+k)$$

 $\varphi(\mathbf{x}, t) \rightarrow \mathbf{Modal \ basis}$: hierarchical Dubiner-type high order polynomial functions in space and moving in time

11

$$\left(\int_{T_i^{n+1}} \varphi_k \varphi_l d\mathbf{x} \right) \, \hat{\mathbf{u}}_l^{n+1} = \left(\int_{T_i^n} \varphi_k \varphi_l d\mathbf{x} \right) \hat{\mathbf{u}}_l^n - \int_{\partial C_{ij}^n} \varphi_k \mathcal{F} \left(\mathbf{q}_h^-, \mathbf{q}_h^+ \right) \cdot \tilde{\mathbf{n}} \, dS dt$$
$$+ \int_{C_i^n} \tilde{\nabla} \varphi_k \cdot \tilde{\mathbf{F}}(\mathbf{q}_h) \, d\mathbf{x} dt + \int_{C_i^n} \tilde{\mathbf{S}}(\mathbf{q}_h) \, d\mathbf{x} dt$$

High order in time: ADER

High order in TIME \longrightarrow **ADER** one-step **local** Galerkin predictor

$$\mathbf{q}_{h}(\mathbf{x},t) = \sum_{l=1}^{\mathcal{L}} \theta_{l}(\mathbf{x},t) \hat{\mathbf{q}}_{l,i}^{n} \longrightarrow \text{Picard iteration}$$

Integral version of the PDE

$$\int_{\mathcal{T}_i^n} \theta_k(\mathbf{q}_h - \mathbf{w}_h) - \int_{\mathcal{C}_i^n} \frac{\partial \theta_k}{\partial t} \mathbf{q}_h + \int_{\mathcal{C}_i^n} \theta_k \nabla \cdot \mathbf{F}(\mathbf{q}_h) = \int_{\mathcal{C}_i^n} \theta_k \mathbf{S}(\mathbf{q}_h)$$

• $\theta_I(\mathbf{x}, t) \rightarrow \mathbf{modal}$ basis functions in space and time

•
$$\mathcal{L} = \frac{1}{d!} \prod_{k=1}^{d+1} (M+k)$$

High order in time: ADER

High order in TIME \longrightarrow **ADER** one-step **local** Galerkin predictor

$$\mathbf{q}_{h}(\mathbf{x},t) = \sum_{l=1}^{\mathcal{L}} \theta_{l}(\mathbf{x},t) \hat{\mathbf{q}}_{l,i}^{n} \longrightarrow \text{Picard iteration}$$

Integral version of the PDE

$$\int_{\mathbf{T}_i^n} \theta_k(\mathbf{q}_h - \mathbf{u}_h) - \int_{\mathbf{C}_i^n} \frac{\partial \theta_k}{\partial t} \mathbf{q}_h + \int_{\mathbf{C}_i^n} \theta_k \nabla \cdot \mathbf{F}(\mathbf{q}_h) = \int_{\mathbf{C}_i^n} \theta_k \mathbf{S}(\mathbf{q}_h)$$

• $\theta_I(\mathbf{x}, t) \rightarrow \mathbf{modal}$ basis functions in space and time

•
$$\mathcal{L} = \frac{1}{d!} \prod_{k=1}^{d+1} (M+k)$$

High order in time: ADER vs RK

ADER: one-step predictor

• Completely local procedure suitable for efficient parallelization

Error analysis: Modified equation
$$\partial_t q + a \partial_x q = \sum_\ell e_\ell \frac{\partial q^\ell}{\partial x^\ell}$$
, $c = \frac{\Delta t}{\Delta x} \leq 1$

ADER
$$\mathcal{O}4$$
Runge-Kutta $\mathcal{O}4$ $e_{1,2,3,4} = 0, e_5 = \frac{a\Delta x^4}{120}(c^2-1)(c^2-4)$ $e_{1,2,3,4} = 0, e_5 = \frac{a\Delta x^4}{120}(c-\sqrt{2})^2(c+\sqrt{2})^2$ $e_6 = \frac{a\Delta x^5}{144}c(c^2-1)(c^2-4)$ $e_6 = \frac{a\Delta x^5}{144}c^5$

i

DG: A posteriori sub-cell FV limiter

Problem \rightarrow close to discontinuities Gibbs phenomenon occurs

 $\textbf{Solution} \rightarrow use \; FV$ in their vicinity without destroy the sub-cell resolution, and keep high accuracy everywhere else

- $\bullet \ \mathsf{Projection} \ \mathsf{DG} \to \mathsf{FV}$
- A posteriori admissibility criteria
- FV scheme on troubled cells
- Reconstruction $FV \rightarrow DG$

- ★ 1st step: Build space-time connectivity
- ★ 2nd step: Adapt P_NP_M scheme
 - Predictor
 - Corrector

- ★ 1st step: Build space-time connectivity
- ★ 2nd step: Adapt P_NP_M scheme
 - Predictor
 - Corrector

- ★ 1st step: Build space-time connectivity
- ★ 2nd step: Adapt P_NP_M scheme
 - Predictor
 - Corrector

- ★ 1st step: Build space-time connectivity
- ★ 2nd step: Adapt P_NP_M scheme
 - Predictor
 - Corrector

Consecutive sliver elements

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

Sliver elements: high order in time

$$\mathbf{q}_{h}(\mathbf{x},t) = \sum_{l=1}^{\mathcal{L}} \theta_{l}(\mathbf{x},t) \hat{\mathbf{q}}_{l,i}^{n} \rightarrow \boxed{-\int_{C_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} + \int_{T_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} - \frac{?}{\mathbf{u}_{h}}} + \int_{C_{i}^{n}} \frac{\partial \theta_{k} \nabla \cdot \mathbf{F}(\mathbf{q}_{h})}{\int_{C_{i}^{n}} \frac{\partial \theta_{k} \mathbf{S}(\mathbf{q}_{h})}{\partial t}} + \int_{C_{i}^{n}} \frac{\partial \theta_{k} \nabla \cdot \mathbf{F}(\mathbf{q}_{h})}{\partial t} = \int_{C_{i}^{n}} \frac{\partial \theta_{k} \mathbf{S}(\mathbf{q}_{h})}{\partial t} + \int_{C_{i}^{n}} \frac{\partial \theta_{k} \nabla \cdot \mathbf{F}(\mathbf{q}_{h})}{\partial t} = \int_{C_{i}^{n}} \frac{\partial \theta_{k} \mathbf{S}(\mathbf{q}_{h})}{\partial t} + \int_{C_$$

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

Sliver elements: high order in time

$$\mathbf{q}_{h}(\mathbf{x},t) = \sum_{l=1}^{\mathcal{L}} \theta_{l}(\mathbf{x},t) \hat{\mathbf{q}}_{l,i}^{n} \rightarrow \boxed{-\int_{C_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} + \int_{T_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} - \frac{2}{\mathbf{q}_{h}} + \int_{C_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} \nabla \cdot \mathbf{F}(\mathbf{q}_{h}) = \int_{C_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} \mathbf{S}(\mathbf{q}_{h})$$

$$\implies = -\int_{C_i^n} \mathbf{q}_h \frac{\partial \theta_k}{\partial t} + \int_{\partial C_i^n} \theta_k \, \mathbf{q}_h \cdot \tilde{\mathbf{n}}$$

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

Sliver elements: high order in time

$$\mathbf{q}_{h}(\mathbf{x},t) = \sum_{l=1}^{\mathcal{L}} \theta_{l}(\mathbf{x},t) \hat{\mathbf{q}}_{l,i}^{n} \rightarrow \boxed{-\int_{C_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} + \int_{T_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} - \frac{2}{\mathbf{q}_{h}} + \int_{C_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} \nabla \cdot \mathbf{F}(\mathbf{q}_{h}) = \int_{C_{i}^{n}} \frac{\partial \theta_{k}}{\partial t} \mathbf{S}(\mathbf{q}_{h})$$

$$\implies = -\int_{C_i^n} \mathbf{q}_h \frac{\partial \theta_k}{\partial t} + \int_{\partial C_i^n} \theta_k \, \mathbf{q}_h \cdot \tilde{\mathbf{n}} \\ -\int_{C_i^n} \mathbf{q}_h^- \frac{\partial \theta_k}{\partial t} + \int_{\partial C_i^n} \theta_k \, (\mathbf{q}_h^+ - \mathbf{q}_h^-) \cdot \tilde{\mathbf{n}}^- \\ \mathbf{q}_h^+ \longrightarrow \text{ blue sub volumes, known} \\ \mathbf{q}_h^- \longrightarrow \text{ red sub volume, unknown}$$

Space-time predictor for sliver elements

$$-\int_{C_i^n} \mathbf{q}_h^- \frac{\partial \theta_k}{\partial t} + \int_{\partial C_i^n} \theta_k \left(\mathbf{q}_h^+ - \mathbf{q}_h^- \right) \cdot \tilde{\mathbf{n}}^- + \int_{C_i^n} \theta_k \nabla \cdot \mathbf{F}(\mathbf{q}_h^-) = \int_{C_i^n} \theta_k \mathbf{S}(\mathbf{q}_h^-)$$

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

Sliver elements: flux update

Quadrature points

Sliver elements: flux update

- Flux computation (from blue to red)
- Flux redistribution (from red to 1st blue)

Sliver elements: flux update

- Flux computation (from blue to red)
- Flux redistribution (from red to 1st blue)

$$|\mathcal{T}_{S}^{n+1}|\mathbf{Q}_{S}^{n+1} = |\mathcal{T}_{S}^{n}|\mathbf{Q}_{S}^{n} - \mathcal{F}\left(\mathbf{q}_{h}^{S},\mathbf{q}_{h}^{+}\right)\cdot\tilde{\mathbf{n}}$$
- Flux computation (from blue to red)
- Flux redistribution (from red to 1st blue)

$$0 \cdot \mathbf{Q}_{\mathbf{S}}^{n+1} = 0 \cdot \mathbf{Q}_{\mathbf{S}}^{n} - \mathcal{F}\left(\mathbf{q}_{h}^{\mathbf{S}}, \mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}}$$

- Flux computation (from blue to red)
- Flux redistribution (from red to 1st blue)

$$\mathbf{0} = \mathbf{0} - \mathcal{F}\left(\mathbf{q}_{h}^{\mathbf{S}},\mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}}$$

- Flux computation (from blue to red)
- Flux redistribution (from red to 1st blue)

$$\mathbf{0} = \mathbf{0} - \mathcal{F}\left(\mathbf{q}_{h}^{\mathbf{S}}, \mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}}$$
$$|\mathcal{T}_{i}^{n+1}|\mathbf{Q}_{i}^{n+1} = |\mathcal{T}_{i}^{n}|\mathbf{Q}_{i}^{n} - \mathcal{F}\left(\mathbf{q}_{h}^{i}, \mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}}$$

- Flux computation (from blue to red)
- Flux redistribution (from red to 1st blue)

$$\mathbf{0} = \mathbf{0} - \mathcal{F}\left(\mathbf{q}_{h}^{\mathsf{S}}, \mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}}$$

+ $|\mathcal{T}_{i}^{n+1}|\mathbf{Q}_{i}^{n+1} = |\mathcal{T}_{i}^{n}|\mathbf{Q}_{i}^{n} - \mathcal{F}\left(\mathbf{q}_{h}^{i}, \mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}}$
= $|\mathcal{T}_{i}^{n+1}|\mathbf{Q}_{i}^{n+1} = |\mathcal{T}_{i}^{n}|\mathbf{Q}_{i}^{n} - \mathcal{F}\left(\mathbf{q}_{h}^{i}, \mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}} - \mathcal{F}\left(\mathbf{q}_{h}^{\mathsf{S}}, \mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}}$

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

High order Lagrangian trajectories for generators

Generators trajectories

$$\mathbf{x}_{\text{gen}}^{n+1} = \mathbf{x}_{\text{gen}}^n + \Delta t \, \mathbf{v}(\mathbf{x}_{\text{gen}}^n)$$

High order Lagrangian trajectories for generators

Generators trajectories

$$\mathbf{x}_{\text{gen}}^{n+1} = \mathbf{x}_{\text{gen}}^n + \Delta t \, \mathbf{v}(\mathbf{x}_{\text{gen}}^n)$$

Integrated with high order of accuracy by a Taylor expansion

$$\mathbf{x}_{\text{gen}}^{n+1} = \mathbf{x}_{\text{gen}}^n + \Delta t \frac{d\mathbf{x}}{dt} + \frac{\Delta t^2}{2} \frac{d^2 \mathbf{x}}{dt^2} + \frac{\Delta t^3}{6} \frac{d^3 \mathbf{x}}{dt^3} + \frac{\Delta t^4}{24} \frac{d^4 \mathbf{x}}{dt^4} + \mathcal{O}(5),$$

where

• **spatial derivatives** are replaced, via the *Cauchy-Kovalevskaya* procedure, using the trajectory equation

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}(\mathbf{x}(t)),$$

• and **v** is recovered from conserved variables represented through high order **modal polynomials**

Mesh optimization techniques - in brief

Ingredients

- High order Lagrangian position xⁿ⁺¹_{gen} ⇒ optimal in following the flow of the fluid
- x^{*}_{ci} prescribed by a smoothing technique (Lloyd-like smoothing or Laplacian smoothing) ⇒ optimal in the sense of mesh quality

$$\hat{\mathbf{x}}_{\mathsf{gen}}^{n+1} = (1-\mu) \, \mathbf{x}_{\mathsf{gen}}^{n+1} + \mu \, \mathbf{x}_{\mathsf{c}_i}^*, \quad \mathsf{with} \ \mu = \min\left(1, \ \sqrt{\frac{U_* \, \Delta t}{\Delta s} \, \mathcal{F}}\right)$$

- U_{*} maximum of fluid velocity
- Δt timestep size, Δs min of mesh size,
- \mathcal{F} nondimensional *smoothing parameter*: fixes smoothing strength

High order on Voronoi elements - Shu vortex

Euler equations: stationary rotating vortex

Domain: $[x, y] \in [-5, 5] \times [-5, 5]$ **Data:** $\epsilon = 5, \gamma = 1.4, r = \sqrt{x^2 + y^2}$

Initial conditions:

$$\begin{cases} \delta T = -\frac{(\gamma-1)\epsilon^2}{8\gamma\pi^2} e^{1-r^2} \\ \rho = 1 + d\rho, \ \delta \rho = (1+\delta T)^{\frac{1}{\gamma-1}} - 1 \\ u = 0 + \partial u, \ \partial u = -y \frac{\epsilon}{2\pi} e^{\frac{1-r^2}{2}} \\ v = 0 + \partial v, \ \partial v = x \frac{\epsilon}{2\pi} e^{\frac{1-r^2}{2}} \\ p = 1 + \partial p, \ \delta p = (1+\delta T)^{\frac{\gamma}{\gamma-1}} - 1 \end{cases}$$

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

Other Lagrangian methods dealing with vortical flows

• Shashkov & Morgan - USA

• Maire & Vilar - CEA

My network before top. changes

• Standard ALE approach

• Standard ALE + Voronoi

Elena Gaburro

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

High order on Voronoi elements - Shu vortex

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

High order on Voronoi elements - Shu vortex

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

High order on Voronoi elements - Shu vortex

FV

-												
	$P_0 F$	$\mathcal{P}_1 \to \mathcal{O}2$		P_0P	$P_2 ightarrow \mathcal{O}3$		P_0F	$P_3 \rightarrow \mathcal{O}4$		P_0F	$\mathcal{P}_4 ightarrow \mathcal{O}5$	
	hf	$\epsilon(\rho)_{L_1}$	\mathcal{O}	hf	$\epsilon(\rho)_{L_1}$	\mathcal{O}	hf	$\epsilon(\rho)_{L_1}$	\mathcal{O}	hf	$\epsilon(\rho)_{L_1}$	\mathcal{O}
	3.8E-01	3.1E-02	-	3.8E-01	2.9E-02	-	1.9E-01	1.6E-03	-	4.7E-01	4.0e-02	-
	2.0E-01	6.2E-03	2.4	1.9E-01	4.6E-03	2.8	1.3E-01	4.1E-04	3.4	3.8E-01	1.4e-02	4.8
	1.3E-01	2.4E-03	2.4	1.3E-01	1.4E-03	2.9	9.9E-02	1.4E-04	3.8	1.3E-01	2.5e-04	3.8
	9.9E-02	1.3E-03	2.3	9.9E-02	6.1E-04	3.0	7.9E-02	6.0E-05	3.9	9.9E-02	6.7e-05	4.6
_	8.0E-02	7.8E-04	2.2	7.9E-02	3.1E-04	2.0	6.7E-03	3.0E-05	3.8	7.9E-02	2.4e-05	4.7

DG

P_1F	$P_1 \rightarrow O2$		P_2P	$P_2 \rightarrow \mathcal{O}3$		P_3F	$P_3 \rightarrow \mathcal{O}4$		P_4F	$P_4 ightarrow \mathcal{O}5$	
h _f	$\epsilon(\rho)_{L_1} C$)	h _f	$\epsilon(\rho)_{L_1}$	\mathcal{O}	h _f	$\epsilon(\rho)_{L_1}$	\mathcal{O}	h _f	$\epsilon(\rho)_{L_1}$	\mathcal{O}
7.5E-01	6.3E-03 -		7.5E-01	1.4E-02	-	6.1E-01	1.4E-03	-	1.4E-00	1.1e-02	-
6.1E-01	4.2E-04 1.	9	6.1E-01	7.2E-03	3.4	5.2E-01	7.4E-04	3.7	1.0E-00	2.0e-03	5.9
3.2E-01	9.9E-04 2.	2	3.2E-01	9.3E-04	3.2	4.7E-01	4.1E-04	5.9	9.8E-01	1.6e-03	4.7
2.2E-01	4.4E-04 2.	0	2.2E-01	2.8E-04	3.0	3.2E-01	7.7E-05	4.4	8.9E-01	9.0e-04	5.9
1.6E-01	2.5E-05 2.	0	1.6E-01	1.2E-04	3.0	2.2E-01	1.6E-05	4.0	8.5E-01	7.0e-04	5.1

Table: Isentropic vortex. The L_1 error norms refer to the variable ρ at time t = 0.5.

High order on Voronoi elements: Sedov test case

Triple point problem

Triple point problem

Triple point problem

Rayleigh-Taylor instability

(adding a gravity source term)

Elena Gaburro

High order ALE FV-DG

High order on Voronoi elements: MHD equations

MHD equations

$$\partial_{t} \mathbf{Q} + \nabla \cdot \mathbf{F}(\mathbf{Q}) = \mathbf{S}(\mathbf{Q})$$

$$\begin{pmatrix} \rho u \\ \rho u \\ \rho u \\ \rho v \\ \rho E \\ B_{x} \\ B_{y} \\ \Phi \end{pmatrix} + \partial_{x} \begin{pmatrix} \rho u \\ \rho u^{2} + (\rho + \frac{1}{8\pi} \mathbf{B}^{2}) + \frac{B_{x} B_{x}}{4\pi} \\ \rho u v - \frac{B_{y} B_{x}}{4\pi} \\ u (\rho E + p + \frac{1}{8\pi} \mathbf{B}^{2}) - \frac{B_{x} (v \cdot \mathbf{B})}{4\pi} \\ B_{x} u - u B_{x} + \Phi \\ B_{y} u - v B_{x} \\ c_{h}^{2} B_{x} \end{pmatrix} + \partial_{y} \begin{pmatrix} \rho v \\ \rho u v - \frac{B_{y} B_{x}}{4\pi} \\ \rho v^{2} + (\rho + \frac{1}{8\pi} \mathbf{B}^{2}) + \frac{B_{y} B_{y}}{4\pi} \\ \rho v^{2} + (\rho + \frac{1}{8\pi} \mathbf{B}^{2}) - \frac{B_{y} (v \cdot \mathbf{B})}{4\pi} \\ B_{x} v - u B_{y} \\ B_{y} v - v B_{y} + \Phi \\ c_{h}^{2} B_{y} \end{pmatrix} = \mathbf{0}$$

$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \left(u^{2} + v^{2} \right) - \frac{\mathbf{B}^{2}}{8\pi} \right) = \mathbf{0}$$

 ρ density, $\mathbf{u} = (u, v)$ velocities, p pressure, E total energy, **B** magnetic field, Φ additional variable, c_h divergence cleaning speed

High order on Voronoi elements: smooth MHD vortex

Initial condition:

$$\mathbf{V}(\mathbf{x},0) = (1, 1 + \delta u, 1 + \delta v, 0, 1 + \delta p, \delta B_x, \delta B_y, \delta B_z, 0),$$

with $\delta \mathbf{v} = (\delta u, \delta v, \delta w)$, $\delta \mathbf{B} = (\delta B_x, \delta B_y, \delta B_z)$ and

$$\delta \mathbf{v} = \frac{\kappa}{2\pi} e^{\frac{1}{2}(1-r^2)} \mathbf{e}_z \times \mathbf{r} \quad \delta \mathbf{B} = \frac{\mu}{2\pi} e^{\frac{1}{2}(1-r^2)} \mathbf{e}_z \times \mathbf{r}, \quad \delta \rho = \frac{1}{64q\pi^3} \left(\mu^2 (1-r^2) - 4\kappa^2 \pi \right) e^{(1-r^2)}$$

Data:
$$\mathbf{e}_{z} = (0, 0, 1)$$
, $c_{h} = 1$, $q = \frac{1}{2}$, $\kappa = 1$, $\mu = \sqrt{4\pi}$ **DG** 3^{*rd*} order

Statistics

Method	timesteps	slivers	restarts	Mesh%	$P_N P_M$ st%	on sliver%
DG $\mathcal{O}(4)$	62741	21369	3	0.17	97.39	7.5E-4

• Density and pressure scatter profiles after 3 turns

Moving domain discretization Direct ALE FV-DG scheme Voronoi meshes with topology changes

High order on Voronoi elements

FV

P_0I	$P_1 \rightarrow O2$		$P_0 P$	$P_2 \rightarrow \mathcal{O}3$		$P_0 P$	$P_3 \rightarrow \mathcal{O}4$		P_0	$P_4 \rightarrow \mathcal{O}5$	
hf	$\epsilon(\rho)_{L_1}$	\mathcal{O}	hf	$\epsilon(\rho)_{L_1}$	\mathcal{O}	hf	$\epsilon(\rho)_{L_1}$	\mathcal{O}	hf	$\epsilon(\rho)_{L_1}$	\mathcal{O}
4.6E-01	3.3E-02	-	3.2E-01	1.0E-02	-	4.7E-01	2.1E-02	-	6.0E-01	3.6e-0.2	-
3.9E-01	1.6E-02	1.8	2.4E-01	5.5E-03	2.3	3.2E-01	6.0E-03	3.2	5.8E-01	3.0e-0.2	5.8
2.4E-01	8.9E-03	2.3	1.9E-01	2.7E-03	3.3	2.4E-01	2.0E-03	3.9	5.6E-01	2.7e-0.2	3.6
1.9E-01	5.3E-03	2.4	1.6E-01	1.5E-03	3.1	2.2E-01	1.3E-03	3.6	5.5E-01	2.3e-0.2	5.9
1.6E-01	3.4E-03	2.5	1.4E-01	1.0E-03	2.9	1.9E-01	8.1E-04	4.8	5.2E-01	1.8e-0.2	4.8

DG

$P_1 P_1$	$P_1 \rightarrow O2$		$P_2 P_2$	$P_2 \rightarrow O3$		$P_3 P_3$	$P_3 \rightarrow \mathcal{O}4$		$P_4 P_4$	$P_4 ightarrow \mathcal{O}5$	
h _f	$\epsilon(\rho)_{L_1}$	\mathcal{O}	h _f	$\epsilon(\rho)_{L_1}$	\mathcal{O}	h _f	$\epsilon(\rho)_{L_1}$	\mathcal{O}	h _f	$\epsilon(\rho)_{L_1}$	\mathcal{O}
4.7E-01	8.5E-03	-	6.1E-01	2.8E-03	-	8.8E-01	1.1E-03	-	1.6E-00	6.9e-0.3	-
3.2E-01	3.2E-04	2.5	4.7E-01	1.3E-03	2.8	7.5E-01	6.2E-04	3.5	6.1E-01	1.3e-0.4	4.1
2.8E-01	2.1E-04	2.9	3.8E-01	7.3E-04	2.7	6.1E-01	3.1E-04	3.4	5.2E-01	4.7e-0.5	5.8
2.4E-01	1.6E-04	2.0	3.5E-01	5.6E-04	3.6	5.5E-01	1.9E-04	4.3	4.9E-01	3.1e-0.5	8.1
1.9E-01	9.7E-05	2.4	3.2E-01	4.1E-04	3.0	3.2E-01	2.3E-05	3.9	4.7E-01	2.4e-0.5	5.3

Table: MHD vortex. The L_1 error norms refer to the variable ρ at time t = 1.0.

Rapidly rotating fluid of high density embedded in a fluid at rest with low density, both subject to an initially constant magnetic field

$$\mathbf{IC} : \begin{cases} \rho = 10, \ \omega = 10 \text{ if } 0 \le r \le 0.1 \\ \rho = 1, \ \omega = 0 \quad \text{otherwise} \\ P = 1 \\ \mathbf{B} = (2.5, 0, 0) \quad t_f = 0.25 \end{cases}$$

FV $\mathcal{O}(4)$, P_0P_3 , coarse

Rapidly rotating fluid of high density embedded in a fluid at rest with low density, both subject to an initially constant magnetic field

$$\mathbf{IC} : \begin{cases} \rho = 10, \ \omega = 10 \text{ if } 0 \le r \le 0.1 \\ \rho = 1, \ \omega = 0 \quad \text{otherwise} \\ P = 1 \\ \mathbf{B} = (2.5, 0, 0) \quad t_f = 0.25 \end{cases}$$

FV $\mathcal{O}(4)$, P_0P_3 , fine

Rapidly rotating fluid of high density embedded in a fluid at rest with low density, both subject to an initially constant magnetic field

$$\mathbf{IC} : \begin{cases} \rho = 10, \ \omega = 10 \text{ if } 0 \le r \le 0.1 \\ \rho = 1, \ \omega = 0 \quad \text{otherwise} \\ P = 1 \\ \mathbf{B} = (2.5, 0, 0) \quad t_f = 0.25 \end{cases}$$

DG $\mathcal{O}(3)$, P_2P_2 , coarse

Rapidly rotating fluid of high density embedded in a fluid at rest with low density, both subject to an initially constant magnetic field

$$\mathbf{IC} : \begin{cases} \rho = 10, \ \omega = 10 \text{ if } 0 \le r \le 0.1 \\ \rho = 1, \ \omega = 0 \quad \text{otherwise} \\ P = 1 \\ \mathbf{B} = (2.5, 0, 0) \quad t_f = 0.25 \end{cases}$$

DG $\mathcal{O}(3)$, P_2P_2 , fine

Well balanced schemes

WB for Euler with gravity on nonconforming moving meshes WB for general relativity - preliminary results

 τ_{2}^{n+1}

- adz

Direct ALE FV scheme with nonconservative products

ALE FV-DG scheme

$$\int_{\partial C_i^n} \left(\tilde{\mathbf{F}} + \tilde{\mathbf{D}} \right) \cdot \tilde{\mathbf{n}} + \int_{C_i^n \setminus \partial C_i^n} \tilde{\mathbf{B}} \cdot \tilde{\nabla} \mathbf{Q} = \int_{C_i^n} \mathbf{S}$$

$$\int_{T_{i}^{n+1}} \mathbf{Q}_{i}^{n+1} = \int_{T_{i}^{n}} \mathbf{Q}_{i}^{n} - \int_{\partial C_{ij}^{n}} \mathcal{F} + \mathcal{D}\left(\mathbf{q}_{h}^{-}, \mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}}$$

$$+ \int_{C_{i}^{n}} \tilde{\mathbf{B}}(\mathbf{q}_{h}) \cdot \tilde{\nabla} \mathbf{Q}(\mathbf{q}_{h})$$

$$+ \int_{C_{i}^{n}} \tilde{\mathbf{S}}(\mathbf{q}_{h})$$

x

Well balanced schemes

WB for Euler with gravity on nonconforming moving meshes WB for general relativity - preliminary results

ALE numerical flux: nonconservative part

 $\mathcal{F} + \mathcal{D}\left(\mathbf{q}_{h}^{-}, \mathbf{q}_{h}^{+}\right) \cdot \tilde{\mathbf{n}} \text{ represents the well balanced ALE numerical} \\ \text{flux between two neighbors across } \partial C_{ii}^{n}$

Osher-type ALE scheme

$$\begin{split} \left(\tilde{\mathbf{F}}_{ij} + \tilde{\mathbf{D}}_{ij}\right) \cdot \tilde{\mathbf{n}}_{ij} &= \frac{1}{2} \left(\tilde{\mathbf{F}}(\mathbf{q}_h^+) + \tilde{\mathbf{F}}(\mathbf{q}_h^-) + \mathcal{D}\left(\mathbf{q}_h^+ - \mathbf{q}_h^-\right)\right) \cdot \tilde{\mathbf{n}}_{ij} \\ &- \frac{1}{2} \left(\int_0^1 \left|\mathbf{A}_n^{\prime}(\boldsymbol{\Psi}(s))\right| \, ds\right) \left(\mathbf{q}_h^+ - \mathbf{q}_h^-\right) \end{split}$$

• $\mathcal{D}(\mathbf{q}_h^+ - \mathbf{q}_h^-)$: well balanced way to write the nonconservative terms

 $\bullet~\textbf{A}^{\!V}_n(\textbf{Q})$ is the extended ALE Jacobian matrix

$$\mathbf{A}_{\mathbf{n}}^{\mathbf{V}}(\mathbf{Q}) = \left(\sqrt{\tilde{n}_{x}^{2} + \tilde{n}_{y}^{2}}\right) \left[\left(\frac{\partial \mathbf{F}}{\partial \mathbf{Q}} + \mathbf{B}\right) \cdot \mathbf{n} - \left(\mathbf{V} \cdot \mathbf{n}\right) \mathbf{I} \right], \quad \mathbf{n} = \frac{\left(\tilde{n}_{x}, \tilde{n}_{y}\right)^{T}}{\sqrt{\tilde{n}_{x}^{2} + \tilde{n}_{y}^{2}}}$$

 $\mathcal{F} + \mathcal{D}$ defined in terms of a family of paths $\Phi(s, \mathbf{q}^-, \mathbf{q}^+)$, $s \in [0, 1]$.

• According to [3], Lipschitz continuous family of paths $\Phi(s, \mathbf{q}^-, \mathbf{q}^+), s \in [0, 1]$ satisfying

$$\Phi(0, \mathbf{q}^-, \mathbf{q}^+) = \mathbf{q}^-, \quad \Phi(1, \mathbf{q}^-, \mathbf{q}^+) = \mathbf{q}^+, \quad \Phi(s, \mathbf{q}, \mathbf{q}) = \mathbf{q},$$

and
$$\mathcal{D}\left(\mathbf{q}^+ - \mathbf{q}^-\right) \simeq \int_0^1 \mathbf{B}(\Phi(s; \mathbf{q}^-, \mathbf{q}^+)) \frac{\partial \Phi}{\partial s}(s; \mathbf{q}^-, \mathbf{q}^+) ds$$

[3] G. Dal Maso and P.G. LeFloch and F. Murat, J. Math. Pures Appl., 1995,
 [2] C. Parés, SIAM Journal on Numerical Analysis, 2006

 $\mathcal{F} + \mathcal{D}$ defined in terms of a family of paths $\Phi(s, \mathbf{q}^-, \mathbf{q}^+)$, $s \in [0, 1]$.

• According to [3], Lipschitz continuous family of paths $\Phi(s, \mathbf{q}^-, \mathbf{q}^+), s \in [0, 1]$ satisfying

$$\begin{split} \Phi(0,\mathbf{q}^{-},\mathbf{q}^{+}) &= \mathbf{q}^{-}, \quad \Phi(1,\mathbf{q}^{-},\mathbf{q}^{+}) = \mathbf{q}^{+}, \quad \Phi(s,\mathbf{q},\mathbf{q}) = \mathbf{q}, \\ \text{and} \qquad \mathcal{D}\left(\mathbf{q}^{+}-\mathbf{q}^{-}\right) &\simeq \int_{0}^{1} \mathbf{B}(\Phi(s;\mathbf{q}^{-},\mathbf{q}^{+})) \frac{\partial \Phi}{\partial s}(s;\mathbf{q}^{-},\mathbf{q}^{+}) ds \end{split}$$

• According to [2]:

A sufficient condition for a well balanced scheme

$$\left(\tilde{\mathsf{F}}_{ij}+\tilde{\mathsf{D}}_{ij}
ight)(\mathsf{q}_{E}^{-},\mathsf{q}_{E}^{+})=\mathsf{0}$$
, if q_{E}^{-} and q_{E}^{+} lie on the same stationary sol

[3] G. Dal Maso and P.G. LeFloch and F. Murat, J. Math. Pures Appl., 1995,

[2] C. Parés, SIAM Journal on Numerical Analysis, 2006

Well balanced schemes

WB for Euler with gravity on nonconforming moving meshes WB for general relativity - preliminary results

Well balanced path

Standard path (segment): $\Phi(s; \mathbf{q}^-, \mathbf{q}^+) = \mathbf{q}^- + s(\mathbf{q}^+ - \mathbf{q}^-)$ 2nd order accurate, but not well balanced for general profiles

Well balanced path

Standard path (segment): $\Phi(s; \mathbf{q}^-, \mathbf{q}^+) = \mathbf{q}^- + s(\mathbf{q}^+ - \mathbf{q}^-)$ 2nd order accurate, but not well balanced for general profiles

Proposed path: equilibrium + fluctuation

$$\Phi(s,\mathbf{q}^-,\mathbf{q}^+) = \Phi^{\boldsymbol{E}}(s,\mathbf{q}^-_{\boldsymbol{E}},\mathbf{q}^+_{\boldsymbol{E}}) + \Phi^{\boldsymbol{f}}(s,\mathbf{q}^-_{\boldsymbol{f}},\mathbf{q}^+_{\boldsymbol{f}})$$

Φ^E(s, q_E⁻, q_E⁺) reparametrization of the stationary solution that connects the state q_E⁻ with q_E⁺

•
$$\mathbf{q}_f^- = \mathbf{q}^- - \mathbf{q}_E^-$$
 and $\mathbf{q}_f^+ = \mathbf{q}^+ - \mathbf{q}_E^+$

•
$$\Phi^f(s, \mathbf{q}_f^-, \mathbf{q}_f^+) = \mathbf{q}_f^- + s(\mathbf{q}_f^+ - \mathbf{q}_f^-)$$

Well balanced schemes

WB for Euler with gravity on nonconforming moving meshes WB for general relativity - preliminary results

2nd order well balanced reconstruction

MUSCL-Hancock method

$$\mathcal{P}_i(x,t) = \mathbf{Q}_i^n + rac{\Delta \mathbf{Q}_i^n}{\Delta x}(x-x_i) + \partial_t \mathbf{Q}_i(t-t^n)$$

We introduce a reconstructor operator defined as

$$\mathbf{Q}_{i}^{n}(x,t) = \mathbf{Q}_{i}^{E}(x,t) + \mathcal{P}_{i}^{f}(x,t), \quad x \in I_{i}, \ t \in [t^{n}, t^{n+1}]$$

- **Q**^E Smooth stationary solution
- \mathcal{P}^{f} Standard reconstruction operator over the fluctuations

Euler equations with gravity

Euler equations of gasdynamics with gravity - Polar coordinates

$$\partial_{t}\mathbf{Q} + \nabla \cdot \mathbf{F}(\mathbf{Q}) = \mathbf{S}(\mathbf{Q})$$

$$\partial_{t}\begin{pmatrix} r\rho \\ r\rho u \\ r\rho v \\ r\rho v \\ r\rho E \end{pmatrix} + \partial_{r}\begin{pmatrix} r\rho u \\ r\rho u^{2} + rP \\ r\rho uv \\ ru(\rho E + P) \end{pmatrix} + \partial_{y}\begin{pmatrix} \rho v \\ \rho uv \\ \rho uv \\ \rho v^{2} + P \\ v(\rho E + P) \end{pmatrix} = \begin{pmatrix} 0 \\ -\rho \frac{Gm_{s}}{r} + P + \rho v^{2} \\ -\rho uv \\ -\rho u \frac{Gm_{s}}{r} \end{pmatrix}$$

Equilibrium properties: $u = 0, \quad \frac{\partial v}{\partial y} = 0,$ $r \frac{\partial P}{\partial r} + \rho \left(\frac{Gm_s}{r} - \rho v^2\right) = 0$

High shear flow

Nonconservative system

$$\partial_t \mathbf{Q} + \nabla \cdot \mathbf{F}(\mathbf{Q}) + \mathbf{B}(\mathbf{Q}) \cdot \nabla \mathbf{Q} = \mathbf{0}$$

+ path-conservative scheme with a *particular* path

Euler equations of gasdynamics with gravity - polar coordinates

$$\begin{aligned} \partial_{t}\mathbf{Q} &+ \nabla \cdot \mathbf{F}(\mathbf{Q}) &+ \mathbf{B}(\mathbf{Q}) \cdot \nabla \mathbf{Q} &= \mathbf{S}(\mathbf{Q}) \\ \partial_{t}\begin{pmatrix} r\rho \\ r\rho u \\ r\rho v \\ r\rho E \\ r \end{pmatrix} &+ \partial_{r}\begin{pmatrix} r\rho u \\ r\rho u^{2} \\ r\rho uv \\ r\rho uv \\ ru(\rho E + P) \\ 0 \end{pmatrix} &+ \partial_{y}\begin{pmatrix} \rho v \\ \rho uv \\ \rho v^{2} + P \\ v(\rho E + P) \\ 0 \end{pmatrix} &+ \begin{pmatrix} r\frac{\partial P}{\partial r} + \rho \left(\frac{Gm_{s}}{r} - v^{2}\right)\frac{\partial r}{\partial r} \\ \rho uv \frac{\partial r}{\partial r} \\ \rho u \frac{\partial r}{\partial r} \\ \rho u \frac{Gm_{s}}{r}\frac{\partial r}{\partial r} \\ 0 \end{pmatrix} &= \mathbf{0} \end{aligned}$$

$$\begin{aligned} r &\to \text{radial direction, } y \to \text{angular direction} \\ u \to \text{ radial velocity, } v \to \text{angular velocity} \qquad \qquad \frac{\partial r}{\partial t} = \mathbf{0} \quad \frac{\partial r}{\partial r} = 1 \end{aligned}$$

WB for Euler equations with gravity

2d Equilibrium - up to machine precision

Domain: $[r, \varphi] \in [1, 2] \times [0, 2\pi]$ **Data:** $r_m = 1.5, G = 1, m_s = 1$ **Initial conditions:**

$$\begin{cases} \rho = 1, & \text{if } r < r_m, \\ \rho = 0.1, & \text{if } r \ge r_m, \\ u = 0 \\ v = \sqrt{\frac{Gm_s}{r}} \\ P = 1 \end{cases}$$

points 20×40								
time	<i>O</i> 1	<i>O</i> 2						
10	7.32E-13	4.20E-13						
40	2.83E-12	8.18E-12						
80	3.92E-12	1.72E-11						
100	2.25E-12	1.99E-11						

Keplerian disk: transport of a higher density quantity

Equilibrium
$$\rho_E = 1$$
, $u_E = 0$, $v_E = \sqrt{\frac{Gms}{r}}$, $P = 1$
Perturbation $\rho = 2$ in $(x - 1.5)^2 + y^2 \le (0.15)^2$

Keplerian disk: transport of a higher density quantity

Keplerian disk: transport of a higher density quantity

Elena Gaburro

Kelvin-Helmholtz instabilities

Equilibrium

$$\begin{cases} \rho_E = \rho_0 + \rho_1 \tanh\left(\frac{r-r_m}{\sigma}\right) \\ u_E = 0 \\ v_E = \sqrt{\frac{Gm_s}{r}} \\ \rho_E = 1 \end{cases}$$

Parameters:

G = 1, $m_s = 1$, $\rho_0 = 1$, $\rho_1 = 0.25$, $r_m = 1.5$ and $\sigma = 0.01$

Domain: ring sector $r \in [1, 2]$, $\varphi \in [0, \pi/2]$

Boundary conditions:

exact solution r = 1, 2periodic boundary conditions $\varphi = 0, \pi/2$.

Initial condition:

$$\begin{cases} \rho = \rho_E + A\rho_0 \sin(k\varphi) \exp\left(-\frac{(r-r_m)^2}{s}\right) \\ u = u_E + A \sin(k\varphi) \exp\left(-\frac{(r-r_m)^2}{s}\right) \\ v = v_E \\ p = p_E + A \sin(k\varphi) \exp\left(-\frac{(r-r_m)^2}{s}\right) \end{cases}$$

with A = 0.1, k = 8, s = 0.005

Euler + gravity: Kelvin-Helmholtz instabilities

Our Well Balanced ALE FV Osher-Romberg scheme

Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity **Publication:** E. Gaburro, M.J. Castro, M. Dumbser, MNRAS (2018)

Kelvin-Helmholtz instabilities - comparison

vs not WB - not ALE:

Ours

Ours

vs PLUTO:

WB for general relativity - preliminary results

~

GRMHD: general relativistic magnetohydrodynamics

$$\partial_t \mathbf{Q} +
abla \cdot \mathbf{F}(\mathbf{Q}) + \mathbf{B}(\mathbf{Q}) \cdot
abla \mathbf{Q} = \mathbf{0}$$

$$\begin{split} \boldsymbol{V} &:= \left(\rho, \boldsymbol{v}_{j}, \boldsymbol{\rho}, \boldsymbol{B}^{j}, \boldsymbol{\Phi}, \boldsymbol{\alpha}, \boldsymbol{\beta}^{j}, \tilde{\gamma}_{m} \right), \quad j = 1, 2, 3; \quad m = 1, \dots, 6, \\ \boldsymbol{Q} &:= \left(\sqrt{\gamma} D, \sqrt{\gamma} S_{j}, \sqrt{\gamma} \tau, \sqrt{\gamma} B^{j}, \boldsymbol{\Phi}, \boldsymbol{\alpha}, \boldsymbol{\beta}^{j}, \tilde{\gamma}_{m} \right) \end{split}$$

$$\boldsymbol{F} := \gamma^{\frac{1}{2}} \begin{pmatrix} \alpha \boldsymbol{v}^{i} \boldsymbol{D} - \beta^{i} \boldsymbol{D} \\ \alpha \boldsymbol{T}_{j}^{i} - \beta^{i} \boldsymbol{S}_{j} \\ \alpha \left(\boldsymbol{S}^{i} - \boldsymbol{v}^{i} \boldsymbol{D}\right) - \beta^{i} \tau \\ \left(\alpha \boldsymbol{v}^{i} - \beta^{i}\right) \boldsymbol{B}^{j} - \left(\alpha \boldsymbol{v}^{j} - \beta^{j}\right) \boldsymbol{B}^{i} \\ \left(\alpha \boldsymbol{v}^{i} - \beta^{i}\right) \boldsymbol{B}^{j} - \left(\alpha \boldsymbol{v}^{j} - \beta^{j}\right) \boldsymbol{B}^{i} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{\mathcal{B}}(\boldsymbol{Q}) \cdot \nabla \boldsymbol{Q} := \begin{pmatrix} 0 \\ \gamma^{\frac{1}{2}} \left(\boldsymbol{U}\partial_{j}\alpha - \frac{1}{2}\alpha \boldsymbol{T}^{ik}\partial_{j}\gamma_{ik} - \boldsymbol{S}_{i}\partial_{j}\beta^{i}\right) \\ \gamma^{\frac{1}{2}} \left(\boldsymbol{S}^{j}\partial_{j}\alpha - \frac{1}{2}\boldsymbol{T}^{ik}\beta^{j}\partial_{j}\gamma_{ik} - \boldsymbol{T}_{i}^{j}\partial_{j}\beta^{i}\right) \\ -\beta^{j}\partial_{i}\left(\gamma^{\frac{1}{2}}\boldsymbol{B}^{i}\right) + \alpha\gamma^{\frac{1}{2}}\gamma^{ji}\partial_{i}\Phi \\ \gamma^{-\frac{1}{2}}\alpha \boldsymbol{c}_{h}^{2}\partial_{j}\left(\gamma^{\frac{1}{2}}\boldsymbol{B}^{j}\right) - \beta^{j}\partial_{j}\Phi \\ 0 \\ 0 \end{pmatrix}$$

Publication: A Fambri, Dumbser, Köppel, Rezzolla, Zanotti, MNRAS 2018

`

CCZ4: Einstein field equations (hyp. order 1, 59 eq.)

$$\begin{array}{rcl} \partial_t \tilde{\gamma}_{ij} &=& \beta^k 2 D_{kij} + \tilde{\gamma}_{ki} B_j^k + \tilde{\gamma}_{kj} B_k^k - 2/3 \tilde{\gamma}_{ij} B_k^k - 2\alpha \left(\tilde{A}_{ij} - 1/3 \tilde{\gamma}_{ij} \mathrm{tr} \tilde{A}\right) - \tau^{-1} (\tilde{\gamma} - 1) \tilde{\gamma}_{ij}, \\ \partial_t \ln \alpha &=& \beta^k A_k - \alpha g(\alpha) (K - K_0 - 2\Theta c), \\ \partial_t \beta^i &=& s \beta^k B_k^i + s f b^i \\ \partial_t \ln \varphi &=& \beta^k P_k + 1/3 \left(\alpha K - B_k^k \right), \\ \partial_t \tilde{A}_{ij} - \beta^k \partial_k \tilde{A}_{ij} &-& \varphi^2 \left[-\nabla_i \nabla_j \alpha + \alpha \left(R_{ij} + \nabla_i Z_j + \nabla_j Z_i \right) \right] + \varphi^2 1/3 \frac{\tilde{\gamma}_{ij}}{\varphi^2} \left[-\nabla^k \nabla_k \alpha + \alpha (R + 2\nabla_k Z^k) \right] \\ &=& \tilde{A}_{ki} B_j^k + \tilde{A}_{kj} B_i^k - 2/3 \tilde{A}_{ij} B_k^k + \alpha \tilde{A}_{ij} (K - 2\Theta c) - 2\alpha \tilde{A}_{ij} \tilde{\gamma}^{im} \tilde{A}_{mj} - \tau^{-1} \tilde{\gamma}_{ij} \operatorname{tr} \tilde{A}, \\ \partial_t K - \beta^k \partial_k K &+& \nabla^i \nabla_i \alpha - \alpha (R + 2\nabla_i Z^i) = \alpha K (K - 2\Theta c) - 3\alpha \kappa_1 (1 + \kappa_2) \Theta \\ \partial_t \Theta - \beta^k \partial_k \Theta &-& 1/2 \alpha e^2 (R + 2\nabla_i Z^i) = 1/2 \alpha e^2 \left(2/3 X^2 - \tilde{A}_{ij} \tilde{A}^{ij} \right) - \alpha \Theta K - Z^i \alpha A_i - \alpha \kappa_1 (2 + \kappa_2) \Theta , \\ \partial_t \tilde{\Gamma}^i - \beta^k \partial_k \tilde{\Gamma}^i &+& 4/3 \alpha \tilde{\gamma}^{ij} \partial_j K - 2\alpha \tilde{\gamma}^{ki} \partial_k \Theta - s \tilde{\gamma}^{ki} \partial_k B_{ij}^{-1} - s 1/3 \tilde{\gamma}^{ik} \partial_k B_{ij}^{-1} - s 2\alpha \tilde{\gamma}^{ik} \tilde{\gamma}^{nm} \partial_k \tilde{A}_{nm} \\ &=& 2/3 \tilde{\Gamma}^i B_k^k - \tilde{\Gamma}^k B_k^i + 2\alpha \left(\tilde{\Gamma}_{jk}^i \tilde{A}^{jk} - 3 \tilde{A}^{ij} P_j \right) - 2\alpha \tilde{\gamma}^{ki} \left(\Theta A_k + 2/3 K Z_k \right) - 2\alpha \tilde{A}^{ij} A_j \\ -4s \alpha \tilde{\gamma}^{ik} D_k^{nm} \tilde{A}_{nm} + 2\kappa_3 \left(2/3 \tilde{\gamma}^{ij} Z_j B_k^k - \tilde{\gamma}^{ik} Z_j B_k^i \right) - 2\alpha \kappa_1 \tilde{\gamma}^{ij} Z_j \\ \partial_t b^i - s \beta^k \partial_k b^i &=& s \left(\partial_t \hat{\Gamma}^i - \beta^k \partial_k \hat{\Gamma}^i - \eta b^i \right), \end{array}$$

with the following PDEs for the auxiliary variables

$$\begin{array}{lll} \partial_{t}A_{k}-\beta^{l}\partial_{l}A_{k}&+&\alpha g(\alpha)\left(\partial_{k}K-\partial_{k}K_{0}-2c\partial_{k}\Theta\right)+s\alpha g(\alpha)\tilde{\gamma}^{nm}\partial_{k}\tilde{A}_{nm}\\ &=&+2s\,\alpha g(\alpha)D_{k}^{nm}\tilde{A}_{nm}-\alpha A_{k}\left(K-K_{0}-2\Theta c\right)\left(g(\alpha)+\alpha g^{\prime}(\alpha)\right)+B_{k}^{l}A_{l}\,,\\ \partial_{t}B_{k}^{i}-s\beta^{l}\partial_{l}B_{k}^{i}&-&s\left(f\partial_{k}b^{i}+\alpha^{2}\mu\,\tilde{\gamma}^{ij}\left(\partial_{k}P_{j}-\partial_{j}P_{k}\right)-\alpha^{2}\mu\,\tilde{\gamma}^{ij}\tilde{\gamma}^{nl}\left(\partial_{k}D_{ljn}-\partial_{l}D_{kjn}\right)\right)=sB_{k}^{l}B_{l}^{i}\,,\\ \partial_{t}D_{kij}-\beta^{l}\partial_{l}D_{kij}&+&s\left(-1/2\tilde{\gamma}_{mi}\partial_{l}kB_{jj}^{m}-1/2\tilde{\gamma}_{mj}\partial_{k}B_{lj}^{m}+1/3\tilde{\gamma}_{ij}\partial_{l}kB_{m}^{m}\right)+\alpha\partial_{k}\tilde{A}_{ij}-\alpha 1/3\tilde{\gamma}_{ij}\tilde{\gamma}^{nm}\partial_{k}\tilde{A}_{nm}\\ &=&B_{k}^{l}D_{lij}+B_{j}^{l}D_{kli}+B_{l}^{l}D_{klj}-2/3B_{l}^{l}D_{kij}-\alpha 2/3\tilde{\gamma}_{ij}D_{k}^{nm}\tilde{A}_{nm}-\alpha A_{k}\left(\tilde{A}_{ij}-1/3\tilde{\gamma}_{ij}tr\tilde{A}\right),\\ \partial_{t}P_{k}-\beta^{l}\partial_{l}P_{k}&=&1/3\alpha\partial_{k}K+s1/3\partial_{l}kB_{ij}^{l}-s1/3\alpha\tilde{\gamma}^{nm}\partial_{k}\tilde{A}_{nm}\\ &=&1/3\alpha A_{k}K+B_{k}^{l}P_{l}-s2/3\alpha D_{k}^{nm}\tilde{A}_{nm}. \end{array}$$

Publication: Qual Dumbser, Fambri, Gaburro, Reinarz, J. Comput. Phys. 2020

Well balanced schemes WB for Euler with gravity on nonconforming moving meshes WB for general relativity - preliminary results

WB for GRMHD - TOV neutron star

Equilibrium: numerical solution of the Tolman-Oppenheimer-Volkoff (TOV) equation

Perturbation of the order of 5e-2 on density and pressure

Initial condition:

Well balanced schemes WB for Euler with gravity on nonconforming moving meshes WB for general relativity - preliminary results

WB for GRMHD - TOV neutron star

Numerical results: WB vs NOWB at time = 10000

Well balanced schemes WB for Euler with gravity on nonconforming moving meshes WB for general relativity - preliminary results

WB for CCZ4 anticowling - TOV star

Equilibrium numerical solution of the Tolman-Oppenheimer-Volkoff (TOV) equation

Gaussian type **perturbation** on the metric variable K (extrinsic curvature)

Well balanced schemes

WB for Euler with gravity on nonconforming moving meshes WB for general relativity - preliminary results

WB for CCZ4 anticowling - TOV star

Hamiltonian constraint $\mathcal{H} = R_{ij}g^{ij} - K_{ij}K^{ij} + K^2 - 16\pi\tau = 0$ Momentum constraints $\mathcal{M}_i = \gamma^{jl} \left(\partial_l K_{ij} - \partial_i K_{jl} - \Gamma^m_{j,l} K_{mi} + \Gamma^m_{ji} K_{ml} \right) - 8\pi S_i = 0$

WB for CCZ4+GRHD - constraints preservation

Left: perturbation on K

Right: perturbation on p

Well balanced schemes WB for Euler with gravity on nonconforming moving meshes WB for general relativity - preliminary results

WB for CCZ4+GRMHD

Pulsation of star density at its centre subject to an initial pressure perturbation

Conclusion & Outlooks

Up to now ...

Robust arbitrary high order WB ALE FV-DG on high quality moving meshes

- Application to complex hyperbolic systems
- Low dissipation high efficiency

To be done ...

- **Moving code**: complex boundary condition (moving, periodic ...) extension to 3*D* of topology changes techniques
- Well balanced 3D code for general relativity in covariant form
- Coupling ALE + WB for general relativity

Thank you for your attention!

A unified framework for the solution of hyperbolic PDE systems using high order direct Arbitrary-Lagrangian-Eulerian schemes on moving unstructured meshes with topology change

E. Gaburro, Archives of Computational Methods in Engineering (2020).

High order direct ALE schemes on moving Voronoi meshes with topology changes E. Gaburro, W. Boscheri, S. Chiocchetti, C. Klingenberg, V. Springel, M.Dumbser, JCP (2020).

Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity **E. Gaburro**, M.J. Castro, M. Dumbser, MNRAS (2018).

Direct ALE finite volume schemes on moving nonconforming unstructured meshes E. Gaburro, M. Dumbser, M.J. Castro, Computers & Fluids (2017).