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Quick Outline

Motivation — state of kinetic modeling of plasmas

Overview: spectral methods for the Boltzmann and Landau-Fokker-Planck
operators

Derivation and analysis of the Landau approximation to Boltzmann via
spectral methods
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What is a kinetic model?

 Kinetic equations model the dynamics of distributions of particles
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« This is typically referred to as ‘non-equilibrium’ modeling
— Equilibrium = hydrodynamics

» Kinetic models are interesting in their own right, but are also useful for
deriving quantities (transport coefficients) used in Navier-Stokes, etc.



Three different fields of kinetic modeling

« We all solve the same equations, but speak different languages...

Aerospace — Boltzmann equation, DSMC

Astrophysics: Linear Boltzmann,
iterative linear algebra

d Plasma physics: Vlasov, maybe Fokker-Planck,
B Particle in Cell




Kinetic modeling of plasmas is dominated by the
Fokker-Planck (FP) operator

« Plasma physics tends to approach collisions from the collisionless ‘side’
- Focus is often more on e.g. E-field effects, waves, etc in dilute plasmas

» As you introduce collisions into your system they are relatively weak
 After a Taylor expansion, you obtain a nonlinear collision term*:
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« Arguments made based on the small angle scattering assumption give yield
to the formulas for the parameters in this model
— No additional kinetic models appear — they jump right to FP

» Once derived, it became the ‘ground truth’ for plasma physics
— It works well in the regimes where it works well!

09
- Landau (1937), Rosenbluth, McDonald & Judd (1957)



Many assumptions/approximations are made along the
way — be careful!

. g)ncemFP beclzlardn? g:;Ol:]nd ttrU”t‘;]t 'many-body
ecame applied to many situations ‘ Hamiltonian

where it might not be valid

* How to check the assumptions? molecu_lar
dynamics
Newton's laws
* In particular, what even *is* the _— BBGKY A—
small angle scattering assumption? collisions expansion
When does it break down?
Boltzmann Lenard-Balescu
Cross section dielectric response
* Open NRL plasma formulary;, it weak 1
says FP is ‘fine for CL ~ 10-20’
— This is not typical for many kinetic Landau/Fokker-Planck

plasmas where FP is used Coulomb logarithm
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The Coulomb Logarithm is a catch-all factor used in
the FP operator

« So what is this Coulomb Logarithm, and where does it appear?

y ~ log(p™/?T%/%)

= (glossing over some dimensional constants here)
« This prefactor is large for hot and/or dilute plasmas

» There are some issues with this definition if you think for a minute
- E.g. can go negative, for one

« See Gericke, Murillo, Schlanges (Phys Rev E, 2002) for more CL details
than you can shake a stick at

« These fixups are mostly cosmetic however — if you ask the authors (I have)
they will tell you that this is just a band-aid to try to extend a model in an
area that you shouldn’t extend it.
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The Boltzmann operator can be more accurate, but
much more difficult to work with

* Boltzmann collisions
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- o(|gl,g - w) is the differential cross section

* In plasmas, this has a messy angular dependence that can be tricky to deal
with:

o(gl,g - w) ~ |g| *sin"*(6/2)



How can we quantify when we can use FP, and when
we need Boltzmann?

* We need an estimate on the error made when approximating Boltzmann by
Fokker-Planck

» We also need numerical evidence to convince the FP crowd that what they
are doing may be suspect

« The answer to both: spectral formulation of the kinetic equations



Overview: spectral methods for kinetic equations
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Spectral analysis of Boltzmann leads to more ‘efficient’
numerics and a clearer Landau limit

« Spectral methods: Fourier transform turns collisions into a weighted
convolution

— Pareschi + Perthame (1996), Bobylev and Rjasanow (1998), Pareschi and Russo
(2000)

- Later work by Gamba and Tharkabhushanam (2008)
— An equivalent form for FP also exists

» This provides a common framework that we will use to examine the limit,
and give us a numerical method to boot.

» This is more amenable to numerical computation
— Boltzmann evaluation requires O(NG) operations
- FP and some* Boltzmann cases can be reduced to O(N* log N)
— Solutions converge spectrally quickly
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The weak form is the key to spectral methods for
collision operators

« Symmetries in Boltzmann lead to the generic form
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» The key step is to choose your test functions to be the Fourier modes

¢ _ (27T)—3/26—z'k-c

de = [ Qnotede= [[[ 1)t lelollel.g - w)(@(c) - olc))dwdede

« Exponentials have nice properties, and we can rearrange things such that
time-independent stuff can be precomputed:

— [Fes(c - )0 [ leloelg-w) (050 1) dudg

_ / F(f(e)f(c - 8)(k)G(g k)dg



The collision operators are convolutions in Fourier
space

Q) = [ (e - 8) 196 (. k)de
« Afew more identities gives

Q(k) = / f(k — m) f(m)G(k, m)dm

* This is easily amenable to numerical approximation and parallelization,
though you do not get the usual O(N®log N) speedup for convolutions
— Except in special cases



Convolution weight formulas for simple cross sections

A few simple examples

Hard spheres: o0 =C

G(k,m) = (272T)Ci/2 /0 r (sinc (#) sinc(r|m — %k]) — sinc(rm)) dr

Maxwell molecules: |glc =C

G(k,m) = %fo r (Sinc (%k‘> sinc(r|m — %k|) — sinc(rm)) dr

|sotropic cross sections -> adjust power on r in formula



Convolution weight formulas for less simple cross
sections

» For angularly dependent cross sections, we have (Gamba, Haack 2016)
-k

G( (27) 1/2/ / / (r,cos @) sin 0 sin yJy ( |k\ sinv)
k 1
X [cos (7‘ (m — 5(1 — Cos 9)) K cos*y) Jo <§r\k\ sm*ysm@)

k
— Cos (rm : m COS ’y) ] dfd~dr,

« This is more expensive to precompute and store, but you only have to do it
once*



Numerical implementation has a few gotchas

* How big to take your velocity domain?
— Distribution functions are infinite, computational grids are not

- G(m, k) is a tempered distribution

— Generally speaking, taking L ~ 5+/k,T /m = 5|vyy| is ‘good enough’ due to
decay of distributions

— Analysis of cutoff: Alonso & Gamba (2018)
— Numerical analysis of cutoff effects: check accuracy of known moment calculations
— This cutoff also appears in the weight calculation

« What integrators to use to precompute @(m, k)?
- | use prepackaged integrators from the GNU scientific library
— Singularities at integral endpoints require additional treatment

- Weight storage requires memory allocation of O(N°)



We can ensure that the conserved quantities stay
conserved®

* One of the key constraints/symmetries of kinetic models is conservation —
is this enforced here?

/Q(f)dC: /CQ(F)dc = /C2Q(f)d(;: 0

- We can ensure that the discrete moments are conserved through a simple
optimization problem: given the output @ = (Q1,...,Qun), M = N3

1 -
Find Q = (Q1,...,Qa)" that minimizes 5HQ — Q|| such that CQ =0
(i
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* Results in an extra projection step @ = (I + C(OCT)—lc)Q
* Inexpensive solve relative to the convolution

)
-~ *Gamba + Tharkabhushanam 2009



Some algorithmic speedup tricks

« Because of the structure of @(m, k), we are stuck with O(N°) complexity
— At least it is embarrassingly parallel

« But if we tweak the weight computation, we can create a few exploitable
convolutions®

Z GV(k)GP (m)GP (k — m)

« This now costs O( N3 log(N)) N | direct spectral | fast spectral M = 14
8 6.91e-04 7.33e-04
16 7.83e-05 7.63e-05
« To get this split: discretize the weight 32 3.90e-08 3.90e-08
function integrals on quadrature 64 3.81e-08
points N | direct spectral | fast spectral M = 14
N, =NM, M << N? 8 0.09s 0.14s
* Not going to work well with 16 6.31s 0.26s
Singu|arities 32 H42.34s 1.78s
64 33.15s
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These same ideas also apply to Fokker-Planck,
resulting in a convolution with different weights

« The FP operator has an equivalent integral form, called the Landau operator

QL — log Avc ’ / ‘g‘_l <I T #g &) g) (f(C*)VCf(C) T f(C)(ch)(C*))dC*

* Run it through the same ‘spectral car wash’ and obtain

G, — / G, (k, m) f(k — m) f (m)dm

AN

Gpr(k,m) = log A / 8| ?(4i(g - k) — |g* |k |*|)e & " dg

k-g
g
g2

- This convolution can be computed in O(N?log N) operations*

kt =k —

* We have a similar form for both operators — how do we connect them?
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Previous results: Haack + Gamba

« The difference between B and FP has been ‘known’ by some in the plasma
community, but not quantified mostly because Boltzmann was too expensive
to compute

» Using spectral methods, the first direct comparison was demonstrated*

0D relaxation to equilibrium 101
— Dashed line: Boltzmann / \
— Solid Line: Landau

— Corresponds to CL of ~4
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The Landau approximation to Boltzmann, via spectral
methods
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Boltzmann cross sections arise from two-body
interactions

« The key term in Boltzmann is the cross section o(|g|, g - w)

» Cross sections follow from two-body interactions, which have three key
parameters, (|gl, b, 0), plus a spherical interaction potential ¢(r)

» Generally speaking, the solution to this interaction does not have a closed
form solution




Boltzmann cross sections arise from two-body

interactions

C
« For Coulomb interactions, ¢(r) = 70 . we *can® obtain a formula for the

angular deflection:




This result gives the classic Rutherford cross section,
originally discovered by experiment

 The cross section formula is

b |db
7= sin(0) |do
« Since we can easily solve for the impact parameter, we obtain
Co ’
,0) =
@0~ (3gmnrrs)

» This is exactly the form derived by Rutherford in 1911
in experiments to nail down the size/existence of the nucleus

« But there is a problem if you try to use it in Boltzmann
— The angular piece of the collision operator is not integrable
- How do we correct this?




Interactions are screened at the Debye length, an
effective three-body effect

« Coulomb interagtions are an odd duck (many-body
— They decay quite slowly ‘ Hamiltonian

- But are fairly weak S
- We are saved by another term that molecular l
appears in plasmas: screening effects = dynamics
Newton's laws

BBGKY
» This comes from a 3-body term in the [ 1

BBGKY hierarchy, folded into the

: . Boltzmann Lenard-Balescu

Boltzmann equation via the cross cross section dielectric response
section. l

— ‘Effective Boltzmann equation’ N

Landau/Fokker-Planck
« We cut off at Coulomb logarith
b\ 4w Con —1/2
-0 = (%7)

— This corresponds to a minimum angle 6,,,

<



The Debye length cutoff resolves the singularity in the
Boltzmann cross section

* With the cutoff, we now have
C1

o(lgl, g w) = <|g|28m2(9/2>>2 Lo,

C1 )
0,,, = 2 arctan
(‘gP)\D

* Note here that we have a velocity dependence in 6,,
- In the past this was typically ignored to make life a bit easier

~ The usual approximation is to take |g|° = |c:1|? = T to make this a constant, as it
makes the usual approximation procedure tractable

— However, this will not be an issue in the spectral approach, so we will leave it in
place



The spectral approach will shows that Landau is an
approximation of the Boltzmann convolution weights

« Armed with this cross section, we can now write (easier in this form)

Op = / F{f(e)f(c - g)} (K)Cn(g k)dg

C? K
Gplg k) = 1 1 (€—z§-<|g|w—g>_1) deo
B(g k) /S P sini(0/2) 00 leD
 For mathematical convenience, we rescale the cross section
o(|gl,0)
m 7(9 = 3
om(l8l0) 2 log(sin(6,,/2)

* This ensures we have a mathematical limit

— Physically, you can think of this limit as the two operators converging to each other,
as they both diverge logarithmically



Theorem - rate of convergence

* Theorem

Assume that [ satisfies
Ak
FLf(e)f (e — 2)} (k) e, )

<
| — 14+ (F3/4’g|)3+a

with A(k, t) uniformly bounded by ko(1 + |k|)™>, and a > 0

Then the approximation error made by approximating Boltzmmann by Landau is given

by
[ Pl @, (- o) ( o O 8 (B ) )dg

‘@B_Q\L‘ <C

Furthermore, we have that

‘@B — Q\L‘ < CoT3/?

Giving the rate of convergence of the approximation
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Proof: expand and bound error terms
« Expand the exponential in the weight function G

Gp(g, k) = |g . o (e—z‘%.(lg|w—g) _ 1) dw

« We will see the Landau weights ‘pop out’ of the first two terms, the rest can
be bounded



Some Lemmas

- Barely a Lemma 1
- Define the Landau weights

Gr.(g,k) = |g|*(4i(g - k) — |g]*[k"|*)

- Then we have that

g~ k||1 — sm2<em/2>\)
Gp, +Gp, — G| < C ( ,
o fp‘ b Ll < O\ S og Sn0m72)|

etch o roo

- Define w in terms of a pole at g, write in spherical coordinates and integrate in
azimuthal direction.

8| /” . .
= m 2)(g-k
Gp, +Gp, “3CT log(sin(0m/2)) J, omsinf| 2isin“(60/2)(g - k)

— (g- k)2 sin4(9/2) — %|g|2\kL|2(:os2(0/2) sin2(9/2)>d9

(g - k)*(1 — sin* (0 /2)) I8Pk P - sin® (0/2))

log(sin(6,,/2))
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Some Lemmas

 Barely a Lemma 2
— Under the assumptions of the Theorem, the bound for G g, is given by

317 2
<03\k\ 11 — sin“(6,,,/2)|

Gp, < | log(sin(6,,,/2))]

» Sketch of proof:

Gp,| < Sl gl /Wa sin @ sin*(0/2)d0
sl = 1202 Tog(sin(0m /2))] Jp, =™

~ 5[k[3|1 — sin®(0,,/2)]

12| log(sin(6,,,/2))|

- Combining these Lemmas gives the first estimate of the Theorem



Approximation of Boltzmann — what is the small
parameter?

* The second estimate in the Theorem involves the nondimensional parameter
I', the plasma coupling parameter

_— Co(4/3mn)'/?
B T
* Weak coupling, wherel' << 1, is the regime where we expect Landau to
approximate Boltzmann well.

« Combining with other parameters running around this talk, we can also write

. ( 4C12 )1/3
3)\2D’cth‘4

and
0,,, = 2 arctan <\/§F3/2Cth2>
g|?
| gt



Completing the convergence rate estimate

» Using this rewritten form of the equation and the assumption in the theorem,
the estimate becomes

dz

- — 2 3/2 o0 2 3 1/4 3/4 9
Oalfo. | — Omalfo. 1| < YOlewlT / K[22 + [K[331/4 |y, |13/ 2
0

(1+ k|)? 1+ (31/4|cyp|2)3 e

« This integral is bounded for all k, which gives the result



The new Landau operator

» Ok, so what did we actually derive?

 Working backwards from G 1.«(g, k), and un-scaling the cross section,
we have the collision operator

— 92 ) —1 gYg — c)j(c C
Qu.le) = 2C1e [ 1g ( ‘gp)(vc Ve )(Cu(lg) £()f(c.))de.

1 Mplgl*) _ 1
= —log |1+ 22 = —log |1+ — 4

» The previously used operator with constant CL falls out immediately.

« This weights high speed collisions more heavily, and de-emphasizes low
speed collisions



Some numerical results

» How does this impact convergence to equilibrium?
* Initial condition — ‘volcano’ inspired by legendre polynomial expansion

3/2 ;
10 —0.3v,
F(v,0) = 0.01n, (%) exp | — m (|c| V)

0.09kT',

0 T T T T T T T T
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=
—
o0
Q
L]
Sk
6 \ \\ .
; \
! \
-7+ |
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Summary and expected impact

We derived a new version of the Landau/Fokker-Planck collision operator,
now with a velocity dependent CL

This CL emphasizes collisions with high relative velocity and de-emphasizes the
lower energy collisions in the FP framework

This provides a better approximation to Boltzmann, but it is still an approximation so
YMMV

Future work

<

Can we derive new plasma transport coefficients off of this model to improve NS
modeling?

We tossed out some higher order terms, but could they lead to further
improvements in the FP operator, which has nice numerical properties?
Investigate of the FP speedup algorithms apply to this new operator.

Analytical work predicts a convergence to Maxwellian of 2/3, does this model pick
that up?
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