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Abstract. Bacterial motion is guided by external stimuli (chemotaxis), and the motion described4
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response from the bacteria. This parameter is termed chemotaxis kernel. In a practical setting,6
experimental data was collected to infer this kernel. In this article, a PDE-constrained optimization7
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K in space and decouples the reconstruction of local values of K into smaller cell problems, opening12
up parallelization opportunities. Numerical evidences support the theoretical findings.13
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1. Introduction. Kinetic chemotaxis equation is one of the classical equations18

that describes the collective behavior of bacteria motion. Presented on the phase19

space, the equation describes the “run-and-tumble” bacteria motion [3, 19, 39, 40]20

∂tf + v ⋅ ∇xf = K(f) ∶= ∫
V
K(x, v, v′)f(x, t, v′) −K(x, v′, v)f(x, t, v)dv′,(1.1)21

f(t = 0, x, v) = ϕ(x, v) .(1.2)22

The solution f(t, x, v) represents the density of bacteria at any given time t for any23

location x moving with velocity v. The two terms describe different aspects of the24

motion. The v ⋅∇xf term characterizes the “run”-part: bacteria move in a straight line25

with velocity v, and the terms on the right characterize the “tumble”-part: bacteria26

change from having velocity v′ to v using the transitional rate K(x, v, v′) ≥ 0. This27

transition rate thus is termed the tumbling kernel. Initial data is given at t = 028

and is denoted by ϕ(x, v). The equation contains phase-space information, and thus29

compared to the macroscopic models, such as the Keller Segel model, it offers more30

details and has the greater potential to capture the fine motion of the bacteria. Indeed,31

it is observed that the dynamics predicted by the model is in high agreement with32

real measurements, see [7, 17, 48, 47].33
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2 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

It is noteworthy that these comparisons are conducted in the forward-simulation34

setting. Guesses are made about parameters, and simulations are run to be com-35

pared with experimental measurements. To fully reveal the bacteria’s motion and its36

interaction with the environment, inverse perspectives have to be taken. This is to37

take measurements to infer K. The data can be collected at the individual level or38

the population level: biophysicists can use a high-resolution camera and trace each39

single bacterium for a long time to obtain single particle trajectory information, or40

take photos and record the density changes on a cell cultural dish. Such data should41

be used to unveil the true interaction between particles [35].42

In this article, we frame this problem into a finite dimensional PDE-constrained43

optimization and study the unique and stable reconstructability of the kernel. In44

particular, we study different types of initial condition and measurement schemes and45

show that different experimental setups provide different stability of the reconstruc-46

tion.47

As more physics models derived from first-principles get deployed in applications,48

kinetic models are becoming more important in various scientific domains, see model-49

ing of neutrons [14], photons or electrons [45] and rarefied gas [10]. The applications50

on biological and social science have also been put forward in [39] for cell motion,51

in [52] for animal (birds) migration or in [1, 9, 13, 38, 54] for opinion formation. In52

most of these models, parameters are included to characterize the interactions among53

agents or those between agents and the media. It is typical that these interactions54

cannot be measured directly, and it prompts the use of inverse solvers.55

The most prominent application of inverse problem within the domain of kinetic56

systems is the optical tomography emerged from medical imaging, where non-intrusive57

boundary data is deployed to map out the optical properties of the interior. Math-58

ematically the technique called the singular decomposition is deployed to conduct59

the inversion [6, 12, 33, 36, 51], and these studies have their numerical counterparts60

in [5, 11, 16, 43, 44], just to mention a few references.61

Back to our current model, we notice that tracing the trajectory of every single62

bacterium is much more difficult than measuring the evolution of the macroscopic63

density [30, 57], so we are tasked to unveil the interaction between bacteria and the64

environment using the density measurement. A series of new results by biophysi-65

cists [32, 58] studies this experimental setting for a similar kinetic model and exhibits66

significance for practitioners. Compared with classical inverse problem originated67

from optical tomography, we encounter some new mathematical challenges. In partic-68

ular, in our setup, our measurements are taken in the interior of the domain instead69

of on the boundary, and interior data is richer than boundary measurements. Mean-70

while, our data is velocity independent, as compared to that in optical tomography71

that contains velocity information, so we also lose some richness in data.72

In [27] the authors examined the theoretical aspect of this reconstruction problem.73

It was shown that trading off the microscopic information for the interior data still74

gives us sufficient information to recover the transition kernel, but the experiments75

need to be carefully crafted. In this theoretical work we assumed that the transition76

kernel is an unknown function, and thus an infinitely dimensional object, and the77

available data is the full map (from initial condition to density for all time and space),78

and thus an infinite dimensional object as well. This infinite-to-infinite setup is hard79

to be implemented in a practical setting, rendering the theoretical results only a80

guidance for direct use. The current paper can be seen as the practical counterpart81

of [27]. In particular, our goal is to study the same question on the discrete level: when82

measurement data are finite in size, and the to-be-reconstructed transition kernel is83
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RECONSTRUCTING THE KINETIC CHEMOTAXIS KERNEL 3

also represented by a finite dimensional vector, can one still successfully recover the84

unknowns?85

It turns out that the numerical issue is significantly more convoluted. In particu-86

lar, when the dimension of K, the transition kernel, changes from infinite to finite, the87

amount of data needed to recover this parameter is expected to be reduced. The way88

of the reduction, however, is not clear. We will present below two different scenarios89

to argue:90

● when data is prepared well, a stable reconstruction is expected;91

● when the data “degenerates,” it loses information, and the reconstruction92

does not hold.93

Such coexistence of well-posedness and ill-posedness are presented respectively in two94

subsections of Section 3. Then in Section 5 we present the numerical evidence to95

showcase the theoretical prediction.96

It should be noted that it is well within anticipation that different data prepara-97

tion gives different conditioning for parameter reconstruction. This further prompts98

the study of experimental design. In the context of reconstructing the transition ker-99

nel in the chemotaxis equation, in Section 4 we will design a particular experimental100

setup that guarantees a unique reconstruction. This verifies existence of the situation101

of data being well-prepared.102

We should further mention that reconstructing parameters for bacterial motion103

using the inversion perspective is not entirely new. Until recently, existing literature104

followed two different approaches: the first involves the utilization of statistical infor-105

mation at the individual level to extrapolate the microscopic transition kernel [41, 49],106

whereas the second entails employing density data at a macroscopic scale to recon-107

struct certain parameters associated with a macroscopic model through an optimiza-108

tion framework [23, 24, 46, 55]. To our knowledge, these available studies focus on109

a preset low-dimensional set of unknowns. The idea to infer parameters of kinetic110

descriptions from macroscopic type data emerged more recently [27, 32, 58]. The111

viewpoint we take in the current article significantly differs from those in the existing112

literature: Similar as was done in [15, 22] for a macroscopic model, we also recover the113

discretized version of the kinetic parameter. This brings more flexibility in applica-114

tion, at the cost of potentially high dimension of the unknown parameter. In contrast115

to existing results, our focus lies on the study of identifiability of the parameter in the116

proposed optimization setting, and thus its well- and ill-conditioning. Noise would117

introduce an additional layer of parameter uncertainty that we specifically seek to118

exclude from this stage of analysis. Numerical examples are thus presented in a noise-119

free and non regularized manner. This allows investigation of structural identifiability120

as well as suitability of specific experimental set ups to generate informative data for121

reconstruction in the sense of practical identifiability.122

2. Framing a PDE-constrained optimization problem. The problem is123

framed as a PDE-constrained optimization, which is to reconstruct K that fits data124

as much as possible, conditioned on the fact that the kinetic chemotaxis model is125

satisfied.126

We reduce the dimension of the original kinetic chemotaxis model (1.1)–(1.2) for127

t > 0 from (x, v) ∈ R3 × S2 to (x, v) ∈ R1 × {±1} [24, 48, 47], i.e. the bacteria either128

moves to the left or to the right, and x is 1D in space. This simple setting reflects129

how experiments are conducted in the labs: bacteria are cultured in a tube, and the130

motion is one-dimensional. More details will be discussed in the subsequent part.131
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4 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

In a numerical setting, we first represent K as a finite dimensional parameter:132

(2.1) K(x, v, v′) =
R

∑
r=1

Kr(v, v
′
)1Ir(x) .133

This means dividing the domain into R1 = ∪rIr with Ir = [ar−1, ar), for r = 2, ...,R−1,134

and I1 = (−∞, a1), IR = [aR−1,∞), we approximate the function K(x, v, v′) within the135

cell Ir by Kr(v, v
′), constant in space. Since V = {±1}, there are only two parameters:136

Kr(1,−1) and Kr(−1,1) for each cell, so in total there are 2R free values to represent137

K. Throughout the paper we abuse the notation and denote K ∈ R2R as the unknown138

vector to be reconstructed, and denote:139

(2.2) Kr = [Kr,1,Kr,2] with Kr,i =Kr(vi, v
′
i) and (vi, v

′
i) = ((−1)

i+1, (−1)i)140

for i = 1,2. The dataset is also finite in size. In particular, we mathematically141

represent the measurement as a reading of the bacteria density using a test function142

µl ∈ L
1(R) for some l, so the measurement is:143

(2.3) Ml(K) = ∫
R
∫
V
fK(x,T, v)dv µl(x)dx, l = 1, ..., L ,144

where fK denotes the solution to (1.1) with kernel K. In case µl is a characteristic145

function, this corresponds to the pixel reading of a photo.146

For simplicity of the presentation, the the ground-truth kernel denoted by K⋆147

is assumed to be of form (2.1) as well. Consideration of continuous in space ground148

truths would require additional approximation error estimates, as presented in [31] for149

a diffusion coefficient reconstruction in elliptic and parabolic equations, which would150

go beyond the scope of this article. Then the true data is:151

yl =Ml(K⋆), l = 1, ..., L .(2.4)152

Since K is represented by a finite dimensional vector, we expect the amount of data153

needed is also finite. Given the nonlinear nature of the problem, it is unclear L = 2R154

leads to a unique reconstruction. One ought to dive in the intricate dependence on155

the form of {µl}l=1,...,L.156

To conduct such inversion, we deploy a PDE-constrained optimization formula-157

tion. This is to minimize the square loss between the simulated data M(K) and the158

data y:159

(2.5)
min
K

C(K) =min
1

2L

L

∑
l=1
(Ml(K) − yl)

2

subject to (1.1), and (1.2).

160

Many algorithms can be deployed to solve this minimization problem, and we161

are particularly interested in the application of gradient-based solvers. The simple162

gradient descent method gives:163

(2.6) K(n+1) =K(n) − ηn∇KC(K
(n)
) ,164

with a suitable step size ηn ∈ R+. It is a standard practice of calculus-of-variation to165

derive the partial differentiation against the (r, i)-th (i = 1,2, r = 1,⋯,R) entry in the166

gradient ∇KC:167

(2.7)
∂C

∂Kr,i
= ∫

T

0
∫
Ir
f(t, x, v′i)(g(t, x, v

′
i) − g(t, x, vi))dxdt ,168
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Detailed are placed in Appendix A. In the formulation, (vi, v
′
i) is given in (2.2) and g169

is the adjoint state that solves the adjoint equation170

−∂tg − v ⋅ ∇g = K̃(g) ∶= ∫
V
K(x, v′, v)(g(x, t, v′) − g(x, t, v))dv′,(2.8)171

g(x, t = T, v) = −
1

L

L

∑
l=1
µl(x) (Ml(K) − yl) .(2.9)172

The convergence of GD in (2.6) is guaranteed for a suitable step size if the objec-173

tive function is convex. Denoting HKC the Hessian function of the loss function, we174

need HKC > 0 at least in a small neighborhood around K⋆. In [56], a constant step175

size ηn = η =
2λmin

λ2
max

is recommended with λmin, λmax denoting the smallest and largest176

eigenvalues of HKC(K⋆). More sophisticated methods include line search for the step177

size or higher order methods are also possible, see e.g. [44, 56].178

To properly set up the problem, we make some general assumptions and fix some179

notations.180

Assumption 2.1. We make assumptions to ensure the well-posedness of the for-181

ward problem in a feasible set, in particular:182

● We will work locally in K, so we assume in a neighbourhood UK⋆ of K⋆, there183

is a constant CK so that for all K ∈ UK⋆ :184

(2.10) 0 < ∥K∥∞ ≤ CK .185

● Assume the initial data ϕ be in the space L∞+,c(R × V ) of non negative, com-
pactly supported functions with essential bound

∥ϕ∥L∞(R×V ) =∶ Cϕ .

● The test functions {µl}
L
l=1 are supposed to be selected from the space L1(R)186

with uniform L1 bound187

∫
R
∣µl∣dx ≤ Cµ, l = 1, ..., L .188

These assumptions are satisfied in a realistic setting. They allow us to operate f189

and g in the right spaces. In particular, we can establish existence of mild solutions190

and upper bounds for both the forward and adjoint solution, see Lemma B.1 and B.3191

in Appendix B.192

3. Well-posedness vs. ill-posedness. As many optimization algorithms are193

designed to produce minimizing sequences, we study well-posedness in the sense of194

Tikhonov.195

Definition 3.1 (Tikhonov well-posedness [53]). A minimization problem is Tik-196

honov well-posed, if a unique minimum point exists towards which every minimizing197

sequence converges.198

The well-posedness of the inversion heavily depends on the data preparation. If a199

suitable experimental setting is arranged, the optimization problem is expected to200

provide local well-posedness around the ground-truth parameter K⋆, so the classical201

GD can reconstruct the ground-truth. However, if data becomes degenerate, we also202

expect ill-conditioning and the GD will find it hard to converge to the global minimum.203

We spell out the two scenarios in the two theorems below.204
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6 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

Theorem 3.2. Assume the Hessian matrix of the cost function is positive definite205

at K⋆ and let the remaining assumptions of Proposition 3.4 hold, then there exists a206

neighbourhood U of K⋆, in which the optimization problem (2.5) is Tikhonov well-207

posed. In particular, the gradient descent algorithm (2.6) with initial value K0 ∈ U208

converges.209

This theorem provides the well-posedness of the problem. To be specific, it spells out210

the sufficient condition for GD to find the global minimizer K⋆. The condition of the211

Hessian being positive definite at K⋆ may seem strong. In Section 4, we will carefully212

craft a setting for which we can ensure this to hold.213

On contrary to the previous well-posedness discussion, we also provide a negative214

result below on ill-conditioning.215

Theorem 3.3. Let L = 2R and let Assumption 2.1 hold for all considered quanti-216

ties. Consider a sequence (µ
(m)
1 )m of test functions for the first measurement M1(K)217

for which one of the following scenarios holds:218

1. µ
(m)
1 → µ2 in L1 as m→∞.219

2. (µ
(m)
1 )m and µ2, as defined in (3.12), are mollifications of singular point-220

measurements in measurement points {(x
(m)
1 )m, x2} such that x

(m)
1 → x2 as221

m→∞. Furthermore, let the assumptions of Proposition 3.10 hold.222

Then, as m → ∞, i.e. as the measurement test functions become close in one of the223

above senses, strong convexity of the loss function decays, and the convergence of the224

gradient descent algorithm (2.6) to K⋆ cannot be guaranteed. In scenario (2), this225

holds independently of the mollification parameter.226

The two theorems, to be proved in detail in Section 3.1 and 3.2 respectively, hold227

vast contrast to each other. The core difference between the two theorems is the228

data selection. The former guarantees the convexity of the objective function, and229

the latter shows degeneracy. The analysis comes down to evaluating the Hessian, a230

2R × 2R matrix:231

(3.1) HKC(K) =
1

L

L

∑
l=1
(∇KMl(K) ⊗∇KMl(K) + (Ml(K) − yl)HKMl(K)) .232

It is a well-known fact [42] that a positive definite Hessian provides the strong convex-233

ity of the loss function, and is a sufficient criterion that permits the convergence in the234

parameter space. If HKC(K⋆) is known to be positive and the Hessian matrix does235

not change much under small perturbation of K, then convexity of the cost function236

can be guaranteed in a small environment around K⋆. Such boundedness of pertur-237

bation in the Hessian is spelled out in Proposition 3.4, and Theorem 3.2 naturally238

follows.239

Theorem 3.3 orients the opposite side. In particular, it examines the degeneracy240

when two data collection points get very close. The guiding principle for such de-241

generacy is that when two measurements can get too close, they offer no additional242

information. Mathematically, this amounts to rank deficiency of the Hessian (3.1),243

prompting the collapse of convexity in the landscape of the objective function. The244

closeness of two measurements can be quantified through different manners, and we245

specifically examine two types:246

● the two test functions µ1, µ2 are close in L1;247

● the measurement locations are close: setting µ1 and µ2 as mollifiers from248

direct Dirac-δ centered at x1 and x2, then the closeness is quantified by249

∣x1 − x2∣.250
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corresponding to the two bullet points in Theorem 3.3. These two scenarios of deficient251

ranks are presented in Proposition 3.10 and 3.9 respectively.252

3.1. Local well-posedness of the optimization problem. Generally speak-253

ing, it would not be easy to characterize the landscape of the distribution and thus254

hard to prescribe conditions for obtaining global convergence. However, suppose the255

data is prepared well enough so to guarantee the positive definiteness for the Hessian256

HKC(K⋆) evaluated at the ground-truthK⋆, then the following results provide that in257

a small neighborhood of this ground-truth, positive-definiteness persists. Therefore,258

GD that starts within this neighborhood, finds the global minimum to (2.5). This259

gives us a local well-posedness.260

This local behavior is characterized in the following proposition.261

Proposition 3.4. Let Assumption 2.1 hold. Assume the Hessian HKC(K⋆) is262

positive definite at K⋆, and that there is a uniform bound for the Hessian of the263

measurements in the neighborhood UK⋆ in the sense that ∥HKMl(K)(v, v
′)∥F ≤ CHKM264

for all l = 1, ..., L and K ∈ UK in the Frobenius norm. Then there exists a (bounded)265

neighbourhood U ⊂ UK⋆ of K⋆, where HKC(K) is positive definite for all K ∈ U .266

Moreover, the minimal eigenvalues λmin(HKC) satisfies267

(3.2) ∣λmin(HKC(K⋆)) − λmin(HKC(K))∣ ≤ ∥K⋆ −K∥∞C
′,268

where the constant C ′ depends on the measurement time T , R, and the bounds Cµ,269

Cϕ, CK in Assumption 2.1 and CHKM . As a consequence, the radius of U can be270

chosen as λmin(HKC(K⋆))/C
′.271

The proposition is hardly surprising. Essentially it suggests the Hessian term is272

Lipschitz continuous with respect to its argument. This is expected if the solution to273

the equation is somewhat smooth. Such strategy will be spelled out in detail in the274

proof. Now Theorem 3.2 is immediate.275

Proof for Theorem 3.2. By Proposition 3.4, there exists a neighbourhood U of276

K⋆ in which the Hessian is positive definite, HKC(K) > 0 for all K ∈ U . Without277

loss of generality, we can assume that U is a convex set. By the strong convexity of278

C in U , the minimizer K⋆ ∈ U of C is unique and thus the finite dimension of the279

parameter space K ∈ R2R guarantees Tikhonov well-posedness of the optimization280

problem (2.5) [20, Prop.3.1]. Convergence of GD follows from strong convexity of C281

in U .282

Now we give the proof for Proposition 3.4. It mostly relies on the matrix per-283

turbation theory [29, Cor. 6.3.8] and continuity of equation (1.1) with respect to the284

parameter K.285

Proof for Proposition 3.4. According to the matrix perturbation theory, the min-286
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8 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

imal eigenvalue is continuous with respect to a perturbation to the matrix, we have287

∣λmin(HKC(K⋆)) − λmin(HKC(K))∣ ≤ ∥HKC(K⋆) −HKC(K)∥F288

≤
1

L
∑
l

(∥(∇KMl ⊗∇KMl)(K⋆) − (∇KMl ⊗∇KMl)(K)∥F289

+ ∥(Ml(K) − yl)HKMl(K)∥F)(3.3)290

≤
1

L
∑
l

(∥∇KMl(K⋆) − ∇KMl(K)∥F (∥∇KMl(K⋆)∥F + ∥∇KMl(K)∥F )291

+ ∣Ml(K) − yl∣∥HKMl(K)∥F)292

where we used the Hessian form (3.1), triangle inequality and sub-multiplicativity for293

Frobenius norms. To obtain the bound (3.2) now amounts to quantifying each term294

on the right hand side of (3.3) and bounding them by ∥K⋆−K∥∞. This is respectively295

achieved in Lemmas 3.5, 3.7 and 3.8 that give controls to Ml(K) − yl, ∥∇KMl(K)∥F296

and ∥∇KMl(K⋆) − ∇KMl(K)∥F . Putting these results together, we have:297

∣λmin(HKC(K⋆)) − λmin(HKC(K))∣ ≤ ∥HKC(K⋆) −HKC(K)∥F298

≤ 2∥K⋆ −K∥∞CµCϕe
2CK ∣V ∣T

⎡
⎢
⎢
⎢
⎢
⎣

8RCϕCµe
2∣V ∣CKTT (∣V ∣T 2

+
1

CK
(
e2CK ∣V ∣T − 1

2CK ∣V ∣
− T))299

+ ∣V ∣2TCHKM

⎤
⎥
⎥
⎥
⎥
⎦

300

=∶ ∥K⋆ −K∥∞C
′.301

The positive definiteness in a small neighborhood of K⋆ now follows. Finally, given302

∥K⋆ −K∥∞ < λmin(HKC(K⋆))/C
′, the triangle inequality shows303

λmin(HKC(K)) ≥ λmin(HKC(K⋆)) − ∣λmin(HKC(K⋆)) − λmin(HKC(K))∣ > 0.304

305

We note the form of C ′ is complicated but the dependence is spelled out in the306

following lemmas and summarized in the theorem statement.307

As can be seen from the proof, Proposition 3.4 strongly relies on the boundedness308

of the terms in (3.3). We present the estimates below.309

Lemma 3.5. Let Assumptions 2.1 holds, then the measurement difference is upper310

bounded by:311

∣Ml(K) − yl∣ ≤ ∣V ∣Cµ∥(fK⋆ − fK)(T )∥L∞(R×V ) ≤ ∥K⋆ −K∥∞2∣V ∣
2CµCϕTe

2CK ∣V ∣T .312

Proof. Apply Lemma B.1 to the difference equation for f̄ ∶= fK⋆ − fK313

∂tf̄ + v ⋅ ∇xf̄ = KK(f̄) + K(K⋆−K)(fK⋆)(3.4)314

with initial condition 0 and source h = K(K⋆−K)(fK⋆) ∈ L
1((0, T );L∞(R× V )) by the315
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regularity (B.1) of fK⋆ . This leads to316

ess sup
v,x

∣f̄ ∣(x, t, v) ≤∫
t

0
e2∣V ∣CK(t−s) ess sup

v,x
∣K(K⋆−K)(fK⋆)(s)∣ds317

≤2∣V ∣∥K⋆ −K∥∞e
2∣V ∣CKtCϕt,(3.5)318

where we used the estimate ∥fK⋆(s)∥L∞(R×V ) ≤ e
2∣V ∣CKs∥ϕ∥L∞(R×V ) from Lemma B.1319

in the last step.320

To estimate the gradient ∇KMl(K) and its difference, we first recall the form in (2.7)321

with C changed toMl here. Analogously, we can use the adjoint equation to explicitly322

represent the gradient:323

Lemma 3.6. Let Assumption 2.1 hold. Denote by fK the mild solution of (1.1)324

and by gl ∈ C
0 ([0, T ];L∞(V ;L1(R))) the mild solution of325

−∂tgl − v ⋅ ∇gl = K̃(gl) ∶= ∫
V
K(x, v′, v)(gl(x, t, v

′
) − gl(x, t, v))dv

′,(3.6)326

gl(t = T,x, v) = −µl(x) .327

Then328

(3.7)
∂Ml(K)

∂Kr,i
= ∫

T

0
∫
Ir
f ′(g′l − gl)dxdt ,329

where we used the abbreviated notation h ∶= h(t, x, vi) and h
′ ∶= h(t, x, v′i) for h = f, gl,330

with (vi, v
′
i) defined as in (2.7).331

We omit explicitly writing down the x, t dependence when it is not controversial. The332

proof for this lemma is the application of calculus-of-variation and will be omitted333

from here. We are now in the position to derive the estimates of the gradient norms.334

Lemma 3.7. Under Assumption 2.1, the gradient is uniformly bounded335

∥∇KMl(K)∥F ≤
√
2R2CϕCµe

2CK ∣V ∣TT, for all K ∈ UK .336

Proof. The Frobenius norm is bounded by the entries337

∥∇Ml(K)∥F ≤
√
2Rmax

r,i
∣
dMl(K)

dKr,i
∣ .338

Representation (3.7) together with (B.2) then gives the bound339

∣
dMl

dKr,i
∣ ≤ 2Cϕ ∫

T

0
e2∣V ∣CKtmax

v
(∫

R
∣gl∣ dx) dt,(3.8)340

Application of lemma B.3 to g = gl, h = 0 and ψ = −µl yields341

max
v
∫
R
∣gl∣ dx (t) ≤ ∫

R
∣ − µl(x)∣dx e

2CK ∣V ∣(T−t) ≤ Cµe
2CK ∣V ∣(T−t),(3.9)342

which, when plugged into (3.8), gives343

∣
∂Ml

∂Kr,i
∣ ≤ 2CϕCµe

2CK ∣V ∣TT .344
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Lemma 3.8. In the setting of Theorem 3.2 and under Assumption 2.1, the gradi-345

ent difference is uniformly bounded in K ∈ UK by346

∥∇Ml(K⋆) − ∇Ml(K)∥F347

≤
√
2R∥K⋆ −K∥∞2CϕCµe

2CK ∣V ∣T (∣V ∣T 2
+

1

CK
(
e2CK ∣V ∣T − 1

2CK ∣V ∣
− T)) .348

Proof. Now consider the entries of ∇Ml(K⋆) − ∇Ml(K) to show smallness of349

∥∇Ml(K⋆) − ∇Ml(K)∥F . Rewrite, using lemma 3.6 and (B.2)350

∣
∂Ml(K⋆)

∂Kr,i
−
∂Ml(K)

∂Kr,i
∣ = ∣∫

T

0
∫
Ir
fK⋆(g

′
l,K⋆ − gl,K⋆) − fK(g

′
l,K − gl,K)dxdt∣351

≤∫

T

0
∥(fK⋆ − fK)(t)∥L∞(R×V )2max

v
∫
R
∣gl,K⋆(t)∣dxdt352

+ 2Cϕ ∫

T

0
e2∣V ∣CKtmax

v
∫
R
∣(gl,K⋆ − gl,K)(t)∣dxdt.353

The first summand can be bounded by (3.5) and (3.9). To estimate the second354

summand, apply Lemma B.3 to ḡ ∶= gl,K⋆ − gl,K with evolution equation355

−∂tḡ − v ⋅ ∇xḡ = K̃K⋆(ḡ) + K̃(K⋆−K)(gl,K),356

ḡ(t = T ) = 0,357

and h = K̃(K⋆−K)(gl,K) ∈ L
1((0, T );L∞(V ;L1(R))) by the regularity (B.6) of gl,K ∈358

C0 ((0, T );L∞(V ;L1(R))). This leads to359

max
v
∫
R
∣ḡ∣dx ≤ e2∣V ∣CK(T−t)

∫

T−t

0
max

v
∥K̃(K⋆−K)(gl,K)(T − s, v)∥L1(R) ds360

≤ 2∣V ∣∥K⋆ −K∥∞e
2∣V ∣CK(T−t)

∫

T−t

0
max

v
∥gl,K(T − s, v)∥L1(R) ds361

≤ ∥K⋆ −K∥∞
Cµ

CK
e2∣V ∣CK(T−t)(e2CK ∣V ∣(T−t) − 1),362

where we used (3.9) in the last line. In summary, one obtains363

∣
∂Ml(K⋆)

∂Kr,i
−

dMl(K)

dKr,i
∣364

≤ ∥K⋆ −K∥∞[∫
T

0
2∣V ∣Cϕte

2CK ∣V ∣t ⋅ 2Cµe
2CK ∣V ∣(T−t) dt365

+ 2Cϕ ∫

T

0
e2∣V ∣CKt Cµ

CK
e2CK ∣V ∣(T−t)(e2CK ∣V ∣(T−t) − 1)dt]366

≤ ∥K⋆ −K∥∞2CϕCµe
2CK ∣V ∣T (∣V ∣T 2

+
1

CK
(
e2CK ∣V ∣T − 1

2CK ∣V ∣
− T)) .367

Together with the boundedness of the gradient (3.8), this shows that the first sum-368

mands in (3.3) are Lipschitz continuous in K around K⋆ which concludes the proof369

of Proposition 3.4.370
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3.2. Ill-conditioning for close measurements. While the positive Hessian371

at K∗ guarantees local convergence, such positive-definiteness will disappear when372

data are not prepared well. In particular, if L = 2R, meaning the number of measure-373

ments equals the number of parameters to be recovered, and that two measurements,374

M1(K) andM2(K) are close, we will show that the Hessian degenerates. Then strong375

convexity is lost, and the convergence to K⋆ is no longer guaranteed.376

We will study how the Hessian degenerates in the two scenarios in Theorem 3.3.377

This comes down to examining the two terms in (3.1). Applying Lemma 3.5, we378

already see the second part in (3.1) is negligible when K is close to K⋆ and the rank379

structure of the Hessian is predominantly controlled by the first term. It is a summa-380

tion of L rank 1 matrices ∇KMl(K) ⊗∇KMl(K). When two measurements (µ1 and381

µ2) get close, we will argue that ∇KM1(K) is almost parallel to ∇KM2(K), making382

the Hessian lacking at least one rank, and the strong convexity is lost. Mathematically,383

this means we need to show ∥∇KM1(K) − ∇KM2(K)∥2 ≈ 0 when µ1 ≈ µ2.384

Throughout the derivation, the following formula is important. Recalling (3.7),385

we have for every r ∈ {1,⋯,R} and i ∈ {1,2}386

∂M1(K)

∂Kr,i
−
∂M2(K)

∂Kr,i
= ∫

T

0
∫
Ir
f ′((g1 − g2)

′
− (g1 − g2))dxdt387

= ∫

T

0
∫
Ir
f ′(ḡ′ − ḡ)dxdt ,(3.10)388

where ḡ ∶= g1 − g2 solves (2.8) with final condition ḡ(t = T,x, v) = µ2(x) − µ1(x).389

The two subsections below serve to quantify the smallness of (3.10) in terms of the390

smallness of µ1(x) − µ2(x).391

3.2.1. L1 measurement closeness. The following proposition states the loss of392

strong convexity as µ2−µ1 → 0 in L1(R). In particular, the requirement of Proposition393

3.4 that HKC(K⋆) is positive definite is no longer satisfied, so local well-posedness of394

the optimization problem and thus the convergence of the algorithm can no longer be395

guaranteed.396

Proposition 3.9. Let Assumption 2.1 hold. Then, as µ
(m)
1

m→∞
ÐÐÐ→ µ2 in L1(R),397

one eigenvalue of the Hessian HKC(K⋆) vanishes.398

This proposition immediately allows us to prove scenario 1 in Theorem 3.3:399

Proof of Theorem 3.3. Propositions 3.9 establishes one eigenvalue of HKC(K⋆)400

vanishes as m →∞. This lack of positive definiteness and thus strong convexity of C401

around K⋆ means that it cannot be guaranteed that the minimizing sequences of C402

converge to K⋆.403

We now give the proof of the proposition.404

Proof. As argued above, we show ∥∇KM
(m)
1 (K) − ∇KM2(K)∥2 → 0 as m → ∞.405

Recall (3.10), we need to show:406

∂M
(m)
1 (K)

∂Kr,i
−
∂M2(K)

∂Kr,i

m→∞
ÐÐÐ→ 0 ∀(r, i) ∈ {1,⋯,R} × {1,2} .(3.11)407

where ḡ ∶= g1 − g2 solves (2.8) with final condition ḡ(t = T,x, v) = µ2(x) − µ
(m)
1 (x).408

Application of Lemma B.3 gives409

∥ḡ(t)∥L∞(V ;L1(R)) ≤ e
2CK ∣V ∣(T−t)∥µ2 − µ

(m)
1 ∥L1(R).410
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by independence of µ1, µ2 with respect to v. Plug the above into (3.10) and estimate411

f by (B.2) to obtain412

RRRRRRRRRRR

∂(M
(m)
1 −M2)(K)

∂Kr,i

RRRRRRRRRRR

≤ 2Cϕ ∫

T

0
e2CK ∣V ∣t∥ḡ(t)∥L∞(V ;L1(R)) dt413

≤ 2Cϕe
2CK ∣V ∣TT ∥µ2 − µ

(m)
1 ∥L1(R).414

Since every entry (r, i) converges, the gradient difference vanishes ∥∇KM
(m)
1 (K) −415

∇KM2(K)∥2 → 0 as m→∞.416

We utilize this fact to show the degeneracy of the Hessian. Noting:417

HKC(K⋆) = [
2R

∑
l=3
∇Ml ⊗∇Ml + 2∇M2 ⊗∇M2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+[∇M
(m)
1 ⊗∇M

(m)
1 −∇M2 ⊗∇M2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B(m)

.418

It is straightforward that the rank of A is at most 2R−1, so the j-th largest eigen-419

value λj(A) = 0 vanishes for some j. Moreover, since ∥∇KM
(m)
1 (K)−∇KM2(K)∥2 →420

0, we have ∥B(m)∥F → 0. Using the continuity of the minimal eigenvalue with respect421

to a perturbation of the matrix, the j-th largest eigenvalue of HKC(K⋆) vanishes422

∣λj(HKC(K⋆))∣ = ∣λj(HKC(K⋆)) − λj(A)∣ ≤ ∥B
(m)
∥F → 0, as m→∞ .423

3.2.2. Pointwise measurement closeness. We now study the second scenario424

of Theorem 3.3 and consider µ1, µ2 as mollifications of a singular pointwise testing.425

For this purpose, let ξ ∈ C∞c (R) be a smooth function, compactly supported in the unit426

ball B1(0) with 0 ≤ ξ ≤ 1 and ξ(0) = 1. In the following, we consider the measurement427

test functions428

(3.12) µη
i (x) =

1

η
ξ (
x − xi
η
) , i = 1,2.429

Our aim is to show that the assertion of Theorem 3.3 is true independently of430

the mollification parameter η > 0. This shows that in the limit as η → 0, i.e. in the431

pointwise measurement case, we still lose strong convexity around K⋆.432

Proposition 3.10. Let µη
1 , µ

η
2 be of the form (3.12) with measurement locations

x2 ∉ {ar}r=1,...,R for the partition of R from (2.1). Consider a small neighbourhood
of K⋆ and let Assumption 2.1 hold. Additionally, let the measurement time T and
locations be chosen such that

(eT ∣V ∣CK − 1) < 1, min
r
∣x2 − ar ∣ − T > η0 > 0.

If the initial condition ϕ is uniformly continuous in x, uniformly in v, then433

∇KM1(K) → ∇KM2(K) as x1 → x2 in the standard Euclidean norm,434

and the convergence is independent of η ≤ η0.435

This proposition explains the breakdown of well-posedness presented in Theo-436

rem 3.3 in the second scenario. Since the proof for the theorem is rather similar to437

that of the first scenario, we omit it from here.438
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Similar to the previous scenario, we need to show smallness of the gradient differ-439

ence (3.10). This time, we have to distinguish two sources of smallness: For singular440

parts of the adjoint ḡ, the smallness of the corresponding gradient difference is gen-441

erated by testing it on a sufficiently regular f at close measuring locations. So it442

is small in the weak sense. The regular parts ḡ>N of ḡ represent the difference of ḡ443

and its singular parts and evolve form the integral operator on the right hand side of444

(2.8), which exhibits a diffusive effect. Smallness is obtained by adjusting the cut off445

regularity N .446

Let us mention, however, that the time constraint is mostly induced for a technical447

reason. In order to bound the size of the regular parts of the adjoint solution, we use448

the plain Grönwall inequality which leads to an exponential growth that we counter-449

balance by a small measuring time T . The spatial requirement minr ∣x2−ar ∣−T > η0 > 0450

is a reflection of the fact that we need the measuring blob (support of µ) to be some-451

what centered in the constant pieces of the piecewise-constant function K. This helps452

to force the measuring to precisely pick up only the information from that particular453

piece. This specific design will later be discussed in Section 4 as well.454

To put the above considerations into a mathematical framework, we deploy the455

singular decomposition approach, and we are to decompose456

(3.13) ḡ =
N

∑
n=0

ḡn + ḡ>N ,457

where the regularity of ḡn increases with n. Here, we define ḡ0 as the solution to458

−∂tḡ0 − v ⋅ ∇xḡ0 = −σḡ0 ,459

ḡ0(t = T,x, v) = µ
η
2(x) − µ

η
1(x) ,460

for σ(x, v) ∶= ∫V K(x, v
′, v)dv′, and ḡn are inductively defined by461

−∂tḡn − v ⋅ ∇xḡn = −σḡn + L̃(ḡn−1) ,(3.14)462

ḡn(t = T,x, v) = 0 ,463

where we used the notation L̃(ḡ) ∶= ∫ K(x, v
′, v)ḡ(x, t, v′)dv′. The remainder ḡ>N464

satisfies465

−∂tḡ>N − v ⋅ ∇xḡ>N = −σḡ>N + L̃(ḡN + ḡ>N) ,(3.15)466

ḡ>N(t = T,x, v) = 0 .467

It is a straightforward calculation that468

(3.16) (3.10) =
N

∑
n=0
∫

T

0
∫
Ir
f ′(ḡ′n − ḡn)dxdt + ∫

T

0
∫
Ir
f ′(ḡ′>N − ḡ>N)dxdt .469

We are to show, in the two lemmas below, that both terms are small when x1 → x2.470

To be more specific:471

Lemma 3.11. Let the assumptions of Proposition 3.10 be satisfied. For any ε > 0,472

and any n ∈ N0, there exists a δn(ε) > 0 such that473

(3.17) ∣∫

T

0
∫
Ir
f ′ḡn dxdt∣ ≤ ε , if ∣x1 − x2∣ < δn(ε) .474
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The remainder can be bounded similarly.475

Lemma 3.12. Under the assumptions of Proposition 3.10, one has476

∣∫

T

0
∫
Ir
f ′ḡ>N dxdt∣ ≤ T 2

∣V ∣CKCϕe
2∣V ∣CKT

(eCK ∣V ∣T − 1)NCµ,477

which becomes arbitrarily small for large N .478

The proofs for both lemmas exploit the continuity of f by choice of ϕ, and the479

smallness of the higher regularity components of the g term. Since it is not keen to480

the core of the paper, we leave the details to Appendix C. The application of the two481

lemmas gives Proposition 3.10:482

Proof of Proposition 3.10. Let ε > 0. Because eCK ∣V ∣T − 1 < 1 by assumption, we483

can choose N ∈ N large enough such that 2T 2∣V ∣CKCϕe
2∣V ∣CKT (eCK ∣V ∣T − 1)N < ε

2
.484

Furthermore, let ∣x1−x2∣ <minn≤N δn(
ε

4(N+1)). Then with the triangle inequality and485

Lemmas 3.11 and 3.12, we obtain from (3.16)486

∣
∂(M1 −M2)(K)

∂Kr,i
∣ ≤

N

∑
n=0
∣∫

T

0
∫
Ir
f ′(ḡ′n − ḡn)dxdt∣ + ∣∫

T

0
∫
Ir
f ′(ḡ′>N − ḡ>N)dxdt∣487

≤2N
ε

4(N + 1)
+ 2T 2

∣V ∣CKCϕe
2∣V ∣CKT

(eCK ∣V ∣T − 1)NCµ488

≤ε .489

4. Experimental Design. We now provide an explicit experimental setup that490

ensures well-posedness. Recalling that Proposition 3.4 requires the positive-definite-491

ness of the Hessian term at K⋆, we are to design a special experimental setup that492

validates this assumption. We propose to use the following:493

Design 4.1. We divide the domain I = [a0, aR) into R intervals I = ⊍R
r=1 Ir with494

Ir = [ar−1, ar), and the center for each interval is denoted by ar−1/2 ∶=
ar−1+ar

2
. The495

spatial supports of the values Kr(v, v
′) takes on the form of (2.1). The design is:496

● initial condition ϕ(x, v) = ∑
R
r=1 ϕr(x) is a sum of R positive functions ϕr that497

are compactly supported in ar−1/2 + [−d, d] with d <min (ar−ar−1

4
), symmetric498

and monotonously decreasing in ∣x−ar−1/2∣ (for instance, a centered Gaussian499

with a cut-off tail);500

● measurement test functions µlri
= C̄µ1[(−1)iT−dµ,(−1)iT+dµ]+ar−1/2

, i = 1,2, for501

some C̄µ > 0, centered around ar−1/2 ± T with dµ ≤ d;502

● measurement time T such that503

T <min((1 − δ)
0.09

CK ∣V ∣
,min

r
(
ar − ar−1

4
−
d

2
))(4.1)504

for δ = (d + dµ)/T < e
−TCK ∣V ∣.(4.2)505

Remark 4.2. Note that this design requires a delicate balancing between T and506

d and dµ. Requirement (4.1) prescribes that T must not be too large. On the other507

hand, (4.2) requires that it must not be too small compared to d, dµ. An exemplary508

choice of d = dµ = cT
2 for some c > 0, for instance, automatically verifies requirement509

(4.2) for small enough T .510

This particular design of initial data and measurement is to respond to the fact511

that the equation has a characteristic and particles moves along the trajectories. The512
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measurement is set up to single out the information we would like to reconstruct along513

the propagation. The visualization of this design is plotted in Figure 1.514

ar−1 x1 ar−1/2 x2 ar x
2dµ 2d

Fig. 1: Motion of the ballistic parts f (0)(t = 0, v) (cyan, dashdotted) to f (0)(t =

T, v = +1) (blue, dotted) and f (0)(t = T, v = −1) (blue, dashed) and g
(0)
1 (t = 0, v =

+1) (orange, dotted) and g
(0)
1 (t = 0, v = −1) (orange, dashed) to g

(0)
1 (t = T, v) (red,

dashdotted), compare also (4.5).

Under this design, we have the following proposition:515

Proposition 4.3. The design (D) decouples the reconstruction of Kr. To be516

more specific, recall (2.2)517

K = [Kr] , with Kr = [Kr,1,Kr,2] .518

The Hessian HKC has a block diagonal structure with each of the blocks is a 2 × 2519

matrix given by the Hessian HKrC.520

Proof. By the linearity of (1.1) and (2.8), their solutions f = ∑
R
r=1 fr and g =521

∑
R
r=1∑

2
i=1 glri decompose into solutions fr of (1.1) with initial conditions ϕr and glri522

with final condition −(Mlri
− ylri )µlri

/2R, the summands of the final condition (2.9),523

correspondingly. By construction of T and the constant speed of propagation ∣v∣ = 1,524

the spatial supports of fr and glr1 , glr2 are is fully contained only in Ir for all t ∈525

[0, T ], v ∈ V . As such, only fr and glrj carry information about Kr, and no information526

for other Ks with s ≠ r.527

This not only makes boundary conditions superfluous, but also translates the528

problem of finding a 2R valued vector K into R individual smaller problems of finding529

the two-constant pair (Kr,1,Kr,2) within Ir. This comes with the cost of prescribing530

very detailed measurements depending on the experimental scales Ir and d, but opens531

the door for parallelized computation.532

Furthermore, under mild conditions, this design ensures the local reconstructabil-533

ity of the inverse problem.534

Theorem 4.4. Let Assumption 2.1 hold. Given the Hessian HKMl(K) is boun-535

ded in Frobenius norm in a neighbourhood of K⋆, Design (D) generates a locally536

well-posed optimization problem (2.5).537

The proof is layed out in the subsequent subsection 4.1.538
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Remark 4.5. Let us mention that the bounds for T in Design (D) are not optimal.539

In the proof of theorem 4.4 we used crude estimates, and we believe these estimates540

can potentially be relaxed to allow for longer measurement times T . Furthermore, the541

setup can easily be modified to use different measurement times for different intervals542

Ir, for instance. In this case, again, the bounds on T can be relaxed.543

Remark 4.6. Design (D) shares similarities with the theoretical reconstruction544

setting in [27], where a pointwise reconstruction of a continuous kernel K̃ was obtained545

by a sequence of experiments where the measurement time T became small and the546

measurement location gets close to the initial location. The situation is also seen here.547

As we refine the discretization for the underlying K-function using higher dimensional548

vector, measurement time has to be shortened to honor the refined discretization.549

However, we should also note the difference. In [27], we studied the problem in550

higher dimension and thus explicitly excluded the ballistic part of the data from the551

measurement552

4.1. Proof of Theorem 4.4. According to Theorem 3.2, one only needs to553

show HKC(K⋆) > 0. As the Hessian attains a block diagonal structure (Proposition554

4.3), we are to study the 2 × 2-blocks555

(4.3) HKrC(K⋆) = ∇KrMlr1
(K⋆) ⊗∇KrMlr1

(K⋆) + ∇KrMlr2
(K⋆) ⊗∇KrMlr2

(K⋆).556

Here the two measurements Mlr1
, Mlr2

are inside Ir, and ∇Kr = [∂Kr,1 , ∂Kr,2]. The557

positive definiteness of the full HKC(K⋆) is equivalent to the positive definiteness of558

each individual HKrC(K⋆). This is established in the subsequent proposition.559

Proposition 4.7. Let Assumption 2.1 hold. If the Hessian HKMl(K) is bounded560

in Frobenius norm in a neighbourhood of K⋆, then the Design (D) produces a positive-561

definite Hessian HKC(K⋆).562

According to (4.3), HK1C(K⋆) is positive definite if563

(4.4) ∣
∂M1(K⋆)

∂K1,1
∣ > ∣

∂M1(K⋆)

∂K1,2
∣ and ∣

∂M2(K⋆)

∂K1,1
∣ < ∣

∂M2(K⋆)

∂K1,2
∣564

holds true for the measurements M1,M2 corresponding to K1. Due to design sym-565

metry, it is sufficient to study the first inequality. Consider the difference ∂M1(K⋆)
∂K1,1

−566

∂M1(K⋆)
∂K1,2

. Similar to (3.13) and (3.16), we are to decompose the equation for f and g567

((1.1) and (3.6) respectively, with K = K⋆) into the ballistic parts g
(0)
1 and f (0) and568

the remainder terms. Namely, let g
(0)
1 and f (0) satisfy569

⎧⎪⎪
⎨
⎪⎪⎩

−∂tg
(0)
1 − v ⋅ ∇xg

(0)
1 = −σg

(0)
1

g
(0)
1 (t = T,x, v) = µ1(x)

and

⎧⎪⎪
⎨
⎪⎪⎩

∂tf
(0) − v ⋅ ∇xf

(0) = −σf (0)

f (0)(t = 0, x, v) = ϕ(x, v).
(4.5)570

Then the following two lemmas are in place with µ1(x) and ϕ(x, v) as in Design (D).571

Lemma 4.8. In the setting of Proposition 4.7, for (v, v′) = (+1,−1), the ballistic572

part573

B ∶= ∣∫
T

0
∫
I1
f (0)(v′)(g

(0)
1 (v

′
) − g

(0)
1 (v))dxdt∣(4.6)574

− ∣∫

T

0
∫
I1
f (0)(v)(g

(0)
1 (v) − g

(0)
1 (v

′
))dxdt∣575
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satisfies576

B ≥ Cϕµ (e
−TCK ∣V ∣T − (dµ + d)) > 0,(4.7)577

where Cϕµ = ∫I1 ϕ1(x)µ1(−T + x)dx = maxa,b ∫I1 ϕ1(x + a)µ1(−T + x + b)dx by con-578

struction of ϕ1, µ1.579

At the same time, the remainder term is small.580

Lemma 4.9. In the setting of Proposition 4.7, the remaining scattering term581

S ∶=∫
T

0
∫
I1
f (v′)(g1(v

′
) − g1(v))dxdt − ∫

T

0
∫
I1
f (0)(v′)(g

(0)
1 (v

′
) − g

(0)
1 (v))dxdt582

is bounded uniformly in (v, v′) by583

∣S∣ ≤ 4CϕµT
CK ∣V ∣T

(1 −CK ∣V ∣T )2
.(4.8)584

Proposition 4.7 is a corollary of Lemmas 4.8, 4.9.585

Proof of Proposition 4.7. By the bounds obtained in lemmas 4.8, 4.9, one has586

∣
∂M1(K⋆)

∂K1,1
∣ − ∣

∂M1(K⋆)

∂K1,2
∣ ≥ B − 2∣S∣587

≥ Cϕµ (e
−TCK ∣V ∣T − (dµ + d)) − 8CϕµT

CK ∣V ∣T

(1 −CK ∣V ∣T )2
588

≥ CϕµT (1 − TCK ∣V ∣ − δ − 8
0.09(1 − δ)

(1 − 0.09)2
) .589

By assumption 0 < T < (1 − δ) 0.09
CK ∣V ∣ with δ =

d+dµ

T
< 1, the last line is positive. In590

total, this shows the first part of inequality (4.4). As the second part can be treated591

in analogy, it follows that HK1C(K⋆) is positive definite.592

Finally, Theorem 4.4 is a direct consequence of Proposition 4.7.593

Proof of Theorem 4.4. Repeated application of the arguments to all HKrC(K⋆),594

r = 1, ...,R, shows that HKC(K⋆) > 0. By the assumption of boundedness of the595

Hessian HKMl(K) in a neighbourhood of K⋆, theorem 3.2 proves local well-posedness596

of the inverse problem.597

The proofs for the Lemmas 4.8-4.9 are rather technical and we leave them to598

Appendix D. Here we only briefly present the intuition. According to Figure 1,599

f (0)(v′ = −1) and g
(0)
1 (v

′ = −1) have a fairly large overlapping support, whereas600

g
(0)
1 (v = +1) overlaps with f (0)(v′ = −1) and g

(0)
1 (v

′ = −1) with f (0)(v = +1) only601

for a short time spans T ≈ T and T ≈ 0 respectively. Recalling (4.6), we see the neg-602

ative components of the term B are small, making B positive overall. The smallness603

of S is a result of small measurement time T .604

5. Numerical experiments. As a proof of concept for the prediction given by605

the theoretical results in Section 3, we present some numerical evidence.606

An explicit finite difference scheme is used for the discretization of (1.1) and (2.8).607

In particular, the transport operator is discretized by the Lax-Wendroff method and608

the operator K is treated explicitly in time. The scheme can be shown to be consistent609
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18 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

Fig. 2: (Marginal) loss functions C(K) for R = 20: For a fixed r ∈ {2,9,13,15}, we
plot C as a function of Kr with all Ks≠r set to be the ground-truth (K⋆)s.

and stable when ∆t ≤ min(∆x,C−1K ), and thus it converges according to the Lax-610

Equivalence theorem. More sophisticated solvers for the forward model [21] can be611

deployed when necessary. Also, when a compatible solver [4] for the adjoint equation612

exists, these pairs of solvers can readily be incorporated in the inversion setting.613

All subsequent experiments were conducted with noise free synthetic data yl =614

Ml(K⋆) that was generated by a forward computation with the true underlying pa-615

rameter K⋆.616

5.1. Illustration of well-posedness. In Section 4, it was suggested a specific617

design of initial data and measurement mechanism can provide a successful reconstruc-618

tion of the kernel K, and that the loss function is expected to be strongly convex.619

We observe it numerically as well. In particular, we set R = 20 and use Gaussian620

initial data, and plot the (marginal) loss function in Figure 2. Figure 3 depicts the621

convergence of some parameter values Kr(v, v
′) in this scenario against the corre-622

sponding loss function value. An exponential decay of the loss function, as expected623

from theory [42, Th.3], can be observed.624
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Fig. 3: Convergence of the parameter values Kr(v, v
′) from (2.1) for r = 2,9,13,15 to

the ground truth as the cost function converges.

The strictly positive-definiteness feature persists in a small neighborhood of the625

optimal solution K⋆. This means adding a small perturbation to K⋆, the minimal626

eigenvalue of the Hessian matrix HKC(K) stays above zero. In Figure 4 we present,627

for two distinct experimental setups, the minimum eigenvalue as a function of the628

perturbation to Kr(v, v
′). In both cases, the green spot (the ground-truth) is positive,629

and it enjoys a small neighborhood where the minimum eigenvalue is also positive, as630

predicted by Theorem 3.2. In the right panel, we do observe, as one moves away from631

the ground-truth, the minimal eigenvalue takes on a negative value, suggesting the632

loss of convexity. This numerically verifies that the well-posedness result in Theorem633

3.2 is local in nature. The panel on the left deploys the experiment design provided634

by Section 4. The simulation is ran over the entire domain of [0,1]2 and the positive-635

definiteness stays throughout the domain, hinting the proposed experimental design636

(D) can potentially be globally well-posed.To generate the plots, a simplified setup637

with R = 2 and constant initial data was considered.638

Fig. 4: Minimal eigenvalues of the Hessian HKC(K) around the true parameter K⋆
for two experimental designs. We perturb K by changing values in K1(1,−1) and
K2(−1,1). The ground-truth is marked green in both plots.
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5.2. Ill-conditioning for close measurement locations . We now provide639

numerical evidence to reflect the assertion from 3.2. In particular, the strong convexity640

of the loss function would be lost if measurement location x1 becomes close to x2.641

We summarize the numerical evidence in Figure 5. Here we still use R = 20 and642

constant initial data but vary the detector positions. To be specific, we assign values643

to x1 using {x
(0)
1 = c1 − T ,x

(1)
1 = c1 +

T
2
, x
(2)
1 = c1 +

4
5
T ,x

(3)
1 = x2 = c1 + T}. As644

the superindex grows, x1 → x2 with x
(3)
1 = x2 when the two measurements exactly645

coincide. For x1 = x2, the cost function is no longer strongly convex around the646

ground truth K⋆, as its Hessian is singular. The thus induced vanishing learning rate647

η = 2λmin

λ2
max

was exchanged by the learning rate for x1 = x
(2)
1 in this case to observe the648

effect of the gradient.649

In the first, third and fourth panel of Figure 5, we observe that the cost function650

as well as the parameter reconstructions for K9 and K15 nevertheless converge,but651

convergence rates that slow down significantly comparing purple (for x
(0)
1 ), blue (for652

x
(1)
1 ), green (for x

(2)
1 ) and orange (for x

(3)
1 ) due to smaller learning rates. The overlap653

of the parameter reconstructions for x1 ∈ {x
(2)
1 , x

(3)
1 } is due to the coinciding choice of654

the learning rate and a very similar gradient for parametersK9,K15 whose information655

is not reflected in the measurement in x1.656

As parameter K1 directly affects the measurement at x1, Panel 2 showcases the657

degenerating effect of the different choices of x1 on the reconstruction. Whereas658

convergence is still obtained in the blue curve (for x
(1)
1 ), the reconstructions of K1659

from measurements at x
(2)
1 (green) and x

(3)
1 (orange) clearly fail to converge to the660

true parameter value in black. This offset seems to grow with stronger degeneracy in661

the measurements.662
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Fig. 5: Cost function and reconstructions of Kr(+1,−1) (solid lines) and Kr(−1,+1)
(dotted lines) for r = 1,9,15 and R = 20 under different measurement locations for x1.

x1 takes the values of {x
(0)
1 = c1 − T ,x

(1)
1 = c1 +

T
2
, x
(2)
1 = c1 +

4
5
T ,x

(3)
1 = c1 + T} with

x
(3)
1 = x2.

6. Discussion. As discussed in [32, 58], to accurately extract tumbling statistics,663

it is necessary to track single-cell trajectories, which necessitates a low cell concentra-664

tion and is constrained to shorter trajectories. This will result in insufficient statistical665

accuracy for reliable extraction of velocity jump statistics. In this paper we present666

an optimization framework for the reconstruction of the velocity jump parameter K667

in the chemotaxis equation (1.1) using velocity averaged measurements (2.3) from668

the interior domain. The velocity-averaged measurements do not require tracking669

single-cell trajectories, thus allowing for the measurement of higher cell density over670

a longer period of time. This may provide a new and reliable way of determining the671

microscopic statistics. In the numerical setting when PDE-constrained optimization672

is deployed, depending on the experimental setup, the problem is can be either locally673

well-posedness or ill-conditioned. We further propose a specific experimental design674

that is adaptive to the discretization of K. This design decouples the reconstruction675

of local values of the parameter K using the corresponding measurements. The de-676

sign thus opens up opportunities to parallelization. As a proof of concept, numerical677

evidence were presented. They are in good agreement with the theoretical predictions678

A natural extension of the results presented in the current paper is the algo-679

rithmic performance in higher dimensions. The theoretical findings seem to ap-680

ply in a straightforward manner, but details need to be evaluated. Numerically681

one can certainly also refine the solver implementation. For example, it is possible682

that higher order numerical PDE solvers that preserve structures bring extra bene-683

fit. More sophisticated optimization methods such as the (Quasi-)Newton method or684

Sequential Quadratic Programming are possible alternatives for conducting the inver-685
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sion [8, 26, 44, 50]. Furthermore, we adopted a first optimize, then discretize approach686

in this article. Suggested in [4, 25, 37], a first discretize, then optimize framework687

could be bring automatic compatibility of forward and adjoint solvers, but extra diffi-688

culties [28] need to be resolved. Error estimates for continuous in space ground truth689

parameters as in [31] could help practitioners to select a suitable space-discretization.690

Our ultimate goal is to form a collaboration between practitioners to solve the691

real-world problem related to bacteria motion reconstruction [34]. To that end, ex-692

perimental design is non avoidable. A class of criteria proposed under the Bayesian693

perspective shed light on this topic, see [2] and references therein. In our context,694

it translates to whether the design proposed in Section 4 satisfies these established695

optimality criteria.696
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Appendix A. Derivation of the gradient (2.7). This section justifies formula697

(2.7) for the gradient of the cost function C with respect to K. Let us first introduce698

some notation: Denote by699

J (f) ∶=
1

2L

L

∑
l=1
(∫

R
∫
V
f(T,x, v)dv µl(x)dx − yl)

2

700

the loss for f ∈ Y = {h ∣ h, ∂th+v⋅∇h ∈ C
0([0, T ];L∞(R×V ))}. Note that mild solutions701

of (1.1) are contained in Y, since K(f) ∈ C0([0, T ];L∞(R × V )) by regularity of f702

from Lemma B.1. Then C(K) ∶= J (fK) in the notation of (2.3). The Lagrangian703

function for the PDE constrained optimization problem (2.5) reads704

L(K,f, g, λ) = J (f) + ⟨g, ∂tf + v ⋅ ∇f −K(f)⟩x,v,t + ⟨λ, f(t = 0) − ϕ⟩x,v,705

for f ∈ Y and g ∈ Z = {h ∣ h, ∂th + v ⋅ ∇h ∈ C
0([0, T ];L∞(V ;L1(R)))}. For f = fK , our706

cost function C(K) = J (fK) = L(K,fK , g, λ) and707

dC(K̂)

dK
=
∂L

∂K
∣
K=K̂,
f=fK̂

+
∂L

∂f
∣
K=K̂,
f=fK̂

∂fK
∂K
∣
K=K̂

708

To avoid the calculation of ∂fK
∂K

, choose the Lagrange multipliers g, λ such that709
∂L
∂f
∣K=K̂,
f=fK̂

= 0. Then710

dC(K̂)

dKr
=
∂L

∂Kr
∣
K=K̂,
f=fK̂

= −
∂⟨g,KK(f)⟩x,t,v

∂Kr
∣
K=K̂,
f=fK̂

711

= ∫

T

0
∫
Ir
fK̂(x, t, v

′
)(g(x, t, v′) − g(x, t, v))dxdt.712

To compute the gradient, g has to be specified. Recall the requirement713

0 =
∂L

∂f
∣
K=K̂,
f=fK̂

714

=
1

L

L

∑
l=1
(∫

R
∫
V
f(T )dv µl dx − yl)

∂

∂f
⟨µl, f(T )⟩x,v

RRRRRRRRRRRK=K̂,
f=fK̂

(A.1)715

+
∂

∂f

⎡
⎢
⎢
⎢
⎢
⎣

⟨g, ∂tf + v ⋅ ∇f −KK(f)⟩x,t,v + ⟨λ, f(t = 0)⟩x,v

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRK=K̂,
f=fK̂

716

We will motivate the choice of g such that the derivatives cancel out each other.717

Because we are dealing with mild solutions where integration by parts in time and718

space cannot be used right away, we approximate f and g by sequences of functions719

● (fn)n ⊂ C
1([0, T ];L∞(R × V )) ∩C0([0, T ];W 1,∞(R;L∞(V ))) that converge720

fn → f with ∂tfn + v ⋅ ∇fn → ∂tf + v ⋅ ∇f in C0([0, T ];L∞(R × V )) and721

● (gn)n ⊂ C
1([0, T ];L∞(V ;L1(R)))∩C0([0, T ];L∞(V ;W 1,1(R))) with gn → g722

with −∂tgn − v ⋅ ∇gn → −∂tg − v ⋅ ∇g in C0([0, T ];L∞(V ;L1(R))).723
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This is possible, because the respective spaces for fn and gn are dense in Y and Z.724

Replacing f by fn and g by gn in ⟨g, ∂tf + v ⋅ ∇f −K(f)⟩x,t,v, we obtain725

⟨g, ∂tf + v ⋅ ∇f −K(f)⟩x,t,v = lim
n
⟨gn, ∂tfn + v ⋅ ∇fn −K(fn)⟩x,t,v726

= lim
n
(⟨−∂tgn − v ⋅ ∇gn − K̃(gn), fn⟩x,t,v + ⟨fn(t = T ), gn(t = T )⟩x,v727

− ⟨fn(t = 0), gn(t = 0)⟩x,v)728

= ⟨−∂tg − v ⋅ ∇g − K̃(g), f⟩x,t,v + ⟨f(t = T ), g(t = T )⟩x,v − ⟨f(t = 0), g(t = 0)⟩x,v,729

where730

K̃K(g) ∶= ∫
V
K(x, v′, v)(g(x, t, v′) − g(x, t, v))dv′.731

Now, collect all terms in (A.1) with the same integration domain and equate them732

to 0. This leads to733

− ∂tg − v ⋅ ∇g − K̃K(g) = 0 in x∈R, v ∈V, t∈(0, T ),734

g(x, t = T, v) = −
1

L

L

∑
l=1
(∫

R
∫
V
f(T,x, v)dv µl(x)dx − yl)µl(x) in x∈R, v ∈V,735

λ = g(t = 0) in x∈R, v ∈V.736

Note that since g reflects the measurement procedure, it makes sense that g(t = T ) is737

isotropic in v. For computation of dC(K̂)
dKr

, use the solution g to the first two equations738

with kernel K = K̂ and f = fK̂ .739

Appendix B. Some a-priori estimates.740

By Assumption 2.1, semigroup theory yields the existence of a mild solution to741

(1.1)–(1.2).742

Lemma B.1. Let Assumption 2.1 hold and assume h ∈ L1((0, T );L∞(R × V )).743

Then there exists a mild solution744

f ∈ C0
([0, T ];L∞(R×V ))(B.1)745

to746

∂tf + v ⋅ ∇xf = K(f) + h,747

f(t = 0, x, v) = ϕ(x, v) ∈ L∞+ (R × V )748

that is bounded749

max
v
∥f(t)∥L∞(R) ≤ e

2∣V ∣CKtCϕ + ∫

t

0
e2∣V ∣CK(t−s)∥h(s)∥L∞(R×V ) ds.750

We carry out the proof once to make clear, how the constant in the bound is derived.751

Proof. Rewrite (1.1) as752

∂tf = Af + Bf + h753

with operators A ∶ D(A) → X , f ↦ −v ⋅ ∇xf and B ∶ X → X , f ↦ K(f), where754

the function spaces D(A) ∶= W 1,∞(R;L∞(V )) and X ∶= L∞(R × V ) are used. The755

transport operator A generates a strongly continuous semigroup T (t)u(x) = u(x−vt)756
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with operator norm ∥T (t)∥ ≤ 1. Clearly, B is bounded in operator norm by 2∣V ∣CK .757

The bounded perturbation theorem, see e.g. [18], shows thatA+B generates a strongly758

continuous semigroup S with ∥S(t)∥ ≤ e2∣V ∣CKt. As ϕ ∈ X , (1.1) admits a mild solution759

f(t) = S(t)ϕ + ∫
t

0
S(t − s)h(s)ds.

760

The regularity of the solution of (1.1)–(1.2) is improved by more regular initial761

data. This is exploited in the proof of ill-conditioning for pointwise measurement762

closeness in Theorem 3.3.763

Corollary B.2. Let Assumption 2.1 hold.764

a) Equation (1.1) has a mild solution f is bounded765

(B.2) max
v
∥f(t)∥L∞(R) ≤ e

2∣V ∣CKtCϕ ≤ e
2∣V ∣CKTCϕ =∶ Cf .766

b) If, additionally, the initial data ϕ is uniformly continuous in x, uniformly in v, then767

f is uniformly continuous in x, uniformly in v, t, i.e. maxv ∣f(t, x, v)−f(t, y, v)∣ < ε768

for all t ∈ [0, T ], if ∣x − y∣ < δ(ε).769

Proof. Assertion a) is a direct consequence of lemma B.1. We focus on proving770

assertion b). Let ε > 0. By uniform continuity of ϕ in x, one can choose δ′ such that771

ess sup
∣x−y∣<δ′,v

∣ϕ(x, v) − ϕ(y, v)∣ < e−2CK ∣V ∣T ε/2.(B.3)772

Now consider δ ∶=min (δ′, εe−2CK ∣V ∣T

8Cf ∣V ∣CK(R−1)). Integration along characteristics yields773

ess sup
∣x−y∣<δ,v

∣f(t, x, v) − f(t, y, v)∣774

≤ ess sup
∣x−y∣<δ,v

∣ϕ(x − vt, v) − ϕ(y − vt, v)∣775

+ ess sup
∣x−y∣<δ,v

∣ ∫

t

0
K(f)(t − s, x − vs, v) − K(f)(t − s, y − vs, v)ds∣776

≤ ess sup
∣x−y∣<δ,v

∣ϕ(x, v) − ϕ(y, v)∣777

+ 2CK ∣V ∣ ∫
t

0
ess sup
∣x−y∣<δ,v′

∣f(s, x, v′) − f(s, y, v′)∣ds778

+ 2Cf ∣V ∣ ess sup
∣x−y∣<δ,v

∫

t

0
max
v′,v′′
∣K(x − vs, v′, v′′) −K(y − vs, v′, v′′)∣ds779

=∶ (i) + (ii) + (iii),780

where (i) ≤ ε
2
e−2CK ∣V ∣T by (B.3). By symmetry, (iii) = 2 ⋅ (iv) where (iv) coincides781

with (iii), but x ≥ y. As K is a step function in space (2.1), its difference can only be782

non zero if a jump occurred between x − vs and y − vs. Boundedness of K in (2.10)783

then lead to the estimate784

(iii) = 2 ⋅ (iv) ≤ 2 ⋅ 2Cf ∣V ∣ ess sup
∣x−y∣<δ,v

∫

t

0
CK

R−1
∑
r=1

1(x−vs,y−vs](ar)ds(B.4)785

≤ 4Cf ∣V ∣CK(R − 1)δ ≤
ε

2
e−2CK ∣V ∣T .786
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In summary, Gronwall’s lemma yields787

ess sup
∣x−y∣<δ,v

∣f(t, x, v) − f(t, y, v)∣ ≤ εe−2CK ∣V ∣(T−t) ≤ ε.788

Again, semigroup theory shows existence of the adjoint equation (2.8) with cor-789

responding bounds.790

Lemma B.3. Let h ∈ L1((0, T );L∞(V ;L1(R))), ψ ∈ L1(R) and let (2.10) hold.791

Then the equation792

−∂tg − v ⋅ ∇xg = αL̃(g) − σg + h,(B.5)793

g(t = T ) = ψ(x)794

with α ∈ {0,1} and L̃(g) ∶= ∫ K(x, v
′, v)g(x, t, v′)dv′ and σ(x, v) ∶= ∫ K(x, v

′, v)dv′795

has a mild solution796

g ∈ C0 ([0, T ];L∞(V ;L1
(R)))(B.6)797

that satisfies798

∥g(t)∥L∞(V ;L1(R)) ≤ e
(1+α)∣V ∣CK(T−t) (∥ψ∥L1(R) + ∫

T−t

0
max

v
∥h(T − s, v)∥L1(R) ds) .

(B.7)

799

If, additionally, h ∈ L∞([0, T ] × V ;L1(R)), then800

∥g(t)∥L∞(V ;L1(R))(B.8)801

≤ e(1+α)∣V ∣CK(T−t)∥ψ∥L1(R) +
e(1+α)∣V ∣CK(T−t) − 1

(1 + α)∣V ∣CK
ess sup

t,v
∥h(t, v)∥L1(R).802

Proof. Repeating the arguments in the proof of Lemma B.1, semigroup theory803

yields the existence of a mild solution804

g(t) = S(T − t)ψ + ∫
T−t

0
S(T − t − s)h(T − s)ds805

for the semigroup S(t) generated by the operator v ⋅ ∇x + αL̃ − σ with ∥S(t)∥ ≤806

e(1+α)∣V ∣CKt. This yields (B.7) and (B.8).807

Appendix C. Proof of Lemma 3.11-3.12. In this section, we provide the808

proof for the two Lemmas in section 3.2. In particular, Lemma 3.11 discusses the809

smallness of the first term in (3.16).810

Proof for Lemma 3.11. By the assumption on the initial data and Corollary B.2811

b), f is uniformly continuous in x, uniformly in v, t. For n = 0, the boundedness (3.17)812

is a consequence of the explicit representation813

ḡ0(t, x, v0) = e
−∫ T−t

0 σ(x+v0τ,v0)dτ(µη
2 − µ

η
1)(x + v0(T − t))(C.1)814

together with the step function shape (2.1) of K, the continuity of f and our assump-815

tions: Write p0(t, x, v0, v
′) ∶= f(x, t, v′)e−∫

T−t
0 σ(x+v0τ,v0)dτ and assume without loss of816
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generality x1 ≥ x2, then817

∫
Ir
f ′ḡ0 dx818

= ∫
Ir
p0(t, x, v0, v

′
)(µη

2 − µ
η
1)(x + v0(T − t))dx819

= −∫

ar−1

ar−1−(x1−x2)
p0(t, x + (x1 − x2), v0, v

′
)µη

2(x + v0(T − t))dx820

+ ∫

ar

ar−(x1−x2)
p0(t, x, v0, v

′
)µη

2(x + v0(T − t))dx821

+ ∫

ar−(x1−x2)

ar−1

(p0(t, x, v0, v
′
) − p0(t, x + (x1 − x2), v0, v

′
))µη

2(x + v0(T − t))dx,822

where we used the substitution x → x − (x1 − x2) for the integration domain of test823

function µη
1(x) = µ

η
2(x − (x1 − x2)). By uniform continuity and boundedness of f a824

similar argumentation as in (B.4) shows that p0(t, x, v0, v
′) is uniformly continuous in825

x, uniformly in t, v0, v
′, as well. The corresponding threshold from the epsilon-delta826

criterion is denoted by δp0(ε). Then, for 0 ≤ ∣x1 − x2∣ < δ0(ε) ∶= min(minr ∣ar − x2∣ −827

T − η0, δp0(ε)), the first two integrals vanish, because µη
2(x+ v0(T − t)) = 0 for all x in828

the integration domain. We are left with829

∣∫
Ir
f ′ḡ0 dx∣ ≤

ar−(x1−x2)

∫
ar−1

∣p0(t, x, v0, v
′
) − p0(t, x + (x1 − x2), v0, v

′
)∣µη

2(x + v0(T − t))dx830

≤ ε∫
R
µη
2(x + v0(T − t))dx = ε.831

For n ≥ 1, source iteration shows that the solution to (3.14) has the form832

ḡn(t, x, v0) =

T−t

∫
0

∫
V
...

T−t−∑n−2
j=0 sj

∫
0

∫
V
pn(t, x, (vi)i=0,...,n, (sj)j=0,...,n−1)⋅833

(µ2 − µ1)(x +
n−1
∑
l=0

vlsl + vn (T − t −
n−1
∑
l=0

sl)) dvn dsn−1...dv1 ds0 .834

The function pn is bounded 0 ≤ pn ≤ C
n
K and satisfies835

∫

T

0
∣pn(t, x + vnt, (vi)i, (sj)j) − pn(t, y + vnt, (vi)i, (sj)j)∣dt < ε836

for ∣x − y∣ < δpn(ε), uniformly in (vi)i, (sj)j . The assertion then follows in analogy to837

the case n = 0.838

Lemma 3.12 argues the smallness of the second term in (3.16). We provide the839

proof below. It is a consequence of the smallness of ḡ>N by Lemma B.3 and the840

boundedness of f .841

Proof for Lemma 3.12. Application of lemma B.3 to g = ḡ>N , h = L̃ḡN , α = 1 and842

ψ = 0 yields843

max
v
∫
R
∣ḡ>N(t)∣dx ≤ e

2CK ∣V ∣(T−t)
∫

T−t

0
sup
v
∥L̃(ḡN)(T − s, v)∥L1(R) ds844

≤ ∣V ∣CK(T − t)e
2CK ∣V ∣(T−t) ess sup

s,v
∥ḡN(s, x, v)∥L1(R).845
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Now, application of the same lemma to the evolution equation (3.14) for gn, n =846

1, ...,N , shows847

ess sup
t,v

∫
R
∣ḡn∣dx ≤ (e

CK ∣V ∣T − 1) ess sup
s,v

∫
R
∣ḡn−1(s, x, v)∣dx.848

The boundedness of f in (B.2) and repeated application of the above estimate lead849

to850

∣∫

T

0
max

v
∫
R
f ′ḡ>N dxdt∣851

≤
T 2

2
∣V ∣CKCϕe

2∣V ∣CKT
(eCK ∣V ∣T − 1)N ess sup

s,v
∫
R
∣ḡ0(s, x, v)∣dx852

≤
T 2

2
∣V ∣CKCϕe

2∣V ∣CKT (eCK ∣V ∣T − 1)
N
ess sup

s,v
∫
R
∣(µη

2 − µ
η
1)(x + vs)∣dx853

≤ T 2
∣V ∣CKCϕe

2∣V ∣CKT
(eCK ∣V ∣T − 1)NCµ,854

where ∣ḡ0(s, x, v)∣ ≤ ∣(µ
η
2 − µ

η
1)(x + vs)∣ can be observed from the explicit formula for855

ḡ0 in (C.1).856

Appendix D. Proof of Lemmas in Section 4. We provide proofs for857

Lemma 4.8-4.9 in this section.858

Proof of Lemma 4.8. Use the explicit representations859

g
(0)
1 (t, x, v) = e

−(T−t)σ1(v)µ1(x + v(T − t)),(D.1)860

f (0)(t, x, v) = e−tσ1(v)ϕ(x − vt)(D.2)861

with σ1(v) = ∫V K1(v
′, v)dv′ and set without loss of generality c1 = 0. Since f

(0)∣I1 =862

f
(0)
1 in the notation of the proof of Proposition 4.3, one obtains for (v, v′) = (+1,−1)863

∫

T

0
∫
I1
f (0)(v′)(g

(0)
1 (v

′
) − g

(0)
1 (v))dxdt864

= ∫

T

0
∫
I1
e−tσ1(v′)ϕ1(x − v

′t)(e−(T−t)σ1(v′)µ1(x + v
′
(T − t))865

− e−(T−t)σ1(v)µ1(x + v(T − t)))dxdt866

≥ e−Tσ1(−1)T ∫
a1

a0+T
ϕ1(x)µ1(−T + x)dx − ∫

T

T− dµ+d

2

∫
I1
ϕ1(x)µ1(−T + x)dxdt867

≥ e−TCK ∣V ∣TCϕµ −
dµ + d

2
Cϕµ,868

where the first inequality is due to the fact that ϕ1(x − v
′t)µ1(x + v(T − t)) = ϕ1(x +869

t)µ1(x+(T − t)) ≠ 0 only for x ∈ [−t−d,−t+d] ∩ [−2T + t−dµ,−2T + t+dµ] ⊂ I1 which870

is empty for t ≤ T −
dµ+d
2

.871
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For (v′, v) = (−1,+1), instead, we obtain872

∣∫

T

0
∫
I1
f (0)(v)(g

(0)
1 (v) − g

(0)
1 (v

′
))dxdt∣873

= ∣∫

T

0
∫
I1
e−tσ1(v)ϕ1(x − vt)(e

−(T−t)σ1(v)µ1(x + v(T − t))874

− e−(T−t)σ1(v′)µ1(x + v
′
(T − t)))dxdt∣875

≤ Cϕµ
d + dµ

2
876

since877

● ϕ1(x − vt)µ1(x + v(T − t)) = ϕ1(x − t)µ1(x + T − t) vanishes, as its support878

[t − d, t + d] ∩ [−2T + t − dµ,−2T + t + dµ] = ∅ is empty by construction of879

T > d ≥ dµ and880

● the support [t − d, t + d] ∩ [−t − dµ,−t + dµ] of ϕ1(x − vt)µ1(x + v
′(T − t)) =881

ϕ1(x − t)µ1(x − (T − t)) is non-empty only for t ≤
d+dµ

2
.882

Since e−TCK ∣V ∣ −
dµ+d
T
> 0 by assumption, this proves the assertion.883

To show inequality (4.8) in Lemma 4.9, decompose for some N ∈ N to be deter-884

mined later885

S =
N

∑
n,k=0
n+k≥1

∫

T

0
∫
I1
f (k)(v′)(g

(n)
1 (v

′
) − g

(n)
1 (v))dxdt886

+ ∫

T

0
∫
I1
f(v′)(g

(>N)
1 (v′) − g

(>N)
1 (v))dxdt(D.3)887

+
N

∑
n=0
∫

T

0
∫
I1
f (>N)(v′)(g

(n)
1 (v

′
) − g

(n)
1 (v))dxdt ,888

where g
(n)
1 and g

(>N)
1 solve (3.14) and (3.15) respectively and f (k) are solutions to889

∂tf
(k)
− v ⋅ ∇xf

(k)
= L(f (k−1)) − σf (k),890

f (k)(t = 0, x, v) = 0,891

with L(h) ∶= ∫V K(v, v
′)h(t, x, v′)dv′, and f (>N) satisfies892

∂tf
(>N)

− v ⋅ ∇xf
(>N)

= L(f (N) + f (>N)) − σf (>N),893

f (>N)(t = 0, x, v) = 0.894

Each part of S in representation (D.3) is estimated separately in the subsequent three895

lemmas.896

Lemma D.1. In the setting of proposition 4.7,897

∣∫

T

0
∫
I1
f (k)(v′)(g

(n)
1 (v

′
) − g

(n)
1 (v))dxdt∣ ≤ 2max

v,v′
∫

T

0
∫
I1
f (k)(v′)g

(n)
1 (v)dxdt898

≤ 2 (CK ∣V ∣)
n+k

Tn+k+1Cϕµ899
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Proof. Source iteration900

g
(n)
1 (t, x, v0) = ∫

T−t

0
∫
V
e−s0σ(v0)K1(v̂1, v0)g

(n−1)
1 (t + s0, x + v0s0, v̂1)dv̂1 ds0901

≤ ∣V ∣ ∫
T−t

0
e−s0σ(v0)K1(v1, v0)g

(n−1)
1 (t + s0, x + v0s0, v1)ds0,902

f (k)(t, x, v0) = ∫
t

0
∫
V
e−s0σ(v0)K(v0, v̂1)f

(k−1)
(t − s0, x − v0s0, v̂1)dv̂1 ds0903

≤ ∣V ∣ ∫
t

0
e−s0σ(v0)K(v0, v1)f

(k−1)
(t − s0, x − v0s0, v1)ds0,904

where v1 = −v0, together with the explicit formulas (D.1)–(D.2) leads to estimates905

0 ≤ g
(n)
1 (x, t, v0) ≤ (CK ∣V ∣)

n
T−t

∫
0

...

T−t−∑n−2
i=0 si

∫
0

µ1 (x +
n−1
∑
i=0

visi + vn (T − t −
n−1
∑
i=0

si))

(D.4)

906

dsn−1...ds0,907

0 ≤ f (k)(x, t, v0) ≤ (CK ∣V ∣)
k

t

∫
0

...

t−∑k−2
i=0 si

∫
0

ϕ(x −
k−1
∑
i=0

visi + vk (t −
k−1
∑
i=0

si)) dsk−1...ds0.908

Using again f (k)∣I1 = f
(k)
1 with initial condition ϕ1 in the notation of the proof of909

Porposition 4.3, this proves910

∣∫

T

0
∫
I1
f (k)(v′)(g

(n)
1 (v

′
) − g

(n)
1 (v))dxdt∣ ≤ 2max

v,v′
∫

T

0
∫
I1
f
(k)
1 (v

′
)g
(n)
1 (v)dxdt911

≤ 2 (CK ∣V ∣)
n+k

Tn+k+1Cϕµ.912

The following bound for the second summand in (D.3) is obtained in analogy to913

Lemma 3.12.914

Lemma D.2. In the setting of Proposition 4.7,915

max
v
∣∬ f(v′)(g

(>N)
1 (v′) − g

(>N)
1 (v))dxdt∣916

≤ 4T 2
∣V ∣CKCϕe

2∣V ∣CKT
(eCK ∣V ∣T − 1)N C̄µdµ =∶ C

′
(T )(eCK ∣V ∣T − 1)N917

For the third term in (D.3), one establishes the following bound.918

Lemma D.3. In the setting of Proposition 4.7,919

max
v
∣∬ f (>N)(v′)(g(n)(v′) − g(n)(v))dxdt∣920

≤ 4∣V ∣CKT
2e2∣V ∣CKT

(eCK ∣V ∣T − 1)NCϕ (CK ∣V ∣T )
n
C̄µdµ921

=∶ C ′′(T )(eCK ∣V ∣T − 1)N (CK ∣V ∣T )
n

922

Proof. An estimate for f (>N) can be derived analogously as the estimate for ḡ>N923

in Lemma 3.12 from Lemma B.1924

∥f (>N)∥L∞([0,T ]×R×V ) ≤ ∣V ∣CKTe
2∣V ∣CKT

(eCK ∣V ∣T − 1)NCϕ.925

Together with (D.4), this proves the lemma.926
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Lemma 4.9 can now be assembled from the previous lemmas.927

Proof of Lemma 4.9. Lemmas D.1, D.2 and D.3 yield the (v, v′) independent928

bound929

∣S∣ ≤ 2CϕµT
N

∑
n,k=0
n+k≥1

(CK ∣V ∣T )
n+k
+ (eCK ∣V ∣T − 1)N (C ′(T ) +C ′′(T )

N

∑
n=0
(CK ∣V ∣T )

n
)930

≤ 4CϕµT
CK ∣V ∣T

(1 −CK ∣V ∣T )2
+ (eCK ∣V ∣T − 1)N (C ′(T ) +C ′′(T )

1

1 −CK ∣V ∣T
)931

=∶ 4CϕµT
CK ∣V ∣T

(1 −CK ∣V ∣T )2
+ (eCK ∣V ∣T − 1)NC(T ).932

Because eCK ∣V ∣T − 1 < 1 due to the assumption T < (1 − δ) 0.09
CK ∣V ∣ , the second term in933

the last line becomes arbitrarily small for large N ∈ N, which shows that ∣S∣ is in fact934

bounded by the first term.935
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