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Robustness and Entropy-Dissipation/Stability

I Many (all?) practical/interesting applications are multi-scale in nature and
thus under-resolved due to insufficient compute hardware

I Per definition, high-order methods are designed for well resolved problems

I High-order schemes such as the DG method are prone to stability issues
when grid resolution is insufficient

I Additional robustness enhancements are necessary, to make high-order DG
methods fit for real life applications

⇒ Preserving the second law of thermodynamics (entropy) is linked to
non-linear stability

⇒ Entropy evolution is dissipative

⇒ Entropy-dissipation/stability



Provably Entropy-Dissipative Discontinuous Galerkin Methods
I Decaying homogeneous isotropic turbulence (Flad and Gassner, JCP, 2017)

I Non-linear diffusion terms as in the compressible Navier-Stokes (Gassner et
al., JSC, 2018)

I Mach number Ma = 0.1 and Reynolds number based on Taylor micro scale
Reλ = 97− 162

I 183 grid cells with N = 7

I Plot of the spectrum of kinetic energy
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Provably Entropy-Dissipative Discontinuous Galerkin Methods
I Tsunami simulation (Indian Ocean, December 2004)

I Shallow water equations including positivity preservation and shock
capturing (Wintermeyer et al., PHD, 2019)

I Simulation with N = 7 and 60, 000 grid cells



Provably Entropy-Dissipative Discontinuous Galerkin Methods
I Tsunami simulation (Indian Ocean, December 2004)
I Visualisation of the arrival times in minutes (right plot)

I Comparison to real world data of arrival times in minutes

Place measured simulation error in %

Kochi 280 270 3,6

Mormugao 355 375 5,6

Chennai 150 148 1,3

Tuticorin 200 212 6,0

Okha 485 507 4,5

Visakhaptnam 160 158 1,3



Provably Entropy-Dissipative Discontinuous Galerkin Methods
I Orzag Tang Vortex

I GLM-MHD with shock capturing (Rueda et al., in preparation)

I 2562 grid cells with N = 3

I Plot of the pressure at times t = 0.25; 0.50; 0.75

I Slice through the domain at y = 0.3125 and comparison with Athena



Provably Entropy-Dissipative Discontinuous Galerkin Methods

I Flow past a plunging SD7003 airfoil

I Moving meshes (Krais et al., JCP, 2020)

I Mach number Ma = 0.1 and Rec = 40, 000

I 58, 490 grid cells with N = 7 (about 150 mill. DOF)

I Iso-contour plot of vorticity magnitude at different times throughout the
plunging movement



Provably Entropy-Dissipative Discontinuous Galerkin Methods

I Flow past a plunging SD7003 airfoil

I Moving meshes (Krais et al., JCP, 2020)

I Mach number Ma = 0.1 and Rec = 40, 000

I 58, 490 grid cells with N = 7 (about 150 mill. DOF)

I Plot of temporal evolution of drag and lift coefficient (Comparison with
Visbal, AIAA, 2009 - red square-line)



Robustness of DG is drastically enhanced with great results

I Many researchers in the high-order community working on entropy
stability, e.g.

I My research group :-)

I Magnus Svärd, Florian Hindenlang, Hendrik Ranocha

I David C. Del Rey Fernandez, Matteo Parsani

I David Flad, Scott Murman

I David Kopriva, Claus-Dieter Munz

I Rodrigo Moura, Gianmarco Mengaldo, Joaquim Peiro, Spencer J. Sherwin

I David W. Zingg, Jason Hicken, Jan Nordström, Tim Warburton

I Travis Fisher, Mark Carpenter

I ...



A simple test case

I Consider the compressible Euler equations in 2D

I Density wave initial conditions with periodic boundary conditions

ρ = 1 + 0.98 sin(2π (x + y))

v1 = 0.1

v2 = 0.2

p = 20

(1)

I Well resolved with 42 grid cells and N = 5

I Exact solution is the traveling density wave



A simple test case
I Standard DG scheme with central flux at t = 5 (no problem)

I Entropy-dissipative/stable DG scheme with LxF at t = 0.65 (crashes!?)
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Content of the Talk

I Entropy-dissipation/stability

I Local linear stability

I Burgers equation

I Compressible Euler equations
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Entropy

I We consider the 1D hyperbolic PDE

ut + f (u)x = 0 (2)

I We further consider an entropy function U(u) with

I U(u) is convex

I entropy variables w := Uu

I contraction property wT fu = Fu

I entropy flux F (u)

I entropy potential Ψ := wT f − F

I Entropy evolution is dissipative

U(u)t + F (u)x ≤ 0, (3)

which is an incarnation of the second law of thermodynamics



Discrete Entropy

I We consider the 1D standard FV discretization

(ui (t))t +
fi+1/2 − fi−1/2

h
= 0 (4)

I Discrete entropy analysis of Tadmor

I multiply FV scheme by wT
i = Uu(ui )

T

I discrete contraction property (wT
i+1 − wT

i ) fi+1/2 − (Ψi+1 −Ψi ) = 0

I discrete entropy flux Fi+1/2 = 1
2

(wT
i+1 + wT

i )fi+1/2 − 1
2

(Ψi+1 + Ψi )

I Semi-discrete entropy evolution

(Ui )t +
Fi+1/2 − Fi−1/2

h
= 0 (5)

I Semi-discrete entropy evolution is dissipative

(Ui )t +
Fi+1/2 − Fi−1/2

h
≤ 0, (6)

if the numerical flux fi+1/2 satisfies

(wT
i+1 − wT

i ) fi+1/2 − (Ψi+1 −Ψi ) ≤ 0 (7)



Entropy-Conservation/Stability/Dissipation

I A numerical scheme is

(i) Entropy-conservative: if (wT
i+1 − wT

i ) fi+1/2 − (Ψi+1 −Ψi ) = 0 is satisfied
for one entropy at all i

(ii) Entropy-stable: if (wT
i+1 − wT

i ) fi+1/2 − (Ψi+1 −Ψi ) ≤ 0 is satisfied for all
admissible entropies at all i

(iii) Entropy-dissipative: if (wT
i+1 − wT

i ) fi+1/2 − (Ψi+1 −Ψi ) ≤ 0 is satisfied,
but the scheme is neither entropy-stable or entropy-conservative



Entropy-Conservation/Stability/Dissipation

I A numerical scheme is

(i) Entropy-conservative: if (wT
i+1 − wT

i ) fi+1/2 − (Ψi+1 −Ψi ) = 0 is satisfied
for one entropy at all i

(ii) Entropy-stable: if (wT
i+1 − wT

i ) fi+1/2 − (Ψi+1 −Ψi ) ≤ 0 is satisfied for all
admissible entropies at all i

(iii) Entropy-dissipative: if (wT
i+1 − wT

i ) fi+1/2 − (Ψi+1 −Ψi ) ≤ 0 is satisfied,
but the scheme is neither entropy-stable or entropy-conservative

I Most so-called entropy-stable high-order schemes, e.g. DG, are
indeed entropy-dissipative. It is important to note, that the
entropy-conservative numerical flux with

(wT
i+1 − wT

i ) fi+1/2 − (Ψi+1 − Ψi ) = 0 (8)

is a key-building block in the construction of high-order accuracy.



Linear Stability

I In linear stability analysis, we consider linear PDEs

ut = P u (9)

with initial data u0 and periodic BC

I We are looking for L2-estimates of the form

‖u(·,T )‖2 = K exp(αT ) ‖u0‖2 (10)

I A well known example is the constant coefficient linear advection

ut + a ux = 0, (11)

with the L2-estimate
‖u(·,T )‖2 = ‖u0‖2, (12)

i.e. growth rate α = 0 and K = 1

I The zero growth rate corresponds to a spectrum of the PDE operator
that is purely imaginary



Discrete Linear Stability
I We consider the FV discretization

(ui (t))t +
fi+1/2 − fi−1/2

h
= 0 (13)

I We are looking for discrete L2-estimates of the form

‖uh(·,T )‖2,h = Kh exp(αh T ) ‖uh
0‖2,h (14)

with the discrete growth rate αh

I The scheme is energy stable (linearly stable), if the discrete growth rate is
less or equal than the continuous growth

αh ≤ α (15)

I For linear advection, the central numerical flux

f CNi+1/2 =
f (ui+1) + f (ui )

2
=

aui+1 + aui
2

(16)

gives Kh = 1 and
αh = 0 = α (17)

I The operator of the central FV scheme has a purely imaginary
spectrum



Linear Stability for Non-linear PDEs

I We are interested in non-linear PDEs

I ’Non-linear stability’ analysis

I Non-linear PDE → discretization → entropy analysis

I How to analyze the linear stability in case of non-linear PDEs?

I The order matters!

(i) Non-linear PDE → linearization → discretization → L2-analysis

(ii) Non-linear PDE → discretization → linearization → L2-analysis

I It is important to realize that (i ) 6= (ii )!



Local Linear Stability

I Discrete entropy bound gives an estimate for the global behaviour of the
solution

I What about the local solution behaviour?

I The idea is to consider a steady state solution ũ(x)

I In fluid dynamics, this is often referred to as a ’baseflow’

I We add small fluctuations u′(x , t) to this baseflow

u(x , t) = ũ(x) + u′(x , t), (18)

where |u′(x , t)| << |ũ(x , t)|

I Analysis of the evolution of the small scale fluctuations.



Local Linear Stability

I Example: Burgers’ equation

ut +
1

2
(u2)x = 0 (19)

I We plug in our perturbation ansatz

(ũ(x , t) + u′(x , t))t +
1

2

(
(ũ(x , t) + u′(x , t))(ũ(x , t) + u′(x , t))

)
x

= 0,

(20)

I The baseflow solves the equation; neglect all but the leading order terms

(u′)t + (ũ(x , t) u′)x = 0, (21)

gives a linear variable coefficient PDE

I Classic linear stability analysis

‖u′(·,T )‖2 ≤ exp (T αh) ‖u′(·, 0)‖2 (22)

with αh = 1
2

sup
x,t
| (ũ(x , t))x |

I Depending on ũ(x , t), there might be growth/decay or stagnation



Entropy-conservation and local linear stability I

I Example: Burgers’ equation

ut +
1

2
(u2)x = 0 (23)

I Entropy U(u) = u2/2 with entropy variable w = Uu = u

I We consider the FV discretization

(ui (t))t +
fi+1/2 − fi−1/2

h
= 0 (24)

I Tadmor’s condition for entropy-conservation gives

f ECi+1/2 =
1

6
(u2

i + ui ui+1 + u2
i+1) (25)

I We get entropy-conservation (non-linear stability)

d

dt
(‖u‖2

h) = 0. (26)



Entropy-conservation and local linear stability II

I We can re-write the EC-flux to

f ECi+1/2 =
1

2
(f (ui ) + f (ui+1))− 1

2
λEC
i+1/2(ui+1 − ui ), (27)

where we get the non-linear diffusion coefficient

λEC
i+1/2 =

(ui+1 − ui
6

)
(28)

I Note, that this diffusion coefficient can be positive, but also negative!

I For solutions with negative gradients

λECi+1/2 < 0 (29)

⇒ The scheme can be anti-dissipative!



Entropy-conservation and local linear stability III
I Discrete local linear stability analysis

ui = ũi + u′i , (30)

I Perturbation analysis; neglect higher order terms gives the linearized flux

f̃ ECi+1/2 =
(ũi+1 u

′
i+1) + (ũi u

′
i )

2
− 1

2
λ̃EC
i+1/2 (u′i+1 − u′i ), (31)

with the diffusion coefficient

λ̃EC
i+1/2 =

(
ũi+1 − ũi

3

)
(32)

I Recall, that the central flux f̃ CNi+1/2 =
(ũi+1 u′i+1)+(ũi u

′
i )

2
is neutral stable for

linear problems

I Note again, that this diffusion coefficient can be positive, but also
negative!

I For baseflows with negative gradients

λ̃ECi+1/2 < 0 (33)

⇒ The scheme is not (locally) linearly stable!



Numerical Investigation Ia

I High-order DG for non-linear Burgers’ equation with forcing term

I Baseflow
ũ(x) = 2 + sin(π x − 0.7) (34)

I Linearization of the non-linear scheme with ε = 10−8

Ae j ≈
rhs(ũ + e j ε)− rhs(ũ − e j ε)

2 ε
(35)

I Spectra of standard DG with f CNi+1/2 with N = 3 and 10 elements
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⇒ no growth



Numerical Investigation Ib

I High-order DG for non-linear Burgers’ equation with forcing

I Baseflow
ũ(x) = 2 + sin(π x − 0.7) (36)

I Linearization of the non-linear scheme with ε = 10−8

Ae j ≈
rhs(ũ + e j ε)− rhs(ũ − e j ε)

2 ε
(37)

I Spectra of entropy-conserving DG with f ECi+1/2 with N = 3 and 10 elements
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⇒ artificial growth of eigenmodes with positive real part



Numerical Investigation IIa
I Standard DG with f CNi+1/2 with N = 3 and 10 elements

I Eigenmode with the largest positive real part
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Numerical Investigation IIb
I Entropy-conserving DG with f ECi+1/2 with N = 3 and 10 elements

I Eigenmode with the largest positive real part (active where baseflow
gradient is negative!)
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I Perform simulation and add fluctuations in form of eigenmode scaled at
10−3 to baseflow
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Numerical Investigation IIc
I Entropy-conserving DG with f ECi+1/2 with N = 3 and 10 elements

I Long time behaviour: Perform simulation and add fluctuations in form of
eigenmode scaled as 10−3 to baseflow
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I Recall: by construction, the scheme is non-linearly stable!

I Scheme is non-linearly stable, but final numerical solution is crazy
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Numerical Investigation IId
I Entropy-dissipative DG with N = 3 and 10 elements

I Long time behaviour: Perform simulation and add fluctuations in form of
eigenmode scaled at 10−3 to baseflow
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I Recall: by construction, the scheme is non-linearly stable!

I Wrong local behaviour; dissipation in equilibrium with artificial growth?
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Numerical Investigation IIIa
I Influence of grid resolution (N = 3 with 10 elements)

I Smooth initial fluctuations u′(x) = 0.001 cos(π x)
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note that the imaginary values correspond to eigenmode frequency
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Numerical Investigation IIIb
I Influence of grid resolution (N = 3 with 20 elements)

I Smooth initial fluctuations u′(x) = 0.001 cos(π x)
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Compressible Euler Equations I

I Unfortunately, all issues carry over to the compressible Euler equations

I To get a numerical flux that satisfies Tadmor’s entropy condition, we need
to use the logarithmic mean, e.g., in the mass flux

(fρ)ECi+1/2 = {ρ}ln
i+1/2 {{v}}i+1/2 (38)

where

{ρ}ln
i+1/2 :=

ρi+1 − ρi
ln(ρi+1)− ln(ρi )

(39)

I Again, this flux can be recast into

(fρ)ECi+1/2 = (fρ)CNi+1/2 −
1

2
(λρ)ECi+1/2 (ρi+1 − ρi ), (40)

with diffusion coefficient

(λρ)ECi+1/2 = ({{ρ}}i+1/2 − {ρ}
ln
i+1/2)

2 {{v}}i+1/2

ρi+1 − ρi
+

(vi+1 − vi )

2
, (41)

which can get negative (anti-diffusion) for

ρx < 0 (42)



Compressible Euler Equations II

I Theorem: The numerical flux of Ranocha

(fρ)ECi+1/2 = {ρ}ln {{v}} ,

(fρv )ECi+1/2 = {ρ}ln {{v}}2 + {{p}} ,

(fρe)ECi+1/2 =
1

2
{ρ}ln {{v}} {v · v}zip +

1

γ − 1
{ρ}ln({ρ

p
}ln)−1 {{v}}+ {p · v}zip,

(43)
with product mean

{a · b}zipi+1/2 :=
ai+1bi + aibi+1

2
= 2 {{a}}i+1/2 {{b}}i+1/2 − {{ab}}i+1/2 , (44)

for the compressible Euler equations is EC, KEP, PEP, and has a density
flux (fρ)ECi+1/2 that does not depend on the pressure. Moreover, it is the
only numerical flux with these properties for constant v .

I This numerical flux function preserves three structural properties

I EC: entropy-conserving

I KEP: kinetic-energy-preserving

I PEP: pressure-equilibrium-preserving



Recall: A simple test case

I Consider the compressible Euler equations in 2D

I Density wave initial conditions with periodic boundary conditions

ρ = 1 + 0.98 sin(2π (x + y))

v1 = 0.1

v2 = 0.2

p = 20

(45)

I Exact solution is the traveling density wave

I PEP: temporal change of pressure (and velocity) is exactly zero



Numerical investigation

I Standard DG scheme with central flux

I Spectra with N = 5 with 42 elements and solution at t = 5
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Numerical investigation

I Entropy-conserving DG (fluxes by Ismail&Roe, Chadrashekar, Ranocha)

I Spectra with N = 5 with 42 elements and solution at t = 0.55
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Numerical investigation

I Entropy-dissipative DG (Rusanov/LxF flux at element surface)

I Spectra with N = 5 with 42 elements and solution at t = 0.65
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Conclusion

I High-order structure preserving FV/DG/SBP-FD

I Entropy-conservative/dissipative

I Kinetic-Energy-preserving/dissipative

I Pressure-equilibrium-preserving

I Many complex applications, (e.g. turbulent flow in complex geometries on
moving meshes) work well!?

I The schemes are not locally linearly stable

I Small scale fluctuations can grow and can turn into artificial solution
features!?

I Wrong entropy-analysis?

I We can prove that there are no Harten entropies for the compressible Euler
equations such that the associated entropy-conserving numerical flux is
locally linearly stable.

I So far, we do not have a well working fix...


