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Abstract. Tomographic image reconstruction is well understood if the specimen being studied4
is stationary during data acquisition. However, if this specimen changes during the measuring5
process, standard reconstruction techniques can lead to severe motion artefacts in the computed6
images. Solving a dynamic reconstruction problem therefore requires to model and incorporate7
suitable information on the dynamics in the reconstruction step to compensate for the motion.8

Many dynamic processes can be described by partial differential equations which thus could serve9
as additional information for the purpose of motion compensation. In this article, we consider the10
Navier-Cauchy equation which characterizes small elastic deformations and serves, for instance, as11
a model for respiratory motion. Our goal is to provide a proof-of-concept that by incorporating12
the deformation fields provided by this PDE, one can reduce the respective motion artefacts in13
the reconstructed image. To this end, we solve the Navier-Cauchy equation prior to the image14
reconstruction step using suitable initial and boundary data. Then, the thus computed deformation15
fields are incorporated into an analytic dynamic reconstruction method to compute an image of the16
unknown interior structure. The feasibility is illustrated with numerical examples from computerized17
tomography.18
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1. Introduction. Imaging modalities are concerned with the non-invasive recov-21

ery of some characteristic function of an object under investigation from measured22

data. Hence, they represent a well-known application of the theory of inverse problems23

which are concerned with determining the cause of an observation. If the specimen is24

stationary during the data collection, the reconstruction process is well understood for25

most imaging systems [36]. A dynamic behaviour of the object during measurement,26

however, results in inconsistent data, and standard reconstruction techniques derived27

under the stationary assumption lead to severe motion artefacts in the computed28

images [13, 31, 42]. This affects medical applications, for instance due to respiratory29

and cardiac motion, as well as non-destructive testing while imaging driven liquid30

fronts for oil recovery studies [3] or while performing elasticity experiments during31

the scan to determine material parameters [25].32

Solving the dynamic reconstruction problem requires to model and incorporate33

dynamical prior information within the reconstruction step. For individual imaging34

modalities like computerized tomography, magnetic resonance imaging or positron35

emission tomography, several methods of this type have been proposed in the litera-36

ture, based on rebinning or gating the data [15,33,46], a variational formulation [6,14,37

32,37], exact analytic methods [11,12,16], iterative procedures [2,24] or approximate38

inversion formulas [18, 26, 27]. Further, regularization techniques developed in the39

general context of dynamic linear inverse problems [9,17,29,40,41] have been success-40

fully applied to imaging problems.41

∗Submitted to the editors DATE.
Funding: The work of the first and second author was supported by the Deutsche

Forschungsgemeinschaft under grant HA 8176/1-1.
†Department of Mathematics, University of Stuttgart (bernadette.hahn@imng.uni-stuttgart.de,

melina-loren.kienle-garrido@imng-uni-stuttgart.de.
‡Department of Mathematics, University of Würzburg (klingen@mathematik.uni-wuerzburg.de,

sandra.warnecke@mathematik.uni-wuerzburg.de).

1

This manuscript is for review purposes only.

mailto:bernadette.hahn@imng.uni-stuttgart.de
mailto:melina-loren.kienle-garrido@imng-uni-stuttgart.de
mailto:klingen@mathematik.uni-wuerzburg.de
mailto:sandra.warnecke@mathematik.uni-wuerzburg.de


2 B.N. HAHN, M.-L. KIENLE-GARRIDO, C. KLINGENBERG AND S. WARNECKE

The most efficient way to compensate for the dynamics is to model and incorporate42

the motion prior in form of a deformation map Φ which describes the trajectory of the43

particles in the interior of the object over time. In general, such deformation fields44

are a priori unknown and have to be extracted from the measured data. Typically,45

parametrized motion models are employed, i.e. only a few unknown parameters need46

to be estimated, either via additional measurements [2,11,34,39] or directly from the47

recorded tomographic data. In computerized tomography, for instance, they can be48

determined by detecting traces of nodal points in the sinogram [18, 33]. For global49

rotations and translations, an estimation procedure using data consistency conditions50

is proposed in [48]. Iterative procedures are, for example, based on edge entropy [28],51

or perform estimation and reconstruction step simultaneously [45].52

Alternatively, the dynamics can be characterized in terms of velocity fields be-53

tween consecutive image frames. The intensity variations in the image sequence are54

then linked to the underlying velocity field by the optical flow constraint, based on the55

brightness constancy assumption. Recovering both velocity fields and image frames56

from the measured data simultaneously requires solving non-convex optimization57

problems of extremely large size [4, 5].58

In this article, we pursue another approach. Many dynamic processes can be59

described by partial differential equations, and thus, their (numerical) solution could60

provide the required deformation fields. More precisely, we consider in the following61

the Navier-Cauchy equation, representing linear elasticity. In applications in radio-62

therapy treatment planning, the respective conservation laws are employed to model63

respiratory motion [47].64

To reduce the overall complexity and to provide a proof-of-concept that such65

motion prior can compensate for the dynamics, we decouple both tasks for the study66

in this article.67

In Section 2, we recall the mathematical model of dynamic imaging and present68

the general motion compensation strategy from [19] in the mass preserving case which69

assumes that the motion is known. We then derive our elastic motion model based on70

conservation laws in Section 3. The respective model in particular requires prescribed71

initial and boundary data. Therefore, we discuss suitable choices which are feasible72

regarding practical applications. The numerical calculation of the deformation fields73

is studied in Section 4. Finally, the potential of the motion model for the purpose74

of motion compensation is illustrated in Section 5 at the example of computerized75

tomography, combining the numerically computed deformation fields with our dyna-76

mic reconstruction strategy.77

2. Models and reconstruction strategies in dynamic imaging. In this78

section, we introduce the mathematical framework to formulate and address the79

problem of dynamic image reconstruction. In particular, we will consider the two-80

dimensional case throughout the article. Further, since the motion estimation ap-81

proach via the Navier-Cauchy equation is not restricted to a particular imaging82

modality, we want to present the motion compensation strategy in a framework83

covering many different modalities. A detailed introduction can be found for instance84

in [17,19].85

We start by deriving the model of the stationary setting. To be more intuitive,86

we first consider the example of computerized tomography (CT). In CT, X-ray beams87

are transmitted through the specimen of interest to a detector where the intensity loss88

of the X-rays is recorded. In particular, the radiation source needs to rotate around89

the object to capture information from different angles of view. Due to this rotation,90
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the data acquisition takes a considerable amount of time. The mathematical model91

for this imaging process is given by the Radon transform92

(2.1) Rh(t, y) =

∫
R2

h(x) δ(y − xT θ(t)) dx, (t, y) ∈ [0, 2π]× R,93

which integrates h along the straight lines {x ∈ R2 : xT θ(t) = y}, i.e. along the
path of the emitted X-rays. In particular, the unit vector θ(t) = (cos(t), sin(t))T

characterizes the source position at time instance t, while y denotes the affected
detector point, and δ stands for the delta distribution. The goal is then to recover h,
the linear attenuation coefficient of the studied specimen, from measurements g(t, y) =
Rh(t, y) with (t, y) ∈ [0, 2π]×R. Using the Fourier transform of δ, we further obtain
the equivalent representation

Rh(t, y) =

∫
R

∫
R2

(2π)−1/2 eiσ(y−xT θ(t)) h(x) dx dσ.

Besides CT, many imaging modalities in the stationary setting can be modeled94

mathematically by a linear operator which integrates the searched-for quantity along95

certain manifolds, for instance along circles, respectively spheres, in SONAR or photo-96

acoustic tomography. Thus, we consider in the following a more general framework,97

namely model operators of type98

Ah(t, y) =

∫
R

∫
Ωx

h(x) a(t, y, x)eiσ(y−H(t,x)) dxdσ, (t, y) ∈ RT × Ωy,(2.2)99

100

where Ωx and Ωy denote open subsets of R2 and R, respectivley, RT ⊂ R represents101

an open time interval covering the time required for the measuring process, a ∈102

C∞(RT × Ωy × Ωx) is a weight function and H : RT × R2 → R characterizes the103

manifold we are integrating over.104

With this observation model, we can formulate the associated inverse problem:105

Determine h from measured data106

g(t, y) = Ah(t, y), (t, y) ∈ RT × Ωy.(2.3)107108

The component t of the data variable expresses the time-dependency of the data109

collection process. The searched-for quantity h itself, however, is independent of110

time, i.e. (2.3) corresponds to a static image reconstruction problem. We refer to111

equation (2.3) also as static inverse problem.112

2.1. The mathematical model of dynamic imaging. Now, we consider the113

dynamic case, i.e. the investigated object changes during collection of the data and114

is therefore characterized by a time-dependent function f : RT ×R2 → R. For a fixed115

time, we abbreviate ft := f(t, ·), i.e. ft represents the state of the object at time116

instance t. Then, the inverse problem of the dynamic scenario reads117

Adynf(t, y) = g(t, y)(2.4)118119

with the dynamic operator Adynf(t, y) := Aft(t, y). In particular, only measurements120

g(t, ·) for a single time instance encode information about the state ft, which is121

typically not sufficient to fully recover ft. In CT, only line integrals in one particular122

direction would be available for the reconstruction of ft, which is well known to be123

This manuscript is for review purposes only.



4 B.N. HAHN, M.-L. KIENLE-GARRIDO, C. KLINGENBERG AND S. WARNECKE
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Figure 1: The mapping Φ−1
t correlates the state ft at time t to the reference state f0

at the initial time.

insufficient. Thus, additional information about the dynamic behavior need to be124

incorporated in order to solve dynamic inverse problems.125

The dynamic behaviour of the object can be considered to be due to particles126

which change position in a fixed coordinate system of R2. This physical interpretation127

of object movement can then be incorporated into a mathematical model Φ : RT ×128

R2 → R2, where Φ(0, x) = x, i.e. we consider f0 as reference state, and Φ(t, x)129

denotes the position at time t of the particle initially at x. For fixed t ∈ RT , we write130

Φtx := Φ(t, x) to simplify the notation. Motivated by medical applications, where no131

particle is lost or added and two particles cannot move to the same position at the132

same time, Φt is assumed to be a diffeomorphism for all t ∈ RT . Thus, a particle133

x ∈ R2 at time t is at position Φ−1
t x in the reference state, see Figure 1. A description134

of this motion model can also be found, for instance, in [17,26,27].135

Using this motion model and the initial state function f0, we find the state of the136

object at time instance t to be137

f(t, x) = f0(Φ−1
t x)|detDΦ−1

t x|(2.5)138139

by taking into account that the mass shall be preserved.140

141

Inserting the property (2.5) in the definition of the dynamic forward operator142

Adyn, we obtain an operator AΦ for the initial state function, namely143

AΦf0(t, y) := A(|det DΦ−1
t (·)|(f0 ◦ Φ−1

t ))(t, y).(2.6)144145

Remark 2.1. In our previous work [17,18,21], we considered the intensity preserv-146

ing model147

f(t, x) = f0(Φ−1
t x),148

i.e. each particle keeps its initial intensity over time. Although this does not alter149

the nature of our reconstruction algorithm, we insist here on the mass preserving case150

to be consistent with the conservation laws employed in Section 3 for the purpose151

of motion estimation and clinical applications. The mass preserving model is also152

considered, for instance, in [26,27].153

For a theoretical analysis, the motion model Φ is typically assumed to satisfy the154

following additional conditions, cf. [8, 20,21,38]:155

• The map156

(2.7) x 7→
(

H(t,Φtx)
DtH(t,Φtx)

)
157

is one-to-one for each t.158
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• It holds159

(2.8) det

(
DxH(t,Φtx)
DxDtH(t,Φtx)

)
6= 0160

for all x ∈ R2 and all t ∈ RT .161

Basically, these properties ensure that the object’s motion does not result in trivial162

sampling schemes for f0. A detailed interpretation of these conditions can be found,163

for instance, in [21].164

If the deformation fields Φt are known, the dynamic inverse problem (2.4) reduces165

to determining f0 from the equation166

AΦf0 = g.(2.9)167168

In [17, 19, 26], efficient algorithms have been developed to solve this task. The169

underlying strategy proposed in [19] is summarized in the following, before we intro-170

duce our PDE-based approach to determine the deformation fields Φt in Section 3171

and combine both strategies to solve (2.9) when Φt are unknown.172

2.2. Motion compensation algorithms. Throughout this section, we assume173

the motion Φ to be known and focus on solving (2.9). Under suitable assumptions on174

the phase function H, the linear integral operator A from the underlying static case175

belongs to the class of Fourier integral operators. To define this type of operators, we176

first introduce the concepts of amplitude and phase function.177

Definition 2.2.178179

• Let Λ ∈ C∞(RT×Ωy×Ωx×R\{0}) be a real-valued function with the following180

properties:181

1. Λ is positive homogeneous of degree 1 in σ, i.e. Λ(t, y, x, rσ) =182

rΛ(t, y, x, σ) for every r > 0,183

2. both (∂(t,y)Λ, ∂σΛ) and (∂xΛ, ∂σΛ) do not vanish for all (t, y, x, σ) ∈184

RT × Ωy × Ωx × R\{0},185

3. it holds ∂(t,y,x)

(
∂Λ
∂σ

)
6= 0 on the zero set186

ΣΛ = {(t, y, x, σ) ∈ RT × Ωy × Ωx × R\{0} : ∂σΛ = 0}.187188

Then, Λ is called a non-degenerate phase function.189

• Let a ∈ C∞(RT × Ωy × Ωx × R) satisfy the following property:190

For every compact set K ⊂ RT ×Ωy ×Ωx and for every M ∈ N, there exists191

a C = C(K,M) ∈ R such that192 ∣∣∣∣ ∂n1

∂tn1

∂n2

∂yn2

∂n3

∂xn3
1

∂n4

∂xn4
2

∂m

∂σm
a(t, y, x, σ)

∣∣∣∣ ≤ C(1 + |σ|)k−m193
194

for n1 + n2 + n3 + n4 ≤M , m ≤M , for all (t, y, x) ∈ K and for all σ ∈ R.195

Then a is called an amplitude (of order k).196

• Let Λ denote a non-degenerate phase function and let a be an amplitude (of197

order k). Then, the operator T defined by198

T u(t, y) =

∫
u(x)a(t, y, x, σ)eiΛ(t,y,x,σ)dxdσ, (t, y) ∈ RT × Ωy199

200

is called a Fourier integral operator (FIO) (of order k − 1/2).201
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Figure 2: Initial state f0 of a phantom (left) and its singularities (right).

For more details and a more general definition see [22,44].202

203

In [19, 20], it was shown that under suitable smoothness conditions on Φ, the204

dynamic operator AΦ inherits the FIO property from its static counterpart A.205

Theorem 2.3. Let Φ ∈ C∞(RT × R2) and let Φt be a diffeomorphism for every206

t ∈ RT . If the static operator A from (2.2) is an FIO, the respective dynamic operator207

AΦ from (2.6) is an FIO as well.208

Fourier integral operators have specific properties that can be used to design209

efficient motion compensation strategies: They encode characteristic features of the210

object - the so-called singularities - in precise and well-understood ways.211

Formally, singularities of a (generalized) function h correspond to the elements212

of the singular support ssupp(h), which denotes the complement of the largest open213

set on which h is smooth. In imaging applications, where the searched-for quantity214

is typically piecewise constant (each value characterizing a particular material), the215

singularities correspond to the contours of h, see Figure 2.216

The method for motion compensation from [19] is motivated by results on micro-217

local analysis, which address - among others - the question which singularities can be218

stably recovered from the data. The main idea is to use reconstruction operators of219

the form220

LΦ = BΦP(2.10)221222

on the data g = AΦf0 with P a pseudodifferential operator (typically acting on the223

spatial data variable y) and a backprojection operator BΦ which incorporates the224

information on the dynamic behavior.225

Definition 2.4. a) An operator of the form

Pg(t, s) =

∫
R

∫
R
eiσ(s−y) p(s, y, σ) g(t, y) dy dσ

with |σ| ≤ 1 and amplitude p which is locally integrable for s, y in any compact226

set K is called pseudodifferential operator (PSIDO) (acting on the spatial227

data variable y).228

b) The operator229

BΦg(x) =

∫
RT
b(t, x) g(t,H(t,Φtx)) dt, x ∈ R2,230

231

where b(t, x) is a positive C∞-weight function on RT ×R2, is called backpro-232

jection operator associated to AΦ.233
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With these representations of BΦ and P, the operator LΦ from (2.10) reads234

(2.11) LΦg(x) =

∫
RT

∫
R

∫
R
b(t, x) p(H(t,Φtx), y, σ) g(t, y)eiσ(H(t,Φtx)−y) dy dσdt.235

Remark 2.5. a) Pseudodifferential operators constitute a special case of an236

FIO. A more general definition than the one given above can be found, for237

instance, in [30].238

b) If we choose the weight b(t, x) = a(t,H(t,Φt),Φtx) with the amplitude a of239

the underlying static operator A, the respective backprojection operator BΦ240

corresponds to the dual operator of AΦ.241

The following result forms the basis to our motion compensation method.242

Theorem 2.6. Let Φ ∈ C∞(RT ×R2) and let Φt, t ∈ RT be diffeomorphisms that243

satisfy the conditions (2.7) and (2.8). Further, let LΦ = BΦP be well-defined. Then,244

LΦ preserves the contours of f0 which are ascertained in the measured data.245

Proof. The statement follows directly from Theorem 13 in [20]. �246

Interpretation: Applying a reconstruction operator LΦ of type (2.10) provides247

an image showing the singularities of f0 correctly, which are encoded by the dynamic248

data. In particular, no motion artefacts arise. Thus, the described approach provides249

in fact a motion compensation strategy. In particular, it can be easily implemented250

and the computational effort is comparable to the one of static reconstruction algo-251

rithms of type filtered backprojection. If an inversion formula of type u = A∗PstatAu252

with a PSIDO Pstat is known for the static case, then choosing the PSIDO P = Pstat253

for the motion compensation strategy provides even a good approximation to the exact254

density values of f0 [19]. In computerized tomography, such an inversion formula is255

known with Pstat being the Riesz potential [35].256

257

Remark 2.7. Although the ascertained singularities of f0 are correctly recon-258

structed by LΦ, some additional artefacts might occur if the motion is non-periodic.259

This has been studied in detail for computerized tomography in [21] and for a more260

general class of imaging problems in [20]. These artefacts would be caused by singular-261

ities encoded at beginning and end of the scanning and would spread along the262

respective integration curve. Nevertheless, this is an intrinsic property due to the263

nature of the dynamic problem and therefore does not impose a major restriction264

to our reconstruction approach. In particular, for periodic motion as in medical265

applications, such as respiratory or cardiac motion, the data acquisition protocol266

could be adjusted to the breathing or cardiac cycle to avoid this issue.267

Since inverse problems are typically ill-posed, a regularization is required to268

determine LΦg stably from the measured data g = AΦf0. For our considered class269

of imaging problems, the ill-posedness is typically revealed by the growth of the270

symbol p in terms of σ. For instance, the amplitude of the Riesz potential arising in271

computerized tomography corresponds to p(s, y, σ) = p(σ) = |σ|, thus, amplifying the272

high frequencies of the data g. The inversion process can be stabilized by introducing273

a smooth low-pass filter eγ , i.e. by considering274

(2.12)

LγΦg(x) =

∫
RT

∫
R

∫
R
b(t, x) p(H(t,Φtx), y, σ) eγ(σ) g(t, y)eiσ(H(t,Φtx)−y) dy dσdt275

with γ > 0 instead of (2.11), see [19] for more details.276
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2.3. Reconstruction operator in dynamic CT. Since we will evaluate our277

motion estimation strategy in Section 5 at the example of computerized tomography,278

we want to state the respective motion compensation algorithm for this application279

explicitely.280

As introduced in the beginning of this section, the mathematical model operator
A of the static case corresponds to the classical Radon transform R, see (2.1), which is
an FIO with amplitude a(t, y, x) = (2π)−1/2 and phase function Λ(t, y, x, σ) = σ(y −
H(t, x)), where H(t, x) = xT θ(t) [30]. Thus, the associated dynamic backprojection
operator BΦ with weight b(t, x) = a(t,H(t,Φt),Φtx) = (2π)−1/2 reads

BΦg(x) = (2π)−1/2

∫
RT
g(t, (Φtx)T θ(t)) dt.

Choosing as PSIDO the Riesz potential with amplitude p(s, y, σ) = |σ| and a low-pass281

filter eγ , for instance the Gaussian, we obtain the dynamic reconstruction operator282

LγΦg(x) = (2π)−1/2

∫
RT

∫
R

∫
R
|σ| eγ(σ) g(t, y) eiσ((Φtx)T θ(t)−y) dy dσdt, γ > 0,283

which can be implemented in form of a filtered backprojection type algorithm, see [18].284

3. Linear elastics. In this section and the following one, we will treat the task285

of motion estimation. While, for a global deformation, the dynamic behavior of286

the boundary can be observed externally, the deformation in the interior is a priori287

unknown. Since many dynamic processes can be mathematically described in terms288

of a partial differential equation (PDE), we propose to determine the deformation289

fields Φt by finding the solution of an appropriate PDE with suitable given initial and290

boundary data.291

292

Since the deformation fields Φt, t ∈ RT describe the mapping from the initial/reference293

state to the current position, we choose the Lagrangian description for the PDE. Let294

Ωx ⊂ R2 denote the initial domain, i.e. Ωx corresponds to the support of the initial295

state f0, and consequently, we choose Ωx to be the reference configuration.296

We require that Φt, t ∈ RT preserves its orientation meaning that detDΦ(t, x) > 0297

for all (t, x) ∈ RT ×Ωx. Especially in medical applications, this assumption is sensible298

since it also states that the local ratio of the current and the initial volume never299

vanishes. [1]300

301

The following definition links the current and the initial position.302

Definition 3.1. The difference between the current and the initial position is303

called displacement u(t, x) = Φ(t, x)− x for all (t, x) ∈ RT × Ωx.304

We are driven by medical applications. Respiratory or cardiac motion, for in-305

stance, have properties which shall be reflected by adequate equations. Due to their306

periodic behavior, it is clear that occuring stresses do not cause any yielding. So307

we assume a linear relationship between stresses and strain which results in linear308

elasticity.309

Inserting Hooke’s law in the general equation of conservation of momentum, we310

come to the Navier-Cauchy equations in two spatial dimensions for (t, x) ∈ RT ×Ωx,311
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see for reference [43]:312

ρ̂
∂2uk
∂2t

= v̂k + µ

(
∂2uk
∂x2

1

+
∂2uk
∂x2

2

)
+ (λ+ µ)

∂

∂xk

(
∂u1

∂x1
+
∂u2

∂x2

)
for k = 1, 2.

(3.1)

313
314

These are two linear PDEs for the two unknown components u1, u2 of the displace-315

ment u with the following parameters:316

• The density ρ̂ = ρ(t, x) detDΦ(t, x) equals the initial density distribution317

ρ̂ = ρ̂(x) = ρ(0, x) due to the conservation of mass.318

• The external volume forces are denoted by v̂ = v(t, x) detDΦ(t, x), where319

v : RT × Ωx → R2 describes the volume force density.320

• The Lamé-coefficients λ and µ specify the behavior of the material.321

For a fully determined problem, we need the displacements at time t = 0 and322

their time derivatives as initial data323

u(0, x) = ϑ0(x) and
∂

∂t
u(0, x) = ϑ1(x),324

325

with some given ϑ0, ϑ1 : Ωx → R2.326

327

Also the behavior of the boundary needs to be known, more precisely a function328

ψ : RT ×Ωx → R2 prescribing the evolution of the displacements on the boundary of329

the domain Γ = ∂Ωx:330

u(t, x) = ψ(t, x) for (t, x) ∈ RT × Γ.331332

Solving the introduced PDE with given initial and boundary conditions corre-333

sponds to determining the displacement u, respectively the deformation Φ in the334

interior of the object from observations of the dynamic behavior of the object’s335

boundary. Thus, it provides exactly the information about the motion needed for336

our motion compensation algorithm.337

338

Under some regularity assumptions, existence and uniqueness of the solutions of339

the Navier-Cauchy equation (3.1) can be proven. If the initial data is C∞, solutions340

for the initial value problem stay C∞, cf. [23]. Also for the initial-boundary value341

problem, there are existence and uniqueness results, cf. [7]. For appropriate boundary342

data ψ, regularity of the solutions does not get lost, and it can be shown that the343

solutions are diffeomorphisms, cf. [10]. In our numerical experiments in Section 5, the344

initial and boundary data is chosen so that the application of the motion compensation345

algorithm goes through.346

347

In the following, we quickly discuss suitable initial and boundary data regarding348

our application in dynamic imaging. As mentioned before, a global motion can be349

observed externally, thus, we make the reasonable assumption that the boundary data350

ψ(t, x), (t, x) ∈ RT × Γ are given. However, in practice, only discrete boundary data351

ψ(tn, xi,j), n = 1, . . . , N , i = 1, . . . , I, j = 1, . . . , J , N, I, J ∈ N will be available which352

might be even sparse with respect to the spatial component (i.e. I, J might be small)353

or corrupted by noise. This will be addressed in our numerical study in Section 5.354

Since we are overall interested in a reconstruction of the initial state of the355

object and since the underlying motion model considers small deformations, the initial356

displacement data ϑ0 and ϑ1 will be set to zero.357
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Remark 3.2. According to (3.1), the Navier-Cauchy contains the initial density358

distribution ρ̂ as parameter which is strongly linked to the quantity f0 we would like to359

determine by our imaging modality (in particular, they share the same singularities).360

If we knew this parameter ρ̂, we would already have full knowledge about the interior361

structure of the studied specimen. Thus, we cannot assume to know ρ̂. Formally, we362

could formulate a joint motion estimation and image reconstruction approach, where363

we identify the parameter ρ̂ of the PDE using the measurements from our imaging364

modality. However, to simplify the task for our proof-of-concept study, we propose365

another approach. In order to decouple the tasks of motion estimation via the Navier-366

Cauchy equation and dynamic image reconstruction, we use for the solution of the367

PDE a simplified prior instead of the exact density distribution ρ̂. This is discussed368

in more detail in Section 5.369

4. Numerical solution of the Navier-Cauchy equation. We divide the370

given time period t ∈ RT into equidistant intervals and call the time steps tn = n ·∆t.371

We choose a Cartesian grid (not necessarily uniform) so that the discrete boundary372

lies on the continuous boundary, see Figure 4. Using central finite differences of second373

order for the discretization of the Navier-Cauchy equation (3.1), we obtain an explicit374

numerical scheme.375

We denote xi,j = ((x1)i, (x2)j) = (xi, yj), (uk)ni,j = uk(tn, xi,j) for k = 1, 2,376

ρ0
i,j = ρ̂(xi,j), v̂

n
i,j = v̂(tn, xi,j), ∆xi = xi+1 − xi and ∆yj = yj+1 − yj . Then the377

scheme reads exemplary for the first component k = 1378

(u1)n+1
i,j = ∆t2

ρ0
i,j

v̂ni,j − (u1)n−1
i,j + 2

[
1− 2∆t2

ρ0
i,j

(
µ

∆y2
j

+∆y2
j−1

+ λ+2µ

∆x2
i
+∆x2

i−1

)]
(u1)ni,j379

+ ∆t2

ρ0
i,j

2(λ+2µ)

∆x2
i
+∆x2

i−1

[(
1− ∆xi−∆xi−1

∆xi+∆xi−1

)
(u1)n

i+1,j +
(

1 + ∆xi−∆xi−1
∆xi+∆xi−1

)
(u1)n

i−1,j

]
380

+ ∆t2

ρ0
i,j

2µ

∆y2
j

+∆y2
j−1

[(
1− ∆yj−∆yj−1

∆yj+∆yj−1

)
(u1)n

i,j+1 +
(

1 + ∆yj−∆yj−1
∆yj+∆yj−1

)
(u1)n

i,j−1

]
381

+ ∆t2

ρ0
i,j

λ+µ
(∆xi+∆xi−1)(∆yj+∆yj−1)

(
(u2)ni+1,j+1 − (u2)ni−1,j+1 − (u2)ni+1,j−1 + (u2)ni−1,j−1

)
.382

383

The corresponding stencil is illustrated in Figure 3.384

For the first time step, the (discrete) initial condition needs to be inserted385

(uk)−1
i,j = (uk)1

i,j − 2∆t ϑ1(xi,j) for k = 1, 2.386
387

The stencil for the spatial discretization has nine nodes. Since we are inspired by388

medical applications and a thorax is a possible specimen to be studied, we might deal389

with curved domains. For curved domains at the boundary, for the update scheme390

there is a node, which is not available to the stencil, see Figure 4. Hence, we need to391

use an interpolation method.392

For reasons of stability, we want to maintain the stencil. We call the missing node393

a ghost node that needs to have a value assigned to it, and we denote h the quantities394

given at every node. The indices of the nodes are given in Figure 4. A second-order395

approach is the following one for the components k = 1, 2:396

(hk)ghost = (hk)0 +
(hk)aux − (hk)0

(xk)aux − (xk)0
((xk)ghost − (xk)0)397

398
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xi,j
t = tn+1

xi−1,j−1 xi,j−1 xi+1,j−1

xi−1,j xi,j xi+1,j

xi−1,j+1 xi,j+1 xi+1,j+1

t = tn

xi,j
t = tn−1

Figure 3: We illustrate the stencil for our numerical scheme. For the update of the
values at node xi,j from tn → tn+1, we have to provide information about the values
at the other marked nodes.

where the auxiliary node on the continuous boundary is approximated by399

xaux =
1

2
((x1)1 + (x1)0), yaux =

1

2
((x2)2 + (x2)0) and400

(hk)aux =
1

2
((hk)1 + (hk)2) .401

402

We use the CFL condition403

νx∆t

∆x
+
νy∆t

∆y
≤ 1,404

405

where ∆x := min ∆xi and ∆y := min ∆yj , in order to determine a suitable time406

step ∆t. The maximal propagation speeds are bounded from above by νx, νy ≤407 √
(λ+ 2µ)/ρ with ρ := min ρ0

i,j > 0.408

5. Application in motion compensation. We evaluate the motion estimation409

approach on simulated CT data. For this purpose, we consider a thorax phantom410

representing a cross-section of a chest, see Figure 5 left. Following from [11], its411

respiratory motion is modelled by an affine deformation, more precisely by412

Φ(t, x) =

(
s(t)−1 0

0 s(t)

)(
x−

(
0.44 · (s(t)− 1)

0

))
413
414
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ghost

1

2 0

Ωxaux

Figure 4: Illustration of the boundary: The nodes 1 and 2 lie directly on the continuous
boundary, and their behaviour is prescribed by the Dirichlet data ψ. For the node 0,
the stencil for the update scheme only can be applied with the help of an interpolation
since the values of the ghost node are not available. The average of the values of the
nodes 1 and 2 are used to create an auxiliary node which corresponds to a slightly
‘shifted’ boundary.

 

Figure 5: Cross-section of the numerical phantom during one cycling breath.

with s(t) = 0.05 · cos(0.04 · t) + 0.95. The deformation during one breathing cycle is415

illustrated in the sequence of pictures in Figure 5.416

417

The Radon data of this dynamic object are computed analytically for 660 source418

positions, uniformly distributed over the upper half sphere, and 451 discrete detector419

points uniformly distributed over [−1, 1] (since the support of the phantom is con-420

tained in the unit disk at all time instances). Our reconstructions and - later on - all421

simulations of the PDE are run on a 257x257 grid.422

423

If one does not take into account that the object was moving during data acquisi-424

tion and applies a static reconstruction algorithm to the dynamic data, an image of425

poor quality with motion artefacts such as blurring, streaking etc. is obtained, see426

Figure 6(b). This motivates the need for motion compensation and hence motion427

estimation strategies.428

As motion compensation algorithm, we use the strategy specified in Section 2.3429
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with the Gaussian function as low-pass filter. The result of this algorithm with exact430

motion information Φ is shown in Figure 6(c). We observe that all components431

are indeed correctly reconstructed without motion artefacts, i.e. the motion is well432

compensated for, and in accordance to [19], we obtain a good approximation to433

the original initial state, cf. Figure 6(a). However, in practice, the exact motion434

information is typically unknown.435

Thus, our goal is now to evaluate our proposed motion estimation strategy,436

i.e. the (discrete) deformation fields Φt are computed by solving the Navier-Cauchy437

equation with available initial and boundary data. First, we discuss the initial data438

corresponding to the initial density distribution ρ̂. As discussed in Remark 3.2, this439

initial parameter is strongly linked to the searched-for initial state function f0 which440

is why we propose to use a simplified prior instead. The one used for our simulation441

is shown in Figure 7. This prior only distinguishes between spine and soft tissue,442

where the respective values are initialized with standard values ρ̂ = 1.85 · 103 kg/m3443

for the spine and ρ̂ = 1.05 · 103 kg/m3 for the rest. This is indeed a reasonable prior444

in practice since the only component considered in the interior - the spine - typically445

does not move, so it can be extracted from a static reconstruction, cf. Figure 6(b).446

Finding realistic values for the Lamé-coefficients is a research topic by itself. It447

is hard to quantify them and they differ depending on the study [47]. We assume a448

uniform motion behavior of all (soft) tissues and restrict ourselves to one set of values449

for the whole thorax. The coefficients are averaged to λ = 3.46 kPa and µ = 1.48 kPa.450

451

Regarding the boundary data, we test several configurations. First, we use the452

exact analytical positions of the boundary. Then, solving the respective PDE as453

described in Section 4 and incorporating its solution as motion information in our454

dynamic reconstruction algorithm provides the reconstruction result shown in Figure455

6(d). The motion of the phantom is well compensated for and the small tumour is456

clearly visible. This shows that determining deformation fields by solving the Navier-457

Cauchy equation constitutes a valuable motion estimation strategy.458

In practice, the boundary positions might be determined by attaching markers at459

the surface of the object. If these positions are determined by measurements, they will460

be subject to small measurement errors. Thus, in order to test stability with respect461

to the boundary data, we next add a sample of noise to the (analytical) boundary462

positions. The noise is generated as normal distribution around 0 with standard463

deviation 0.1 and 0.25, respectively. In Figure 8 we see that the reconstruction near464

the boundary is affected. More precisely, due to the inexact boundary positions, the465

boundary in the reconstruction appears fuzzy. However, the motion in the interior of466

the phantom is still well compensated for. All interior components, which correspond467

to the relevant searched-for information, including the small tumour, are still clearly468

recognizable, in particular in comparison to the static reconstruction, cf. Figure 6(b).469

Further, we test the performance of the method if only a few discrete boundary470

positions are given. The motivation behind this experiment is that, in practice, only471

a limited number of markes can be attached to the surface of the object. To this472

end, we prescribe only 32 (and 16, respectively) grid nodes on the boundary. Between473

these nodes, we apply a linear interpolation. The results are displayed in Figure 9. We474

obtain some artefacts since the round shape of the thorax is replaced by a polygon due475

to the interpolation. However, as in the case of noisy boundary data, the deformation476

fields obtained by solving the PDE still provide sufficient information on the motion477

to compensate for it in the interior and to provide an image showing clearly all inner478

components including the small tumour.479
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(a) Original phantom (b) Static reconstruction.

(c) Dynamic reconstruction with exact
motion information.

(d) Dynamic reconstruction with motion
information from solving the PDE with
analytical boundary data.

Figure 6: Static and dynamic reconstruction results of the initial state function.

6. Conclusions. This article provides a proof-of-concept for a motion estimation480

strategy in dynamic imaging, where the Navier-Cauchy equation serves as a mathe-481

matical model for small elastic deformations. To this end, we decoupled the tasks of482

motion estimation and image reconstruction, i.e. the Navier-Cauchy equation is solved483

prior to the reconstruction step using suitable and realistic initial and boundary data.484

Then the calculated deformation fields are incorporated into an analytic dynamic485

reconstruction algorithm. Our numerical results on a thorax phantom undergoing486

respiratory motion illustrate that this approach can significantly reduce motion arte-487

facts in the respective images. In particular, we discussed available boundary data488

and illustrated their affect on the reconstruction result.489
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Figure 7: Initial density distribution used for solving the Navier-Cauchy equation.

(a) Result for noisy boundary data with
standard deviation 0.1.

(b) Result for noisy boundary data with
standard deviation 0.25.

Figure 8: Dynamic reconstruction with motion information from solving the PDE
with noisy boundary data.
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