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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL USING
MACROSCOPIC DATA: WELL-POSEDNESS AND ILL-POSEDNESS*

KATHRIN HELLMUTH', CHRISTIAN KLINGENBERGT, QIN LI}, AND MIN TANGS

Abstract. Bacterial motion is guided by external stimuli (chemotaxis), and the motion described
on the mesoscopic scale is uniquely determined by a parameter K that models velocity change
response from the bacteria. This parameter is termed chemotaxis kernel. In a practical setting,
experimental data was collected to infer this kernel. In this article, a PDE-constrained optimization
framework is deployed to perform this reconstruction using velocity-averaged, localized data taken
in the interior of the domain. The problem can be well-posed or ill-posed depending on the data
preparation and the experimental setup. In particular, we propose one specific design that guarantees
numerical reconstructability and local convergence. This design is adapted to the discretization of
K in space and decouples the reconstruction of local values of K into smaller cell problems, opening
up parallelization opportunities. Numerical evidences support the theoretical findings.
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1. Introduction. Kinetic chemotaxis equation is one of the classical equations
that describes the collective behavior of bacteria motion. Presented on the phase
space, the equation describes the “run-and-tumble” bacteria motion [3, 19, 39, 40]

(A1) f+v-Vaf =K = [ K(@oo) (o, t,0) = Ko, o) f (o) v,
(1.2) ft=0,2,v) = ¢(z,v).

The solution f(¢,x,v) represents the density of bacteria at any given time ¢ for any
location x moving with velocity v. The two terms describe different aspects of the
motion. The v-V, f term characterizes the “run”-part: bacteria move in a straight line
with velocity v, and the terms on the right characterize the “tumble”-part: bacteria
change from having velocity v" to v using the transitional rate K (x,v,v") > 0. This
transition rate thus is termed the tumbling kernel. Initial data is given at ¢t = 0
and is denoted by ¢(z,v). The equation contains phase-space information, and thus
compared to the macroscopic models, such as the Keller Segel model, it offers more
details and has the greater potential to capture the fine motion of the bacteria. Indeed,
it is observed that the dynamics predicted by the model is in high agreement with
real measurements, see [7, 17, 48, 47].
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It is noteworthy that these comparisons are conducted in the forward-simulation
setting. Guesses are made about parameters, and simulations are run to be com-
pared with experimental measurements. To fully reveal the bacteria’s motion and its
interaction with the environment, inverse perspectives have to be taken. This is to
take measurements to infer K. The data can be collected at the individual level or
the population level: biophysicists can use a high-resolution camera and trace each
single bacterium for a long time to obtain single particle trajectory information, or
take photos and record the density changes on a cell cultural dish. Such data should
be used to unveil the true interaction between particles [35].

In this article, we frame this problem into a finite dimensional PDE-constrained
optimization and study the unique and stable reconstructability of the kernel. In
particular, we study different types of initial condition and measurement schemes and
show that different experimental setups provide different stability of the reconstruc-
tion.

As more physics models derived from first-principles get deployed in applications,
kinetic models are becoming more important in various scientific domains, see model-
ing of neutrons [14], photons or electrons [45] and rarefied gas [10]. The applications
on biological and social science have also been put forward in [39] for cell motion,
in [52] for animal (birds) migration or in [1, 9, 13, 38, 54] for opinion formation. In
most of these models, parameters are included to characterize the interactions among
agents or those between agents and the media. It is typical that these interactions
cannot be measured directly, and it prompts the use of inverse solvers.

The most prominent application of inverse problem within the domain of kinetic
systems is the optical tomography emerged from medical imaging, where non-intrusive
boundary data is deployed to map out the optical properties of the interior. Math-
ematically the technique called the singular decomposition is deployed to conduct
the inversion [6, 12, 33, 36, 51], and these studies have their numerical counterparts
in [5, 11, 16, 43, 44], just to mention a few references.

Back to our current model, we notice that tracing the trajectory of every single
bacterium is much more difficult than measuring the evolution of the macroscopic
density [30, 57], so we are tasked to unveil the interaction between bacteria and the
environment using the density measurement. A series of new results by biophysi-
cists [32, 58] studies this experimental setting for a similar kinetic model and exhibits
significance for practitioners. Compared with classical inverse problem originated
from optical tomography, we encounter some new mathematical challenges. In partic-
ular, in our setup, our measurements are taken in the interior of the domain instead
of on the boundary, and interior data is richer than boundary measurements. Mean-
while, our data is velocity independent, as compared to that in optical tomography
that contains velocity information, so we also lose some richness in data.

In [27] the authors examined the theoretical aspect of this reconstruction problem.
It was shown that trading off the microscopic information for the interior data still
gives us sufficient information to recover the transition kernel, but the experiments
need to be carefully crafted. In this theoretical work we assumed that the transition
kernel is an unknown function, and thus an infinitely dimensional object, and the
available data is the full map (from initial condition to density for all time and space),
and thus an infinite dimensional object as well. This infinite-to-infinite setup is hard
to be implemented in a practical setting, rendering the theoretical results only a
guidance for direct use. The current paper can be seen as the practical counterpart
of [27]. In particular, our goal is to study the same question on the discrete level: when
measurement data are finite in size, and the to-be-reconstructed transition kernel is
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 3

also represented by a finite dimensional vector, can one still successfully recover the
unknowns?

It turns out that the numerical issue is significantly more convoluted. In particu-
lar, when the dimension of K, the transition kernel, changes from infinite to finite, the
amount of data needed to recover this parameter is expected to be reduced. The way
of the reduction, however, is not clear. We will present below two different scenarios
to argue:

e when data is prepared well, a stable reconstruction is expected;
e when the data “degenerates,” it loses information, and the reconstruction
does not hold.
Such coexistence of well-posedness and ill-posedness are presented respectively in two
subsections of Section 3. Then in Section 5 we present the numerical evidence to
showcase the theoretical prediction.

It should be noted that it is well within anticipation that different data prepara-
tion gives different conditioning for parameter reconstruction. This further prompts
the study of experimental design. In the context of reconstructing the transition ker-
nel in the chemotaxis equation, in Section 4 we will design a particular experimental
setup that guarantees a unique reconstruction. This verifies existence of the situation
of data being well-prepared.

We should further mention that reconstructing parameters for bacterial motion
using the inversion perspective is not entirely new. Until recently, existing literature
followed two different approaches: the first involves the utilization of statistical infor-
mation at the individual level to extrapolate the microscopic transition kernel [41, 49],
whereas the second entails employing density data at a macroscopic scale to recon-
struct certain parameters associated with a macroscopic model through an optimiza-
tion framework [23, 24, 46, 55]. To our knowledge, these available studies focus on
a preset low-dimensional set of unknowns. The idea to infer parameters of kinetic
descriptions from macroscopic type data emerged more recently [27, 32, 58]. The
viewpoint we take in the current article significantly differs from those in the existing
literature: Similar as was done in [15, 22] for a macroscopic model, we also recover the
discretized version of the kinetic parameter. This brings more flexibility in applica-
tion, at the cost of potentially high dimension of the unknown parameter. In contrast
to existing results, our focus lies on the study of identifiability of the parameter in the
proposed optimization setting, and thus its well- and ill-conditioning. Noise would
introduce an additional layer of parameter uncertainty that we specifically seek to
exclude from this stage of analysis. Numerical examples are thus presented in a noise-
free and non regularized manner. This allows investigation of structural identifiability
as well as suitability of specific experimental set ups to generate informative data for
reconstruction in the sense of practical identifiability.

2. Framing a PDE-constrained optimization problem. The problem is
framed as a PDE-constrained optimization, which is to reconstruct K that fits data
as much as possible, conditioned on the fact that the kinetic chemotaxis model is
satisfied.

We reduce the dimension of the original kinetic chemotaxis model (1.1)—(1.2) for
t >0 from (z,v) € R®xS? to (x,v) € R x {+1} [24, 48, 47|, i.e. the bacteria either
moves to the left or to the right, and = is 1D in space. This simple setting reflects
how experiments are conducted in the labs: bacteria are cultured in a tube, and the
motion is one-dimensional. More details will be discussed in the subsequent part.
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4 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

In a numerical setting, we first represent K as a finite dimensional parameter:

R
(2.1) K(z,v,0") = Y K (v,0")1, ().

r=1
This means dividing the domain into R! = u,.I,. with I,. = [a,_1,a,), forr=2,..., R—1,
and I = (—o0,a1), Ig = [ar-1,00), we approximate the function K (x,v,v") within the
cell I. by K, (v,v"), constant in space. Since V = {+1}, there are only two parameters:
K,.(1,-1) and K,.(-1,1) for each cell, so in total there are 2R free values to represent
K. Throughout the paper we abuse the notation and denote K € R as the unknown
vector to be reconstructed, and denote:

(22) K,=[K.1,K, 2] with K, ;=K. (v;,v)) and (v;,v])=((-1)"" (-1)")

for i+ = 1,2. The dataset is also finite in size. In particular, we mathematically
represent the measurement as a reading of the bacteria density using a test function
w € LY(R) for some [, so the measurement is:

(2.3) Ml(K):fRfoK(ac7T,v)dvm(m)dx, I=1,..L,

where fx denotes the solution to (1.1) with kernel K. In case y; is a characteristic
function, this corresponds to the pixel reading of a photo.

For simplicity of the presentation, the the ground-truth kernel denoted by K,
is assumed to be of form (2.1) as well. Consideration of continuous in space ground
truths would require additional approximation error estimates, as presented in [31] for
a diffusion coefficient reconstruction in elliptic and parabolic equations, which would
go beyond the scope of this article. Then the true data is:

(2.4) ylZMl(K*), l=1,...,L.

Since K is represented by a finite dimensional vector, we expect the amount of data
needed is also finite. Given the nonlinear nature of the problem, it is unclear L = 2R
leads to a unique reconstruction. One ought to dive in the intricate dependence on
the form of {}1=1,... L.

To conduct such inversion, we deploy a PDE-constrained optimization formula-
tion. This is to minimize the square loss between the simulated data M(K) and the
data y:

1 & 5
min C(K) =min — M(K) -
05 i CO) = min o 55 (Vi(K) =)
subject to (1.1), and (1.2).
Many algorithms can be deployed to solve this minimization problem, and we

are particularly interested in the application of gradient-based solvers. The simple
gradient descent method gives:

(2.6) K™D - gy grc(K™),

with a suitable step size 1, € R,. It is a standard practice of calculus-of-variation to
derive the partial differentiation against the (r,i)-th (¢ = 1,2, r = 1,---, R) entry in the
gradient VxC:

(2.7)

oc —fo £t 2,00 (gt 2,0)) = g(t, 2, v:)) de dt
5Km-_0 I, a)ig7?iga7l )
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Detailed are placed in Appendix A. In the formulation, (v;,v}) is given in (2.2) and g

is the adjoint state that solves the adjoint equation
(28)  ~Og-v-Vg=K(g) = [ K@v'0)(gla,t.0) - gla,t, ) dv',
1 L
(2.9) 9($7t=T,7f):—f > () (My(K) = 1) -
=1

The convergence of GD in (2.6) is guaranteed for a suitable step size if the objec-
tive function is convex. Denoting HxC the Hessian function of the loss function, we
need HgC > 0 at least in a small neighborhood around K,. In [56], a constant step

size n, =n = 2A’\2m‘“ is recommended with Apin, Amax denoting the smallest and largest

eigenvalues of o ;(C (K.). More sophisticated methods include line search for the step
size or higher order methods are also possible, see e.g. [44, 56].

To properly set up the problem, we make some general assumptions and fix some
notations.

Assumption 2.1. We make assumptions to ensure the well-posedness of the for-
ward problem in a feasible set, in particular:
e We will work locally in K, so we assume in a neighbourhood U, of K, , there
is a constant C'x so that for all K € Uk, :

(2.10) 0< Ko <Cr .

e Assume the initial data ¢ be in the space L{°.(R x V) of non negative, com-
pactly supported functions with essential bound

HQZ)HLN(]RXV) =Cy .

e The test functions {4}, are supposed to be selected from the space L'(R)
with uniform L' bound

/R|m|dx£ C. 1=1,..,L.

These assumptions are satisfied in a realistic setting. They allow us to operate f
and g in the right spaces. In particular, we can establish existence of mild solutions
and upper bounds for both the forward and adjoint solution, see Lemma B.1 and B.3
in Appendix B.

3. Well-posedness vs. ill-posedness. As many optimization algorithms are
designed to produce minimizing sequences, we study well-posedness in the sense of
Tikhonov.

DEFINITION 3.1 (Tikhonov well-posedness [53]). A minimization problem is Tik-
honov well-posed, if a unique minimum point exists towards which every minimizing
sequence converges.

The well-posedness of the inversion heavily depends on the data preparation. If a
suitable experimental setting is arranged, the optimization problem is expected to
provide local well-posedness around the ground-truth parameter K,, so the classical
GD can reconstruct the ground-truth. However, if data becomes degenerate, we also
expect ill-conditioning and the GD will find it hard to converge to the global minimum.
We spell out the two scenarios in the two theorems below.

This manuscript is for review purposes only.
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6 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

THEOREM 3.2. Assume the Hessian matriz of the cost function is positive definite
at K, and let the remaining assumptions of Proposition 3.4 hold, then there exists a
neighbourhood U of K., in which the optimization problem (2.5) is Tikhonov well-
posed. In particular, the gradient descent algorithm (2.6) with initial value Ky € U
converges.

This theorem provides the well-posedness of the problem. To be specific, it spells out
the sufficient condition for GD to find the global minimizer K,. The condition of the
Hessian being positive definite at K, may seem strong. In Section 4, we will carefully
craft a setting for which we can ensure this to hold.

On contrary to the previous well-posedness discussion, we also provide a negative
result below on ill-conditioning.

THEOREM 3.3. Let L = 2R and let Assumption 2.1 hold for all considered quanti-

ties. Consider a sequence (,ugm))m of test functions for the first measurement M, (K)
for which one of the following scenarios holds:

1. ugm) - po in LY as m — oo.

2. (,u%m))m and po, as defined in (3.12), are mollifications of singular point-
measurements in measurement points {(1’§m))m,(£2} such that mgm) - T2 as

m — oo. Furthermore, let the assumptions of Proposition 3.10 hold.
Then, as m — oo, i.e. as the measurement test functions become close in one of the
above senses, strong convexity of the loss function decays, and the convergence of the
gradient descent algorithm (2.6) to K. cannot be guaranteed. In scenario (2), this

holds independently of the mollification parameter.

The two theorems, to be proved in detail in Section 3.1 and 3.2 respectively, hold
vast contrast to each other. The core difference between the two theorems is the
data selection. The former guarantees the convexity of the objective function, and
the latter shows degeneracy. The analysis comes down to evaluating the Hessian, a
2R x 2R matrix:

(31)  HgC(K)= % EL: (Ve My(K) ® Vk Mi(K) + (Mi(K) - y1)) Hx My (K)) -
=1

It is a well-known fact [42] that a positive definite Hessian provides the strong convex-
ity of the loss function, and is a sufficient criterion that permits the convergence in the
parameter space. If HxC(K,) is known to be positive and the Hessian matrix does
not change much under small perturbation of K, then convexity of the cost function
can be guaranteed in a small environment around K,. Such boundedness of pertur-
bation in the Hessian is spelled out in Proposition 3.4, and Theorem 3.2 naturally
follows.

Theorem 3.3 orients the opposite side. In particular, it examines the degeneracy
when two data collection points get very close. The guiding principle for such de-
generacy is that when two measurements can get too close, they offer no additional
information. Mathematically, this amounts to rank deficiency of the Hessian (3.1),
prompting the collapse of convexity in the landscape of the objective function. The
closeness of two measurements can be quantified through different manners, and we
specifically examine two types:

e the two test functions 1, uo are close in L';

e the measurement locations are close: setting p; and pe as mollifiers from
direct Dirac-d centered at x; and xo, then the closeness is quantified by
|$1 - ’I,’2|.

This manuscript is for review purposes only.
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corresponding to the two bullet points in Theorem 3.3. These two scenarios of deficient
ranks are presented in Proposition 3.10 and 3.9 respectively.

3.1. Local well-posedness of the optimization problem. Generally speak-
ing, it would not be easy to characterize the landscape of the distribution and thus
hard to prescribe conditions for obtaining global convergence. However, suppose the
data is prepared well enough so to guarantee the positive definiteness for the Hessian
HyiC(K,) evaluated at the ground-truth K, then the following results provide that in
a small neighborhood of this ground-truth, positive-definiteness persists. Therefore,
GD that starts within this neighborhood, finds the global minimum to (2.5). This
gives us a local well-posedness.

This local behavior is characterized in the following proposition.

PROPOSITION 3.4. Let Assumption 2.1 hold. Assume the Hessian HxC(K,) is
positive definite at K., and that there is a uniform bound for the Hessian of the
measurements in the neighborhood Uy, in the sense that |Hyx M;(K)(v,v")|F < CHpem
foralll=1,...,L and K € U in the Frobenius norm. Then there exists a (bounded)
neighbourhood U c Uk, of K., where HxC(K) is positive definite for all K € U.
Moreover, the minimal eigenvalues Amin(HiC) satisfies

(3.2) Amin (HiC(K.)) = Amin (HC(K))| < | K. = Ko C",

where the constant C' depends on the measurement time T, R, and the bounds C,,
Cy, Ck in Assumption 2.1 and Cu,pm. As a consequence, the radius of U can be
chosen as Amin(HrgC(K,))/C".

The proposition is hardly surprising. Essentially it suggests the Hessian term is
Lipschitz continuous with respect to its argument. This is expected if the solution to
the equation is somewhat smooth. Such strategy will be spelled out in detail in the
proof. Now Theorem 3.2 is immediate.

Proof for Theorem 3.2. By Proposition 3.4, there exists a neighbourhood U of
K, in which the Hessian is positive definite, HxC(K) > 0 for all K € U. Without
loss of generality, we can assume that U is a convex set. By the strong convexity of
C in U, the minimizer K, € U of C is unique and thus the finite dimension of the
parameter space K € R?f guarantees Tikhonov well-posedness of the optimization
problem (2.5) [20, Prop.3.1]. Convergence of GD follows from strong convexity of C
inU. |

Now we give the proof for Proposition 3.4. It mostly relies on the matrix per-
turbation theory [29, Cor. 6.3.8] and continuity of equation (1.1) with respect to the
parameter K.

Proof for Proposition 3.4. According to the matrix perturbation theory, the min-
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imal eigenvalue is continuous with respect to a perturbation to the matrix, we have
Amin(HxC(K)) = Amin (HxC(K))| < [HKkC(K.) - HKC(K) | F

< %Z (|(VKMZ ® Vi Mi)(K.) = (Ve My ® Ve Mi) (K| p
l

(3.3) MK - yl>HKMl<K>||F)

1

<7 > (|VKM1(K*) =V Mi(K)|r ([VeM(K)|F + |V M(K)| )
l

+[M(K) - yz||HKMl(K)|F)

where we used the Hessian form (3.1), triangle inequality and sub-multiplicativity for
Frobenius norms. To obtain the bound (3.2) now amounts to quantifying each term
on the right hand side of (3.3) and bounding them by | K, — K |«. This is respectively
achieved in Lemmas 3.5, 3.7 and 3.8 that give controls to M;(K) -y, |V M;(K)|r
and |VxM;(K,) - VkM;(K)|r. Putting these results together, we have:

|>\min(HKC(K*)) — )\mm(HKC(K)N < HHKC(K*) — HKC(K)HF

20k |VIT _
8RC,C,,e2VICxTT (|V|T2 .2 (61 - T))

<K, - K| oCpCpe?cxVIT —

+ |V|2TCHKM

= | K, - K| C".

The positive definiteness in a small neighborhood of K, now follows. Finally, given
[ K+ = Koo < Amin(HxC(K.,))/C', the triangle inequality shows

ArmIl(I{KC(I()) 2 )‘mln(HKC(K*)) - |Am1n(HKC(K*)) - )‘mm(HKC(K)N > 0.

We note the form of C’ is complicated but the dependence is spelled out in the
following lemmas and summarized in the theorem statement. 0

As can be seen from the proof, Proposition 3.4 strongly relies on the boundedness
of the terms in (3.3). We present the estimates below.

LEMMA 3.5. Let Assumptions 2.1 holds, then the measurement difference is upper
bounded by:

IMi(K) =yl < [VICW | (Fre, = f)(T) | p vy < K = K |02V 20 CpTe2Ox VI,
Proof. Apply Lemma B.1 to the difference equation for f:= fx, — fx
(3.4) Onf+v-Vaof =Kx(f) +Kx.-xy (fK.)

with initial condition 0 and source h = K, _x)(fx.) € L'((0,T); L= (R x V)) by the
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 9

regularity (B.1) of fg,. This leads to

B t
esssup|fl(z,t,0) < [ VIR0 esssup I, o (fic.)(5)] ds
0 v,T

v,z

(3.5) V| K, - K |2Vt Oyt

where we used the estimate || fx, (5)[®xv) < e2|V|CKSH¢HLm(RXv) from Lemma B.1
in the last step. 0

To estimate the gradient V x M;(K') and its difference, we first recall the form in (2.7)
with C changed to M; here. Analogously, we can use the adjoint equation to explicitly
represent the gradient:

LEMMA 3.6. Let Assumption 2.1 hold. Denote by fx the mild solution of (1.1)
and by g, € C°([0,T]; L=(V; L*(R))) the mild solution of

(36)  ~og-v-Ve=K(g) = [ Koo w)a@to) -alet0) b
gl(t:T,xav):_ul(l‘)'
Then
aMl(K) _ T 1y 7
(37) okl S RACEIOL

where we used the abbreviated notation h:= h(t,z,v;) and h' = h(t,z,v}) for h= f, g,
with (v;,v]) defined as in (2.7).

We omit explicitly writing down the x, ¢ dependence when it is not controversial. The
proof for this lemma is the application of calculus-of-variation and will be omitted
from here. We are now in the position to derive the estimates of the gradient norms.

LEMMA 3.7. Under Assumption 2.1, the gradient is uniformly bounded
|V Mi(K)|r < V2R2C,C,,e*xIVITT, for all K e Ug.
Proof. The Frobenius norm is bounded by the entries

dM(K)

VM (K)|F <V QRH}EIZJ_X aK,

s

Representation (3.7) together with (B.2) then gives the bound

T
< 20¢f AVICKt max([ lgi] dx) dt,
0 v R

Application of lemma B.3 to g = g;, h =0 and ¥ = —p; yields

(3.8)

dM;
dK,;

(3.9) max f lgi| da: (t) < f | - u(z)|da 266 VIT=D ¢ 0 2OxIVIT=0)]
v R R

which, when plugged into (3.8), gives

< 20,0, 2CxVIT, 0

oM,
aKr,i
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345 LEMMA 3.8. In the setting of Theorem 3.2 and under Assumption 2.1, the gradi-
346 ent difference is uniformly bounded in K € Uy by
347 |[VMi(K.) - VM(K)|F
348 <V2R|K, - K| 02C,C,e2 < VIT [ |V|T? + L (et -a T
348 < = Koo e — - .
o Cx \ 2Ck|V|
349 Proof. Now consider the entries of VM;(K,) - VM;(K) to show smallness of

350 |VMi(K,) - VM(K)|Fr. Rewrite, using lemma 3.6 and (B.2)

8M1(K*) aA]\4l(l() fo ’ /
351 - = - - - dzdt
0K, ; 0K, 0 I Tx. (g 1K, gl,K*) Ix(g 1K gl,K) €
T

2 < [ 10 = 1)@=y 2max [l ()] dode

T
353 +2C¢/ AVICKt max/ (91,5, — g1.5c)(¢)| da dt.

0 v JR

354 The first summand can be bounded by (3.5) and (3.9). To estimate the second
355 summand, apply Lemma B.3 to g := g; x, — g1,k With evolution equation
356 ~0,g—v-Vag =Kk, (9) + K(K*—K)(QZ,K)y
357 g(t=T)=0,

358 and h = K(K*,K)(gl,;{) e L*((0,7); L=(V; L*(R))) by the regularity (B.6) of g, x €
350 CY((0,7);L(V;L*(R))). This leads to

Tt N
360 mngR |g|dz < 2VICK(T-1) /(; max K, -y (91,6 (T = 5,0) | 1 () ds
T-t
361 V|| K, = Koo VIOx(T=0) f max | gy, x (T - 5,v)]|| L1 (r) ds
0 v
362 <| K, -K]| &62“/'01‘”‘”(eQCKWl(T‘t) -1)
36 < “ G :

363  where we used (3.9) in the last line. In summary, one obtains

. |8MZ(K*) AMy(K)

oK, dK,
T
365 <|K. —K||w[ f 2|V|Cyte* VI 20, 2O IVICTD gy
0
T C
366 +2C, f AVICKt Z1 2CKVI(T=) (o2CkIVI(T=) _ 1) q¢
0 CK
20K |VIT o 1 (29T
367 <K, - K|02CyCe2¢% viT2+ — & —~ _7]]. 0O
” |=2C¢Cle (' | CK( 20k V] ))

368 Together with the boundedness of the gradient (3.8), this shows that the first sum-
369 mands in (3.3) are Lipschitz continuous in K around K, which concludes the proof
370 of Proposition 3.4.

This manuscript is for review purposes only.
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 11

3.2. Ill-conditioning for close measurements. While the positive Hessian
at K, guarantees local convergence, such positive-definiteness will disappear when
data are not prepared well. In particular, if L = 2R, meaning the number of measure-
ments equals the number of parameters to be recovered, and that two measurements,
M;(K) and My (K) are close, we will show that the Hessian degenerates. Then strong
convexity is lost, and the convergence to K, is no longer guaranteed.

We will study how the Hessian degenerates in the two scenarios in Theorem 3.3.
This comes down to examining the two terms in (3.1). Applying Lemma 3.5, we
already see the second part in (3.1) is negligible when K is close to K, and the rank
structure of the Hessian is predominantly controlled by the first term. It is a summa-
tion of L rank 1 matrices Vi M;(K) ® VxM;(K). When two measurements (p; and
o) get close, we will argue that Vx M;(K) is almost parallel to Vi My (K), making
the Hessian lacking at least one rank, and the strong convexity is lost. Mathematically,
this means we need to show |VxMi(K) - Vg Ma(K)|2 ~0 when p; ~ po.

Throughout the derivation, the following formula is important. Recalling (3.7),
we have for every r € {1,---, R} and i € {1,2}

OML(K)  OM(K)
0K, OK,;

T
(3.10) :fo flf'(g'—g)dxdt,

where g := g1 — g2 solves (2.8) with final condition g(¢t = T, z,v) = pua(x) — p1(x).
The two subsections below serve to quantify the smallness of (3.10) in terms of the
smallness of pi(x) — po(x).

[T [ -0 (o - et

3.2.1. L! measurement closeness. The following proposition states the loss of
strong convexity as pio—p1 — 0 in L*(R). In particular, the requirement of Proposition
3.4 that HxC(K,) is positive definite is no longer satisfied, so local well-posedness of
the optimization problem and thus the convergence of the algorithm can no longer be
guaranteed.

PROPOSITION 3.9. Let Assumption 2.1 hold. Then, as ugm) nee, po in LY(R),

one eigenvalue of the Hessian HixC(K,) vanishes.
This proposition immediately allows us to prove scenario 1 in Theorem 3.3:

Proof of Theorem 3.3. Propositions 3.9 establishes one eigenvalue of HxC(K.)
vanishes as m — oo. This lack of positive definiteness and thus strong convexity of C
around K, means that it cannot be guaranteed that the minimizing sequences of C
converge to K,. ]

We now give the proof of the proposition.

Proof. As argued above, we show HVKMl(m)(K) -V M3(K)|2 » 0 as m — oo.
Recall (3.10), we need to show:

OM{™ (K)  9My(K) moo

11
(3 ) 8Kr,i aKr,i

0 V(ri)e{l, R}x{1,2}.

where g := g1 — g solves (2.8) with final condition g(t = T,z,v) = po(z) - ,ugm)(x).
Application of Lemma B.3 gives

20k |VI(T-t) |z -

1G(E) | = (viz my) < € 1 1 my-

This manuscript is for review purposes only.



411
412

413

414

415
416
417

418

419
420
121
422

123

124
425
426
427
428

429

130
431
432

433

434

435

436
437
138

12 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

by independence of p1, e with respect to v. Plug the above into (3.10) and estimate
f by (B.2) to obtain

‘a(Mf’”) - My)(K)

T
<20, f 2CkVIE | G(#) | oo (v L1 (mY)y
oK, ¢ 0 e lg(t)]z (V;L1(R))

<20, T iy = 1™ 11 ().

Since every entry (r,i) converges, the gradient difference vanishes |V KMl(m)(K ) -
VKMQ(K)HQ — 0 as m — oo.
We utilize this fact to show the degeneracy of the Hessian. Noting:

2R
HKC(K*) = Z VMl ® VM[ + QVMQ ® VM2:| + [VMl(m) ® le(m) — VMQ ® VMQ] .
1=3

N B(m)

It is straightforward that the rank of A is at most 2R -1, so the j-th largest eigen-
value A;(A) = 0 vanishes for some j. Moreover, since HVKMl(m)(K) -V My(K)|2 —
0, we have | B{™) | — 0. Using the continuity of the minimal eigenvalue with respect
to a perturbation of the matrix, the j-th largest eigenvalue of HxC(K,) vanishes

N (HrC(I))| = [N (HKC(KL)) = A (A)] < [ B [p >0, asm — co. 0

3.2.2. Pointwise measurement closeness. We now study the second scenario
of Theorem 3.3 and consider p1, po as mollifications of a singular pointwise testing.
For this purpose, let £ € C2°(R) be a smooth function, compactly supported in the unit
ball B;(0) with 0 < £ <1 and £(0) = 1. In the following, we consider the measurement
test functions

(3.12) uy(x):lg(x‘xi), =12,
n n

Our aim is to show that the assertion of Theorem 3.3 is true independently of
the mollification parameter 1 > 0. This shows that in the limit as n — 0, i.e. in the
pointwise measurement case, we still lose strong convexity around K,.

PROPOSITION 3.10. Let pf, pa be of the form (3.12) with measurement locations
xo ¢ {ar}ra1,...r for the partition of R from (2.1). Consider a small neighbourhood
of K, and let Assumption 2.1 hold. Additionally, let the measurement time T and
locations be chosen such that

(eTVIex 1) <1, min|zy —a.| =T > 19 > 0.
T
If the initial condition ¢ is uniformly continuous in x, uniformly in v, then
VM (K)—> VgMy(K) asx — xo in the standard Euclidean norm,

and the convergence is independent of n < ng.

This proposition explains the breakdown of well-posedness presented in Theo-
rem 3.3 in the second scenario. Since the proof for the theorem is rather similar to
that of the first scenario, we omit it from here.

This manuscript is for review purposes only.
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 13

Similar to the previous scenario, we need to show smallness of the gradient differ-
ence (3.10). This time, we have to distinguish two sources of smallness: For singular
parts of the adjoint g, the smallness of the corresponding gradient difference is gen-
erated by testing it on a sufficiently regular f at close measuring locations. So it
is small in the weak sense. The regular parts g,y of g represent the difference of g
and its singular parts and evolve form the integral operator on the right hand side of
(2.8), which exhibits a diffusive effect. Smallness is obtained by adjusting the cut off
regularity N.

Let us mention, however, that the time constraint is mostly induced for a technical
reason. In order to bound the size of the regular parts of the adjoint solution, we use
the plain Grénwall inequality which leads to an exponential growth that we counter-
balance by a small measuring time T'. The spatial requirement min,. |zy—a,|-T > 19 > 0
is a reflection of the fact that we need the measuring blob (support of 1) to be some-
what centered in the constant pieces of the piecewise-constant function K. This helps
to force the measuring to precisely pick up only the information from that particular
piece. This specific design will later be discussed in Section 4 as well.

To put the above considerations into a mathematical framework, we deploy the
singular decomposition approach, and we are to decompose

N
(3.13) G= . Gn+3>N,
n=0
where the regularity of g, increases with n. Here, we define gg as the solution to

—0tgo —v - Vazgo = —03o,
gO(t = T,J?,U) = /’Lg(‘x) —[L?(Z),

for o(x,v) = [, K(x,v",v)dv’, and g, are inductively defined by

(314) _atgn -—v- vwgn = _Ugn + E(gn—l) )
gn(t=T,z,v)=0,

where we used the notation £(g) = [ K(z,v',v)g(x,t,v")dv’. The remainder gy
satisfies

(3.15) ~01G>N — V" VaGon = —0Gsn + LGN + Fon)
gsn(t=T,x,v)=0.

It is a straightforward calculation that

N T T
(316 (310)=> [ r@godwars [ [ @y g asar.

We are to show, in the two lemmas below, that both terms are small when x; — x5.
To be more specific:

LEMMA 3.11. Let the assumptions of Proposition 3.10 be satisfied. For any e >0,
and any n € Ny, there exists a §,(c) >0 such that

T
[ f g, d dt
0 I,

(3.17)

<e, df  |rr -zl <dn(e).

This manuscript is for review purposes only.
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The remainder can be bounded similarly.

LEMMA 3.12. Under the assumptions of Proposition 3.10, one has

T
[ [ fondea
0 I,

which becomes arbitrarily small for large N.

<T|VICK CyeVIOKT (O VIT —1)N C,,

The proofs for both lemmas exploit the continuity of f by choice of ¢, and the
smallness of the higher regularity components of the g term. Since it is not keen to
the core of the paper, we leave the details to Appendix C. The application of the two
lemmas gives Proposition 3.10:

Proof of Proposition 3.10. Let € > 0. Because eCxlVIT _ 1 <1 by assumption, we

can choose N € N large enough such that 272|V|Cj Cpe2VIOxT (eCxIVIT _ )N < £
Furthermore, let |21 —z2| < min, <y 5n(m). Then with the triangle inequality and

Lemmas 3.11 and 3.12, we obtain from (3.16)

O(My - My)(K)| & T o T ) )
’8[( <2 fo f,rf'(gil—gn)dxdt + fo /Irf'(giN—gﬂv)dxdt
c 2 2V|Ck T ( Cx|VIT N
QON——— +2T _1
=i T VICkCoe (e )" C
<e. q

4. Experimental Design. We now provide an explicit experimental setup that
ensures well-posedness. Recalling that Proposition 3.4 requires the positive-definite-
ness of the Hessian term at K,, we are to design a special experimental setup that
validates this assumption. We propose to use the following:

DESIGN 4.1. We divide the domain I = [ag,aR) into R intervals I = L'Jf?:l I, with
I = [ar_1,a,), and the center for each interval is denoted by a,_1jo = === The
spatial supports of the values K, (v,v") takes on the form of (2.1). The design is:

e initial condition ¢(x,v) = Zil or(x) is a sum of R positive functions ¢, that
are compactly supported in a,_y/3 + [-d,d] with d < min (%), symmetric
and monotonously decreasing in |x—ar_1/2| (for instance, a centered Gaussian
with a cut-off tail);

. measutement test functions par = éuﬂ[(—1)iT—d,L,(—1)1‘T+d“]+ar,1/2, i1=1,2, for
some C), >0, centered around a,_yjo + T with d,, < d;
o measurement time T such that
0.09 r—Qp_1 d
(4.1) T <min|(1-9) ,min(a -1 —7)
CK|V| 7“ 4 2
(4.2) for  §=(d+d,)|T <e TOxIVI,

Remark 4.2. Note that this design requires a delicate balancing between 71" and
d and d,,. Requirement (4.1) prescribes that 7" must not be too large. On the other
hand, (4.2) requires that it must not be too small compared to d,d,. An exemplary
choice of d =d,, = cT? for some ¢ > 0, for instance, automatically verifies requirement
(4.2) for small enough T.

This particular design of initial data and measurement is to respond to the fact
that the equation has a characteristic and particles moves along the trajectories. The

This manuscript is for review purposes only.
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513 measurement is set up to single out the information we would like to reconstruct along
514 the propagation. The visualization of this design is plotted in Figure 1.

Q-1

Fig. 1: Motion of the ballistic parts f(")(¢ = 0,v) (cyan, dashdotted) to f((t =
T,v = +1) (blue, dotted) and f( (¢ = T,v = -1) (blue, dashed) and

(orange, dotted) and (orange, dashed) to gio)(t =T,v) (red,
dashdotted), compare also (4.5).

wt
at

Under this design, we have the following proposition:

516 PROPOSITION 4.3. The design (D) decouples the reconstruction of K,.. To be
517 more specific, recall (2.2)
518 K=[K,], with K,=[K.1,K;2].

519  The Hessian HgC has a block diagonal structure with each of the blocks is a 2 x 2
5 matriz given by the Hessian Hg, C.

Proof. By the linearity of (1.1) and (2.8), their solutions f = Y%, f, and g =
vE 2 gir decompose into solutions f,. of (1.1) with initial conditions ¢, and g
with final condition —(M;r - yir)ur /2R, the summands of the final condition (2.9),
correspondingly. By construction of T and the constant speed of propagation |v| =1,
the spatial supports of f, and gir, gi; are is fully contained only in I, for all ¢ €
[0,T],v € V. Assuch, only f, and gir carry information about K, and no information
for other K with s #r. 0

&

N N
N

(S BTNV

(S, B e, BNG) G, BNG) BN, |

NN N NN
3

o

This not only makes boundary conditions superfluous, but also translates the
problem of finding a 2R valued vector K into R individual smaller problems of finding
the two-constant pair (K, 1, K, 2) within I,. This comes with the cost of prescribing
very detailed measurements depending on the experimental scales I, and d, but opens
the door for parallelized computation.

Furthermore, under mild conditions, this design ensures the local reconstructabil-

(S SIS IS, BN BIS) BNS) BN}
W W W w w N N
w N =

4 ity of the inverse problem.
535 THEOREM 4.4. Let Assumption 2.1 hold. Given the Hessian Hy M;(K) is boun-
536 ded in Frobenius norm in a neighbourhood of K,, Design (D) generates a locally
537 well-posed optimization problem (2.5).
538  The proof is layed out in the subsequent subsection 4.1.

This manuscript is for review purposes only.
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Remark 4.5. Let us mention that the bounds for T in Design (D) are not optimal.
In the proof of theorem 4.4 we used crude estimates, and we believe these estimates
can potentially be relaxed to allow for longer measurement times 7'. Furthermore, the
setup can easily be modified to use different measurement times for different intervals
I, for instance. In this case, again, the bounds on 7" can be relaxed.

Remark 4.6. Design (D) shares similarities with the theoretical reconstruction
setting in [27], where a pointwise reconstruction of a continuous kernel K was obtained
by a sequence of experiments where the measurement time 7" became small and the
measurement location gets close to the initial location. The situation is also seen here.
As we refine the discretization for the underlying K-function using higher dimensional
vector, measurement time has to be shortened to honor the refined discretization.
However, we should also note the difference. In [27], we studied the problem in
higher dimension and thus explicitly excluded the ballistic part of the data from the
measurement

4.1. Proof of Theorem 4.4. According to Theorem 3.2, one only needs to
show HigC(K,) > 0. As the Hessian attains a block diagonal structure (Proposition
4.3), we are to study the 2 x 2-blocks

(4.3)  Hg,C(K.)=Vk, M;:(K,)® Vi, My (K.)+ Vi, My (K,)® Vi, M (K.).

Here the two measurements M-, M;; are inside I, and Vg, =[Ok, ,,0k,,]. The
positive definiteness of the full HxC(K,) is equivalent to the positive definiteness of
each individual Hg, C(K,). This is established in the subsequent proposition.

PROPOSITION 4.7. Let Assumption 2.1 hold. If the Hessian Hx M;(K) is bounded
in Frobenius norm in a neighbourhood of K, , then the Design (D) produces a positive-
definite Hessian HiC(K.,).

According to (4.3), Hi,C(K,) is positive definite if

‘aMl(K*) OM;(K,)

4.4
(44) 0K 2 0K 1

‘aMl(K*)

OMy(K.)
8K1,1

6[(172

and ’

holds true for the measurements M7, My corresponding to K;. Due to design sym-
metry, it is sufficient to study the first inequality. Consider the difference oMy (K.) _

0K1,1
%ﬁ{{;). Similar to (3.13) and (3.16), we are to decompose the equation for f and g

((1.1) and (3.6) respectively, with K = K, ) into the ballistic parts g%o) and f(© and
the remainder terms. Namely, let gio) and f() satisfy

(45) ~919" ~v-V,9" = -og” nd 10O =00 O == f )
dOt=Tz,v)  =mx) fO=0z0)  =¢(z,v).

Then the following two lemmas are in place with uq(2) and ¢(x,v) as in Design (D).

LEMMA 4.8. In the setting of Proposition 4.7, for (v,v") = (+1,-1), the ballistic
part

(46) Bl [ [ 50006 -0

fOT fh f(O)(”)(gio)(v)—g§0)(v’))dsg dt‘

This manuscript is for review purposes only.
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satisfies
(4.7) B> Cy, (e7TVIT —(d, +d)) > 0,

where Cgy, = [, ¢1(@)pn (=T + 2) de = maxqp [} ¢1(x +a)pr (=T + 2 +b) dv by con-
struction of ¢1, 1.

At the same time, the remainder term is small.

LEMMA 4.9. In the setting of Proposition 4.7, the remaining scattering term

s [ ' [ @) -y deat - [ ' [ 1O @) 00 (0) d

is bounded uniformly in (v,v") by

CxlVIT

4.8 S| <4Cy,T——F———.
(4.8) |5 ot (1- CK|V|T)2

Proposition 4.7 is a corollary of Lemmas 4.8, 4.9.

Proof of Proposition 4.7. By the bounds obtained in lemmas 4.8, 4.9, one has

oM, (K,) OM;(K.,)
— >B-2
‘ 0K11 0K12 | 151
_ Ck|V|T
> Oy (PO VIT —(d,, + d)) - SC’WT—(l — g1|<|¥|/|T)2

> C’WT(I ~TCx|V|-6- 80'09(1_5)).

(1-0.09)2

By assumption 0 < T' < (1 -9) CSJ;.(O\?A with § = dz‘j" < 1, the last line is positive. In
total, this shows the first part of inequality (4.4). As the second part can be treated

in analogy, it follows that Hg,C(K,) is positive definite. 0
Finally, Theorem 4.4 is a direct consequence of Proposition 4.7.

Proof of Theorem 4.4. Repeated application of the arguments to all Hg, C(K,),
r =1,..., R, shows that HxC(K,) > 0. By the assumption of boundedness of the
Hessian Hg M;(K) in a neighbourhood of K, , theorem 3.2 proves local well-posedness
of the inverse problem. ]

The proofs for the Lemmas 4.8-4.9 are rather technical and we leave them to
Appendix D. Here we only briefly present the intuition. According to Figure 1,
fO @ =-1) and ggo)(v’ = —1) have a fairly large overlapping support, whereas
g§0)(v = +1) overlaps with f(©(v' = 1) and gio)(v’ = -1) with f© (v = +1) only
for a short time spans T ~ T and T ~ 0 respectively. Recalling (4.6), we see the neg-
ative components of the term B are small, making B positive overall. The smallness
of S is a result of small measurement time 7'

5. Numerical experiments. As a proof of concept for the prediction given by
the theoretical results in Section 3, we present some numerical evidence.

An explicit finite difference scheme is used for the discretization of (1.1) and (2.8).
In particular, the transport operator is discretized by the Lax-Wendroff method and
the operator K is treated explicitly in time. The scheme can be shown to be consistent

This manuscript is for review purposes only.
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18 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

Fig. 2: (Marginal) loss functions C(K') for R = 20: For a fixed r € {2,9,13,15}, we
plot C as a function of K, with all K., set to be the ground-truth (K, )s.

and stable when At < min(Az,Cx'), and thus it converges according to the Lax-
Equivalence theorem. More sophisticated solvers for the forward model [21] can be
deployed when necessary. Also, when a compatible solver [4] for the adjoint equation
exists, these pairs of solvers can readily be incorporated in the inversion setting.

All subsequent experiments were conducted with noise free synthetic data y; =
M;(K,) that was generated by a forward computation with the true underlying pa-
rameter K,.

5.1. Illustration of well-posedness. In Section 4, it was suggested a specific
design of initial data and measurement mechanism can provide a successful reconstruc-
tion of the kernel K, and that the loss function is expected to be strongly convex.
We observe it numerically as well. In particular, we set R = 20 and use Gaussian
initial data, and plot the (marginal) loss function in Figure 2. Figure 3 depicts the
convergence of some parameter values K,.(v,v’) in this scenario against the corre-
sponding loss function value. An exponential decay of the loss function, as expected
from theory [42, Th.3], can be observed.
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— r=2
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— r=13
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Fig. 3: Convergence of the parameter values K, (v,v") from (2.1) for r = 2,9,13,15 to
the ground truth as the cost function converges.

The strictly positive-definiteness feature persists in a small neighborhood of the
optimal solution K,. This means adding a small perturbation to K,, the minimal
eigenvalue of the Hessian matrix HxC(K) stays above zero. In Figure 4 we present,
for two distinct experimental setups, the minimum eigenvalue as a function of the
perturbation to K,.(v,v"). In both cases, the green spot (the ground-truth) is positive,
and it enjoys a small neighborhood where the minimum eigenvalue is also positive, as
predicted by Theorem 3.2. In the right panel, we do observe, as one moves away from
the ground-truth, the minimal eigenvalue takes on a negative value, suggesting the
loss of convexity. This numerically verifies that the well-posedness result in Theorem
3.2 is local in nature. The panel on the left deploys the experiment design provided
by Section 4. The simulation is ran over the entire domain of [0, 1]? and the positive-
definiteness stays throughout the domain, hinting the proposed experimental design
(D) can potentially be globally well-posed.To generate the plots, a simplified setup
with R =2 and constant initial data was considered.

35.40

35.35

35.30 35.30
S

3 .25
g 35.25

35.20
= 35.20
35.15

35.10 35.15
0.00
025
0.50 0.50
0.75, LL,'}_\

K[Z,-j,ljc"’s 100 1007 gy

0.00 o5

Fig. 4: Minimal eigenvalues of the Hessian HxC(K) around the true parameter K,
for two experimental designs. We perturb K by changing values in K;(1,-1) and
K5(-1,1). The ground-truth is marked green in both plots.
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5.2. Ill-conditioning for close measurement locations . We now provide
numerical evidence to reflect the assertion from 3.2. In particular, the strong convexity
of the loss function would be lost if measurement location x; becomes close to xa.

We summarize the numerical evidence in Figure 5. Here we still use R = 20 and
constant initial data but vary the detector positions. To be specific, we assign values

to z1 using {xgo) = —T,xgl) =c + %,x?) =c + %T,xf’) =xz9 =c; +T}. As
the superindex grows, x; — x5 with acgg) = xo when the two measurements exactly

coincide. For x1 = x5, the cost function is no longer strongly convex around the
ground truth K., as its Hessian is singular. The thus induced vanishing learning rate

7= 2/\);& was exchanged by the learning rate for x; = x§2)

effect of the gradient.
In the first, third and fourth panel of Figure 5, we observe that the cost function
as well as the parameter reconstructions for K9 and K5 nevertheless converge,but

in this case to observe the

convergence rates that slow down significantly comparing purple (for xio)), blue (for

xgl)), green (for xiz)) and orange (for xf')) due to smaller learning rates. The overlap

of the parameter reconstructions for z; € {xiZ) ,xgg)} is due to the coinciding choice of
the learning rate and a very similar gradient for parameters Ky, K15 whose information
is not reflected in the measurement in x.

As parameter K7 directly affects the measurement at x1, Panel 2 showcases the
degenerating effect of the different choices of x on( t)he reconstruction. Whereas
1

)
1

convergence is still obtained in the blue curve (for x7"’), the reconstructions of K;

from measurements at xf) (green) and x§3) (orange) clearly fail to converge to the
true parameter value in black. This offset seems to grow with stronger degeneracy in

the measurements.
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Fig. 5: Cost function and reconstructions of K, (+1,-1) (solid lines) and K,.(-1,+1)
(dotted lines) for r = 1,9,15 and R = 20 under different measurement locations for x.
x1 takes the values of {xio) =c — Tmcgl) =cy + % ,Jc§2) =cp + %T7{L‘§3) = ¢ + T} with

CC&B) =T9.

6. Discussion. As discussed in [32, 58], to accurately extract tumbling statistics,
it is necessary to track single-cell trajectories, which necessitates a low cell concentra-
tion and is constrained to shorter trajectories. This will result in insufficient statistical
accuracy for reliable extraction of velocity jump statistics. In this paper we present
an optimization framework for the reconstruction of the velocity jump parameter K
in the chemotaxis equation (1.1) using velocity averaged measurements (2.3) from
the interior domain. The velocity-averaged measurements do not require tracking
single-cell trajectories, thus allowing for the measurement of higher cell density over
a longer period of time. This may provide a new and reliable way of determining the
microscopic statistics. In the numerical setting when PDE-constrained optimization
is deployed, depending on the experimental setup, the problem is can be either locally
well-posedness or ill-conditioned. We further propose a specific experimental design
that is adaptive to the discretization of K. This design decouples the reconstruction
of local values of the parameter K using the corresponding measurements. The de-
sign thus opens up opportunities to parallelization. As a proof of concept, numerical
evidence were presented. They are in good agreement with the theoretical predictions

A natural extension of the results presented in the current paper is the algo-
rithmic performance in higher dimensions. The theoretical findings seem to ap-
ply in a straightforward manner, but details need to be evaluated. Numerically
one can certainly also refine the solver implementation. For example, it is possible
that higher order numerical PDE solvers that preserve structures bring extra bene-
fit. More sophisticated optimization methods such as the (Quasi-)Newton method or
Sequential Quadratic Programming are possible alternatives for conducting the inver-
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sion [8, 26, 44, 50]. Furthermore, we adopted a first optimize, then discretize approach
in this article. Suggested in [4, 25, 37], a first discretize, then optimize framework
could be bring automatic compatibility of forward and adjoint solvers, but extra diffi-
culties [28] need to be resolved. Error estimates for continuous in space ground truth
parameters as in [31] could help practitioners to select a suitable space-discretization.

Our ultimate goal is to form a collaboration between practitioners to solve the
real-world problem related to bacteria motion reconstruction [34]. To that end, ex-
perimental design is non avoidable. A class of criteria proposed under the Bayesian
perspective shed light on this topic, see [2] and references therein. In our context,
it translates to whether the design proposed in Section 4 satisfies these established
optimality criteria.
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Appendix A. Derivation of the gradient (2.7). This section justifies formula
(2.7) for the gradient of the cost function C with respect to K. Let us first introduce
some notation: Denote by

j(f)::;Lli;(fRfvf(T,x,v)dv/Ll(m)dx_yl)2

the loss for f € Y = {h | h,0sh+v-Vh € C°([0,T]; L>*(RxV))}. Note that mild solutions
of (1.1) are contained in Y, since K(f) € C°([0,7]; L= (R x V')) by regularity of f
from Lemma B.1. Then C(K) := J(fk) in the notation of (2.3). The Lagrangian
function for the PDE constrained optimization problem (2.5) reads

E(Ka f?gv>‘) = j(f) + <g76tf +v-Vf _’C(f»w,v,t + <)‘>f(t = 0) - ¢)£U,’U7

for feYand ge Z={h|h,0ih+v-VheC°[0,T];L>(V;L"(R)))}. For f = f, our
cost function C(K) = J(fx) = L(K, fk,g,\) and

dC(K) _oL| - oc| ofk
dK 0K |k-k, Of |k-k, 0K
f=fz f=fz

K=K

%f—;g, choose the Lagrange multipliers g, A\ such that

To avoid the calculation of
aL
W|K:X, =0. Then

f=fx

dC(K) oL
dK, 0K,

_ A9 Ke(Fatw
K=K, 0K,
I=Ix f=fx

:foT/ﬂfK(m,t,Uf)(g(:c,t,U')_g(m,m))dxdt.

To compute the gradient, g has to be specified. Recall the requirement

oL
0= 87f K=K,
I=rx
1 & 0
(A1) :Z;([Rfvfmd“ “ldx_yl)?f<”l’f(T)>$’” K-k,
I=rz
+aaf|:<975’tf+v~Vf—/CK(f)>x,t,u+<Avf(t:0)>$7”] .

We will motivate the choice of g such that the derivatives cancel out each other.
Because we are dealing with mild solutions where integration by parts in time and
space cannot be used right away, we approximate f and g by sequences of functions
e (f")ncCY[0,T;L=®(R xV))nC°[0,T]; Wh>=(R; L>(V))) that converge
fn = fwith 0;f, +v-Vf, = Ouf +v-Vf in C°([0,T]; LR x V)) and
o (9")n c CH[0,T]: L (V; LY (R)))nCO([0,T]; L= (V; WH(R))) with g, > g
with =0ygn, — v+ Vgn = —-0tg —v- Vg in C°([0,T]; L= (V; L*(R))).
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This is possible, because the respective spaces for f,, and g, are dense in J and Z.
Replacing f by f, and g by g, in (9,0, f +v-Vf = K(f))a,t,0, we obtain

(gaatf +vU- vf - K(f))m,t,v = li}ln(gnaatfn +tvU- vfn - K(fn))r,t,v
= li£H(<—atgn —-v- Vgn - K(gn)afn>z,t,v + <fn(t = T)vgn(t = T))I,U

~ (fa(t=0).gn(t=0))s.0)
= <_atg -v-Vg-—- K:(g)af)x,t,v + <f(t = T),g(t = T))x,v - <f(t = O)vg(t = 0))36,1)’

where
Kic(g) = [ Koo v)(g(a ') = gla,t,v)) v’

Now, collect all terms in (A.1) with the same integration domain and equate them
to 0. This leads to

~9,9-v-Vg-Kr(g)=0 in zeR,veV,te(0,T),
g(z,t=T,v) ———Z(fff T,z,v)dv u(z)de - yl)ul(x) in zeR,veV,
A=g(t=0) in zeR,veV.

Note that since g reflects the measurement procedure, it makes sense that g(t =T) is

dC(K)

isotropic in v. For computation of , use the solution ¢ to the first two equations

with kernel K = K and f = fi

Appendix B. Some a-priori estimates.
By Assumption 2.1, semigroup theory yields the existence of a mild solution to
(1.1)—(1.2).

LEMMA B.1. Let Assumption 2.1 hold and assume h € L'((0,T); L= (R x V)).
Then there exists a mild solution

(B.1) feC®([0,T]; L= (RxV))
to

Of+v-Vaof =K(f)+h,
ft=0,2,v)=¢(x,v) e LY (RxV)

that is bounded
t
max If )] Lo () < AVICxto, 4 fo 62|V|CK(t_S)Hh(3)||L°°(R><V) ds.

We carry out the proof once to make clear, how the constant in the bound is derived.
Proof. Rewrite (1.1) as
Of=Af+Bf+h

with operators A : D(A) - X, f » —v-V,f and B: X > X, f » K(f), where
the function spaces D(A) == WL (R; L= (V)) and X := L(R x V) are used. The
transport operator .4 generates a strongly continuous semigroup 7'(¢)u(x) = u(x —vt)
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with operator norm ||T'(¢)| < 1. Clearly, B is bounded in operator norm by 2|V|Ck.
The bounded perturbation theorem, see e.g. [18], shows that A+B generates a strongly
continuous semigroup S with [ S(t)[ < e?VICxt, As ¢ € X, (1.1) admits a mild solution

F(1) = S(t)+ fo " S(t = s)h(s) ds. .

The regularity of the solution of (1.1)—(1.2) is improved by more regular initial
data. This is exploited in the proof of ill-conditioning for pointwise measurement
closeness in Theorem 3.3.

COROLLARY B.2. Let Assumption 2.1 hold.
a) Equation (1.1) has a mild solution f is bounded

(B.2) max | f(8)] L= (g) < 2V1OKCy < AVIONT Oy =

b) If, additionally, the initial data ¢ is uniformly continuous in x, uniformly in v, then
f is uniformly continuous in x, uniformly inv,t, i.e. max, |f(t,x,v)-f(t,y,v)|<e
for all t €[0,T], if |x —y| < d(e).

Proof. Assertion a) is a direct consequence of lemma B.1. We focus on proving
assertion b). Let & > 0. By uniform continuity of ¢ in z, one can choose ¢’ such that

(B.3) esssup |z, v) — ¢(y,v)| < e 20xIVITe /2,
lz—y|<d’ v

e 2CKIVIT

, W). Integration along characteristics yields

Now consider § := min (5'

esssup |f(t,z,v) — f(¢,y,v)]

|z—y|<d,v
< esssup |p(x — vt,v) — Pp(y — vt,v)|
|z—y|<d,v
¢
+ esssup f Kt -s,2-vs,0) - K(f)(t-s,y—wvs,v)ds
|lz~y|<d,v | JO

< esssup |p(x,v) - ¢(y,v)|

|lx—y|<d,v

+2CK|V|f esssup |f(s,z,v") - f(s,y,v")|ds

|x— y\<6 v’

+2Cf|V| esssup maX|K(a: vs,v',v") = K(y—ws,v',v")|ds

lz—y|<s,0 JO Vv
= (i) + (id) + (i),

where (i) < %e’QcKMT by (B.3). By symmetry, (iii) = 2- (4v) where (iv) coincides
with (é47), but > y. As K is a step function in space (2.1), its difference can only be
non zero if a jump occurred between = — vs and y — vs. Boundedness of K in (2.10)
then lead to the estimate

t R-1
(B.4) (#i1) = 2- (iv) < 2-2C¢|V| esssup ; Ck Z 1 (z-vs,y-vs)(ar) ds

|z—y|<d,v

<4Cy|VICk(R-1)d < 56_20K|V|T.
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In summary, Gronwall’s lemma yields

esssup | f(t,2z,v) = f(t,y,v)] < e 2CxVIT= < ¢ O
|z—y|<d,v

Again, semigroup theory shows existence of the adjoint equation (2.8) with cor-
responding bounds.

LEMMA B.3. Let h e L*((0,T); L= (V;L*(R))), ¥ € L*(R) and let (2.10) hold.
Then the equation

(B.5) 0,y -v-Veg=aLl(g)—og+h,
g(t=T) = ()

with a € {0,1} and L(g) = [ K(z,v",v)g(z,t,0") dv' and o(x,v) = [ K(z,0',v) dv’
has a mild solution

(B.6) geC°([0,T];L=(V; L (R)))
that satisfies
(B.7)

o) =iy €SO [y [

g T 5.0) 1o ).

If, additionally, h e L= ([0,T] x V; L*(R)), then

(B-8) 9] z=cvirr(wy)

(1+a)|V|Ck (T-t) _
< 6(1+a)|V|CK(T—t) HwHLl €

1+ a)|VICk

(®) + esssup [ (t,v)] L1 (r)-

Proof. Repeating the arguments in the proof of Lemma B.1, semigroup theory
yields the existence of a mild solution

g(t) = S(T — )i + fOT_t S(T —t - $)h(T - 5) ds

for the semigroup S(t) generated by the operator v -V, + al — o with |S(t)] <
e(+e)VICkt  This yields (B.7) and (B.8). 0

Appendix C. Proof of Lemmma 3.11-3.12. In this section, we provide the
proof for the two Lemmas in section 3.2. In particular, Lemma 3.11 discusses the
smallness of the first term in (3.16).

Proof for Lemma 3.11. By the assumption on the initial data and Corollary B.2
b), f is uniformly continuous in z, uniformly in v,t. For n = 0, the boundedness (3.17)
is a consequence of the explicit representation

(C,l) go(t, x,vo) e fOT—t a(;c+uo7—,v0)dr(u;7 _ M?)(JS + Uo(T _ t))

together with the step function shape (2.1) of K, the continuity of f and our assump-
tions: Write po (¢, z,v9,v") = f(z,t, 0" )e” Jo' " o(@+vorv0) AT 3nd assume without loss of

This manuscript is for review purposes only.



817

818

819

823
824
825
826
827
828
829

834

835

836

837

838

839

840
841

842
843

844

845

RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 27

generality 1 > x2, then

/f'godx
I
= /| polt. v ) - ) (e o (T - 1))

Ap-1
:_fa )pO(t»I+(351—xz),vo,v’)ug(z+v0(T—t))dx

re1—(T1-22

+[ ’ po(t, z,vo, v )pa(z +vo(T - t))dz

r=(z1-x2)

a,—(r1—T2
+/; ( )(po(t,x,vo,v')—po(t,x+(xl—x2),1}0,v')),u;'(x+vO(T—t))d:E,
r—1

where we used the substitution & — x - (z1 — x2) for the integration domain of test
function pf(z) = pd(x - (z1 — 22)). By uniform continuity and boundedness of f a
similar argumentation as in (B.4) shows that py(t, x,vg,v") is uniformly continuous in
z, uniformly in ¢,vg,v’, as well. The corresponding threshold from the epsilon-delta
criterion is denoted by dp,(¢). Then, for 0 < |z1 — x2| < do(€) := min(min, |a, — z2| -
T 10, 0p, (€)), the first two integrals vanish, because pg(z+vo(T -t)) =0 for all z in
the integration domain. We are left with

ar—(z1-2)
’/I f'godx| < f Ipo(t, z,v0,v") = po(t,x + (z1 — 2),v0,v")|pd (x + vo(T - t)) dz
" Ar—1

Ss/R,ug(x+vo(T—t))dx:6.

For n > 1, source iteration shows that the solution to (3.14) has the form

T-t-%755 55

T-t
Jn t7 ) :ff f [ n ta y \Vi )i= n i) j= n-1)°
gn(t,x,v0) ) v ) L P2, (Vi)izo,.ns (87)j-0,...n-1)

n—1 n—1
(po = 1) (m + Z V18] + Uy, (T—t— Z sl)) dv,, dsy_1...dvy dsg .
1=0 =0

The function p,, is bounded 0 < p,, < C% and satisfies

T
L paCt ot (00)is (59)) =ty + vat (0 (5, dt < 2
for |x —y| < d,, (&), uniformly in (v;);, (s;);. The assertion then follows in analogy to
the case n = 0. |

Lemma 3.12 argues the smallness of the second term in (3.16). We provide the
proof below. It is a consequence of the smallness of g,y by Lemma B.3 and the
boundedness of f.

Proof for Lemma 3.12. Application of lemma B.3 to ¢ = gon,h = Lgn,a = 1 and
1 =0 yields

T-t -
max AI§>N(t)IdeeQCK‘V'(T‘t) fo sup |£(gn ) (T - 5,0) |1y ds

< [VICK(T - )M esssup g (5, 2,0) |11 .
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Now, application of the same lemma to the evolution equation (3.14) for g,, n =
1,...,N, shows

esssup/ |G| daz < (eCxIVIT - 1)esssupf|§n,1(s,x7v)|dx.
t,v R S,V R

The boundedness of f in (B.2) and repeated application of the above estimate lead
to

T
f max/f’g»;dxdt‘
o v Jr
T2
< 7|V|C’KC’¢62|V|CKT(GCK|V|T— 1)Nesssupf |90 (s, z,v)|dx
s,v R

T? N
< ?|V|CKC’¢62|V|CKT (ecKlVlT ~1) esssup f [(pg = p!)(z +vs)|dz
5,0 R

<T|VICk Coe?VIOKT (O VIT _ )N,

where |go(s,z,v)| < |(ug — p])(z +vs)| can be observed from the explicit formula for

Appendix D. Proof of Lemmas in Section 4. We provide proofs for
Lemma 4.8-4.9 in this section.

Proof of Lemma 4.8. Use the explicit representations

(D.1) gio) (t,z,0) = e T D) (g4 0(T - 1)),
(D2) FOz,0) = e g (a - vt)

with o1 (v) = [, K1(v/,v) dv’ and set without loss of generality ¢; = 0. Since (9], =

1(0) in the notation of the proof of Proposition 4.3, one obtains for (v,v") = (+1,-1)

T
L) 1Oe? @) o @) drar
:/;T/; efwl(”’)d)l(x—v't)(ef(Tft)Ul(”I)ul(x+v'(T—t))

_ e—(T—t)o’1(U)M1 (SU + ’U(T — t))) dx dt

a T
> T [ i@y (T aydo- [, [ e@m(-T 2y dedt
a0+T T--£ Il

2
d,+d
2

> G_TCK‘VlTC(bH - de,

where the first inequality is due to the fact that ¢q(x —v't)pi(z+v(T -t)) = $1(x +
pi(z+(T-t))#0only for x e [-t—-d, -t +d]n[-2T +t—-d,,-2T +t+d,] c I; which

is empty for t <T — d”—;d.
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872 For (v',v) = (-1, +1), instead, we obtain

T
873 [ [ 10w @) - ) dedi
o Jn
T
874 = f f et Mg (2 - vt)(e’(Tft)al(“),ul (z+v(T -1))
o Jn
875 - e_(T_t)‘“(“,),ul(x +v'(T'-t)))dzdt
d+d
876 < Cyu £
2
877  since
878 o O1(z—vt)ur(xz+v(T -1t)) = d1(x — t)ur1(x + T - t) vanishes, as its support
879 [t-d,t+d]n[-2T+t-d,,-2T +t+d,] = @ is empty by construction of
880 T>d>d, and
881 e the support [t —d,t +d] n[-t —d,,~t+d,] of ¢1(x —vt)pui(x+0'(T -1t)) =
882 ¢1(x —t)pr(x - (T —t)) is non-empty only for ¢ < d+2d“ .
883 Since e TOxIVI_ w > 0 by assumption, this proves the assertion. 0
884 To show inequality (4.8) in Lemma 4.9, decompose for some N € N to be deter-
885 mined later
N T
856 S= % [ [ 1P @) - @) deat
n,k=0 0 I
n+k>1
T
w7 (D.3) e [0 @)@V - g @) drar
1
N T
sss o3 [T [ N6 @) - ) dedt,
n=0-0 I
Lo (n) (>N) : (k) .
889 where g;/ and g, solve (3.14) and (3.15) respectively and f*) are solutions to
890 Of® v v, f®) = L(fEDY — g f ),
891 f(k)(t:O,a:,v) =0,

8092 with £(h) := [, K(v,v")h(t,z,v") dv’, and FON) satisfies
893 O fON) —p. v, fON) = E(f(N) 4 f(>N)) —ofOM),
894 FEM(=0,2,0)=0.

895 Each part of S in representation (D.3) is estimated separately in the subsequent three
896  lemmas.

897 LEMMA D.1. In the setting of proposition 4.7,

898

fOT le FE @) (g (') - g™ (v)) da dt

800 <2(Cr|V)"TF TG,

T
<omax [ [ fO@)e0"0 (0) de
v,v" JO 1
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900 Proof. Source iteration
(n) T=t . (n-1) SN
901 g7 (t,x,v0) = [ f e_SOU(UO)Kl(vl,vo)gl (t + 80,z + voSp, 01) doy dsg
0 1%
Tt (n-1)
902 < |V|/ e_SOU(UO)Kl(vl,UO)gl (t + 80,z + voS0, v1) dso,
0
t
903 f(k) (t, x, ’Uo) = f / €_SOU(UO)K(U0, ’[}1)f(k_l) (t — 80, — VoS0, ’[Jl) doq dSO
0o Jv
¢ k
904 <V f e_SOU(UO)K(vmvl)f( _1)(t - S0, — VoS0, v1 ) dsg,
0

905 where v, = —vp, together with the explicit formulas (D.1)—(D.2) leads to estimates

(D.4)

i n-1 n-1
006 0< g\ (2, t,00) <(Cx|V])" f f 1 (x + > vis; + Uy (T—t— > sz))
0 0

i=0 =0
907 ds,_1...dsg,
LTy s k-1 k=1
908 Osf(k)(x,t,vo) g(CK|V|)kf... f qS(x— Zvisi+vk (t— ZS,)) dsg-1...dso.
=0 i=0

0 0

909 Using again f(k)|11 = fl(k) with initial condition ¢; in the notation of the proof of
910 Porposition 4.3, this proves

T T
[ [ 6 @) g @) deatf <2max [ [ P @)gi" (o) deat
0 I v’ 0 I

912 <2(Ck[V))" TRy, 0

913 The following bound for the second summand in (D.3) is obtained in analogy to
914 Lemma 3.12.

915 LEMMA D.2. In the setting of Proposition 4.7,

916 ma| [ 10670 = 97 (0)) da dt‘

917 <AT?|V|C Cpe®VIOxT (O VIT _ 1NN Cdy, = C(T) (<YM - )N

918  For the third term in (D.3), one establishes the following bound.

919 LEMMA D.3. In the setting of Proposition 4.7,

920 mase| [ 62 (o™ (v') —g(”)(v))dxdt’

921 <4V|CrT2AVIORT (CxVIT _)WN Oy (Cx|VIT)" Cud,

922 = C"(T) (VT )N (Cie|vIT)"

923 Proof. An estimate for fCN) can be derived analogously as the estimate for gy
924 in Lemma 3.12 from Lemma B.1

925 1 £ Lo o, 71xR01y < [VICK TV IORT (VT )Ny

926 Together with (D.4), this proves the lemma. d
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933 Because e“xVIT —1 <1 due to the assumption T < (1 - §)
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Lemma 4.9 can now be assembled from the previous lemmas.

bound

Proof of Lemma 4.9. Lemmas D.1, D.2 and D.3 yield the (v,v") independent

S| <204, T szj (Ck|VIT)"F + (eCxIVIT )N (C’(T) +C"(T) i (CK|V|T)”)

n,k=0 n=0
n+k>1
CK|V|T Ck|V|T N / " 1
<4Cp T ——— K -1 c(n+C"'(T)———————
[T (1_CK|V|T)2 +(6 ) ( )+ ( )1—CK|V|T
CklVIT CxIVIT _ {\N
=4Cy, T —F——— K -7 C(T).

0.09

PR the second term in

the last line becomes arbitrarily small for large N € N, which shows that |S] is in fact
bounded by the first term. 0
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