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USING THE NAVIER-CAUCHY EQUATION FOR MOTION
ESTIMATION IN DYNAMIC IMAGING*

B.N. HAHN', M.-L. KIENLE-GARRIDOT, C. KLINGENBERGY, AND S. WARNECKE*

Abstract. Tomographic image reconstruction is well understood if the specimen being studied
is stationary during data acquisition. However, if this specimen changes during the measuring
process, standard reconstruction techniques can lead to severe motion artefacts in the computed
images. Solving a dynamic reconstruction problem therefore requires to model and incorporate
suitable information on the dynamics in the reconstruction step to compensate for the motion.

Many dynamic processes can be described by partial differential equations which thus could serve
as additional information for the purpose of motion compensation. In this article, we consider the
Navier-Cauchy equation which characterizes small elastic deformations and serves, for instance, as
a model for respiratory motion. Our goal is to provide a proof-of-concept that by incorporating
the deformation fields provided by this PDE, one can reduce the respective motion artefacts in
the reconstructed image. To this end, we solve the Navier-Cauchy equation prior to the image
reconstruction step using suitable initial and boundary data. Then, the thus computed deformation
fields are incorporated into an analytic dynamic reconstruction method to compute an image of the
unknown interior structure. The feasibility is illustrated with numerical examples from computerized
tomography.
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1. Introduction. Imaging modalities are concerned with the non-invasive recov-
ery of some characteristic function of an object under investigation from measured
data. Hence, they represent a well-known application of the theory of inverse problems
which are concerned with determining the cause of an observation. If the specimen is
stationary during the data collection, the reconstruction process is well understood for
most imaging systems [36]. A dynamic behaviour of the object during measurement,
however, results in inconsistent data, and standard reconstruction techniques derived
under the stationary assumption lead to severe motion artefacts in the computed
images [13,31,42]. This affects medical applications, for instance due to respiratory
and cardiac motion, as well as non-destructive testing while imaging driven liquid
fronts for oil recovery studies [3] or while performing elasticity experiments during
the scan to determine material parameters [25].

Solving the dynamic reconstruction problem requires to model and incorporate
dynamical prior information within the reconstruction step. For individual imaging
modalities like computerized tomography, magnetic resonance imaging or positron
emission tomography, several methods of this type have been proposed in the litera-
ture, based on rebinning or gating the data [15,33,46], a variational formulation [6,14,
32,37], exact analytic methods [11,12,16], iterative procedures [2,24] or approximate
inversion formulas [18,26, 27]. Further, regularization techniques developed in the
general context of dynamic linear inverse problems [9,17,29,40,41] have been success-
fully applied to imaging problems.
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2 B.N. HAHN, M.-L. KIENLE-GARRIDO, C. KLINGENBERG AND S. WARNECKE

The most efficient way to compensate for the dynamics is to model and incorporate
the motion prior in form of a deformation map ® which describes the trajectory of the
particles in the interior of the object over time. In general, such deformation fields
are a priori unknown and have to be extracted from the measured data. Typically,
parametrized motion models are employed, i.e. only a few unknown parameters need
to be estimated, either via additional measurements [2,11,34,39] or directly from the
recorded tomographic data. In computerized tomography, for instance, they can be
determined by detecting traces of nodal points in the sinogram [18,33]. For global
rotations and translations, an estimation procedure using data consistency conditions
is proposed in [48]. Tterative procedures are, for example, based on edge entropy [28],
or perform estimation and reconstruction step simultaneously [45].

Alternatively, the dynamics can be characterized in terms of velocity fields be-
tween consecutive image frames. The intensity variations in the image sequence are
then linked to the underlying velocity field by the optical flow constraint, based on the
brightness constancy assumption. Recovering both velocity fields and image frames
from the measured data simultaneously requires solving non-convex optimization
problems of extremely large size [4,5].

In this article, we pursue another approach. Many dynamic processes can be
described by partial differential equations, and thus, their (numerical) solution could
provide the required deformation fields. More precisely, we consider in the following
the Navier-Cauchy equation, representing linear elasticity. In applications in radio-
therapy treatment planning, the respective conservation laws are employed to model
respiratory motion [47].

To reduce the overall complexity and to provide a proof-of-concept that such
motion prior can compensate for the dynamics, we decouple both tasks for the study
in this article.

In Section 2, we recall the mathematical model of dynamic imaging and present
the general motion compensation strategy from [19] in the mass preserving case which
assumes that the motion is known. We then derive our elastic motion model based on
conservation laws in Section 3. The respective model in particular requires prescribed
initial and boundary data. Therefore, we discuss suitable choices which are feasible
regarding practical applications. The numerical calculation of the deformation fields
is studied in Section 4. Finally, the potential of the motion model for the purpose
of motion compensation is illustrated in Section 5 at the example of computerized
tomography, combining the numerically computed deformation fields with our dyna-
mic reconstruction strategy.

2. Models and reconstruction strategies in dynamic imaging. In this
section, we introduce the mathematical framework to formulate and address the
problem of dynamic image reconstruction. In particular, we will consider the two-
dimensional case throughout the article. Further, since the motion estimation ap-
proach via the Navier-Cauchy equation is not restricted to a particular imaging
modality, we want to present the motion compensation strategy in a framework
covering many different modalities. A detailed introduction can be found for instance
in [17,19].

We start by deriving the model of the stationary setting. To be more intuitive,
we first consider the example of computerized tomography (CT). In CT, X-ray beams
are transmitted through the specimen of interest to a detector where the intensity loss
of the X-rays is recorded. In particular, the radiation source needs to rotate around
the object to capture information from different angles of view. Due to this rotation,
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NAVIER-CAUCHY EQN FOR MOTION ESTIMATION IN DYNAMIC IMAGING 3

the data acquisition takes a considerable amount of time. The mathematical model
for this imaging process is given by the Radon transform

(2.1) Rh(t.y) = [ hia)oly =00 de, (t.9) € [0.2¢] x R,

which integrates h along the straight lines {z € R? : 270(t) = y}, i.e. along the
path of the emitted X-rays. In particular, the unit vector 0(t) = (cos(t),sin(t))”
characterizes the source position at time instance ¢, while y denotes the affected
detector point, and § stands for the delta distribution. The goal is then to recover h,
the linear attenuation coefficient of the studied specimen, from measurements g(t, y) =
Rh(t,y) with (¢,y) € [0,27] x R. Using the Fourier transform of §, we further obtain
the equivalent representation

Rh(t,y) = / / (27)"L/2 gio(u=2"00) p(2) dz do.
R JR2

Besides CT, many imaging modalities in the stationary setting can be modeled
mathematically by a linear operator which integrates the searched-for quantity along
certain manifolds, for instance along circles, respectively spheres, in SONAR or photo-
acoustic tomography. Thus, we consider in the following a more general framework,
namely model operators of type

(2.2) Ah(t,y) = // h(z)a(t,y, )@= HED) qzdo,  (t,y) € Ry x Q,
RJQ,

where , and Q, denote open subsets of R? and R, respectivley, Ry C R represents
an open time interval covering the time required for the measuring process, a €
C®(Rr x Q, x ;) is a weight function and H : Ry x R? — R characterizes the
manifold we are integrating over.

With this observation model, we can formulate the associated inverse problem:
Determine h from measured data

(23) g(tay) = Ah(tay)a (ta y) € RT X Qy

The component ¢ of the data variable expresses the time-dependency of the data
collection process. The searched-for quantity h itself, however, is independent of
time, i.e. (2.3) corresponds to a static image reconstruction problem. We refer to
equation (2.3) also as static inverse problem.

2.1. The mathematical model of dynamic imaging. Now, we consider the
dynamic case, i.e. the investigated object changes during collection of the data and
is therefore characterized by a time-dependent function f : Ry x R? — R. For a fixed

time, we abbreviate f; := f(t,), i.e. f; represents the state of the object at time
instance t. Then, the inverse problem of the dynamic scenario reads
(2:4) AW (it y) = g(t,y)

with the dynamic operator A%" f(t,y) := Af:(t,y). In particular, only measurements
g(t,-) for a single time instance encode information about the state f;, which is
typically not sufficient to fully recover f;. In CT, only line integrals in one particular
direction would be available for the reconstruction of f;, which is well known to be
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ot
TN

It fo

Figure 1: The mapping ®; L correlates the state f; at time ¢ to the reference state fo
at the initial time.

insufficient. Thus, additional information about the dynamic behavior need to be
incorporated in order to solve dynamic inverse problems.

The dynamic behaviour of the object can be considered to be due to particles
which change position in a fixed coordinate system of R2. This physical interpretation
of object movement can then be incorporated into a mathematical model ® : Ry x
R? — R?, where ®(0,7) = x, i.e. we consider fy as reference state, and ®(t,z)
denotes the position at time ¢ of the particle initially at . For fixed t € Ry, we write
Oz := O(t, z) to simplify the notation. Motivated by medical applications, where no
particle is lost or added and two particles cannot move to the same position at the
same time, ®; is assumed to be a diffeomorphism for all ¢ € Ry. Thus, a particle
x € R? at time t is at position @, 4 in the reference state, see Figure 1. A description
of this motion model can also be found, for instance, in [17,26,27].

Using this motion model and the initial state function fj, we find the state of the
object at time instance t to be

(2.5) flt,x) = fo(‘bt_lzﬂ det D(I),flx|

by taking into account that the mass shall be preserved.

Inserting the property (2.5) in the definition of the dynamic forward operator
A% we obtain an operator Ag for the initial state function, namely

(2.6) As folt,y) = A(| det DO, ()| (fo o 277))(t, y).

Remark 2.1. In our previous work [17,18,21], we considered the intensity preserv-

ing model
ft.2) = fo(@; '),

i.e. each particle keeps its initial intensity over time. Although this does not alter
the nature of our reconstruction algorithm, we insist here on the mass preserving case
to be consistent with the conservation laws employed in Section 3 for the purpose
of motion estimation and clinical applications. The mass preserving model is also
considered, for instance, in [26, 27].

For a theoretical analysis, the motion model @ is typically assumed to satisfy the
following additional conditions, cf. [8,20,21, 38]:
e The map

(2.7) e (Djj}(;(’t%i?nﬁ

is one-to-one for each t.

This manuscript is for review purposes only.
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NAVIER-CAUCHY EQN FOR MOTION ESTIMATION IN DYNAMIC IMAGING 5

e It holds

D, H(t, ®,x)
(2.8) det ( DD, @im)) £0

for all x € R? and all t € Ry.
Basically, these properties ensure that the object’s motion does not result in trivial
sampling schemes for fy. A detailed interpretation of these conditions can be found,
for instance, in [21].
If the deformation fields ®; are known, the dynamic inverse problem (2.4) reduces
to determining fy from the equation

(2.9) Asfo=g.

In [17,19, 26], efficient algorithms have been developed to solve this task. The
underlying strategy proposed in [19] is summarized in the following, before we intro-
duce our PDE-based approach to determine the deformation fields ®; in Section 3
and combine both strategies to solve (2.9) when ®; are unknown.

2.2. Motion compensation algorithms. Throughout this section, we assume
the motion ® to be known and focus on solving (2.9). Under suitable assumptions on
the phase function H, the linear integral operator 4 from the underlying static case
belongs to the class of Fourier integral operators. To define this type of operators, we
first introduce the concepts of amplitude and phase function.

DEFINITION 2.2.
o Let A € C°(RyxQy,xQ, xR\{0}) be a real-valued function with the following
properties:

1. A is positive homogeneous of degree 1 in o, i.e. A(t,y,x,ro) =
rA(t,y,x,0) for every r > 0,

2. both (O, A, 0sA) and (0zA,05A) do not vanish for all (t,y,z,0) €
Ry x Q, x Q, x R\{0},

3. it holds Oy,y,x) (%) %0 on the zero set

a ={(t,y,z,0) € Rp x Qy x Q; x R\{0} : 0,A =0}.

Then, A is called a non-degenerate phase function.

o Leta € C®(Rr x Qy x Qp x R) satisfy the following property:
For every compact set K C Ry x Q, x Q and for every M € N, there exists
aC=C(K,M) €R such that

71 72 n3 74 m
\a or: gn o O o] < o1 4ol

ot gyn2 0x® Oxy* o™
formg +ng+ng+ng <M, m<M, forall (t,y,x) € K and for all o € R.
Then a is called an amplitude (of order k).

e Let A denote a non-degenerate phase function and let a be an amplitude (of
order k). Then, the operator T defined by

Tu(t,y) = /u(:z:)a(t,y,:c,o)eiA(t’y’z’U)dzdo, (t,y) € Ry x Q,

is called a Fourier integral operator (FIO) (of order k —1/2).
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QU

Figure 2: Initial state fy of a phantom (left) and its singularities (right).

For more details and a more general definition see [22,44].

In [19,20], it was shown that under suitable smoothness conditions on ®, the
dynamic operator Ag inherits the FIO property from its static counterpart A.

THEOREM 2.3. Let ® € C°(Ry x R?) and let ®; be a diffeomorphism for every
t € Ry. If the static operator A from (2.2) is an FIO, the respective dynamic operator
Ag from (2.6) is an FIO as well.

Fourier integral operators have specific properties that can be used to design
efficient motion compensation strategies: They encode characteristic features of the
object - the so-called singularities - in precise and well-understood ways.

Formally, singularities of a (generalized) function h correspond to the elements
of the singular support ssupp(h), which denotes the complement of the largest open
set on which h is smooth. In imaging applications, where the searched-for quantity
is typically piecewise constant (each value characterizing a particular material), the
singularities correspond to the contours of h, see Figure 2.

The method for motion compensation from [19] is motivated by results on micro-
local analysis, which address - among others - the question which singularities can be
stably recovered from the data. The main idea is to use reconstruction operators of
the form

(2.10) Lo = BgP

on the data g = Ag fo with P a pseudodifferential operator (typically acting on the
spatial data variable y) and a backprojection operator Bg which incorporates the
information on the dynamic behavior.

DEFINITION 2.4. a) An operator of the form

7’9(128)=//ei"(s‘y)p(s,yﬂ)g(t,y) dydo
RJR

with |o| <1 and amplitude p which is locally integrable for s,y in any compact
set K is called pseudodifferential operator (PSIDO) (acting on the spatial
data variable y).

b) The operator

Bag(a) = / b(t.2) glt, H(t, Dia)) dt, @ € B2,
Rt

where b(t, ) is a positive C™-weight function on Ry x R?, is called backpro-
jection operator associated to Ag.

This manuscript is for review purposes only.
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NAVIER-CAUCHY EQN FOR MOTION ESTIMATION IN DYNAMIC IMAGING 7

With these representations of B and P, the operator Lg from (2.10) reads
@11) Laglo) = [ [ [ bt @), 0) gle,p)e 100D dy ot
Ry JR JR

Remark 2.5. a) Pseudodifferential operators constitute a special case of an
FIO. A more general definition than the one given above can be found, for
instance, in [30].

b) If we choose the weight b(t,z) = a(t, H(t, ), rx) with the amplitude a of
the underlying static operator A, the respective backprojection operator Be
corresponds to the dual operator of Ag.

The following result forms the basis to our motion compensation method.

THEOREM 2.6. Let ® € C°(Rr x R?) and let @4, t € Ry be diffeomorphisms that
satisfy the conditions (2.7) and (2.8). Further, let Lo = BaP be well-defined. Then,
Lg preserves the contours of fo which are ascertained in the measured data.

Proof. The statement follows directly from Theorem 13 in [20]. O

Interpretation: Applying a reconstruction operator L4 of type (2.10) provides
an image showing the singularities of fy correctly, which are encoded by the dynamic
data. In particular, no motion artefacts arise. Thus, the described approach provides
in fact a motion compensation strategy. In particular, it can be easily implemented
and the computational effort is comparable to the one of static reconstruction algo-
rithms of type filtered backprojection. If an inversion formula of type u = A*P5t Ay
with a PSIDO P%%t is known for the static case, then choosing the PSIDO P = Pstat
for the motion compensation strategy provides even a good approximation to the exact
density values of fy [19]. In computerized tomography, such an inversion formula is
known with P$'% being the Riesz potential [35].

Remark 2.7. Although the ascertained singularities of fy are correctly recon-
structed by L¢, some additional artefacts might occur if the motion is non-periodic.
This has been studied in detail for computerized tomography in [21] and for a more
general class of imaging problems in [20]. These artefacts would be caused by singular-
ities encoded at beginning and end of the scanning and would spread along the
respective integration curve. Nevertheless, this is an intrinsic property due to the
nature of the dynamic problem and therefore does not impose a major restriction
to our reconstruction approach. In particular, for periodic motion as in medical
applications, such as respiratory or cardiac motion, the data acquisition protocol
could be adjusted to the breathing or cardiac cycle to avoid this issue.

Since inverse problems are typically ill-posed, a regularization is required to
determine Lgg stably from the measured data g = Ag fo. For our considered class
of imaging problems, the ill-posedness is typically revealed by the growth of the
symbol p in terms of . For instance, the amplitude of the Riesz potential arising in
computerized tomography corresponds to p(s,y, o) = p(o) = |o|, thus, amplifying the
high frequencies of the data g. The inversion process can be stabilized by introducing
a smooth low-pass filter €7, i.e. by considering
(2.12)

£h9(z) = / / / b(t, 2) p(H (1, 1), ,0) €7(0) g(t, y)e O ) dy dods
T

with v > 0 instead of (2.11), see [19] for more details.

This manuscript is for review purposes only.
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2.3. Reconstruction operator in dynamic CT. Since we will evaluate our
motion estimation strategy in Section 5 at the example of computerized tomography,
we want to state the respective motion compensation algorithm for this application
explicitely.

As introduced in the beginning of this section, the mathematical model operator
A of the static case corresponds to the classical Radon transform R, see (2.1), which is
an FIO with amplitude a(t,y,z) = (27)~"/? and phase function A(t,y,z,0) = o(y —
H(t,x)), where H(t,x) = 2760(¢) [30]. Thus, the associated dynamic backprojection
operator By with weight b(t, ) = a(t, H(t, ®;), &) = (27)~1/? reads

Bag(z) = (2m)~ /2 / g(t, (®,2)70(t)) dt.

Rr

Choosing as PSIDO the Riesz potential with amplitude p(s,y, o) = |o| and a low-pass
filter €7, for instance the Gaussian, we obtain the dynamic reconstruction operator

Lg(x) = (2m)" /2 / / / 0] €7(0) g(t,5) (@D OO gy dodt, > 0,
Ry JRJR

which can be implemented in form of a filtered backprojection type algorithm, see [18].

3. Linear elastics. In this section and the following one, we will treat the task
of motion estimation. While, for a global deformation, the dynamic behavior of
the boundary can be observed externally, the deformation in the interior is a priori
unknown. Since many dynamic processes can be mathematically described in terms
of a partial differential equation (PDE), we propose to determine the deformation
fields @, by finding the solution of an appropriate PDE with suitable given initial and
boundary data.

Since the deformation fields @, ¢ € Ry describe the mapping from the initial /reference
state to the current position, we choose the Lagrangian description for the PDE. Let
Q, C R? denote the initial domain, i.e. €, corresponds to the support of the initial
state fp, and consequently, we choose €2, to be the reference configuration.

We require that ®, ¢t € Ry preserves its orientation meaning that det D® (¢, x) > 0
for all (t,z) € Ry x §2,.. Especially in medical applications, this assumption is sensible
since it also states that the local ratio of the current and the initial volume never
vanishes. [1]

The following definition links the current and the initial position.

DEFINITION 3.1. The difference between the current and the initial position is
called displacement u(t,x) = ®(t,x) — x for all (t,z) € Rp x Q.

We are driven by medical applications. Respiratory or cardiac motion, for in-
stance, have properties which shall be reflected by adequate equations. Due to their
periodic behavior, it is clear that occuring stresses do not cause any yielding. So
we assume a linear relationship between stresses and strain which results in linear
elasticity.

Inserting Hooke’s law in the general equation of conservation of momentum, we
come to the Navier-Cauchy equations in two spatial dimensions for (¢,z) € Ry X Q,,

This manuscript is for review purposes only.
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see for reference [43]:

(3.1)
R 82uk R 82uk 82uk 0 8u1 aUQ
Pgay =kt H (axz am2> MR <ax+ax> for k=1,2

These are two linear PDEs for the two unknown components u;, us of the displace-
ment v with the following parameters:
e The density p = p(t,x) det D®(t, x) equals the initial density distribution
p = p(z) = p(0,z) due to the conservation of mass.
e The external volume forces are denoted by © = v(t, z) det D®(t, x), where
v : Ry x Q,; — R? describes the volume force density.
e The Lamé-coefficients A and p specify the behavior of the material.
For a fully determined problem, we need the displacements at time ¢ = 0 and
their time derivatives as initial data

u(0,2) = ¥°(x) and %U(O,l‘) =9'(x),

with some given 9°, 9! : Q, — R2.

Also the behavior of the boundary needs to be known, more precisely a function
1 : Ry x 0, — R? prescribing the evolution of the displacements on the boundary of
the domain I' = 9Q,:

u(t,z) = P(t,x) for (t,z) € Ry xT.

Solving the introduced PDE with given initial and boundary conditions corre-
sponds to determining the displacement wu, respectively the deformation ® in the
interior of the object from observations of the dynamic behavior of the object’s
boundary. Thus, it provides exactly the information about the motion needed for
our motion compensation algorithm.

Under some regularity assumptions, existence and uniqueness of the solutions of
the Navier-Cauchy equation (3.1) can be proven. If the initial data is C*°, solutions
for the initial value problem stay C*°, cf. [23]. Also for the initial-boundary value
problem, there are existence and uniqueness results, cf. [7]. For appropriate boundary
data v, regularity of the solutions does not get lost, and it can be shown that the
solutions are diffeomorphisms, cf. [10]. In our numerical experiments in Section 5, the
initial and boundary data is chosen so that the application of the motion compensation
algorithm goes through.

In the following, we quickly discuss suitable initial and boundary data regarding
our application in dynamic imaging. As mentioned before, a global motion can be
observed externally, thus, we make the reasonable assumption that the boundary data
Y(t,x), (t,x) € Ry x T" are given. However, in practice, only discrete boundary data
Y(tn,zij),n=1,...,N,i=1,...,I,5=1,...,J, N,I,J € N will be available which
might be even sparse with respect to the spatial component (i.e. I, J might be small)
or corrupted by noise. This will be addressed in our numerical study in Section 5.

Since we are overall interested in a reconstruction of the initial state of the
object and since the underlying motion model considers small deformations, the initial
displacement data 9¥° and ¥ will be set to zero.

This manuscript is for review purposes only.
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Remark 3.2. According to (3.1), the Navier-Cauchy contains the initial density
distribution p as parameter which is strongly linked to the quantity fy we would like to
determine by our imaging modality (in particular, they share the same singularities).
If we knew this parameter p, we would already have full knowledge about the interior
structure of the studied specimen. Thus, we cannot assume to know p. Formally, we
could formulate a joint motion estimation and image reconstruction approach, where
we identify the parameter p of the PDE using the measurements from our imaging
modality. However, to simplify the task for our proof-of-concept study, we propose
another approach. In order to decouple the tasks of motion estimation via the Navier-
Cauchy equation and dynamic image reconstruction, we use for the solution of the
PDE a simplified prior instead of the exact density distribution p. This is discussed
in more detail in Section 5.

4. Numerical solution of the Navier-Cauchy equation. We divide the
given time period ¢t € Ry into equidistant intervals and call the time steps t,, = n- At.
We choose a Cartesian grid (not necessarily uniform) so that the discrete boundary
lies on the continuous boundary, see Figure 4. Using central finite differences of second
order for the discretization of the Navier-Cauchy equation (3.1), we obtain an explicit
numerical scheme.

We denote z;; = ((21)i, (22);) = (zi,95), (w)i; = wk(tn,ziy) for k = 1,2,
P = p(xij), 0y = O(tn, ®ij), Ax; = xiy1 — x; and Ay; = yj41 — y;. Then the
scheme reads exemplary for the first component k£ =1

n+l _ A2 5 _ n—1 _ 2442 w A+2pu n
(w)ij = 0 Vi (w1)iy" +2]1 o\ &, Tt raer (u1)i
¥ J J 3 k3
A2 2(A+2p) _ Azi—Azy g n Az;—Az;_q n
t A - [(1 o TAe T (u1)ipr,; + (1 + e (u1)i—1;
: i i
A2 2p _ Ay Ay n. Ay Ay n.
+ p? . Ay?+AyJ2,_1 |:(1 Ay +Ay; 1 (ul)z,j-‘rl + 1 + Ay;+Ay;_1 (ul)z,]—l

+

fgfj (Ami+Azj_i;EZyj+ij_1) ((UQ)?-&-l,j-i-l - (UZ)?—LJ’H - (UQ)Z‘L-i-l,j—l + (u2)?—1,j—1) .

The corresponding stencil is illustrated in Figure 3.
For the first time step, the (discrete) initial condition needs to be inserted

(uk);jl = (uk)zlj —2At 9 (z; ) for k=1,2.

The stencil for the spatial discretization has nine nodes. Since we are inspired by
medical applications and a thorax is a possible specimen to be studied, we might deal
with curved domains. For curved domains at the boundary, for the update scheme
there is a node, which is not available to the stencil, see Figure 4. Hence, we need to
use an interpolation method.

For reasons of stability, we want to maintain the stencil. We call the missing node
a ghost node that needs to have a value assigned to it, and we denote h the quantities
given at every node. The indices of the nodes are given in Figure 4. A second-order
approach is the following one for the components k = 1,2:

(hk)aux - (hk)O

(hk)ghOSt = (hk)O * (-rk)aux - (‘rk’)o

((xk)ghost - (zk)O)
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t= tn+1
t=1,
t=1tn1

Figure 3: We illustrate the stencil for our numerical scheme. For the update of the
values at node x; ; from ¢,, — t,41, we have to provide information about the values
at the other marked nodes.

where the auxiliary node on the continuous boundary is approximated by

1 1

Taux = B} (1)1 + (x1)0),  Yaux = b ((x2)2 + (72)0) and

(kYo = 5 () + (b))

We use the CFL condition

(AN L vy At <1,
Ax Ay
where Az := min Az; and Ay := minAy;, in order to determine a suitable time

step At. The maximal propagation speeds are bounded from above by v,,v, <
V(A 2u)/p with p := min p ; > 0.

5. Application in motion compensation. We evaluate the motion estimation
approach on simulated CT data. For this purpose, we consider a thorax phantom
representing a cross-section of a chest, see Figure 5 left. Following from [11], its
respiratory motion is modelled by an affine deformation, more precisely by

B(t,z) = (8“3‘1 ?t)) (x _ ( O (5(6) 1) ))
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ghost
 J
711
aux Q,
L
2 0
o o L

Figure 4: Tllustration of the boundary: The nodes 1 and 2 lie directly on the continuous
boundary, and their behaviour is prescribed by the Dirichlet data . For the node 0,
the stencil for the update scheme only can be applied with the help of an interpolation
since the values of the ghost node are not available. The average of the values of the
nodes 1 and 2 are used to create an auxiliary node which corresponds to a slightly
‘shifted” boundary.

108
107
1.06
108
1.04
1.03
1.02
1m

1

Figure 5: Cross-section of the numerical phantom during one cycling breath.

with s(t) = 0.05 - cos(0.04 - t) + 0.95. The deformation during one breathing cycle is
illustrated in the sequence of pictures in Figure 5.

The Radon data of this dynamic object are computed analytically for 660 source
positions, uniformly distributed over the upper half sphere, and 451 discrete detector
points uniformly distributed over [—1,1] (since the support of the phantom is con-
tained in the unit disk at all time instances). Our reconstructions and - later on - all
simulations of the PDE are run on a 257x257 grid.

If one does not take into account that the object was moving during data acquisi-
tion and applies a static reconstruction algorithm to the dynamic data, an image of
poor quality with motion artefacts such as blurring, streaking etc. is obtained, see
Figure 6(b). This motivates the need for motion compensation and hence motion
estimation strategies.

As motion compensation algorithm, we use the strategy specified in Section 2.3
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with the Gaussian function as low-pass filter. The result of this algorithm with exact
motion information ® is shown in Figure 6(c). We observe that all components
are indeed correctly reconstructed without motion artefacts, i.e. the motion is well
compensated for, and in accordance to [19], we obtain a good approximation to
the original initial state, cf. Figure 6(a). However, in practice, the exact motion
information is typically unknown.

Thus, our goal is now to evaluate our proposed motion estimation strategy,
i.e. the (discrete) deformation fields ®; are computed by solving the Navier-Cauchy
equation with available initial and boundary data. First, we discuss the initial data
corresponding to the initial density distribution p. As discussed in Remark 3.2, this
initial parameter is strongly linked to the searched-for initial state function fy which
is why we propose to use a simplified prior instead. The one used for our simulation
is shown in Figure 7. This prior only distinguishes between spine and soft tissue,
where the respective values are initialized with standard values p = 1.85 - 103 kg/m3
for the spine and p = 1.05 - 103 kg/m? for the rest. This is indeed a reasonable prior
in practice since the only component considered in the interior - the spine - typically
does not move, so it can be extracted from a static reconstruction, cf. Figure 6(b).

Finding realistic values for the Lamé-coefficients is a research topic by itself. It
is hard to quantify them and they differ depending on the study [47]. We assume a
uniform motion behavior of all (soft) tissues and restrict ourselves to one set of values
for the whole thorax. The coefficients are averaged to A = 3.46 kPa and p = 1.48kPa.

Regarding the boundary data, we test several configurations. First, we use the
exact analytical positions of the boundary. Then, solving the respective PDE as
described in Section 4 and incorporating its solution as motion information in our
dynamic reconstruction algorithm provides the reconstruction result shown in Figure
6(d). The motion of the phantom is well compensated for and the small tumour is
clearly visible. This shows that determining deformation fields by solving the Navier-
Cauchy equation constitutes a valuable motion estimation strategy.

In practice, the boundary positions might be determined by attaching markers at
the surface of the object. If these positions are determined by measurements, they will
be subject to small measurement errors. Thus, in order to test stability with respect
to the boundary data, we next add a sample of noise to the (analytical) boundary
positions. The noise is generated as normal distribution around 0 with standard
deviation 0.1 and 0.25, respectively. In Figure 8 we see that the reconstruction near
the boundary is affected. More precisely, due to the inexact boundary positions, the
boundary in the reconstruction appears fuzzy. However, the motion in the interior of
the phantom is still well compensated for. All interior components, which correspond
to the relevant searched-for information, including the small tumour, are still clearly
recognizable, in particular in comparison to the static reconstruction, cf. Figure 6(b).

Further, we test the performance of the method if only a few discrete boundary
positions are given. The motivation behind this experiment is that, in practice, only
a limited number of markes can be attached to the surface of the object. To this
end, we prescribe only 32 (and 16, respectively) grid nodes on the boundary. Between
these nodes, we apply a linear interpolation. The results are displayed in Figure 9. We
obtain some artefacts since the round shape of the thorax is replaced by a polygon due
to the interpolation. However, as in the case of noisy boundary data, the deformation
fields obtained by solving the PDE still provide sufficient information on the motion
to compensate for it in the interior and to provide an image showing clearly all inner
components including the small tumour.

This manuscript is for review purposes only.
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(a) Original phantom (b) Static reconstruction.

(¢) Dynamic reconstruction with exact (d) Dynamic reconstruction with motion
motion information. information from solving the PDE with
analytical boundary data.

Figure 6: Static and dynamic reconstruction results of the initial state function.

6. Conclusions. This article provides a proof-of-concept for a motion estimation
strategy in dynamic imaging, where the Navier-Cauchy equation serves as a mathe-
matical model for small elastic deformations. To this end, we decoupled the tasks of
motion estimation and image reconstruction, i.e. the Navier-Cauchy equation is solved
prior to the reconstruction step using suitable and realistic initial and boundary data.
Then the calculated deformation fields are incorporated into an analytic dynamic
reconstruction algorithm. Our numerical results on a thorax phantom undergoing
respiratory motion illustrate that this approach can significantly reduce motion arte-
facts in the respective images. In particular, we discussed available boundary data
and illustrated their affect on the reconstruction result.
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Figure 7: Initial density distribution used for solving the Navier-Cauchy equation.

(a) Result for noisy boundary data with  (b) Result for noisy boundary data with
standard deviation 0.1. standard deviation 0.25.

Figure 8: Dynamic reconstruction with motion information from solving the PDE
with noisy boundary data.
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