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ABSTRACT

Smoluchowski’s equation is a macroscopic description of a many
particle system with coagulation and shattering interactions. We
give a microscopic model of the system from which we derive this
equation rigorously. Provided the existence of a unique and suffi-
ciently regular solution of Smoluchowski’s equation, we prove the
law of large numbers for the empirical processes. In contrast to
previous derivations we assume a moderate scaling of the parti-
cle interaction, enabling us to estimate the critical fluctuation terms
by using martingale inequalities. This approach can be justified in
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the regime of high temperatures and particle densities, which is of
special interest in astrophysical studies and where previous deriva-
tions do not apply.

Key Words: Smoluchowski’s equation; Moderate limit; Many
particle system; Martingale.

I. INTRODUCTION

We consider a system of dust particles of R ∈ � different masses
m1� � � � � mR, embeded in a d-dimensional hot gas. Particles of size r ∈
�1� � � � � R� are drifting according to the velocity field �vr � �d ×�+

0 → �d

with a superimposed Brownian motion with diffusion constant �r ∈ �+.
Two particles of size r and q collide with rate ârq � �

d ×�+
0 → �+

0 . The
material coefficients êrql ∈ �0 determine the number of particles of size
l = 1� � � � � R produced by that collision event, deciding for coagulation
or shattering events. In this first model we take a macroscopic view-
point, where two colliding particles occupy the same position in space-
time (�x� t), where the function ârq is evaluated. A complete description
of the above model is given by Smoluchowski’s equation,�15� in our case
a system of reaction diffusion equations for the particle densities sr �
�d ×�+

0 → �+
0 � r = 1� � � � � R (cf.,�14� Sec. 2) with initial conditions s0r �

�d → �+
0 :

	tsr
�x� t�

= −�� · 
�vr
�x� t�sr
�x� t��+
1
2
�2
r 
sr
�x� t�− sr
�x� t�

R∑
q=1

ârq
�x� t�sq
�x� t�

+1
2

R∑
q�t=1

âqt
�x� t�êqlr sq
�x� t�sl
�x� t� (MA)

sr
�x� t� = s0r 
�x� for all r = 1� � � � � R

We suppose that for any size r the particles consist of several atoms
of size 1 and we set m1 = 1. Moreover, the masses of the particles
are ordered as m1 < m2 < · · · < mR. The conservation of the total mass
M
t� = ∑R

r=1

∫
�d mrsr
�x� t�ddx of the system under the above dynamics,

i.e. M
t� = M
0�� t ≥ 0, is assured by

R∑
l=1

mlêrql = mr +mq and â
�x� t� = âqr
�x� t�� (1)
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for all �x ∈ �d� t ∈ �+
0 � r� q ∈ �1� � � � � R�. We also assume that êrql is

symmetric in r and q, i.e., êrql = êqrl.
The above model is commonly used to describe reaction diffusion

systems and there have been rigorous approaches to identify equation
(MA) as the limit dynamics of a suitable many particle system. These
derivations are restricted to one-dimensional systems,�1� the spatially
homogeneous case�10� or a spatially discretized microscopic model.�2�4� In
Ref.�8� there is a derivation accounting for the full space dependence of
the problem, using the Boltzmann–Grad limit which is applicable for
very small particle densities. In Refs.�4�10� existence and uniqueness of a
solution of Smoluchowski’s equation are also studied.

In this article we give a microscopic particle model (MI) in Sec. II,
from which we rigorously derive (MA) in the spatially inhomoge-
neous (general) case without space discretization or restrictions on space
dimension. Our many particle system properly describes an astrophysical
system recently studied in Refs.�6�14�, which is explained in Sec. V.A. It
corresponds to a situation of high gas temperatures and particle densities,
which is not covered by the derivation in the Boltzmann–Grad limit.�8�

In this regime the dominating particle interactions are shattering col-
lisions, so it is justified to neglect coagulation events. That means that
the mass of each of the two interaction partners may not increase by the
collision, but they are shattered into fragments of smaller or equal mass.
This constitutes a constraint on the material coefficients êrql given in (9),
which is important to ensure compatibility with the microscopic particle
model. Our main theorem in Sec. III states the convergence of the empir-
ical processes (4) to a solution of (MA) and is proved in Sec. IV. Before
giving a short conclusion in the last section we also discuss two apparent
generalizations of the microscopic model (MI).

The most important feature of our approach is the moderate scal-
ing of the collision interaction, which is introduced in Sec. II.B (M3)
and discussed on a physical level in Sec. V.A. It enables us to use a
technique developed by Oelschläger,�11� which was previously applied to
derive the porous medium equation,�12� or in the description of aggrega-
tion phenomena in the biological populations.�9�13� With this technique
we are able to derive Smoluchowski’s equation in the spatially inhomo-
geneous form (MA), in a regime where the previous approaches cannot
be applied.

II. MICROSCOPIC PARTICLE MODEL

Given the macroscopic model of Sec. I we present a correspond-
ing microscopic many particle system. The most important modeling
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assumptions are marked by (M1) to (M4) and are discussed in Secs. V.A
and V.B.

A. Dynamics Without Interaction

Let Nr
t� be the number of particles of species r ∈ �1� � � � � R� and
N
t� = ∑R

r=1 Nr
t� the number of all particles at time t ∈ �+
0 . The system

size N is characterized by the number of atoms of mass m1 = 1 at time
t = 0:

N =
(

R∑
r=1

Nr
0�mr

)/
m1 =

R∑
r=1

Nr
0�mr (2)

Let M
N� t� ⊂ � be the set of all particles and M
N� r� t� ⊂
M
N� t�� r = 1� � � � � R, the subsets of particles of species r at time t, where
each particle is identified with a unique integer number.

(M1) The particles are considered to be point masses with posi-
tions �Xk

N 
t� ∈ �d� k ∈ M
N� t�, at time t in a system of size N .
Each particle of species r ∈ �1� � � � � R� is given the rescaled
mass mN�r = mr/N , which keeps the initial mass MN
0� =∑R

r=1 mN�rNr
0� = 1 independent of the system size according
to (2).

(M2) Neglecting the hydrodynamic drag interaction between gas
and particles, we consider the latter to move according to the
given velocity fields �vr and Brownian motion with diffusion
constants �r� r = 1� � � � � R, introduced in the macroscopic
equation (MA).

Between two subsequent collision events the system at time t is then
described by N
t� uncoupled stochastic differential equations:

d �Xk
N 
t� = �vr
 �Xk

N 
t�� t�dt + �rd�Bk
t�� k ∈ M
N� r� t�� r = 1� � � � � R

(3)

The 
�Bk
t��t∈�+
0
� k ∈ �, are independent Wiener processes modelling

the Brownian motion of the particles. We always assume the existence of
a filtration 
�t�t≥0, with respect to which the stochastic processes under
consideration are adapted (cf.�11�, Sec. 2.B) and which fulfills the usual
conditions.�7�

The particle interaction is described by suitable changes of the
sets M
N� r� t� and is explained in the next subsection. A microscopic
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quantity comparable to the particle density in (MA) is given by the
measure-valued, empirical processes:

SN�r � �
+
0 → �
�d�� SN�r
t� �=

1
N

∑
k∈M
N�r�t�

� �Xk
N 
t�

� r = 1� � � � � R� (4)

where �
�d� denotes the space of positive, finite measures on �d and
��x is the Dirac measure concentrated in �x ∈ �d. SN�r describes the time-
evolution of the spatial distribution of particles within the subpopulation
of species r. It is known by the law of large numbers that the empirical
distribution of N independent, identically distributed random variables
converges to their probability distribution in the limit N → �. In this
paper we prove the convergence for stochastic processes which are not
independent for times t > 0, due to the particle interaction.

B. Description of the Particle Interaction

Due to (M1) we have to specify a model for the “collision”
interaction of two point particles.

(M3) We take a stochastic model determined by a rate depending
on the distance of the interaction partners k and l. The
scaling of this rate is given by

1
N
WN
 �Xk

N 
t�− �Xl
N 
t��� where WN
�x� = �dNW1
�N �x�� (5)

with �N = N�/d and a moderate scaling parameter 0 < � < 1.
We assume that W1 is symmetric and positive with �W1�1 =
1. It follows that �WN�1 = 1 for all N ∈ � and limN→�
WN
�− �x� = ��x for all �x ∈ �d in the sense of distributions.

In contrast to the usual hydrodynamic scaling with � = 1 this leads to a
microscopically large interaction volume. This assumption is motivated
and justified in a physical context in Sec. V.A.

(M4) Instead of considering pair interactions (see Sec. V.B) we
assume that every particle k ∈ M
N� r� t� interacts with an
effective field of all other particles of species q with rate

aN�rq
 �Xk
N 
t�� t� �= min

{
Ca� ârq
 �Xk

N 
t�� t�

×(

SN�q
t� ∗WN�
 �Xk

N 
t��− �r�qWN
�0�/N
)}
� (6)

where ârq is the macroscopic collision rate given in Sec. I.
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In (6) we used the generalized convolution product

SN�q
t� ∗WN �=
∫
�d

WN
�− �x�SN�q
t�
ddx�

= 1
N

∑
l∈M
N�q�t�

WN 
�− �Xl
N 
t��� (7)

By substraction of the term including Kronecker’s delta in (6)
self-interaction is excluded. The rate is bounded uniformly in N by a
suitable constant Ca, which is specified in condition (C5) in Sec. III.B.
This cut-off prevents diverging interaction rates due to high particle
concentrations in the limit N → �. Each possible interaction event is
described by a jump process

a∗�k
N�rq
t� �= �k

N�rq

( ∫ t

0
�M
N�r�s�
k�aN�rq
 �Xk

N 
s�� s�ds

)
∈ �0� 1�� (8)

where �k
N�rq � �

+
0 → �0 are independent standard Poisson processes with

a transformed time argument in the brackets (cf.�11�) and �A ∈ �0� 1� is
the indicator function of the set A.

The process a∗�k
N�rq jumps from 0 to 1 at some time t ≥ 0 if parti-

cle k exists in t−, belongs to species r and interacts with a particle of
species q at time t. After the interaction the number k is removed from
the sets M
N� r� t� and M
N� t�. The mass of particle k is distributed on
the interaction products according to the microscopic material coefficient
erql ∈ �0. The latter fulfills conservation of mass and is related to its
macroscopic counterpart êrql in the following way:

R∑
l=1

mlerql = mr� êrql = êqrl = erql + eqrl for all r� q� l = 1� � � � � R�

(9)

We note that this constitutes a condition on êrql, corresponding to
the absence of coagulation mentioned in Sec. I. The particles resulting
from the interaction are located at �Xk

N 
t� and obtain new numbers
starting with max�p ∈ M
N� s� � s ≤ t�+ 1, which were previously not
assigned to any particle. These numbers are added to M
N� t� and the
subsets corresponding to the various species. We note that any process
a∗�k
N�rq only jumps once, since after that jump the respective particle k

disappears, i.e., �M
N�r�t+��
k� ≡ 0.

C. Complete Description of the Model

Using a generalized L2-scalar product we can formulate the
time evolution of the empirical processes in a weak sense. For all
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f ∈ C2
b
�

d��� and r = 1� � � � � R we have

�SN�r
t�� f�
�=

∫
�d

f
�x�SN�r
t�
ddx�

= 1
N

∑
k∈M
N�r�t�

f
 �Xk
N 
t��

= 1
N

∑
k∈M
N�r�0�

f
 �Xk
N 
0��+

∫ t

0
d

(
1
N

∑
k∈M
N�r�s�

f
 �Xk
N 
s��

)
� (10)

Inserting the expression for d �Xk
N 
s� from Eq. (3) and using Itô’s

formula�7� we get:

�SN�r
t�� f�

= 1
N

∑
k∈M
N�r�0�

f
 �Xk
N 
0��+

�r

N

∫ t

0

∑
k∈M
N�r�s�

��f
 �Xk
N 
s�� · d�Bk
s�

+ 1
N

∫ t

0

∑
k∈M
N�r�s�

(
��f
 �Xk

N 
s�� · �vr
 �Xk
N 
s�� s�+

�2
r

2

f
 �Xk

N 
s��

)
ds

− 1
N

R∑
q=1

∫ t

0

∑
k∈M
N�r�s�

f
 �Xk
N 
s��a

∗�k
N�rq
ds�

+ 1
N

R∑
q�l=1

∫ t

0

∑
k∈M
N�q�s�

f
 �Xk
N 
s��eqlra

∗�k
N�ql
ds� (11)

The first integral term describes the stochastic fluctuations of the
particle positions and the second one particle transport and diffusion,
resulting from the interaction free description (3). The next two terms
consider the change of the sets M
N� r� s� in (10) due to the loss of parti-
cles of species r after interactions with others, and the gain of such par-
ticles from products of other interactions. We separate the fluctuation
terms due to stochasticity in the free particle dynamics and the inter-
action in stochastic integrals. So we get for all f ∈ C2

b
�
d��� and r =

1� � � � � R the complete description of our microscopic model:

�SN�r
t�� f� = �SN�r
0�� f� +
∫ t

0

〈
SN�r
s�� ��f · �vr
�� s�+

�2
r

2

f

〉
ds

−
R∑

q=1

∫ t

0
�SN�r
s�� faN�rq
�� s��ds
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+
R∑

q�l=1

∫ t

0
�SN�q
s�� feqlraN�ql
�� s��ds

+M1
N�r
f� t�+M2a

N�r
f� t�+M2b
N�r
f� t�� with

M1
N�r
f� t� =

�r

N

∫ t

0

∑
k∈M
N�r�s�

��f
 �Xk
N 
s�� · d�Bk
s�

M2a
N�r
f� t� = − 1

N

R∑
q=1

∫ t

0

∑
k∈M
N�r�s�

f
 �Xk
N 
s��

×(
a∗�k
N�rq
ds�− aN�rq
 �Xk

N 
s�� s�ds
)

M2b
N�r
f� t� =

1
N

R∑
q�l=1

∫ t

0

∑
k∈M
N�q�s�

f
 �Xk
N 
s��eqlr

×(
a∗�k
N�ql
ds�− aN�ql
 �Xk

N 
s�� s�ds
)

and initial conditions SN�r
0� = N−1 ∑
k∈M
N�r�0� � �Xk

N 
0�
. 
MI�

This set of equations combines all features mentioned in the preced-
ing two subsections and is used to derive the macroscopic model (MA),
shown in the next section.

III. DERIVATION OF SMOLUCHOWSKI’S
EQUATION

We show how to obtain (MA) heuristically from our microscopic
particle model (MI), leading us to a proper formulation of the main
theorem.

A. Heuristic Derivation of the Macroscopic Equation

The empirical processes SN�r are defined as solutions of (MI). For
this subsection we assume that for every r = 1� � � � � R they converge
to limit processes Sr � �0� T� → �
�d� on a compact time interval
�0� T� in a yet unspecified sense. The limit processes are assumed to
be absolutely continuous with respect ot Lebesque measure on �d

and therefore have densities, sr , which should be in C2
b
�

d ×�+
0 ��

+
0 �.

With the generalized scalar product defined in (10) we therefore have
�Sr
t�� g
�� t�� = �sr
�� t�� g
�� t�� for all g ∈ Cb
�

d × �0� T����. We
also assume the validity of conditions (C1) to (C7) given in the next
subsection.
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In Sec. IV.D we get the following for the stochastic integrals in (MI)
for any T > 0:

lim
N→�

E

[
sup
t∈�0�T�


Mi
N�r
f� t�


]
= 0 for i = 1� 2a� 2b� (12)

so the fluctuation terms asymptotically vanish in any compact time inter-
val and the limit equation is supposed to be deterministic (see (14)).
The convergence of the SN�r should be sufficiently strong to assure the
following:

lim
N→�

E��SN�r
t�� g
�� t��� = �sr
�� t�� g
�� t��
lim
N→�

E��SN�r
t�� 
SN�q
t� ∗WN�g
�� t��� = �sr
�� t�� sq
�� t�g
�� t��� (13)

for all r� q = 1� � � � � R� t ∈ �0� T� and g ∈ Cb
�
d × �0� T���d�. The first

condition assures the convergence of the drift and diffusion term in (MI)
and the second one is needed for the interaction terms. We formally sub-
stitute the above limits into (MI) and notice that the self interaction term
in (6) vanishes for N → �. Therefore we get the following determinis-
tic integral equation for all test functions f ∈ C2

b
�
d���� t ∈ �0� T� and

r = 1� � � � � R:

�sr
�� t�� f� = 
sr
�� 0�� f� +
∫ t

0
ds

〈
sr
�� s�� ��f · �vr
�� s�+

1
2
�2
r 
f

〉
−

R∑
q=1

∫ t

0
ds�sr
�� s�� f ârq
�� s�sq
�� s��

+
R∑

q�l=1

∫ t

0
ds�sq
�� s�� feqlr âql
�� s�sl
�� s�� (14)

After partial integration in the transport and diffusion terms one imme-
diately recognizes this as a weak version of Smoluchowski’s equation.
Using (1) and (9) it is easy to get the last line in the form (MA).

Therefore we showed that, assuming the empirical processes
converge, their limit densities fulfill a weak form of Smoluchowski’s
equation. In the next subsection we explain how to prove this conver-
gence in an appropriate rigorous limit sense, which can be seen from (13)
to be of L2-type.
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B. Convergence Theorem

To formulate the convergence theorem we use the following distance
function between the empirical processes (MI) and the solution of
Smoluchowski’s equation (MA) specified in (C3) below:

dN�r
�� t� �= hN�r
�� t�− sr
�� t�� where hN�r
�� t� �= SN�r
t� ∗ ŴN �

(15)

for all r = 1� � � � � R and t ∈ �+
0 . The convolution kernel ŴN smooths out

the empirical processes and obeys the following regularity conditions:

(C1) ŴN is a different scaling of the interaction function WN and
both have to fulfill:

ŴN 
�x� = �̂dNW1
�̂N �x� and WN
�x� = �dNW1
�N �x��

where

�̂N = N�̂/d� 0< �̂<
d

d + 2
and �N = N�/d� 0<�<

�̂

d + 1

The scaling parameter �̂ plays no role in the dynamics of the many-
particle system. However, by the above assumptions some restrictions on
the parameter � determining the moderate interaction are introduced.

(C2) The unscaled function W1 ∈ L1 ∩ C2
b
�

d��� is symmetric, pos-
itive and standardized, i.e., �W1�1 = 1. We also need

∫
�d 
�x
W1
�x�ddx <

� and the Fourier transform Ŵ1 has to fulfill:

(a) Ŵ1 ∈ C2
b
�

d�.
(b) 
Ŵ1
���
 ≤ C exp
−C ′
��
�.
(c) 

Ŵ1
���
 ≤ C
1+ 
��
2�
Ŵ1
���
.
(d) v �→ 
Ŵ1
v���
� v ≥ 0� monotonicly decreasing for all fixed �� ∈

�d.

A Gaussian probability density is an example for W1 which obeys these
conditions. To the knowledge of the authors there is no proof of the
existence of a sufficiently smooth solution of the macroscopic equations,
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therefore we have to assume the following:

(C3) There exists a positive, unique C2
b -solution 
s1� � � � � sR� of

Smoluchowski’s equation (MA) in the time interval �0� T ∗� for some
positive T ∗. The functions sr
�� t� and their partial derivatives are
L2
�d��+

0 �-bounded uniformly in t ∈ �0� T ∗�.

(C4) The macroscopic collision rate ârq
�� t� given in Sec. I should
be differentiable bounded and fulfill the conditions (1) for all t ∈ �0� T ∗�.
The macroscopic material coefficient êrql should obey condition (1) and
together with its counterpart erql given in Sec. II.B, it should fulfill (9)
and be symmetric in r and q.

(C5) The upper bound Ca for the microscopic interaction rates (6)
is given so that the limit equation is not affected, Ca > maxr�q∈�1�����R�
supt∈�0�T∗� �ârq
�� t�sq
�� t���.

(C6) The velocity fields of the different particle species have to
fulfill

�vr ∈ C1
b
�

d × �0� T ∗���d� for all r = 1� � � � � R�

(C7) The diffusion constants of all particle species have to be
positive, i.e., �r > 0 for all r = 1� � � � � R.

We note that our proof only applies if all particles are Brownian.
Now we are ready to formulate our main convergence result.

Theorem. With conditions (C1) to (C7) and limN→� E
[∑R

r=1 �dN�r
�� 0��22
] =

0 it is

lim
N→�

E

[ R∑
r=1

sup
t∈�0�T∗�

�dN�r
�� t��22
]
= 0� (16)

Convergence at time t = 0 is given if the initial conditions of
(MA) and (MI) are compatible. One possibility is to take the particle
positions �Xk

N 
0�� k ∈ M
N� r� 0� as independent, identically distributed
random variables with suitably normalized densities s0r /

∑R
r=1�s0r � 1� for

all r = 1� � � � � R. For discussion of this point see Ref.�12� (Sec. 4B).
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To formulate the result without the smoothing convolution kernel
ŴN we introduce a metric on �
�d� by

D
�� �� �= sup�
�� − �� f�
 � f ∈ �D� for all �� � ∈ �
�d� and

�D �= �f ∈ C1
b ∩ L2
�d��� � �f�� + ���f�� + �f�2 ≤ 1�� (17)

This quantifies a distance between the empirical processes defined in
(MI) and the processes Sr
t�� t ∈ �0� T ∗�, with densities sr
�� t� given by
the solution (C3) of the macroscopic equation. As the theorem states
convergence in an L2-sense the convergence in the weak sense (17) is easy
to conclude.

Corollary. With the conditions of the theorem we have

lim
N→�

E

[ R∑
r=1

(
sup

t∈�0�T∗�
D
SN�r
t�� Sr
t��

)]
= 0� (18)

IV. PROOF OF THE CONVERGENCE RESULT

A. Preliminaries

The following lemma is useful in central estimates of Sec. IV.

Lemma. With f ∈ L2 ∩ C1
b
�

d���� ��f ∈ L2
�d��d� we have

�f − f ∗WN�22 ≤ C�−2
N ���f�22 and �f − f ∗WN�� ≤ C�−1

N ���f���
(19)

An analogous estimate is true, if WN and �N are replaced by ŴN and �̂N .
For any finite, positive measure � on �d and with UN
�x� �= 
�x
ŴN 
�x�

there is

�� ∗ UN�22 ≤ C�̂2�−2
N �� ∗ ŴN�22 + ��� 1�2 exp
−C ′�̂�N � for all � > 0�

(20)

For any finite, signed measure � on �d it is

�� ∗WN�22 ≤ �� ∗ ŴN�22� (21)

Proof. see Ref.�11� Sec. 4A, B and Ref.�12� Sec. 5B, or Ref.�3�, Sec. 4.3
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In the proof of the the lemma there is essentially made use of the
conditions (C1) and (C2) on the interaction function WN and the kernel
ŴN . Due to the conservation of mass in the microscopic system (9) and
with (2) we get the following bound on the empirical processes,

R∑
r=1

�SN�r
t�� 1� =
1
N

∑
k∈M
N�t�

1 ≤ N

N
= 1� (22)

We also use the following property without explicitly noting it for
all suitable f and g, such that the expressions are well defined:

�f� g ∗WN � = �f ∗WN�g� and �f� g ∗ ŴN � = �f ∗ ŴN�g�� (23)

because W1 is symmetric according to (C2). Throughout this chapter
C�C ′ etc., denote suitably chosen constants, whose value can vary from
line to line.

B. Proof of the Theorem

To prove statement (16) we first look at the time evolution of the
quantity

�dN�r
�� t��22 = �hN�r
�� t��22 − 2�hN�r
�� t�� sr
�� t�� + �sr
�� t��22� (24)

The dynamics of the first two terms is obtained analogous to (11)
using (3), (8), (23) and Itô’s formula:

�hN�r
�� t��22 =
1
N 2

∑
k�l∈M
N�r�t�


ŴN ∗ ŴN �
 �Xk
N 
t�− �Xl

N 
t��

�hN�r
�� t�� sr
�� t�� =
1
N

∑
k∈M
N�r�t�


sr
�� t� ∗ ŴN �
 �Xk
N 
t���

We just have to replace the test function f in (11) by SN�r
t� ∗ 
ŴN ∗ ŴN �

resp. sr
�� t� ∗ ŴN .
The expansion of the third term in (24) follows from the macroscopic

equation (MA):

�sr
�� t��22
= �sr
�� 0��22 +

∫ t

0
ds
〈
sr
�� s��−2�� · 
�vr
�� s�sr
�� s��+ �2

r 
sr
�� s�
〉
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+
R∑

q=1

∫ t

0
ds
〈
sr
�� s��−2sr
�� s�ârq
�� s�sq
�� s�

+ sq
�� s�
R∑
l=1

êqlr âql
�� s�sl
�� s�
〉

Combining the parts suitably by using (9) to express êqlr in terms of eqlr
we get:

�dN�r
�� t��22
= �dN�r
�� 0��22 + �2

r

∫ t

0
ds�dN�r
�� s�� 
dN�r
�� s��

+ 2
∫ t

0
ds
(�SN�r
s�� ��
dN�r
�� s� ∗ ŴN � · �vr
�� s��

− �sr
�� s�� ��dN�r
�� s� · �vr
�� s��
)

− 2
R∑

q=1

∫ t

0
ds
(�SN�r
s�� 
dN�r
�� s� ∗ ŴN �aN�rq
�� s��

− �sr
�� s�� dN�r
�� s�ârq
�� s�sq
�� s��
)

+ 2
R∑

q�l=1

∫ t

0
ds eqlr

(�SN�q
s�� 
dN�r
�� s� ∗ ŴN �aN�ql
�� s��

− �sq
�� s�� dN�r
�� s�âql
�� s�sl
�� s��
)

+ 2
∫ t

0

�r

N

∑
k∈M
N�r�s�

��
dN�r
�� s� ∗ ŴN �
 �Xk
N 
s�� · d�Bk
s�

− 2
R∑

q=1

∫ t

0

1
N

∑
k∈M
N�r�s�


dN�r
�� s� ∗ ŴN �
 �Xk
N 
s��

× (
a∗�k
N�rq
ds�− aN�rq
 �Xk

N 
s�� s�ds
)

+ 2
R∑

q�l=1

∫ t

0

1
N

∑
k∈M
N�q�s�


dN�r
�� s� ∗ ŴN �
 �Xk
N 
s��

× eqlr
(
a∗�k
N�ql
ds�− aN�ql
 �Xk

N 
s�� s�ds
)

− �2
r



ŴN ∗ ŴN �
�0�
N

∫ t

0
ds�SN�r
s�� 1�

+ 
ŴN ∗ ŴN �
�0�
N

R∑
q=1

∫ t

0
ds�SN�r
s�� aN�rq
�� s��
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+ 
ŴN ∗ ŴN �
�0�
N

R∑
q�l=1

∫ t

0
ds eqlr�SN�q
s�� aN�ql
�� s��

+ 
ŴN ∗ ŴN �
�0�
N 2

R∑
q=1

∫ t

0

∑
k∈M
N�r�s�

(
a∗�k
N�rq
ds�− aN�rq
 �Xk

N 
s�� s�ds
)

+ 
ŴN ∗ ŴN �
�0�
N 2

R∑
q�l=1

∫ t

0

∑
k∈M
N�q�s�

eqlr
(
a∗�k
N�ql
ds�− aN�ql
 �Xk

N 
s�� s�ds
)

= �dN�r
�� 0��22
+

∫ t

0

(
T 1
N�r
s�+ T 2

N�r
s�+ T 3
N�r
s�+ T 4

N�r
s��
)
ds

+ 2
(
M̂1

N�r
t�+ M̂2a
N�r
t�+ M̂2b

N�r
t�
)

+ T 0
N�r
t�+ T 0a

N�r
t�+ T 0b
N�r
t�+ M̂0a

N�r
t�+ M̂0b
N�r
t� (25)

The terms in the above sum are labeled line by line. T 1
N derives from

the diffusion due to Brownian motion, T 2
N from the particle transport,

T 3
N from the loss and T 4

N from the gain of particles due to interactions.
The stochastic integrals M̂1

N�r � M̂
2a
N�r and M̂2b

N�r represent the fluctuations
due to stochasticity in the free particle dynamics and the interaction.
The remaining terms are corrections resulting from the expansion of
�hN�r
�� t��22. With Itô’s formula and (3) we get for T 0

N�r :

1
N 2

∑
k�l∈M
N�r�t�

d
ŴN ∗ ŴN �
 �Xk
N 
t�− �Xl

N 
t��

= 1
N 2

∑
k�l∈M
N�r�t�

k �=1

(��
ŴN ∗ ŴN �
 �Xk
N 
t�− �Xl

N 
t��
d �Xk
N 
t�− d �Xl

N 
t��

+�2
r

2


ŴN ∗ ŴN �
 �Xk

N 
t�− �Xl
N 
t��
dt + dt�

)
= 2�SN�r
t�� ��
hN�r
�� t� ∗ ŴN � · �vr
�� t��dt

+ 2�r

N

∑
k∈M
N�r�t�

��
hN�r
�� t� ∗ ŴN � · d�Bk
t�

+ �2
r �hN�r
�� t�� 
hN�r
�� t��dt −

�2
r

N 2

∑
k∈M
N�r�t�



ŴN ∗ ŴN �
�0�dt
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T 0a
N�r and T 0b

N�r can be derived analogously by considering the change of
the sets M
N� q� t�� q = 1� � � � � R. The fluctuations of these corrections are
separated in stochastic integrals M̂0a

N�r and M̂0b
N�r .

Estimate of the correction terms.
With (C1), (C2) and (22) we get:


T 0
N�r
t�
 ≤

t�2
r

N

( ∫
�d


ŴN 
�x�
ŴN 
�0− �x�
ddx

)
sup
s≤t

�SN�r
s�� 1�

≤ C

N
t
∫
�d

N �̂
1+2/d��
W1��
ŴN 
�x�
ddx ≤ CtN �̂
1+2/d�−1

The term vanishes in the limit N → �, because with (C1) it is
�̂ < d/
d + 2�. Using also (6) and (9) we get completely analogous:


T 0a
N�r
t�
 + 
T 0b

N�r
t�
 ≤ CtN �̂−1

The stochastic integrals are estimated in Sec. IV.D.

Estimate of T 1
N�r
s� = �2

r �dN�r
�� s�� 
dN�r
�� s��.
After partial integration we get with condition (C7): T 1

N�r
s� =
−�2

r���dN�r
�� s��22 < 0. This term is negative and can be used to cancel
positive contributions of the same kind arising in the estimates of T 2

N�r

and M̂1
N�r .

Estimate of T 2
N�r
s� = 2
�SN�r
s�� ��
dN�r
�� s� ∗ ŴN � · �vr
�� s�� − �sr
�� s�,

��dN�r
�� s� · �vr
�� s���.
To contract the two brackets we make the following replacement:

�SN�r
s�� 
��dN�r
�� s� ∗ ŴN � · �vr
�� s��
= �hN�r
�� s�� ��dN�r
�� s� · �vr
�� s�� + R2

N�r
s��

where the correction term is estimated using (C6):


R2
N�r
s�


=
∣∣∣∣〈SN�r
s�� ∫

�d
dduŴN 
�u���dN�r
�− �u� s� · 
�vr
�� s�− �vr
�− �u� s��

〉∣∣∣∣
≤

〈
SN�r
s��

∫
�d

dduŴN 
�u�
�u���dN�r
�− �u� s�

〉
����vr
�� s���

≤ C�SN�r
s� ∗ UN� 
 ��dN�r
�� s�
�

≤ C

(
C̃�SN�r
s� ∗ UN�22 +

1

C̃
���dN�r
�� s��22

)
�
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with UN
�x� �= 
�x
ŴN 
�x�. This is true for all C̃ > 0 using Cauchy’s
inequality. With the second statement of the lemma (20) and (22) we
have for all � > 0


R2
N�r
s�


≤ CC̃
(
�̂2�−2
N �hN�r
�� s��22 + �SN�r
s�� 1�2e−C′ �̂�N

)+ C ′′

C̃
���dN�r
�� s��22

≤ CC̃
(
�̂2�−2
N 
�dN�r
�� s��22 + C ′�+ e−C′′ �̂�N

)+ C ′′′

C̃
���dN�r
�� s��22�

Using (C3), because with the triangle inequality it is

�hN�r
�� s��22 ≤ 
�dN�r
�� s��2 + �sr
�� s��2�2
≤ 2�dN�r
�� s��22 + 2�sr
�� s��22�

C̃ is chosen after the estimate of M̂1
N�r , so that the term arising there and

C ′′′/C̃���dN�r
�� s��22 cancels with the negative contribution from the esti-
mate of T 1

N�r . Choosing � = 1
2 the constant terms in the above estimate

of 
R2
N�r
s�
 and the prefactor of �dN�r
�� s��22 vanish in the limit N → �.

Now we can write

T 2
N�r
s� = 2�dN�r
�� s�� 
��dN�r
�� s�� · �vr
�� s�� + 2R2

N�r
s��

With (C6) and the estimate∣∣�dN�r
�� s�� 
��dN�r
�� s�� · �vr
�� s��
∣∣ = 1

2

∣∣���d2
N�r
�� s�� �vr
�� s��

∣∣
=

∣∣∣∣− 1
2
�d2

N�r
�� s��
�� · �vr
�� s��

∣∣∣∣
≤ 1

2
��� · �vr
�� s����dN�r
�� s��22

we get after a suitable arrangement of constants and terms:


T 2
N�r
s�
 ≤ C
1+ C̃��dN�r
�� s��22 +

C ′

C̃
���dN�r
�� s��22 + C̃O
N−�̂/d��

because the N -dependent prefactors of �dN�r
�� s��22 vanish monotonically
with N → � and N−�̂/d is the leading order in N of all constant terms.

Estimate of T 3
N�r
s� = −2

∑R
q=1

(�SN�r
s�� 
dN�r
�� s� ∗ ŴN �aN�rq
�� s�� −
�sr
�� s�� dN�r
�� s�ârq
�� s�sq
�� s��

)
.
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First we make the same substitution as before:

�SN�r
s�� 
dN�r
�� s� ∗ ŴN �aN�rq
�� s��
= �hN�r
�� s�� dN�r
�� s�aN�rq
�� s�� + R3a

N�rq
s��

and we can estimate the correction term analogously to R2
N�r using (6),

(C1), (C2), (C4), (20) and (22):


R3a
N�rq
s�
 =

∣∣∣∣〈SN�r
s�� ∫
�d

dduŴN 
�u�dN�r
�− �u� s�

× 
aN�rq
�� s�− aN�rq
�− �u� s��
〉∣∣∣∣

≤
〈
SN�r
s��

∫
�d

dduŴN 
�u�
�u�dN�r
�− �u� s�

〉

× (�ârq
�� s������
SN�q
s� ∗WN���
+ ���ârq
�� s����SN�q
s� ∗WN��

)
≤ �SN�r
s� ∗ UN� 
dN�r
�� s�
�

× C
�d+1
N + �dN �
�W1�� + ���W1���

≤ C�2d+2
N

(
�̂2�−2
N 
�dN�r
�� s��22 + C ′�+ e−C′′ �̂�N

)+ �dN�r
�� s��22�

For the first term in the above estimate to vanish in the limit N → �,
we choose � > 0 so that � �= 
�
2d + 2�+ �̂
2�− 2��/d < 0. That means

0 < � <
1

�̂

�̂ − �
d + 1��, which is possible due to condition (C1) on the

scaling parameters � and �̂. Now we look at the remaining term in T 3
N�r :

−2
R∑

q=1

(�hN�r
�� s�� dN�r
�� s�aN�rq
�� s��

−�sr
�� s�� dN�r
�� s�ârq
�� s�sq
�� s��
)

To contract the two brackets we have to compare the microscopic
and macroscopic interaction rates:

�hN�r
�� s�� dN�r
�� s�aN�rq
�� s�� − �sr
�� s�� dN�r
�� s�ârq
�� s�sq
�� s��
= �dN�r
�� s�� dN�r
�� s�aN�rq
�� s�� + R3b

N�rq
s��
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with the correction term

R3b
N�rq
s� = �sr
�� s�� dN�r
�� s�
aN�rq
�� s�− ârq
�� s�sq
�� s����

With the definition of aN�rq
�� s� in (6) and (C5) we get the following
estimate:


R3b
N�rq
s�


≤
〈
sr
�� s�� 
dN�r
�� s��ârq
�� s�


×
(

sq
�� s�− SN�q
s� ∗WN 
 + �r�q

1
N
WN
�0�

)〉
≤ �sr
�� s�ârq
�� s����dN�r
�� s��2�sq
�� s�− SN�q
s� ∗WN�2

+ �r�qN
�−1W1
�0�
�ârq
�� s��2��sr
�� s��22 + �dN�r
�� s��22�

It is �sq
�� s�− SN�q
s� ∗WN�2 ≤ �
sq
�� s�− SN�q
s�� ∗WN�2 + �sq
�� s�−
sq
�� s� ∗WN�2 and with the third statement (21) of the lemma

�
sq
�� s�− SN�q
s�� ∗WN�2 ≤ �
sq
�� s�− SN�q
s�� ∗ ŴN�2
≤ �dN�q
�� s��2 + �sq
�� s�− sq
�� s� ∗ ŴN�2�

Therefore we get with the first statement (19) and (C3)


R3b
N�rq
s�
 ≤ C

(�dN�r
�� s��22 + �dN�q
�� s��22 + C ′
�−2
N + �̂−2

N ����sq
�� s��22
)

+�r�qC
′′N�−1
1+ �dN�r
�� s��22��

After treating the correction terms we get for the main contribution
using (6):


�dN�r
�� s�dN�r
�� s�aN�rq
�� s��
 ≤ Ca�dN�r
�� s��22
Arranging all terms analogously to T 2

N�r we finally have the estimate


T 3
N�r
s�
 ≤ C

R∑
q=1

�dN�q
�� s��22 + O
N��� with � < 0�

Estimate of T 4
N�r
s� = 2

∑R
q�l=1 eqlr
�SN�q
s�� 
dN�r
�� s� ∗ ŴN �aN�ql
�� s�� −

�sq
�� s�� dN�r
�� s�âql
�� s�sl
�� s���.
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Obviously, the estimate of this term is completely analogous to the
one of T 3

N with the same result except for different constants,


T 4
N�r
s�
 ≤ C

R∑
q=1

�dN�q
�� s��22 + O
N��� with � < 0�

Putting all the estimates together, taking the absolute value, the
supremum over all t ∈ �0� T� for some T < T ∗ (see (C3)) and the sum∑R

r=1 on both sides of Eq. (25) we arrive at:

R∑
r=1

(
sup
t∈�0�T�

�dN�r
�� t��22 +
(
�2
r −

C

C̃

) ∫ T

0
ds���dN�r
�� s��22

)

≤
R∑

r=1

(
�dN�r
�� 0��22 + TC ′ sup

t∈�0�T�
�dN�r
�� t��22

)
+ 
1+ C̃ + T�O
N��

+
R∑

r=1

sup
t∈�0�T�

(
2
M̂1

N�r
t�
 + 2
M̂2a
N�r
t�


+ 2
M̂2b
N�r
t�
 + 
M̂0a

N�r
t�
 + 
M̂0b
N�r
t�


)
(26)

The choice of C̃ below ensures the positivity of all occuring terms.
The leading order of all constant terms, including the estimated cor-
rection terms, is characterized by � < 0 defined in the estimate of T 3

N�r .
Taking the expectation on both sides of (26) we can use the estimates
(35) and (36) of the stochastic integrals in Sec. IV.D and get:

E

[ R∑
r=1

(
sup
t∈�0�T�

�dN�r
�� t��22 +
(
�2
r − CN
�̂−1�/2 − C ′

C̃

)
×
∫ T

0
ds���dN�r
�� s��22

)]
≤ E

[ R∑
r=1

(
�dN�r
�� 0��22 + TC ′′ sup

t∈�0�T�

�dN�r
�� t��22�

)]
+
1+ C̃ + T�O
N��� (27)

where the leading order of constant terms remains unchanged with (C1).
Now we can choose C̃, occuring in the estimate of T 2

N�r , and N0 ∈ N large
enough, so that the prefactor of

∫ T

0 ds���dN�r
�� s��22 on the lefthand side
of (27) is positive for all N > N0 (see (C7)). Consequently this term can
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be neglected and after a short rearrangement we have for all N > N0 and
0 < T < 1/C ′′, where C ′′ is taken from (27):

E

[
R∑

r=1

sup
t∈�0�T�

�dN�r
·� t��22
]
≤ 1

1− TC ′′E

[
R∑

r=1

�dN�r
·� 0��22
]

+ 
1+ T�O
N�� (28)

Taking the limit N → � on both sides, the constant terms vanish as � <
0 and convergence at t = 0 is given in the theorem. This finally proves
statement (16) for all t ∈ �0� T�, but the above constraint on the time
interval is not essential. At t = T all the conditions for the theorem are
fulfilled as long as T < T ∗, which enables us to apply the proof again
with the same constants arising. The length of the next time interval is
subject to the same constraint and after a finite number of repetitions
this proves the theorem.

C. Proof of the Corollary

We have the following estimate:

∣∣〈SN�r
t�− sr
·� t�� f
〉∣∣ ≤ ∣∣〈SN�r
t�− hN�r
·� t�� f

〉∣∣+ ∣∣〈dN�r
·� t�� f
〉∣∣

≤ ∣∣〈SN�r
t�� f − f ∗ ŴN

〉∣∣+ �f�2�dN�r
·� t��2
≤ 〈

SN�r
t�� 1
〉�f − f ∗ ŴN�� + �f�2�dN�r
·� t��2

Therefore we get for all f ∈ �D (see 17), using statement (19) of
the lemma and (22): 
〈SN�r
t�− sr
·� t�� f

〉
 ≤ C
���f���̂−1
N + �dN�r
·� t��2�.

Hence we have for the metric D


D
SN�r
t�� Sr
t��
 ≤ C
�̂−1
N + �dN�r
·� t��2� for all r = 1� � � � � R�

(29)

It is straightforward to see that the statement (16) of the theorem implies

lim
N→�

E

[ R∑
r=1

sup
t∈�0�T∗�

�dN�r
�� t��2
]
= 0�
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Using this, Eq. (29) immediately gives

lim
N→�

E

[ R∑
r=1

(
sup

t∈�0�T∗�
D
SN�r
t�� Sr
t��

)]

≤ C lim
N→�

E

[ R∑
r=1

sup
t∈�0�T∗�

�dN�r
�� t��2
]
= 0�

which proves the statement (18) of the corollary.

D. Estimate of the Stochastic Integrals

In the following we estimate the stochastic integrals occuring in (MI)
and (25). First we show for every fixed system size N ∈ � that the inte-
grands and integrators fulfill the necessary regularity conditions so that
standard techniques of stochastic integration taken from Refs.�5�7� can be
applied. This part is kept short and can be read in more detail in Ref.�3�

(Sec. 3.1.1, appendices B and C), following the work in Ref.�11�. Accord-
ing to those results we find an estimate uniformly in N using Doob’s
inequality.�7� First we consider the terms

M1
N�r
f� t� =

�r

N

�∑
k=1

d∑
i=1

∫ t

0
I1N�r�k�i
f� s�dB

k
i 
s�

where I1N�r�k�i
f� t� �= �M
N�r�t�
k�	xif

�Xk
N 
t��,

M2a
N�r
f� t� = − 1

N

R∑
q=1

�∑
k=1

∫ t

0
I2aN�r�k
f� s�dP

k
N�rq
s�

where I2aN�r�k
f� t� �= �M
N�r�t�
k�f
 �Xk
N 
t�� and

Pk
N�rq
t� �= a∗�k

N�rq
t�−
∫ t

0
�M
N�r�s�
k�aN�rq
 �Xk

N 
s�� s�ds (30)

occuring in (MI). M2b
N�r can be handled analogously to M2a

N�r . The integra-
tors Bk

i and Pk
N�rq in (30) are Brownian motions and time-inhomogeneous

compensated Poisson processes (8) with bounded rates (6). Therefore
they are square integrable martingales with respect to the filtration
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�t�t≥0, mentioned after Eq. (3). The integrands I1N�r�k�i and I2aN�r�k can be
replaced by their left continuous versions as we have

E

[ ∫ t

0

I1N�r�k�i
f� s�− I1N�r�k�i
f� s−�
2d〈Bk

i

〉

s�

]

= E

[ ∫ t

0

I2aN�r�k
f� s�− I2aN�r�k
f� s−�
2d〈Pk

N�rq

〉

s�

]
= 0�

because the quadratic variational processes �Bk
i �
s� = s and �Pk

N�rq�
s� =∫ s

0 �M
N�r�u�
k�aN�rq
 �Xk
N 
u�� u�du are continuous in s. On Poisson processes

with time dependent rates see e.g. Ref.�5� Theorem II.3.1 on page 60.
Therefore we can assume the integrands to be predictable processes with
respect to 
�t�t≥0. For every fixed system size N ∈ � it is

E

[ ∫ t

0

I1N�r�k�i
f� s�
2d

〈
Bk
i

〉

s�

]
� E

[ ∫ t

0

I2aN�r�k
f� s�
2d

〈
Pk
N�rq

〉

s�

]
< ��

(31)

using f ∈ C2
b
�

d��� and estimates analogous to (32) and (33) below.
Hence M1

N�r
f� t� and M2a
N�r
f� t� are martingales with respect to 
�t�t≥0.

On the other hand we have for all r = 1� � � � � R� t ≥ 0 and N ∈ �:

E
[
M1

N�r
f� t�
2
]

= E

[
�2
r

N 2

( ∫ t

0

∑
k∈M
N�r�s�

��f
 �Xk
N 
s���d�Bk
s�

)

×
( ∫ t

0

∑
t∈M
N�r�s�

��f
 �Xt
N 
s���d�Bl
s�

)]

= �2
r

N 2
E

[ ∫ t

0

∑
k�t∈M
N�r�s�

d∑
i�j=1

	xif

�Xk
N 
s��	xj f


�Xt
N 
s��d

〈
Bk
i � B

t
j

〉

s�

]

= �2
r

N 2
E

[ ∫ t

0

∑
k∈M
N�r�s�


 ��f
 �Xk
N 
s��
2ds

]
= �2

r

N

∫ t

0
E
[〈
SN�r
s�� 
 ��f 
2

〉]
ds

≤ �2
r

N
���f�2�

∫ t

0
E
[〈
SN�r
s�� 1

〉]
ds ≤ C

�2
r

N
���f�2�t < � (32)
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E
[
M2a

N�r
f� t�
2
]

= 1
N 2

R∑
p�q=1

E

[ ∫ t

0

∑
k�l∈M
N�r�s�

f
 �Xk
N 
s��f
 �Xl

N 
s��d
〈
Pk
N�rp� P

l
N�rq

〉]

= 1
N 2

R∑
q=1

E

[ ∫ t

0

∑
k∈M
N�r�s�

f 2
 �Xk
N 
s��aN�rq
 �Xk

N 
s�� s�ds

]

≤ 1
N
�f�2�

(
sup
s∈�0�t�

R∑
q=1

�aN�rq
�� s���
) ∫ t

0
E
[〈
SN�r
s�� 1

〉]
ds

≤ RCa

N
�f�2�t < � (33)

This is true with (22), f ∈ C2
b
�

d���, and (M4). After an estimate of
M2b

N�r analogous to M2a
N�r we can apply Doob’s inequality and get for

i = 1� 2a� 2b� r = 1� � � � � R and all T > 0:

E

[
sup
t∈�0�T�


Mi
N�r
f� t�


]2

≤ E

[
sup
t∈�0�T�


Mi
N�r
f� t�
2

]
≤ 4E

[
Mi

N�r
f� T�
2
]
�

(34)

so the result (12) follows from (32) to (34).
For the terms occuring in (25) we have M̂i

N�r
t� = Mi
N�r
dN�r
�� t� ∗

ŴN � t� for i = 1� 2a� 2b and therefore a similar reasoning applies in this
case. To get an estimate in the limit N → � we note that with (C1)
and (C2) ŴN 
�x − �� is a probability density on �d for all �x ∈ �d. Hence
we have for all f � �d → �, where EŴN

denotes the corresponding
expectation value:



f ∗ ŴN �
�x�
2 =
∣∣∣∣ ∫

�d
ŴN 
�x − �y�f
�y�ddy

∣∣∣∣2 = EŴN
�f�2

≤ EŴN
�f 2� = 

f 
2 ∗ ŴN �
�x�

We also have with (C1), (C2) and (22) for all t ∈ �0� T ∗� and r = 1� � � � � R:

�hN�r
�� t��� ≤ �̂dN
1
N

∑
k∈M
N�r�t�

�W1
�̂N 
�− �Xk
N 
t�����

≤ CN�̂
〈
SN�r
t�� 1

〉 ≤ CN�̂
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With the last two considerations we get for all T ∈ �0� T ∗�, starting
with the third line of (32) and second line of (33) and using (23),

E
[
M̂1

N�r
T�
2
] ≤ �2

r

N
E

[ ∫ T

0

〈
SN�r
s�� 
 ��
dN�r
�� s� ∗ ŴN �
2

〉
ds

]
≤ �2

r

N
E

[ ∫ T

0

〈
hN�r
�� s�� 
 ��dN�r
�� s�
2

〉
ds

]
≤ CN�̂−1�2

r E

[ ∫ T

0
���dN�r
�� s��22ds

]
�

E
[
M̂2a

N�r
T�
2
] ≤ 1

N

R∑
q=1

E

[ ∫ T

0

〈
SN�r
s�� 
dN�r
�� s� ∗ ŴN 
2aN�rq
�� s�

〉
ds

]

≤ RCa

N
E

[ ∫ T

0

〈
hN�r
�� s�� 
dN�r
�� s�
2

〉
ds

]
≤ CN�̂−1E

[ ∫ T

0
�dN�r
�� s��22ds

]
�

Using Doob’s inequality in the form (34) we get for all T ∈ �0� T ∗�:

E

[ R∑
r=1

sup
t∈�0�T�


M̂1
N�r
t�


]
≤ CN
�̂−1�/2

(
1+

R∑
r=1

E

[ ∫ T

0
���dN�r
�� s��22ds

])

E

[ R∑
r=1

sup
t∈�0�T�


M̂2a
N�r
t�


]
≤ C

(
N�̂−1 + T

R∑
r=1

E

[
sup
t∈�0�T�

�dN�r
�� t��22
])

�

(35)

With (9) the analogous estimate of M̂2b
N yields the same result as for

M̂2a
N except for the constant C. The correction terms M̂0a

N�r and M̂0b
N�r are

much easier to handle and with (C1), (C2), (33) and (9) we get

E

[ R∑
r=1

(
sup
t∈�0�T�


M̂0a
N�r
t�
 + sup

t∈�0�T�

M̂0b

N�r
t�

)]

≤ CTN �̂−3/2 (36)

V. DISCUSSION

A. Connection to Astrophysics

In the astrophysical context studied in Refs.�6�14� the particles are
dust grains in a star forming cloud of hydrogen gas. Depending on the
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grain size distribution these particles determine the opacity of the gas
cloud and influence thermodynamic properties by emission and absorp-
tion of heat radiation. They also interact with the gas via hydrodynamic
drag and influence chemical reactions via catalysis. A realistic expres-
sion for the collision rate of two ball shaped grains with radii lr and lq
is ârq
�x� t� ∼ 
lr + lq�

d−1g

�vr
�x� t�− �vq
�x� t�
�, proportional to the cross
section and depending on the relative velocity of the two particles (cf.�14�).
The material coefficient êrql should also depend on the relative velocity
of the two collision partners. If the latter is high, shattering collisions
with several outgoing particles of masses m1 < mr�mq are prefered. If it
is low, the colliding particles are more likely to coagulate, so that there
is one outgoing particle of mass mi = mr +mq. For a precise form of
this function from empirical data for different grain materials we refer to
Ref.�6� (Table 1) and references therein.

Of special interest in Refs.�6�14� is the situation after a shock with very
high gas temperatures and particle densities. In this regime shattering is
the dominant process, justifying (C4), and it seems natural to assume
that all particles are Brownian (C7). The stochasticity in the interaction
coming from regularity conditions on W1 in (M3) also appears to be rea-
sonable. The effective field interaction introduced in (M4) is a simplifi-
cation we have to make in order to include the space dependence in ârq,
which cannot be included in a model with pair interactions (see Sec. V.B).
The cut-off of the interaction rate in (M4) prevents a divergence due
to high particle concentrations and seems natural, as for real grains the
density is limited due to the positive particle volume. As the focus of
this paper is on the interaction and not on transport terms in (MA), we
left out the complicated hydrodynamic drag interaction between parti-
cles and gas in (M2). We note that all realistic features are covered by
our derivation, except for the velocity dependence of êrql, which can be
included in a direct generalization explained in the next subsection.

The moderate interaction scaling is technically important, as seen in
the proof, and can also be interpreted on a physical level. In the limit
N → � the scaling of the mean distance between particles is given by
�N ∼ N−1/d and due to (5) the interaction radius scales like rN ∼ N−�/d

with � < 1. It vanishes more slowly with N than �N does and the num-
ber of interaction partners of a particle diverges in the limit N → �.
In contrast to the hydrodynamic scaling with �N ∼ rN this introduces
a self-averaging effect and the influence of the interaction partners is
determined by the local particle density. In the astrophysical gas cloud
after a shock the cross section for a collision interaction can be thought
of being effectively enlarged by strong Brownian motion of the parti-
cles. Together with high particle densities this leads to a large number of
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interaction partners and justifies the moderate scaling in our microscopic
model (M3), whereas the scaling in the Boltzmann–Grad limit�8� is not
appropriate in this regime.

B. Modification of the Microscopic Model

As explained above a modified macroscopic model (MA′), where the
material coefficients êrql depend on the relative velocity of the collision
partners is more realistic. As the microscopic material coefficients erql ∈
�0 are integer numbers they cannot depend on 
�x� t�, because they have
to be Lipschitz continuous for our proof (see (C4)). So we define analo-
gous to (6) and (8) a proper set of m different, possible collision events.


a∗�k
N�rq�

i �= �k�i
N�rq

( ∫ t

0
�M
N�r�s�
k�a

i
N�rq
 �Xk

N 
s�� s�ds

)
� i = 1� � � � � m�

with rates

ai
N�rq
 �Xk

N 
t�� t� �= min
{
Ca� â

i
rq
 �Xk

N 
t�� t�

×(

SN�q
t� ∗WN�
 �Xk

N 
t��− �r�qWN
�0�/N
)}

and corresponding outcomes eirql. So the process with the most probable
outcome for the relative velocity of the collision partners can be given the
highest rate, whereas the others are small. With this microscopic model
(MI′) we introduce a dependence of the collision outcome on the rela-
tive velocity. To obtain compatibility with the macroscopic model (MA′)
certain conditions on âi

rq and eirql have to be satisfied, and our proof of
convergence applies with some minor changes.

Another modification of the microscopic model is to include pair
interactions. Here we have to define a process for every pair of particles
with k �= j:

a
∗�kj
N�rq
t� �= �

kj
N�rq

( ∫ t

0
a
kj
N�rq
s�ds

)
for k < j

a
∗�kj
N�rq
t� �= a

∗�jk
N�qr
t� for k > j�

with rates

a
kj
N�rq
t� �= 
1− �kj��M
N�r�t�
k��M
N�q�t�
j�

1
N
WN
 �Xk

N 
t�− �Xj
N 
t��ârq
t��

Our proof of convergence can be applied, but works only for
spatially independent macroscopic collision rates ârq
t�. It assures
convergence only up to a stopping time, as long as the summed rates
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∑
j∈M
N�r�t� a

kj
N�rq
t� are bounded uniformly in N by some predefined con-

stant (cf. (M4)). For this reason the first modification seems to be more
attractive, as it covers all realistic features explained in Sec. V.A. Never-
theless pair interactions are more realistic descriptions of collision events
and coagulation could be included in such a model.

C. Conclusion

In this article we specified a microscopic particle model (MI) from
which we rigorously derived Smoluchowski’s equation in the space
dependent form (MA). Using the technique of the moderate limit devel-
oped in Ref.�11�, we could estimate the critical fluctuation terms with mar-
tingale inequalities. This scaling assumption is a good approximation of
real systems in the regime of high temperatures and particle densities,
which has been of interest in the study of interstellar gas clouds after
shocks.

In the framework of the moderate limit, a further interesting ques-
tion is the asymptotic behaviour of fluctuations for large system sizes
and the formulation of a central limit theorem for this problem. One can
as well try to eliminate some of the technical conditions for the proof,
such as the restrictions to the scaling parameter in (C1) or the finite num-
ber of particle sizes. There is also hope to proof a convergence result
for a microscopic model with pair interactions without the constraints
mentioned in V.B, by using a suitable Sobolev-norm.

It would be certainly of most interest to derive Smoluchowski’s
equation in the hydrodynamic limit, but this task cannot be achieved
with the methods used here. Nevertheless we could prove the validity
of the spatially inhomogeneous equation in a regime, which is of great
interest in astrophysics, and where previous derivations do not supply.

REFERENCES

1. Arnold, L.; Theodosopulu, M. Deterministic limit of the stochastic
model of chemical reactions with diffusion. Adv. Appl. Prob. 1980,
12, 367–379.

2. De Masi, A.; Ferrari, P.A.; Lebowitz, J.L. Reaction-Diffusion equa-
tions for interacting particle systems. J. Stat. Phys. 1986, 44, 589–644.

3. Großkinsky, S. Herleitung der Smoluchowski-Fragmentations-
Gleichung aus einem Vielteilchenmodell im moderaten Limes.
Diploma thesis, Institut für Angewandte Mathematik and Statistik,



ORDER                        REPRINTS

Rigorous Derivation of Smoluchowski’s Equation 141

Julius-Maximilians-Universität Würzburg, 2000. http://www-m5.ma.
tum.de/pers/stefang/diplom.ps.gz

4. Guias, F. Coagulation–fragmentation processes: Relations between
Finite Particle Models and Differential Equations, Preprint 98-
41, SFB 359, Ruprechts-Karls-Universität Heidelberg (1998) and
Convergence Properties of a Stochastic Model for Coagulation–
Fragmentation Processes with Diffusion. Stoch. Anal. Appl. 2001,
19, 245–278.

5. Ikeda, N.; Watanabe, S. Stochastic Differential Equations and
Diffusion Processes, 2nd Ed.; North-Holland Publishing Company,
Kodansha Ltd.: Tokyo, 1989.

6. Jones, A.P.; Tielens, A.G.G.M.; Hollenbach, D.J. Grain shattering
in shocks: The interstaller grain size distribution. ApJ 1996, 469,
740–764.

7. Karatzas, I.; Shreve, S.E. Brownian Motion and Stochastic Calculus,
Ist Ed.; Springer: New York, 1988. Itô’s formula: Chapter 3, Theo-
rem 3.3 on page 150, Doob’s inequality: Chapter 1, Theorem 3.8 on
page 14, Usual conditions: Chapter 1, definition 2.25.

8. Lang, R.; Xanh, N.X. Smoulchowski’s theory of coagulation
in colloids holds rigorously in the Boltzmann-Grad-Limit. Z.
Wahrscheinlichkeitstheorie verw. Gebiete 1980, 54, 227–280.

9. Morale, D.; Capasso, V.; Oelschläger, K. A rigorous derivation of
a nonlinear integro-differential equation from a system of stochastic
differential equations for an aggregation model. Preprint 98-38, SFB
359, Ruprechts-Karls-Universität Heidelberg (1998).

10. Norris, J.R. Smoluchowski’s coagulation equation: Uniqueness,
non-uniqueness and a hydrodynamic limit for the stochastic
coalescent. Ann. Appl. Prob. 1999, 9, 78–109.

11. Oelschläger, K. On the derivation of reaction-diffusion equations
as limit dynamics of systems of moderately interacting stochastic
processes. Probab. Theory Related Fields 1989, 82, 565–586.

12. Oelschläger, K. Large systems of interacting particles and the porous
medium equation. J. Diff. Equ. 1990, 88, 294–346.

13. Stevens, A. Derivation of chemotaxis-equations as limit dynamics
of moderately interacting stochastic many particle systems. SIAM J.
Appl. Math. 2000, 61, 183–212.

14. Suttner, G.; Yorke, H.W.; Lin, D. Dust coagulation in protostellar
envelopes, I. compact grains. ApJ 1999, 524, 857–866.

15. van Smoluchowski, M.; Drei Vorträge über Diffusion, Brownsche
Bewegung und Koagulation von Kolloidteilchen. Physik. Z. 1916, 17,
557–585.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Request Permission/Order Reprints

 

Reprints of this article can also be ordered at

http://www.dekker.com/servlet/product/DOI/101081SAP120028026

Request Permission or Order Reprints Instantly! 

Interested in copying and sharing this article? In most cases, U.S. Copyright 
Law requires that you get permission from the article’s rightsholder before 
using copyrighted content. 

All information and materials found in this article, including but not limited 
to text, trademarks, patents, logos, graphics and images (the "Materials"), are 
the copyrighted works and other forms of intellectual property of Marcel 
Dekker, Inc., or its licensors. All rights not expressly granted are reserved. 

Get permission to lawfully reproduce and distribute the Materials or order 
reprints quickly and painlessly. Simply click on the "Request Permission/ 
Order Reprints" link below and follow the instructions. Visit the 
U.S. Copyright Office for information on Fair Use limitations of U.S. 
copyright law. Please refer to The Association of American Publishers’ 
(AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, 
reposted, resold or distributed by electronic means or otherwise without 
permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the 
limited right to display the Materials only on your personal computer or 
personal wireless device, and to copy and download single copies of such 
Materials provided that any copyright, trademark or other notice appearing 
on such Materials is also retained by, displayed, copied or downloaded as 
part of the Materials and is not removed or obscured, and provided you do 
not edit, modify, alter or enhance the Materials. Please refer to our Website 
User Agreement for more details. 

 

 

http://www.copyright.gov/fls/fl102.html
http://www.publishers.org/conference/copyguide.cfm
http://www.dekker.com/misc/useragreement.jsp
http://www.dekker.com/misc/useragreement.jsp
http://s100.copyright.com/AppDispatchServlet?authorPreorderIndicator=N&pdfSource=Dekker&publication=SAP&title=A+Rigorous+Derivation+of+Smoluchowski%27s+Equation+in+the+Moderate+Limit&offerIDValue=18&volumeNum=22&startPage=113&isn=0736-2994&chapterNum=&publicationDate=&endPage=141&contentID=10.1081%2FSAP-120028026&issueNum=1&colorPagesNum=0&pdfStampDate=02%2F07%2F2004+20%3A05%3A27&publisherName=dekker&orderBeanReset=true&author=S.+Grokinsky%2C+C.+Klingenberg%2C+K.+Oelschlager&mac=$gQK$%H5Z837YDUsL9daMg--

