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A B S T R A C T

We consider a kinetic description of multi-species gas mixture modeled with
Bhatnagar-Gross-Krook (BGK) collision operators, in which the collision fre-
quency varies not only in time and space but also with the microscopic veloc-
ity. In this model, the Maxwellians typically used in standard BGK operators
are replaced by a generalization of such target functions, which are defined
by a variational procedure [20]. In this paper we present a numerical method
for simulating this model, which uses an Implicit-Explicit (IMEX) scheme to
minimize a certain potential function, mimicking the Lagrange functional that
appears in the theoretical derivation. We show that theoretical properties such
as conservation of mass, total momentum and total energy as well as positivity
of the distribution functions are preserved by the numerical method, and illus-
trate its usefulness and effectiveness with numerical examples.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In a kinetic description, the state of a dilute gas or plasma is given by a distribution function that prescribes the
density of particles at each point in position-momentum phase space. In a time-dependent setting, the evolution of
this distribution function is due to a balance of particle advection and binary collisions. Perhaps the most well-known
model for collisions is the Boltzmann collision operator, an integral operator that preserves collision invariants and
dissipates the mathematical entropy of the system. Unfortunately, the expense of evaluating this operator can be
prohibitive. Indeed, its evaluation requires the calculation of a five-dimensional integral at every point in phase-
space. Thus even with fast spectral methods [31, 33, 18, 17], the collision operator is typically the dominant part
of a kinetic calculation. Furthermore, grid resolution requirements for multi-species Boltzmann collision operators
provide additional constraints on the computational expense [32].

The Bhatnagar-Gross-Krook (BGK) operator is a widely used surrogate for the Boltzmann operator that models
collisions by a simple relaxation mechanism. This simplification brings significant computational advantages while
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also maintaining the conservation and entropy dissipation properties of the Boltzmann operator. However, the BGK
operator does not recover all of the physics of the Boltzmann operator. Most notably, it cannot recover correct
viscosity and heat conduction coefficients at the same time, although this problem can be remedied with a slightly
extended model [22, 5]. Another significant limitation is that the strength of relaxation in the standard BGK model is
characterized by a collision frequency that is independent of particle velocity when, in reality, the collision frequency
is expected to be velocity dependent [39, 27].

Velocity-dependent frequencies were first incorporated into single-species BGK models in [38], with a subsequent
numerical implementation in [30]. Unlike the constant-velocity case, the target of the relaxation model does not have
the same mass, momentum, and energy density as the kinetic distribution, even though it has the form of a Maxwellian
distribution, (i.e., the exponential of a polynomial). An extension of the single-species model to the multi-species
setting was recently developed in [20]. There, the existence and uniqueness of well-defined target functions for the
relaxation operator were established rigorously via the solution of a convex entropy minimization problem. Again
these targets are in general not Maxwellians in the classical sense; instead they match the kinetic distributions via
moments that are weighted by the collision frequency.

In this paper we present a numerical implementation of the velocity-dependent, multi-species BGK model de-
veloped in [20]. The implementation is a discrete velocity method that relies on standard spatial and temporal dis-
cretizations from the literature. The key new ingredient is a solver which enables an implicit treatment of the BGK
operator. As in the analytic case, the crucial step involves the formulation of a convex entropy minimization problem.
In particular, the solver uses a numerical minimization procedure in order to determine the coefficients of the target
functions. This construction guarantees conservation and entropy properties at the discrete level, up to numerical
tolerances, even when using a discrete velocity mesh. In this sense, it is related to the implementation in [29], which
considered a single-species BGK model with velocity-independent frequency.

The optimization problem that must be solved with velocity-dependent frequencies adds considerable expense to
the simulation. We solve it numerically by applying Newton’s method to the dual problem. While the overall compu-
tational cost depends strongly on the details of the implementation [35, 2, 3, 26, 1], the quadrature approximation of
integrals in the gradient and Hessian of the dual objective is the most expensive part of the calculation.

In spite of the additional expense from the optimization problem, the number of operations needed to evaluate
the BGK operator with a velocity-dependent collision frequency still scales like O(N3), where N is the number of
points in each dimension of the velocity grid. In comparison, the fastest algorithms for evaluating the Boltzmann
collision operator are spectral methods, whose complexity for general collision kernels scales like O(MN4 log N)
[31] but for specialized kernels can be reduced to O(MN3 log N) [17]. Here M is the number of quadrature points
for approximating the integrals over the unit sphere S2 in R3. The size of M is problem dependent, but typically
N ≤ M ≪ N2 [31]. Thus, while more expensive than the standard BGK models, the BGK model with velocity-
dependent collision frequencies is still of lower computational complexity than the Boltzmann collision operator.
Additionally, each species in the BGK model can be discretized on a separate velocity grid, while grid discretization
in multi-species Boltzmann models introduces expensive grid resolution requirements for problems with significant
differences in species masses.

The remainder of this paper is organized as follows. In Section 2, we recall the multi-species BGK model from
[20] with velocity-dependent collision frequency. In Section 3, we present the first- and second-order implicit-explicit
time discretizations that are used in the paper. We also introduce the optimization-based approach for the implicit
evaluation of the BGK operator. In Section 4, we describe the space discretization. In Section 5, we verify some
structure preserving properties of the semi-discrete scheme. In Section 6, we introduce the velocity discretization and
summarize the numerical implementation of the optimization algorithm introduced in Section 3. In Section 7, we
provide an array of numerical results that illustrate the properties of our scheme and explore the effects of velocity-
dependent collision frequencies that are motivated by Coulomb interactions common to plasmas. Discussion and
conclusions are provided in Section 8.

2. A consistent multi-species BGK model with velocity-dependent collision frequency

For simplicity we focus on a mixture of two species; because collisions are assumed to be binary, the generalization
to more species is straightforward. Given the spatial coordinate x ∈ R3, velocity coordinate v ∈ R3, and time t ≥ 0,
we consider two scalar-valued functions f1 = f1(x, v, t) ≥ 0 and f2 = f2(x, v, t) ≥ 0 which give the phase space density
(i.e. the density with respect to the measure dx dv) of species with masses m1 and m2, respectively.
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In this setting, the BGK model in [20] takes the form

∂t f1 + v · ∇x f1 = ν11(A11 − f1) + ν12(A12 − f1),
∂t f2 + v · ∇x f2 = ν22(A22 − f2) + ν21(A21 − f2),

(1)

where νi j = νi j(x, v, t) ≥ 0 for i, j = 1, 2 are velocity-dependent collision frequencies. The intra-species target
functions A11 and A22 take the form

Aii = eλi·ai(v), (2)

where ai(v) = mi(1, v, |v|2)⊤, λi = (λ0
i , λ

1
i , λ

2
i )⊤ ∈ R × R3 × R−, while the inter-species target functions A12 and A21

take the form

Ai j = eλi j·ai(v), (3)

where λi j = (λ0
i j, λ

1, λ2)⊤ ∈ R × R3 × R−. For convenience, we suppress the dependence of Ai j and the parameters
λ1, λ2, λ12 and λ21 on f1 and f2. However, these parameters are directly tied to f1 and f2. Indeed they are the
Lagrange multipliers associated with a minimization procedure with constraints involving f1 and f2 that enforce
requisite conservation laws.

Definition 2.1. For i ∈ {1, 2}, the species mass, momentum, and energy densities are given by1

ρi =

∫
mi fi dv, ρiui =

∫
miv fi dv, and

1
2
ρi|ui|

2 +
3
2

niTi =
1
2

∫
mi|v|2 fi dv, (4)

respectively, where the species number density ni, mean velocity ui and species mean temperature Ti are given by

ni =
ρi

mi
ui =

∫
v fi dv∫
fi dv

and Ti =
1
3

∫
mi|v − ui|

2 fi dv∫
fi dv

, (5)

respectively. The total momentum and total energy are the sums of the individual species momenta and energy.

Definition 2.2. For a given number density n > 0, mean velocity u ∈ R3, and temperature T > 0, a Maxwellian
distribution for a species with mass mi is given by

Mi[n,u,T ](v) = n
( mi

2πT

)3/2
exp

(
−

mi|v − u|2

2T

)
. (6)

If a distribution function fi has number density ni, mean velocity ui, and temperature Ti, then we call Mi[ni,ui,Ti] the
Maxwellian of fi.

The target functions in (2) are chosen so that the individual mass, momentum, and energy densities are invariant
under intra-species collisions; that is, for i ∈ {1, 2},∫

νiiai(Aii − fi) dv = 0. (7)

When νii is independent of velocity, these constraints recover the standard BGK model. In particular, the coefficients
λi used in the functional form (2) are unique and can be found analytically. On the other hand, when νii is a function
of v, the integrals in (7) cannot, in general, be evaluated analytically. However the target function can still be realized
as the solution of the weighted entropy minimization problem

min
g∈χi

∫
νii(v)h(g(v)) dv, i ∈ {1, 2}, (8)

1Here we suppress the Boltzmann constant kB in the definition of the temperature for ease of presentation; however, in some later formulas we
include it for emphasis.
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where
h(z) = z log(z) − z, z > 0 (9)

and the constraint set

χi =

{
g
∣∣∣∣ g > 0, νii(1 + |v|2)g ∈ L1(R3),

∫
νiiai(g − fi) dv = 0

}
(10)

enforces the constraints in (7). When νii is velocity-independent, (8) recovers the standard Maxwellian associated to
fi. Moreover, if Λ = {α = (α0,α1, α2)⊤ ∈ R × R3 × R−}, then the multipliers λi = (λ0

i , λ
1
i , λ

2
i )⊤ ∈ R × R3 × R− solve

the dual of (8):

λi = argmin
α∈Λ

{
−

∫
νiieα·ai(v) dv + α ·

∫
νiiai(v) fi dv

}
. (11)

For more details see [20].
The inter-species target functions (3) are constrained by the conservation of species mass density and the total

momentum and energy, i.e., ∫
ν1m1(A12 − f1) dv = 0,

∫
ν2m2(A21 − f2) dv = 0,∫

ν12m1v(A12 − f1) dv +
∫

ν21m2v(A21 − f2) dv = 0, (12)∫
ν12m1|v|2(A12 − f1) dv +

∫
ν21m2|v|2(A21 − f2) dv = 0.

Unlike the intra-species case, these constraints do not uniquely identify the multipliers, and in the case of constant
collision frequencies, several works [21, 12, 24] have explored approaches that use the remaining degrees of freedom
to satisfy additional properties and/or match transport coefficients. For velocity-dependent collision frequencies, the
constraints in (12) cannot, in general, be computed analytically. However, similar to the intra-species setting, the
target functions in the inter-species setting can be formulated as the solution of the weighted entropy minimization
problem

min
g1,g2∈χ12

∫
ν12h(g1) dv +

∫
ν21h(g2) dv, (13)

where h is defined in (9) and

χ12 =

{
(g1, g2)

∣∣∣∣ g1, g2 > 0, ν12(1 + |v|2)g1, ν21(1 + |v|2)g2 ∈ L1(R3),∫
m1ν12(g1 − f1) dv = 0,

∫
m2ν21(g2 − f2) dv = 0,∫

m1ν12

(
v
|v|2

)
(g1 − f1) dv +

∫
m2ν21

(
v
|v|2

)
(g2 − f2) dv = 0

}
.

(14)

The solution to (13) is the pair of target functions given in (3). Moreover, if Λ12 = {(α12,α21) : α12 = (α0
12,α

1, α2)⊤ ∈
R × R3 × R−,α21 = (α0

21,α
1, α2)⊤ ∈ R × R3 × R−}, then the multipliers λ12, λ21 satisfy the dual problem

(λ12, λ21) = argmin
(α12,α21)∈Λ12

{
−

∫
(ν12eα12·a12(v) + ν21eα21·a21(v)) dv

+ α0
12

∫
m1ν12 f1 dv + α0

21

∫
m2ν21 f2 dv

+ α1 ·

∫
v(m1ν12 f1 + m2ν21 f2) dv

+ α2
∫
|v|2(m1ν12 f1 + m2ν21 f2) dv

}
.

(15)



Sandra Warnecke et al. / Journal of Computational Physics (2022) 5

The existence and uniqueness of solutions λ1 ∈ Λ, λ2 ∈ Λ, and (λ12, λ21) ∈ Λ12 to the dual problems in (11) and
(15) are proven in [20]. As a consequence, solutions to (1) satisfy the appropriate conservation laws, dissipate the
total entropy density

H( f1, f2) =
∫

[h( f1) + h( f2)] dv, (16)

and verify an H-Theorem. Specifically, we have the following

Theorem 2.1 ([20]). Let f1 ≥ 0 and f2 ≥ 0, with neither identically zero, solve (1) with target functions defined by
(8) and (13). Then the following conservation laws hold:

∂tρ1 + ∇x ·

∫
m1v f1 dv = 0, (17a)

∂tρ2 + ∇x ·

∫
m2v f2 dv = 0, (17b)

∂t(ρ1u1 + ρ2u2) + ∇x ·

(∫
v ⊗ v(m1 f1 + m2 f2) dv

)
= 0, (17c)

∂t

(
ρ1|u1|

2

2
+

3ρ1T1

2m1
+
ρ2|u2|

2

2
+

3ρ2T2

2m2

)
+ ∇x ·

(∫
1
2

v|v|2(m1 f1 + m2 f2) dv
)
= 0, (17d)

where ρi, ui, and Ti are defined in (4) and (5). Moreover,

∂tH( f1, f2) + ∇x ·

(∫
v[h( f1) + h( f2)] dv

)
≤ 0, (18)

with equality if and only if f1 and f2 are two Maxwellian distributions with the same mean velocities ueq(x) and
temperatures Teq(x).

Before moving to the numerical implementation of the velocity-dependent BGK model, we present some addi-
tional definitions and a key assumption on the collision frequencies.

Definition 2.3. The mixture mean velocity umix and the mixture temperature Tmix are given by

umix =
ρ1u1 + ρ2u2

ρ1 + ρ2
(19)

and

Tmix =
n1T1 + n2T2

n1 + n2
+
ρ1(|u1|

2 − |umix|
2) + ρ2(|u2|

2 − |umix|
2)

3(n1 + n2)
(20a)

=
n1T1 + n2T2

n1 + n2
+

1
3

ρ1ρ2

ρ1 + ρ2

|u1 − u2|
2

n1 + n2
. (20b)

Proposition 2.1. In the spatially homogeneous setting, umix and Tmix are constant in time.

Proof. In the homogeneous setting, ρ1, ρ2, and ρ1u1+ρ2u2 are all constant in time. Hence the ratio in (19) that defines
umix is also constant in time. To show that Tmix is constant in time, we use (20a) to write

3
2

(n1 + n2)Tmix = I − II, (21)

where

I =
1
2
ρ1|u1|

2 +
3
2

n1T1 +
1
2
ρ2|u2|

2 +
3
2

n2T2 (22)

is the total energy and

II =
1
2

(ρ1 + ρ2)|umix|
2 =

1
2

(ρ1u1 + ρ2u2)2

ρ1 + ρ2
. (23)

In the homogeneous setting, both I and II are constant in time, as are n1 and n2. Thus the formula in (21) implies Tmix
is also constant in time.
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For the remainder of the paper we make the following assumption on the collision frequencies νi j:

Assumption 2.1. The space and time dependency of the collision frequencies νi j arises only via dependence on the
mass densities ρi, the mixture mean velocity umix, and the mixture temperature Tmix. Because the collision operators in
(1) conserve these quantities, the collision frequencies νi j are independent of time in the space homogeneous setting.

This assumption is common for standard collision rates in the literature and follows from cross section definitions;
see for example [25, 21]. In this paper, we add a dependence on the microscopic velocity v to νi j, which arises naturally
from the derivation of the BGK operator from the Boltzmann equation [38, 21]. This dependence is neglected for
computational convenience in the standard BGK model, and may have profound effects on the relaxation process and
the resulting hydrodynamic behavior. In particular, transport coefficients derived via the Chapman-Enskog expansion
(e.g. thermal conductivity) are sensitive to the dynamics of the tails of the kinetic distribution [13].

3. Time discretization

Let i, j = 1, 2 and i , j. We write (1) as

∂t fi + T ( fi) = Ri( fi, f j) (24)

with the relaxation operator

Ri( fi, f j) = νii (Aii − fi) + νi j

(
Ai j − fi

)
(25)

and the transport operator

T ( fi) = v · ∇x fi. (26)

When the collision frequencies are large, the operator Ri becomes stiff and an implicit treatment is preferred. With this
fact in mind, we pursue implicit-explicit (IMEX) schemes where T is treated explicitly and Ri is treated implicitly.

When the collision frequencies are constant, the inversion of Ri is not difficult. In the single-species case, the
inversion is trivial because the target function does not evolve during the evolution of the space homogeneous system
[14, 34]. Thus the inversion of Ri can be reduced to a linear solve. In the multi-species case, the target functions of
the space homogeneous system do evolve, but they can be computed with an iterative solver for the mean velocities
and temperatures.

For velocity-dependent cross-sections, the problem is much more delicate. This is because the target function
parameters are no longer related to the moments in an analytical way, even in the one-species case. One approach
that is presented in [29] and [30] is to linearize the attractor around the ansatz at the current value, in order to handle
difficulties with its evaluation at the next time step. The result is an efficient scheme for simulating steady-state
solutions, but as noted in [29], this approach lacks conservation and entropy properties at the discrete level.

The schemes presented below preserve conservation properties, and the first-order version inherits additional de-
sirable properties from the continuum model. These properties are enforced by evaluating target functions at the next
time step exactly (up to numerical tolerances) using a minimization procedure that mimics the theoretical formula-
tions in (8) and (13). The approach works for multi-species BGK equations equipped with a broad class of collision
frequencies. However, it does rely on Assumption 2.1. For example, given tℓ = ℓ∆t for ℓ ∈ N0 a simple update of
f ℓi ≈ fi(x, v, tℓ) from tℓ to tℓ+1 uses the approximation

Ri( f ℓ+1
i , f ℓ+1

j ) ≈ νℓii
(
Aℓ+1

ii − f ℓ+1
i

)
+ νℓi j

(
Aℓ+1

i j − f ℓ+1
i

)
, (27)

where Aℓ+1
ii and Aℓ+1

i j are discrete target functions that, as described in Section 3.3, depend on f ℓ+1
i , f ℓ+1

j , νℓii and νℓi j via
the solution of a convex minimization problem. Under Assumption 2.1, the collision frequencies depend on quantities
that are unchanged by the collisional process. Thus their evaluation at time step tℓ is justified, since

νℓ+1
i j = νi j(ρℓ+1

i , ρℓ+1
j ,uℓ+1

mix,T
ℓ+1
mix ) = νi j(ρℓi , ρ

ℓ
j,u

ℓ
mix,T

ℓ
mix) = νℓi j. (28)

However, in more general settings, lagging the collision frequencies in this way may cause a drop in temporal order
for an otherwise high-order scheme [28].
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3.1. First-order splitting

We split (1) into a relaxation step and the transport step.

Relaxation. We execute the relaxation step in each spatial cell using a backward Euler method

f ℓ
′

i − f ℓi
∆t

= Ri( f ℓ
′

i , f ℓ
′

j ), (29)

which can be rewritten to express f ℓ
′

i as the convex combination

f ℓ
′

i = cℓi f ℓi + cℓi∆t(νℓiiA
ℓ′

ii + ν
ℓ
i jA

ℓ′

i j) (30)

with

cℓi =
1

1 + ∆t(νℓii + ν
ℓ
i j)
. (31)

If Aℓ′

ii and Aℓ′

i j can be expressed as functions of f ℓi , then (30) provides an explicit update formula for f ℓ
′

i . In Section 3.3
we show how to determine Aℓ′

ii and Aℓ′

i j while preserving the conservation properties (7) and (12) at the discrete level.

Transport. We solve the transport in x for f ℓ+1
i by a forward Euler method with initial data f ℓ

′

i :

f ℓ+1
i − f ℓ

′

i

∆t
+ T ( f ℓ

′

i ) = 0. (32)

Details on the numerical approximation of T are given in Section 4.

3.2. Second-order IMEX Runge-Kutta

For a second-order method, we use the following IMEX Butcher tableaux [6]

0
γ 0 γ

1 0 1 − γ γ

0 1 − γ γ

0
γ γ

1 δ 1 − δ 0
δ 1 − δ 0

(33)

with

γ = 1 −

√
2

2
and δ = 1 −

1
2γ
. (34)

The left table is used for the relaxation step, and the right table is used for the transport step. This IMEX Runge-Kutta
scheme is L-stable and globally stiffly accurate (GSA).2

Applying the method to (1) results in the following scheme:

f (1)
i = f ℓi − γ∆tT ( f ℓi ) + γ∆tRi( f (1)

i , f (1)
j ), (35a)

f (2)
i = f ℓi − δ∆tT ( f ℓi ) − (1 − δ)∆tT ( f (1)

i )

+ (1 − γ)∆tRi( f (1)
i , f (1)

j ) + γ∆tRi( f (2)
i , f (2)

j ), (35b)

f ℓ+1
i = f (2)

i . (35c)

2The GSA property means that the numerical solution f ℓ+1
i coincides with the last stage value of the method, which is important for accuracy

of the method when the collision frequencies become large.
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Using the constants

c(r)
i =

1

1 + γ∆t(ν(r)
ii + ν

(r)
i j )

, (36)

we can rewrite (35a) and (35b) as convex combination of three terms

f (1)
i = c(1)

i G(1)
i + c(1)

i γ∆t ν(1)
ii A(1)

ii + c(1)
i γ∆t ν(1)

i j A(1)
i j (37a)

f (2)
i = c(2)

i G(2)
i + c(2)

i γ∆t ν(2)
ii A(2)

ii + c(2)
i γ∆t ν(2)

i j A(2)
i j , (37b)

where the quantities

G(1)
i = f ℓi − ∆t γT ( f ℓi ) (38a)

G(2)
i = f ℓi − ∆t δT ( f ℓi ) − ∆t (1 − δ)T ( f (1)

i ) + ∆t (1 − γ)Ri( f (1)
i , f (1)

j ) (38b)

depend on known data. The collision frequencies ν(r)
ii , ν(r)

i j and constants c(r)
i are evaluated at the intermediate steps

G(r)
i . This option maintains second-order accuracy as long as Assumption 2.1 applies.

The main computational challenge in each stage of (37) is determining the parameters of the target functions. In
the following section, we explain how to manage this.

3.3. General implicit solver
We write the implicit updates in (30) and (37) above in a generic steady state form

ψi = ciGi + ciγ∆t(νiiBii + νi jBi j) (39)

where Bii and Bi j are the unique target functions associated to ψi,

ci =
1

1 + γ∆t(νii + νi j)
, (40)

and Gi is a known function. The goal now is to express Bii and Bi j as functions of Gi and G j so that (39) provides an
explicit update formula for ψi. Applying the conservation properties (7) and (12) to (39) gives∫

ν11B11 a1(v) dv +
∫

ν22B22 a2(v) dv +
∫

ν12B12 a1(v) dv +
∫

ν21B21 a2(v) dv

(7),(12)
=

∫
ν11ψ1 a1(v) dv +

∫
ν22ψ2 a2(v) dv +

∫
ν12ψ1 a1(v) dv +

∫
ν21ψ2 a2(v) dv

(39)
=

∫
ν11c1

[
G1 + ∆t γν11B11 + ∆t γν12B12

]
a1(v) dv

+

∫
ν22c2

[
G2 + ∆t γν22B22 + ∆t γν21B21

]
a2(v) dv

+

∫
ν12c1

[
G1 + ∆t γν11B11 + ∆t γν12B12

]
a1(v) dv

+

∫
ν21c2

[
G2 + ∆t γν22B22 + ∆t γν21B21

]
a2(v) dv.

(41)

After sorting terms, we arrive at the following moment equations∫
c1 (ν11B11 + ν12B12) a1(v) dv +

∫
c2 (ν21B21 + ν22B22) a2(v) dv

=

∫
c1 (ν11 + ν12) G1a1(v) +

∫
c2 (ν22 + ν21) G2a2(v) dv,

(42)

which provide a set of constraints to determine Bii and Bi j from the given data Gi and G j.
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The constraints in (42) represent first-order optimality conditions associated to the minimization of the convex
function

φtot(α1,α2,α) = −
∫

[c1ν11B11 + c2ν22B22 + c1ν12B12 + c2ν21B21] dv + µ1 · α1 + µ2 · α2 + µ · α (43)

where αi = (α0
i ,α

1
i , α

2
i )⊤ ∈ R × R3 × R−;

µi =

µ
0
i
µ1

i
µ2

i

 =
∫

ciνiiGiai(v) dv (44)

for i = 1, 2; α = (α0
12, α

0
21,α

1, α2)⊤ ∈ R × R × R3 × R−; and

µ =


µ0

12
µ0

21
µ1

µ2

 =
∫ 


1
0
v
|v|2

 m1c1ν12G1 +


0
1
v
|v|2

 m2c2ν21G2

 dv. (45)

The minimization problem can be decoupled as follows:

Proposition 3.1. The components of the minimizer of (43) can be found by minimizing the following three convex
functions independently:

φi(αi) = −
∫

ciνiiBii dv + µi · αi for i = 1, 2 and (46)

φ(α) = −
∫

[c1ν12B12 + c2ν21B21] dv + µ · α (47)

and the minimum of (43) is the sum of their minima.

Proof. The statement is trivial since (43) can be written as sum of the three potential functions, whose arguments are
independent; that is, φtot(α1,α2,α) = φ1(α1) + φ2(α2) + φ1(α).

The minimization problems in (46) and (47) are numerical analogs of (11) and (15), respectively. Indeed, the
temporal discretization simply introduces the additional weights cℓi → 1 as ∆t → 0. Importantly, the existence and
uniqueness of solutions to (46) and (47) are guaranteed by the theory in [20]. Essentially one need only replace the
collision frequencies νi j by

ν∗i j = ciνi j =
νi j

1 + γ∆t(νii + νi j)
(48)

and then verify that ν∗i j satisfies the conditions used in [20]. These conditions are mild integrability conditions that,
because 0 < ci < 1, are easily satisfied by ν∗i j whenever they are satisfied by νi j.

The minimum of each potential function in (46) and (47) is found using Newton’s method for convex optimization.
The details of this implementation are given in Section 6.

4. Space discretization

For the simulations in this paper, we assume a slab geometry for which ∂x2 fi = ∂x3 fi = 0. Thus while the (micro-
scopic) velocity space remains three-dimensional (v = (v1, v2, v3)), the physical space dimension can be reduced to
one dimension; and in a slight abuse of notation, we set x = x1. We divide the spatial domain [xmin, xmax] into uniform
cells Ik = [xk − ∆x/2, xk + ∆x/2] for k ∈ {0, . . . ,K}.

We employ a second-order finite volume framework that tracks approximate cell-averaged quantities

f ℓi,k ≈
1
∆x

∫
Ik

fi(x, v, tℓ)dx. (49)
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To approximate the relaxation operator, we use the second-order approximation

Rℓi,k = Ri( f ℓi,k, f ℓj,k) ≈
1
∆x

∫
Ik

R
(

fi(x, v, tℓ), f j(x, v, tℓ)
)

dx. (50)

Meanwhile, the transport operator T is discretized with numerical fluxes Fk+ 1
2

by

T (g) ≈ Tk(g) =
1
∆x

(
Fk+ 1

2
(g) −Fk− 1

2
(g)

)
(51)

for any grid function g = {gk}. We use, following [30],

Fk+ 1
2
(g) =

v1

2
(gk+1 + gk) −

|v1|

2

(
gk+1 − gk − ϕk+ 1

2
(g)

)
(52)

where ϕk+ 1
2

is a flux limiter. The choice ϕk+ 1
2
= 0 leads to a first-order approximation (the well-known upwind fluxes).

A second-order method is provided by letting

ϕk+ 1
2
(g) = minmod ((gk − gk−1), (gk+1 − gk), (gk+2 − gk+1)) (53)

where

minmod(a, b, c) =

s min(|a|, |b|, |c|), sign(a) = sign(b) = sign(c) =: s,
0, otherwise.

(54)

For a simple forward Euler update of (32), i.e.,

f ℓ+1
i,k = f ℓi,k −

∆t
∆x

(
Fk+ 1

2
( f ℓi ) −Fk− 1

2
( f ℓi )

)
, (55)

the positivity of fi is guaranteed by enforcing the CFL condition

∆t < α
∆x

max |v1|
(56)

with α = 1 for the first-order flux and α = 2
3 for the second-order flux. (See Proposition 5.1.)

5. Properties of the semi-discrete scheme

In this section, we review the positivity, conservation properties, and the entropy behavior of the semi-discrete
scheme.

5.1. Positivity of distribution functions

The first-order time stepping scheme in Section 3.1 preserves positivity for both first- and second-order numerical
fluxes in space; see Proposition 5.1. Additionally, we discuss the positivity for the second-order scheme from Section
3.2 in Proposition 5.2, and give a sufficient criterion for the space homogeneous case.

Proposition 5.1. The first-order time discretization in Section 3.1 together with the space discretization described in
Section 4 is positivity preserving, provided that

∆t ≤ α
∆x

max |v1|
, (57)

with α = 1 and α = 2
3 for the first-order and second-order fluxes, respectively.



Sandra Warnecke et al. / Journal of Computational Physics (2022) 11

Proof. Let f ℓi,k ≥ 0. For the relaxation step,

f ℓ
′

i,k
(30)
= cℓi,k f ℓi,k + cℓi,k∆t(νℓii,kAℓ′

ii,k + ν
ℓ
i j,kAℓ′

i j,k) ≥ 0 (58)

because cℓi,k, ν
ℓ
ii,k, ν

ℓ
i j,k, A

ℓ′

ii,k, A
ℓ′

i j,k ≥ 0. For the transport step (55), we have with the first-order fluxes

f ℓ+1
i,k =

(
1 −
∆t
∆x
|v1|

)
f ℓ
′

i,k +
∆t
∆x
|v1| f ℓ

′

i,k−sign(v1) ≥ 0, (59)

where the last inequality holds in each cell provided that the given CFL condition in (57) holds with α = 1.
For the second-order fluxes, define σ := sign( f ℓi,k − f ℓi,k−1). Then one can show that

ϕk+ 1
2
( f ℓi ) ≥

0 if σ = +1
f ℓi,k+1 − f ℓi,k if σ = −1

, (60)

−ϕk− 1
2
( f ℓi ) ≥

 f ℓi,k−1 − f ℓi,k if σ = +1
0 if σ = −1

. (61)

Hence

f ℓ+1
i,k

(55)
=

(
1 −
∆t
∆x
|v1|

)
f ℓi,k +

∆t
∆x
|v1| f ℓi,k−sign(v1) +

∆t
∆x
|v1|

2
(ϕk+ 1

2
( f ℓi ) − ϕk− 1

2
( f ℓi ))

≥

(
1 −
∆t
∆x
|v1|

)
f ℓi,k +

∆t
∆x
|v1| f ℓi,k−sign(v1) +

∆t
∆x
|v1|

2

( f ℓi,k−1 − f ℓi,k) if σ = +1
( f ℓi,k+1 − f ℓi,k) if σ = −1

=

(
1 −

3
2
∆t
∆x
|v1|

)
f ℓi,k +

∆t
∆x
|v1| f ℓi,k−sign(v1) +

∆t
∆x
|v1|

2

 f ℓi,k−1 if σ = +1
f ℓi,k+1 if σ = −1

≥ 0,

(62)

provided that the CFL condition in (57) holds with α = 2
3 .

It is more difficult to guarantee positivity with second-order time-stepping. Unconditionally strong stability pre-
serving (SSP) implicit Runge-Kutta schemes, which preserve any convex property, e.g. positivity, are at most first-
order accurate [19]. Modified IMEX Runge-Kutta schemes that preserve positivity for the classical single-species
BGK equation have been recently developed in [23]. However, to our knowledge, these schemes cannot be applied
directly to BGK models with velocity-dependent collision frequencies.

Nevertheless, we derive some sufficient conditions on ∆t for positivity preservation in the second-order scheme
presented in Section 3.2.

Proposition 5.2. For the space homogeneous case, the second-order IMEX scheme presented in Section 3.2 is posi-
tivity preserving provided that

∆t ≤
1

(1 − 2γ)(ν(1)
ii + ν

(1)
i j )

(63)

for i, j = 1, 2.

Proof. The positivity of f (1)
i follows directly from its definition without any restriction on the time step. For the

positivity of f ℓ+1
i = f (2)

i we require G(2)
i ≥ 0. Using the definition of f (1)

i , we obtain

0 ≤ G(2)
i = f ℓi + ∆t(1 − γ)

[
ν(1)

ii A(1)
ii + ν

(1)
i j A(1)

i j − (ν(1)
i j + ν

(1)
i j ) f (1)

i

]
(64)

= f ℓi
[
1 − ∆t(1 − γ)c(1)

i (ν(1)
ii + ν

(1)
i j )

]
+ ∆t(1 − γ)c(1)

i

[
ν(1)

ii A(1)
ii + ν

(1)
i j A(1)

i j

]
. (65)

Then, the most obvious sufficient condition for positivity reads

1 − ∆t(1 − γ)c(1)
i (ν(1)

ii + ν
(1)
i j ) ≥ 0 ⇐⇒ ∆t ≤

1

(1 − 2γ)(ν(1)
ii + ν

(1)
i j )

. (66)
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The time step condition (63) can be restrictive if ν(1)
i j become large. For this reason, one may instead enforce the

milder (but still sufficient) local conditions

∆t ≤
f ℓi

(1 − 2γ)(ν(1)
ii + ν

(1)
i j ) f ℓi − (1 − γ)(ν(1)

ii A(1)
ii + ν

(1)
i j A(1)

i j )
(67)

and

∆t ≤
f ℓi

(1 − γ)
[
(ν(1)

ii + ν
(1)
i j ) f (1)

i − (ν(1)
ii A(1)

ii + ν
(1)
i j A(1)

i j )
] . (68)

When the frequencies are large, the difference between each numerical kinetic distribution and its corresponding
target function is to scale with the inverse of the frequency, in which case (67) and (68) are not restrictive.

In our numerical tests, the time step ∆t is set according to the CFL condition (56) by default. If positivity is
violated, we reduce the time step size according to (63). Thus we guarantee positivity while maintaining large time
steps whenever possible. One could instead use the less restrictive local conditions in (67) and (68), which requires
additional iterations over the grid to find a global value for the time step. However, in practice, violations of positivity
are rare and thus we use (63) for simplicity.

5.2. Conservation of mass, total momentum and total energy

In this section, we address the conservation of mass, total momentum, and total energy for the semi-discrete
scheme (before velocity discretization).

Proposition 5.3. The relaxation step in the first-order splitting scheme presented in Section 3.1 satisfies the conser-
vation laws ∫

m1 f ℓ
′

1 dv =
∫

m1 f ℓ1 dv,
∫

m2 f ℓ
′

2 dv =
∫

m2 f ℓ2 dv, (69)∫ (
m1v f ℓ

′

1 + m2v f ℓ
′

2

)
dv =

∫ (
m1v f ℓ1 + m2v f ℓ2

)
dv, (70)∫ (

m1|v|2 f ℓ
′

1 + m2|v|2 f ℓ
′

2

)
dv =

∫ (
m1|v|2 f ℓ1 + m2|v|2 f ℓ2

)
dv. (71)

Proof. We multiply the relaxation step (30) by ai, sum over i = 1, 2, and integrate with respect to v. Sorting terms
yields ∫ (

f ℓ
′

1 a1 + f ℓ
′

2 a2

)
dv −

∫ (
f ℓ1 a1 + f ℓ2 a2

)
dv

(30)
= ∆t

[∫ (
cℓ1ν

ℓ
11Aℓ′

11a1 + cℓ2ν
ℓ
22Aℓ′

22a2 + cℓ1ν
ℓ
12Aℓ′

12a1 + cℓ2ν
ℓ
21Aℓ′

21a2

)
dv

−

∫ [
cℓ1

(
νℓ11 + ν

ℓ
12

)
f ℓ1 a1 + cℓ2

(
νℓ22 + ν

ℓ
21

)
f ℓ2 a2

]
dv

]
.

(72)

The right-hand side above corresponds to the first-order optimality conditions in (42). By minimizing the correspond-
ing functions in (46) and (47), we guarantee that this term is identically zero, which in turn proves the conservation
statement (70) and (71). For the masses we execute the above procedure for each species individually and obtain∫

f ℓ
′

i mi dv −
∫

f ℓi mi dv (30)
= ∆t

∫ (
cℓi ν

ℓ
iiA

ℓ′

ii mi + cℓi ν
ℓ
i jA

ℓ′

i jmi

)
dv −

∫
cℓi

(
νℓii + ν

ℓ
i j

)
f ℓi mi dv (73)

= ∆t
[
∂λ0

i
φi(λi) + ∂λ0

i j
φ(λ)

]
(74)

which vanishes due to first-order optimality conditions on φ and φi.
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Proposition 5.4. For each i = 1, 2, the transport step in the first-order splitting scheme in Section 3.1, combined with
the space discretization presented in Section 4 satisfies the conservation laws

K∑
k=0

∫
ai f ℓ+1

i,k dv∆x =
K∑

k=0

∫
ai f ℓ

′

i,k dv∆x (75)

for periodic or zero boundary conditions.

Proof. For i = 1, 2, we multiply the transport step (32) by ai, integrate with respect to v and sum over all cell averages
in x. The result is

K∑
k=0

∫
ai f ℓ+1

i,k dv∆x
(32)
=

K∑
k=0

∫
ai f ℓ

′

i,k dv∆x −
K∑

k=0

∫
∆t
∆x

(
Fk+ 1

2
( f ℓ

′

i ) −Fk− 1
2
( f ℓ

′

i )
)

ai dv∆x (76)

=

K∑
k=0

∫
ai f ℓ

′

i,k dv∆x − ∆tΩ (77)

where the remnant of the telescoping sum

Ω =

∫
aiFK+ 1

2
( f ℓ

′

i ) dv −
∫

aiF− 1
2
( f ℓ

′

i ) dv (78)

vanishes for periodic or zero boundary conditions, e.g. FK+ 1
2
( f ℓi ) = F− 1

2
( f ℓi ) and FK+ 1

2
( f ℓi ) = F− 1

2
( f ℓi ) = 0,

respectively.

The second-order time-stepping scheme in Section 3.2 can be broken into relaxation and transport parts, each of
which preserves the conservation of mass, total momentum, and total energy. As a result, we have the following.

Corollary 5.1. For periodic or zero boundary conditions, any combination of temporal and space discretization
presented in Sections 3 and 4, respectively, conserves mass, total momentum and total energy.

5.3. Entropy inequality
We discuss the entropy behavior for the first-order scheme in Section 3.1. Both the relaxation and the transport

step dissipate entropy; see Propositions 5.5 and 5.7. Additionally, we show in Proposition 5.6 that the minimal entropy
is reached for the relaxation step if the distribution functions coincide with the corresponding target functions.

Proposition 5.5. Let h( f ) = f log f − f . The relaxation step in the first-order splitting scheme in Section 3.1 fulfills
the discrete entropy inequality ∫

h( f ℓ
′

1 ) + h( f ℓ
′

2 ) dv ≤
∫

h( f ℓ1 ) + h( f ℓ2 ) dv. (79)

Proof. By convexity
h( f ℓi ) ≥ h( f ℓ

′

i ) + h′( f ℓ
′

i )( f ℓi − f ℓ
′

i ). (80)

The implicit step (30) is
f ℓ
′

i − f ℓi = ∆tνℓii(A
ℓ′

ii − f ℓ
′

i ) + ∆tνℓi j(A
ℓ′

i j − f ℓ
′

i ). (81)

Using (81) and the convexity of h gives

h( f ℓ
′

i ) − h( f ℓi ) ≤ h′( f ℓ
′

i )( f ℓ
′

i − f ℓi )
(81)
= ∆t νℓiih

′( f ℓ
′

i )(Aℓ′

ii − f ℓ
′

i ) + ∆tνℓi jh
′( f ℓ

′

i )(Aℓ′

i j − f ℓ
′

i )

= ∆t νℓii

h′  f ℓ
′

i

Aℓ′

ii

 (Aℓ′

ii − f ℓ
′

i ) + h′(Aℓ′

ii )(Aℓ′

ii − f ℓ
′

i )


+ ∆t νℓi j

h′  f ℓ
′

i

Aℓ′

i j

 (Aℓ′

i j − f ℓ
′

i ) + h′(Aℓ′

i j)(A
ℓ′

i j − f ℓ
′

i )

 ,
(82)
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where in the last line above, we have added and subtracted the same quantity. After integration in v, some terms in
(82) disappear. Specifically, because

h′(Aℓ′

ii ) = log(Aℓ′

ii ) = λi · a(v) (83)

it follows that ∫
νℓii h′(Aℓ′

ii )(Aℓ′

ii − f ℓ
′

i ) dv = λi ·

∫
νℓii a(v)(Aℓ′

ii − f ℓ
′

i ) dv (7)
= 0. (84)

Analogously for the inter-species terms,∫
νℓ12 h′(Aℓ′

12)(Aℓ′

12 − f ℓ
′

1 ) dv +
∫

νℓ21 h′(Aℓ′

21)(Aℓ′

21 − f ℓ
′

2 ) dv

= λ0
12

∫
νℓ12 (Aℓ′

12 − f ℓ
′

1 ) dv + λ0
21

∫
νℓ21 (Aℓ′

21 − f ℓ
′

2 ) dv

+

(
λ1

λ2

)
·

∫
(νℓ12 (Aℓ′

12 − f ℓ
′

1 ) + νℓ21 (Aℓ′

21 − f ℓ
′

2 ))
(

v
|v|2

)
dv

(12)
= 0.

(85)

Thus after integrating (82) in v,∫
h( f ℓ

′

1 ) dv −
∫

h( f ℓ1 ) dv +
∫

h( f ℓ
′

2 ) dv −
∫

h( f ℓ2 ) dv

≤ ∆t νℓ11

∫
h′

 f ℓ
′

1

Aℓ′

11

 (Aℓ′

11 − f ℓ
′

1 ) dv + ∆t νℓ22

∫
h′

 f ℓ
′

2

Aℓ′

22

 (Aℓ′

22 − f ℓ
′

2 ) dv

+ ∆t νℓ12

∫
h′

 f ℓ
′

1

Aℓ′

12

 (Aℓ′

12 − f ℓ
′

1 ) dv + ∆t νℓ21

∫
h′

 f ℓ
′

2

Aℓ′

21

 (Aℓ′

21 − f ℓ
′

2 ) dv

≤ 0

(86)

because log
(

x
y

)
(y − x) ≤ 0 for all x, y ∈ R+.

Proposition 5.6. The inequality in Proposition 5.5 is an equality if and only if f ℓ1 = Aℓ
12 and f ℓ2 = Aℓ

21. In such cases
f ℓ
′

1 = Aℓ′

12 and f ℓ
′

2 = Aℓ′

21.

Proof. Suppose first that f ℓ1 = Aℓ
12 and f ℓ2 = Aℓ

21. Then according to [20, Theorem 2],

h( f ℓ1 ) + h( f ℓ2 ) ≤ h(g1) + h(g2) (87)

for any measurable positive functions g1 and g2 such that∫
m1g1dv =

∫
m1 f ℓ1 dv,

∫
m2g2 dv =

∫
m2 f ℓ2 dv, (88)∫

(m1vg1 + m2vg2) dv =
∫ (

m1v f ℓ1 + m2v f ℓ2
)

dv, (89)∫ (
m1|v|2g1 + m2|v|2g2

)
dv =

∫ (
m1|v|2 f ℓ1 + m2|v|2 f ℓ2

)
dv. (90)

These conditions are exactly those satisfied by f ℓ
′

1 and f ℓ
′

1 (cf. Theorem 5.3). Hence

h( f ℓ1 ) + h( f ℓ2 ) ≤ h( f ℓ
′

1 ) + h( f ℓ
′

1 ) (91)

which shows that (79) is an equality. To show the converse statement, suppose that (79) holds as an equality. Then
according to (86) f ℓ

′

1 = Aℓ′

11 = Aℓ′

12 and f ℓ
′

2 = Aℓ′

21 = Aℓ′

22. Therefore, by definition of Ri in (25), Ri( f ℓ
′

i , f ℓ
′

j ) = 0, which
when plugged into (29), gives f ℓ1 = f ℓ

′

1 and f ℓ2 = f ℓ
′

2 .
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Proposition 5.7. Let h( f ) = f log f − f . The transport step in the first-order splitting scheme in Section 3.1 combined
with the first-order spatial discretization in Section 4 fulfills the discrete entropy inequality

K∑
k=0

{∫
h( f ℓ+1

1,k ) + h( f ℓ+1
2,k ) dv

}
∆x ≤

K∑
k=0

{∫
h( f ℓ

′

1,k) + h( f ℓ
′

2,k) dv
}
∆x (92)

for periodic or zero boundary conditions, provided that

∆t ≤
∆x

max |v1|
. (93)

Proof. Using the notation v+ := v1+|v1 |

2 and v− := v1−|v1 |

2 we write the update formula of (32) with the first-order
numerical fluxes as

f ℓ+1
i,k = f ℓ

′

i,k −
∆t
∆x

(
v+ f ℓ

′

i,k + v− f ℓ
′

i,k+1 − v+ f ℓ
′

i,k−1 − v− f ℓ
′

i,k

)
=

(
1 −
∆t
∆x
|v1|

)
f ℓ
′

i,k −
∆t
∆x

v− f ℓ
′

i,k+1 +
∆t
∆x

v+ f ℓ
′

i,k−1.

(94)

Clearly if the CFL condition is fulfilled, then f ℓ+1
i,k is a convex linear combination of f ℓ

′

i,k, f ℓ
′

i,k−1, and f ℓ
′

i,k+1. Thus by the
convexity of h, for each v,

K∑
k=0

h( f ℓ+1
i,k )∆x ≤

∑
k

[(
1 −
∆t
∆x
|v1|

)
h( f ℓ

′

i,k) −
∆t
∆x

v−h( f ℓ
′

i,k+1) +
∆t
∆x

v+h( f ℓ
′

i,k−1)
]
∆x

=
∑

k

h( f ℓ
′

i,k)∆x + ∆tΩ
(95)

where the boundary term

Ω = v− f ℓ
′

i,0 log( f ℓ
′

i,0) − v− f ℓ
′

i,K+1 log( f ℓ
′

i,K+1) − v+ f ℓ
′

i,K log( f ℓ
′

i,K) + v+ f ℓ
′

i,−1 log( f ℓ
′

i,−1). (96)

is the only remnant of the telescoping sum and vanishes for periodic or zero boundary conditions. Thus summation
over i and integration of (95) with respect to v yields the entropy inequality in (92).

Combining the two results above gives the following:

Corollary 5.2. For periodic or zero boundary conditions, the first-order splitting scheme from Section 3.1 combined
with the first-order numerical fluxes in Section 4 fulfills the discrete entropy inequality

K∑
k=0

{∫
h( f ℓ+1

1,k ) + h( f ℓ+1
2,k ) dv

}
∆x ≤

K∑
k=0

{∫
h( f ℓ

′

1,k) + h( f ℓ
′

2,k) dv
}
∆x (97)

provided that

∆t ≤
∆x

max |v1|
. (98)

6. Velocity discretization

In order to obtain a fully-discrete scheme, we finally discretize the velocity variable. We center the discrete
velocities vq = (v1

q1
, v2

q2
, v3

q3
)⊤, with q = (q1, q2, q3) ∈ N3

0, around the mixture mean velocity umix and restrict them to
a finite cube. That is, for each p ∈ {1, 2, 3},

vp ∈ [up
mix − 6vth,i, u

p
mix + 6vth,i] (99)
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where vth,i =
√

Tmix/mi is the thermal velocity of species i. To ensure adequate resolution of the velocity domain, the
velocity mesh size is chosen, as in [29], to be ∆v = 0.25vth,i in each direction.

An advantage of the BGK model [21] is that it is possible to use different velocity grids for each species/equation
since the distributions of different species only interact via their moments. This feature is a substantial benefit when
the species masses, and hence the reference thermal speeds for each species, differ significantly.

Using the grid described above, all velocity integrals are replaced by discrete sums using the trapezoidal rule,
which is known to perform well for smooth, compactly supported functions, since they can be viewed as periodic.
(See, e.g, [7, Section 5.4, Corollary 1].) Thus∫

(·) dv ≈
∑

q
ωq(·)q(∆v)3, (100)

where ωq = ωq1ωq2ωq3 are the weights and

ωqp =

1 if min(qp) < qp < max(qp),
1
2 else.

(101)

Due to the quadrature approximation, we have to distinguish between discrete and continuous moments, especially
when determining the local equilibria Aii and Ai j. In fact, the minimization of (46) and (47) is solved using a discrete
velocity grid and discrete moments µ̄1, µ̄2, µ̄ as input. Thus λ1, λ2, λ are such that Aii and Ai j have the desired discrete
moments and the conservation properties from the previous section are fulfilled at the discrete level. (See [29] for a
similar approach for the standard, singles-species BGK model.)

Theorem 6.1. Propositions 5.1, 5.2, and 5.5-5.7 all hold true after replacing continuous integrals by their respective
quadratures. Additionally, the scheme in Section 3.3 satisfies the following conservation properties for ℓ ≥ 0∑

k,q

ωq
(

f ℓ1,kqa1,q + f ℓ2,kqa2,q
)

(∆v)3∆x =
∑
k,q

ωq
(

f 0
1,kqa1,q + f 0

2,kqa2,q
)

(∆v)3∆x (102)

with ai,q = mi(1, vq, |vq|
2)⊤ and f ℓi,kq ≈ f ℓi,k(vq).

Optimization algorithm. The minimization of (46) and (47) is solved by Newton’s method with a backtracking line
search [16, p. 325], using the SNESNEWTONLS solver from PETSc [9, 10, 8]. Newton’s methods require the evaluation
of gradients:

∇αiφi ≈ −
∑

q
ωq(ciνii)q Bii,q ai,q(∆v)3 + µ̄i, (103)

∇αφ ≈ −
∑

q
ωq

(
(c1ν12)q B12,q a12,q + (c2ν21)q B21,q a21,q

)
(∆v)3 + µ̄, (104)

and Hessians:

∇2
αi
φi ≈ −

∑
q
ωq(ciνii)q Bii,q ai,q ⊗ ai,q(∆v)3, (105)

∇2
αφ ≈ −

∑
q
ωq

(
(c1ν12)q B12,q a12,q ⊗ a12,q + (c2ν21)q B21,q a21,q ⊗ a21,q

)
(∆v)3, (106)

where a12,q = m1(1, 0, vq, |vq|
2)⊤ and a21,q = m2(0, 1, vq, |vq|

2)⊤. The input data in (44) and (45) is computed in a
straightforward way:

µ̄i ≈
∑

q
ωq(ciνii)q Gi,q ai,q(∆v)3, (107)

and analogously for µ̄. The Newton method is considered to have converged if one of the standard termination criteria3

is less than 10−14.

3For solving F(x) = 0, standard termination criteria are: i) ||F|| < ϵ, ii) ||F|| < ϵ||F(x0)||, and iii) ||∆x|| < ϵ||x|| for the tolerance ϵ.
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7. Numerical results

In this section, we perform a range of numerical tests. We first verify the properties of our scheme and then present
several examples to illustrate the effect of a velocity-dependent collision frequency.

7.1. Relaxation in a homogeneous setting

7.1.1. Illustrative toy problem
The purpose of this experiment is to illustrate basic properties of the BGK model. We solve the spatially homoge-

neous version of (1) for species with masses m1 = 1 and m2 = 1.5. The initial distribution functions (see Figure 1a)
are given by

fi(v, t = 0) = 0.1 · m27
i · exp

− 0.01
(0.75/mi)10 − |v − ui(0)|10

1

 , (108)

with u1(0) = (0.1, 0, 0)⊤ and u2(0) = (−0.1, 0, 0)⊤. The parameter choices here are not physical; rather they are
chosen to yield an initial distribution with a particular shape that makes the relaxation easier to visualize. With this
initialization, the mixture mean velocity and mixture temperature have numerical values

umix = 0.0322 and Tmix = 0.0487. (109)

According to Proposition 2.1, these values stay constant in time. The collision frequencies take the form

νi j(x, v, t) =
10 n j

δi j + |v − umix|
3 , (110)

with the regularization parameter δi j = 0.1 · (∆vi j)3 where ∆vi j =
1
4

√
Tmix/(2µi j) and µi j = mim j/(mi + m j).

The simulation is run using a velocity grid with 483 nodes. and the first-order temporal splitting scheme from
Section 3.1 with time step ∆t = 0.01. As demonstrated in Section 5, this scheme maintains positivity, conservation,
and entropy dissipation properties of the BGK model.

In Figure 1, we plot the kinetic distributions at several different times and observe convergence to their respective
equilibria. It is easy to see that the convergence to equilibrium is much faster in the center than near the tails of the
distribution functions. This is a consequence of the fact that the velocity-dependent collision frequency amplifies
the relaxation process for small relative velocities. In Figure 2, we show convergence of the bulk velocities and
temperatures to their equilibrium values, given by the mixture values in (19) and (20). In Figure 3, we show the
evolution of the entropy and the entropy dissipation. As expected, the entropy decays monotonically. In Figure 4, we
demonstrate conservation properties.

7.1.2. Hydrogen-Carbon test case
In this test case, we explore the effects of the velocity-dependent frequencies on the relaxation behavior of a

multi-species problem in a more physically relevant setting, with dimensional formulas given in the cgs unit system.
To define the collision frequency νi j, we build on the formulas given in [27]. A simple model for the collision

frequency is given by
νi j(v) = n j|v − umix|σmt(|v − umix|), (111)

where σmt is the momentum transfer cross section for Coulomb collisions:

σmt(|v − umix|) = 4π
(

ZiZ je2

2µi j|v − umix|
2

)2

Li j(Zi,Z j, n1, n2,Tmix). (112)

Here µi j = mim j/(mi+m j) is the reduced mass; Zie and Z je are the charges of the species i and j particles, respectively;
and Li j is the Coulomb logarithm:

Li j =
1
2

log

1 + λ2
D

b2
90,i j

 , (113)
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Fig. 1: Relaxation of the distribution functions to Maxwellians for the test case in Section 7.1.1. We fix v2 = v3 = 0 and plot fi(v1, v2 = 0, v3 = 0, t)
at times t. At time progress, the two distribution functions converge to Maxwellians centered around a common mean velocity with a width
according to their common temperature divided by the respective mass. For reference, these Maxwellians are shown by dotted gray lines.

where b90,i j is the distance of closest approach:

b90,i j =
ZiZ je2

Tmix
, (114)

where e2 = 1.44 × 10−7 eV·cm, in cgs units. For the Debye length λD in (113), we use the following formulae

λD =

 1
λ2

e
+

1
λ2

I

−1/2

with λe =

(
Tmix

4πnee2

)1/2

and λI =

 1
λ2

1

+
1
λ2

2

−1/2

, (115)

where λi =

 Tmix

4πniZ2
i e2

1/2

and ne = Z1n1 + Z2n2. (116)

For the purposes of evaluating the BGK model in this paper, (111):

νi j(v) = 4πn j

(
ZiZ je2

2µi j

)2 (
1

δi j + |v − umix|
3

)
Li j(Zi,Z j, n1, n2,Tmix), (117)

i.e, we add a small regularization parameter δi j > 0 in the denominator of (117) to avoid a singularity at zero relative
velocity. For the numerical experiments, one needs to ensure that δi j is much smaller than |v − umix|

3, and thus we set
δi j = 0.1 · (∆vi j)3, where ∆vi j =

1
4

√
kBTmix/(2µi j) and kB = 1.602 · 10−12 erg/eV is Boltzmann’s constant in cgs units.

This choice ensures the symmetry n1ν12 = n2ν21. The mixture quantities umix and Tmix defined in (19) and (20) are
inserted into these formulas to determine the collision frequencies used in the model.

For comparison, we consider three velocity-independent collision frequencies that are often used as simpler alter-
natives to (117):
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Fig. 2: Convergence of mean velocities and temperatures for the test case in Section 7.1.1. In each plot, the dotted line denotes the mixture values,
given in (19) and (20).
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Fig. 3: Entropy and entropy dissipation for the test case in Section 7.1.1. As predicted by the theory, the entropy decays monotonically.

1. Replacing |v − umix| by the thermal velocity vT =
√

kBTmix/(2µi j) gives

ν̃i j = 4πn j

(
ZiZ je2

2µi j

)2  1
δi j + v3

T

 Li j. (118)

2. Replacing |v − umix|
3 by the weighted average

v̂3 =

∫
|v − umix|

3M(v) dv∫
M(v) dv

, (119)

where

M(v) = ni

( µi j

πT

)3/2
exp

(
−
µi j|v − umix|

2

Tmix

)
, (120)

gives

ν̂i j = 4πn j

(
ZiZ je2

2µi j

)2 (
1

δi j + v̂3

)
Li j. (121)
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Fig. 4: Global conservation properties for the test case in Section 7.1.1. The mass densities of each species, the total momentum (M) and total
energy (E) have small oscillations on the order of 10−15 or less.

3. Computing a weighted average of νi j directly gives

ν̄i j =

∫
νi j(v)M(v) dv∫
M(v) dv

. (122)

While the first option above is convenient and more common in applications [37], it is somewhat arbitrary. The
second and third options, on the other hand, provide a more consistent normalization. According to Proposition
2.1, the collision frequencies stay constant in time because the problem is spatially homogeneous. For purposes of
illustration, we plot them in Figure 5.

We consider relaxation between carbon (species 1) and hydrogen (species 2), with masses and charge numbers

m1 = 1.993 · 10−23 g, m2 = 1.661 · 10−24 g, (123)
Z1 = 6, Z2 = 1.

Initially, the distribution functions are Maxwellians: fi = Mi[ni,ui,Ti] with

n1 = 6.1 · 1022 cm−3, n2 = 3.6133 · 1021 cm−3, (124)

u1 = (9.818 · 105, 0, 0)⊤
cm
s
, u2 = (0, 0, 0)⊤

cm
s
,

T1 = 150 eV, T2 = 100 eV.

We simulate this test case using a velocity grid with 483 nodes and the second-order IMEX Runge-Kutta scheme
from Section 3.2 with time step ∆t = 0.8 fs.

In Figure 6, we plot the evolution of the differences between species temperatures and mean velocities. For
constant collision frequencies, the convergence is known to be exponential [15]; this behavior can be clearly observed
numerically. However, the convergence of these quantities for the velocity-dependent cross-section appears much
slower and distinctly different in form.

In Figure 7, we plot the kinetic distribution of the hydrogen species for ν(v) and ν̂, the latter giving the slowest
relaxation of the velocity-independent collision frequencies described above. Since the macroscopic quantities of the
heavy species (carbon) hardly change, we only show the results for the lighter species (hydrogen). The relaxation
process is weighted by the collision frequencies. Because the velocity-dependent cross-section is maximal at v = umix
and decays at larger relative velocity, relaxation to equilibrium in the tails of the distribution is slower when using a
velocity-dependent cross-section.

7.2. Riemann problems
7.2.1. Sod problem

We run a kinetic version of the well-known Sod problem [36] in the fluid regime (i.e., with large collision fre-
quencies). In the limit of large collision frequencies, the distribution functions can be approximated by Maxwellians:

fi ≃ Mi[ni,ui,Ti], (125)
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Fig. 5: Collision frequencies given in (117), (118), (121) and (122) along the line v2 = v3 = 0. The large constant values for ν̄ correspond to the
fastest relaxation process, see Figure 6.

where Mi is defined in (6). With this approximation, the conservation laws (17) reduce to the Euler equations. We
further reduce the problem to the single species case by assuming m1 = m2 = m, ρ1 = ρ2 = ρ, u1 = u2 = u and
T1 = T2 = T . In one space dimension, with 3 translational degrees of freedom, the single species Euler equations are

∂tρ + ∇x · (ρu) = 0, (126a)
∂t(ρu) + ∇x · (ρu ⊗ u) + ∇x p = 0, (126b)

∂t

(
ρ|u|2

2
+

3ρT
2m

)
+ ∇x ·

((
ρ|u|2

2
+

3ρT
2m
+ p

)
u
)
= 0, (126c)

where p = ρT
m denotes the pressure.

This single-species problem can be implemented with the multi-species model by simply treating each species as
the same type of particle. We set m1 = m2 = 1 and consider two collision frequencies: one that depends on v

νi j(x, v, t) = 2 · 104 n j

δi j + |v − umix|
3 (127)

and one that does not:
ν̂i j(x, t) = 2 · 104 n j

δi j + v̂3 , (128)

where the formula for the averaged relative velocity v̂ can be found in (119). Again we use the regularization parameter
δi j = 0.1 · (∆vi j)3 where ∆vi j =

1
4

√
Tmix/(2µi j) and µi j = mim j/(mi + m j).

The initial data is given by fi = Mi[ni,ui,Ti], where

n1 = n2 = 1, u1 = u2 = 0, T1 = T2 = 1, (129)
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Fig. 6: Evolution of the difference in species temperatures and mean velocities for the Hydrogen-Carbon test case in Section 7.1.2. The convergence
for all velocity-independent collision frequencies—ν̃ in (118), ν̂ in (121), and ν̄ in (122)—appears exponential. However, the convergence for
velocity-dependent collision frequency ν given in (117) is significantly longer and notably different.

for x ≤ 0 and

n1 = n2 = 0.1, u1 = u2 = 0, T1 = T2 = 0.8. (130)

for x > 0.
The simulations are run using a velocity grid with 483 points and 400 equally spaced cells in x. We use the

second-order IMEX Runge-Kutta scheme from Section 3.2 combined with the second-order finite volume scheme
from Section 4.

Numerical simulations of the density, mean velocity, and temperature are given in Figure 8. We include results
using the BGK model with both ν(v) and ν̂, as well as the analytic solution for the Euler equations in (126). Both of the
collision frequencies ν(v) and ν̂ give similar results, but the deviations from the Euler solution near the discontinuities
in the fluid model are more pronounced when using ν(v).

7.2.2. Mach 1.7 Shock wave problem
In this example, we compute the flow across a standing Mach 1.7 normal shock wave in a mixture of hydro-

gen (species 1) and helium (species 2). The shock wave structure is difficult to capture in standard hydrodynamic
schemes with a single material/species; in mixtures we further expect species separation to occur due to the mass
difference between the two species. The shock conditions are calculated via the Rankine-Hugoniot jump conditions
for a monoatomic gas [4]. We take a domain size of 6 microns (6 · 10−4 cm) and compute the solution in the frame of
the shock. The masses and charges are (units in cgs)

m1 = 1.655 · 10−24 g, m2 = 3.308 · 10−24 g, Z1 = 1, Z2 = 2. (131)

The initial conditions are fi = Mi[ni,ui,Ti] with:

n1 = n2 = 6.666 · 1019 cm−3, u1 = u2 = 1.7634411 · 107 cm
s
, T1 = T2 = 100 eV, (132)

for x ≤ 0 and

n1 = n2 = 1.308 · 1020 cm−3, u1 = u2 = 8.985007 · 106 cm
s
, T1 = T2 = 171.32 eV (133)

for x > 0.
The simulations are run using a velocity grid with 483 nodes and spatial mesh with 200 cells. We use the second-

order IMEX Runge-Kutta scheme from Section 3.2 and the second-order spatial discretization in Section 4, with the
limiter given in (53). The time step ∆t = 22 fs is set according to the CFL condition in (56).
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Fig. 7: Relaxation of the kinetic distribution function of hydrogen in the Hydrogen-Carbon test case of Section 7.1.2 with time step ∆t = 0.8 fs.
The velocity components v2 and v3 are fixed at u2 = 0 and u3 = 0, respectively. The dashed line corresponds to the Maxwellian M2,eq =

M2[n2,umix,Tmix] for the hydrogen species. The blue and red lines are results computed with the velocity-independent collision frequencies ν̂
in (121) and the velocity-dependent collision frequencies ν(v) in (117), respectively. The tails of the distribution converge more slowly for the
velocity-dependent collision frequencies.

In Figure 9 we compare numerical results at time t = 5.390 ps using the velocity-dependent collision frequency
ν(v), given in (117), with those using the constant collision frequencies ν̂, given in (121). In addition to these results,
we plot the relative difference

r(q) =
q({ν̂i j}) − q({νi j(v)})
|q({ν̂i j})| + |q({νi j(v)})|

(134)

for the densities (q = ni), mean velocities (q = u1
i ), and temperatures (q = Ti). As expected, both the velocity-

dependent and constant collision frequency models show a species separation. For all hydrodynamic quantities, the
differences are within a few percent. While we expect a difference in output profiles between the two models due to
the tail particles relaxing more slowly than the bulk, it is likely that the collision frequencies outside of the ‘kinetic’
region of the shock interface are high enough to suppress large deviations from equilibrium.

7.2.3. Mach 4 Shock wave problem
In this test case, we repeat the normal shock wave in a hydrogen-helium mixture from the previous test case, but

increase the shock strength in the mixture to Mach 4 with the expectation that the distributions will be further out of
equilibrium than the previous case. The species masses and charges are the same as in the Mach 1.7 case, but we
widen the domain size to 12 microns and modify the initial conditions to construct a Mach 4 shock, again using the



24 Sandra Warnecke et al. / Journal of Computational Physics (2022)

−0.2 −0.1 0.0 0.1 0.2

x

0.25

0.50

0.75

1.00
d

en
si

ty
BGK, ν(v)

BGK, ν̂

Euler

(a) density

−0.2 −0.1 0.0 0.1 0.2

x

0.00

0.25

0.50

0.75

m
ea

n
ve

lo
ci

ty

BGK, ν(v)

BGK, ν̂

Euler

(b) mean velocity

−0.2 −0.1 0.0 0.1 0.2

x

0.6

0.8

1.0

1.2

te
m

p
er

at
u

re

BGK, ν(v)

BGK, ν̂

Euler

(c) temperature

0.000 0.046 0.100

x

0.840

0.855

0.870

0.885

m
ea

n
ve

lo
ci

ty

BGK, ν(v)

BGK, ν̂

Euler

(d) mean velocity, closeup

Fig. 8: Numerical solution at t = 0.055 of the Sod problem in Section 7.2.1. We show results for a 2-species kinetic simulation using the velocity-
dependent collision frequency ν(v) in (127) (red solid line) and the velocity-independent collision frequency ν̂ in (128) (dashed blue line). The
solutions for both species are identical; we show only the species 1 results. For reference, the exact solution for the Euler equations (126) is also
provided (dotted gray line). Both kinetic solutions recover the fluid limit fairly well, but the velocity-dependent frequencies contribute to more
kinetic behavior around transitions.

Rankine-Hugoniot relations. Specifically we set fi = Mi[ni,ui,Ti] where

n1 = n2 = 3.3488 · 1019 cm−3, u1 = u2 = 5.06 · 107 cm
s
, T1 = T2 = 100 eV, (135)

for x ≤ 0, and

n1 = n2 = 1.128 · 1020 cm−3, u1 = u2 = 1.50 · 107 cm
s
, T1 = T2 = 586.3 eV (136)

for x > 0.
As in the previous case, simulations are run using a velocity grid with 483 nodes and a spatial mesh with 200 cells.

We use the second-order IMEX Runge-Kutta scheme from Section 3.2 and the second-order spatial discretization in
Section 4, with the limiter given in (53). The time step ∆t = 25 fs is set according to the CFL condition in (56).

In Figure 10 we compare numerical results at time t = 6.345 ps using the velocity-dependent collision frequency
ν(v), given in (117), with those using the constant collision frequencies ν̂, given in (121). We again observe the
evolution towards a standing shock wave for both the velocity-dependent collision frequency ν(v) and the constant
collision frequency ν̂. As in the Mach 1.7 case above, while we expect a difference in output profiles between the two
models due to the tail particles relaxing more slowly than the bulk, it is likely that the collision frequencies outside of
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Fig. 9: Fluid quantities at time t = 5.390 ps for the Mach 1.7 shock wave problem from Section 7.2.2. The initial Riemann is evolving to a multi-
species normal shock wave which exhibits separation between hydrogen (species 1) and helium (species 2) particles. Top row: velocity-dependent
collision frequencies νi j, given in (117); middle row: the constant collision frequencies ν̂i j, given in (121); bottom row: relative difference (see
(134)). These differences are typically within 2%.

the ‘kinetic’ region of the shock interface are high enough to suppress large deviations from equilibrium for this test
problem.

7.2.4. Interpenetration problem: high density
Standard hydrodynamic models have great difficulty in capturing interpenetrating flows of rarefied gases. For

example in inertial confinement fusion (ICF) simulations, colliding streams of blown-off hohlraum wall particles and
capsule ablator particles result in an unphysical density spike due to the lack of interpenetration in hydrodynamic
models, which interferes with laser energy propogation in the integrated simulation. This discrepancy has been
proposed as a cause of symmetry discrepancies in capsule drive between experiments and simulations in ICF [11].

For this numerical example, we simulate the dynamics of two counter-streaming beams of different species. We
take a domain size of 50 microns (50 · 10−4 cm) and compute the solution when hydrogen (species 1) interpenetrate
with helium (species 2) particles. We include a trace amount of each species in the whole domain as a background for
ease of computation. The masses and charges are (units in cgs)

m1 = 1.655 · 10−24 g, m2 = 3.308 · 10−24 g, Z1 = 1, Z2 = 2. (137)

The initial conditions are fi = Mi[ni,ui,Ti] with:

n1 = 1020 cm−3, n2 = 1017 cm−3, u1 = u2 = 2.2 · 106 cm
s
, T1 = T2 = 10 eV, (138)
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Fig. 10: The fluid quantities for the Mach 4 shock wave problem from Section 7.2.3 (Mach 4) are presented at time t = 6.345 ps. Top row:
velocity-dependent collision frequencies νi j, given in (117); middle row: the constant collision frequencies ν̂i j, given in (121); bottom row: relative
difference (see (134)). The results for the velocity-dependent collision frequency and the constant collision frequency ν̂i j look very similar at first
glance. However, the relative differences clarify the disparities. They differ up to 2 %, which is similar to the relative difference seen in the weaker
shock wave problem in Section 7.2.2 (Mach 1.7).

for x ≤ 0 and

n1 = 1017 cm−3, n2 = 1020 cm−3, u1 = u2 = −2.2 · 106 cm
s
, T1 = T2 = 10 eV (139)

for x > 0.
The simulations are run using a velocity grid with 483 nodes and a spatial mesh with 200 cells. We use the second-

order IMEX Runge-Kutta scheme from Section 3.2 and the second-order spatial discretization in Section 4, with the
limiter given in (53). The time step ∆t = 806 fs is set according to the CFL condition in (56).

We compare the numerical results at time t = 120.870 ps using the velocity-dependent collision frequency ν(v),
given in (117), with those using the constant collision frequencies ν̂, given in (121), in Figure 11. The lighter hydrogen
species shows a significant difference in profiles between the two species, and displays much more penetration into
the helium beam. Due to its relatively higher mass and charge state, the helium species is much more collisional than
the hydrogen species, and presents a more hydrodynamic-like profile.

7.2.5. Interpenetration problem: low density
We repeat the interpenetration problem from above, but reduce the initial densities by two orders of magnitude,

which leads to fewer collisions. We expect to see a greater interpenetration of the two beams, with less of a density
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Fig. 11: The fluid quantities for the interpenetration problem from Section 7.2.4 are presented at time t = 120.870 ps. First row: velocity-dependent
collision frequencies νi j, given in (117). Second row: the constant collision frequencies ν̂i j, given in (121). Third row: relative difference between
rows 1 and 2 according to (134). Red line: hydrogen. Blue line: helium. Variations in the collision frequency induce significant differences in the
profile of the hydrogen, which penetrates much further into the right side of the domain when the collision frequency is velocity-dependent. Due to
relatively higher mass and charge state, the helium species undergoes more collisions and is less sensitive to variations in the collision frequency.



28 Sandra Warnecke et al. / Journal of Computational Physics (2022)

spike at the interface point. The domain size, masses and charges are the same as before. The initial conditions are
fi = Mi[ni,ui,Ti] with:

n1 = 1018 cm−3, n2 = 1015 cm−3, u1 = u2 = 2.2 · 106 cm
s
, T1 = T2 = 10 eV, (140)

for x ≤ 0 and

n1 = 1015 cm−3, n2 = 1018 cm−3, u1 = u2 = −2.2 · 106 cm
s
, T1 = T2 = 10 eV (141)

for x > 0.
As before, the simulations are run using a velocity grid with 483 nodes and a spatial mesh with 200 cells. We use

the second-order IMEX Runge-Kutta scheme from Section 3.2 and the second-order spatial discretization in Section
4, with the limiter given in (53). The time step ∆t = 806 fs is set according to the CFL condition in (56).

We compare the numerical results at time t = 120.870 ps using the velocity-dependent collision frequency ν(v),
given in (117), with those using the constant collision frequencies ν̂, given in (121), in Figure 12. As expected,
we see more interpenetration than in the high density test case. As in the higher density test case, we see more
significant differences in the lighter species of the mixture; the hydrogen species penetrates more into the right side
of the domain when the collision frequency is velocity-dependent. Due to relatively higher mass and charge state, the
helium species is more collisional. Furthermore, the density spike at the interface seen in the high density case has
mostly disappeared.

8. Conclusions

We have developed a numerical scheme for the multi-species BGK model with velocity-dependent collision fre-
quency, first proposed in [20]. The main new contribution is the implicit update in an IMEX formulation. The depen-
dence of the target functions on the distribution function is only known implicitly for general collision frequencies
so that standard approaches for BGK models cannot be used. We find the target function via a convex minimization
problem that mimics the dual of the minimization problem that defines the theoretical model in [20]. This procedure
automatically satisfies a discrete version of the conservation laws for mass, total momentum, and total energy satisfied
by the BGK operator. The transport part is discretized by a standard finite volume method. For a first-order scheme,
we verify that a discrete entropy dissipation property and positivity of the distribution function hold rigorously. A
second-order version of the method is used for improved accuracy.

We illustrate the properties of the BGK model and our numerical scheme with several test cases, using velocity-
dependent collision frequencies that are motivated by Coulomb interactions in plasmas and characterized by slower
relaxation in the tails of the kinetic distribution. The simulation results are compared to results with velocity-
independent collision frequencies of comparable size. For spatially homogeneous problems, the velocity-dependent
collision frequencies induce slower relaxation to equilibrium in the tails of the kinetic distributions. The conver-
gence of the temperature and mean velocities is also slower and has a distinctly different form than in the velocity-
independent case.

Several Riemann problems are also considered, including the standard Sod shock-tube problem and variations
involving mixtures. In the former, we confirm that the BGK model recovers the general fluid shock structure, but the
kinetic effects are more apparent in the case of velocity-dependent collision frequencies. For the mixtures, we observe
close agreement between simulations using velocity-dependent and velocity-independent collision frequencies for a
Mach 1.7 shock and for a Mach 4 shock, with deviations approaching 2%. For the interpenetration problems, the
profiles differ more significantly. In particular, the effect of the velocity-dependent collision frequencies on the lighter
species (in mass and charge state) are substantial.

Allowing for velocity-dependent collision frequencies is not without additional cost. Indeed, for the velocity-
dependent frequencies, the implicit evaluation of the collision operator requires the solution of an optimization prob-
lem via a Newton solver. In particular, the elements of the gradient and Hessian of the objective function require the
evaluation of the integrals in velocity space via a quadrature. To accelerate the solution procedure, a more efficient
implementation of the optimization algorithm is necessary [35, 2, 3, 26, 1]. In spite of the additional cost, the model
still has better scaling properties than the original Boltzmann equation.

The enlarged class of possible collision frequencies is physically motivated, and makes the extended multi-species
BGK model an attractive option for exploring more phenomena in the kinetic regime. However, the model can be
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Fig. 12: The fluid quantities for the lower density interpenetration problem from Section 7.2.5 are presented at time t = 120.870 ps. First row:
velocity-dependent collision frequencies νi j, given in (117). Second row: the constant collision frequencies ν̂i j, given in (121);. Third row: relative
difference between rows 1 and 2 according to (134). Red line: hydrogen. Blue line: helium. As expected, we see more interpenetration than in the
high density test case. However, the relative sensitivity of hydrogen to the velocity-dependent collision frequency is less dramatic.
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improved. For example, when considering charged particles, the model needs to include a force term with an electric
(and magnetic) field. The additional transport in velocity space can be easily incorporated in the presented numerical
method.
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