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KINETIC CHEMOTAXIS TUMBLING KERNEL DETERMINED
FROM MACROSCOPIC QUANTITIES\ast 
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Abstract. Chemotaxis is the physical phenomenon that bacteria adjust their motions according
to chemical stimulus. A classical model for this phenomenon is a kinetic equation that describes the
velocity jump process whose tumbling/transition kernel uniquely determines the effect of a chemi-
cal stimulus on bacteria. The model has been shown to be an accurate model that matches with
bacteria motion qualitatively. For a quantitative modeling, biophysicists and practitioners are also
highly interested in determining the explicit value of the tumbling kernel. Due to the experimental
limitations, measurements are typically macroscopic in nature. Do macroscopic quantities contain
enough information to recover microscopic behavior? In this paper, we give a positive answer. We
show that when given a special design of initial data, the population density, one specific macroscopic
quantity as a function of time, contains sufficient information to recover the tumbling kernel and its
associated damping coefficient. Moreover, we can read off the chemotaxis tumbling kernel using the
values of population density directly from this specific experimental design. This theoretical result
using kinetic theory sheds light on how practitioners may conduct experiments in laboratories.

Key words. kinetic chemotaxis equation, velocity jump process, singular decomposition, unique
reconstruction, tumbling kernel
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1. Introduction. Bacteria and microorganisms can move autonomously and
react to external stimuli, such as food or danger, which is an important factor in evo-
lution. If the movement is affected by a chemical stimulus, this phenomenon is called
chemotaxis. Chemotaxis phenomena are widely observed among motile organisms
and particularly well studied for Escherichia coli (E.coli) cells. When the bacterial
movement consists of two alternating phases in which they either run along a straight
line or reorient by changing the direction of travel (tumbling), their movement is
called a velocity jump process.

The kinetic chemotaxis model describes this behavior statistically [1, 9, 15, 30]:

\partial 

\partial t
f(x, t, v) + v \cdot \nabla xf(x, t, v) =\scrL (f)(x, t, v) - \sigma (x, v)f(x, t, v),(1.1)

f(x, t= 0, v) = \phi (x, v).(1.2)
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KINETIC CHEMOTAXIS KERNEL RECONSTRUCTION 569

The equation describes the evolution of the population density of bacteria f(x, t, v)
on the phase space (x, v) \in \BbbR d \times V , d \in \{ 2,3\} , during the time interval t \in [0, T ]
with initial condition \phi . Experimental data suggest that bacteria move at a constant
speed, and we set V := \BbbS d - 1 to reflect this fact.

The left side of (1.1) describes the motion of the bacteria moving along a straight
line in direction v from location x. The two terms \scrL (f) and \sigma f on the right-hand
side of the equation describe the velocity jump process arising from the reorientation
by tumbling. In particular,

\scrL (f)(x, t, v) =
\int 
V

K(x, v, v\prime )f(x, t, v\prime )dv\prime (1.3)

collects the particles that change their velocity from v\prime to v, and

\sigma (x, v) =

\int 
V

K(x, v\prime , v)dv\prime (1.4)

describes the fraction of particles changing velocity from v to others, and thus disap-
pearing in a statistical sense from the phase point (x, t, v). As such, these two terms
are called the gain and loss terms, respectively. We should note that in real applica-
tions, bacteria sometimes generate self-attraction/propulsion and this self-generated
stimulus should be included in the tumbling kernel K(x, v, v\prime ) through the ``concen-
tration"" term; see chemotaxis modeling [7, 8, 9, 10]. In our paper we assume this is
the next order concern, and set K to be a fixed function in space. Then our model
turns to be a linear Boltzmann equation. We discuss more details in the conclusion
section 5.

Different types of bacteria take different values of K and \sigma and are differently
affected by the concentrations of the chemical stimulus (chemoattractant). Since the
tumbling kernel K and the damping factor \sigma uniquely determine the law of the bac-
terial motion in (1.1), biologists and practitioners are highly interested in identifying
them for future motion predictions; see important applications in bioreactors [37], the
spread and prevention of diseases [20], and biofilm formation [28].

To identify K and \sigma in practice, experiments are conducted to measure observ-
ables of bacterial behavior so to indirectly infer the tumbling coefficient. The practical
difficulty is that measuring the time dynamical data of velocity dependent bacteria
density f(x, t, v) is not always feasible. One would have to trace the trajectory of
each single bacterium for a long time, which is technically difficult when there are a
lot of bacteria [19]. Instead, the time evolution of the macroscopic quantities such as
the density,

\rho (x, t) := \langle f\rangle =
\int 
V

f dv,

is much easier to obtain by counting bacteria on a time series of photos; see also other
more sophisticated methods [21]. This poses an interesting mathematical question:
can the macroscopic measurements on bacteria density, as a function of time, uniquely
determine the values of K and \sigma ?

At first sight, the answer should be negative. Indeed, the to-be-inferred param-
eters are functions posed on the microscopic level and have v dependence, while the
measurements are purely on the macroscopic level with v dependence eliminated.
This mismatch leads to some mathematical difficulty, to overcome which, a mecha-
nism that triggers information on the microscopic level is needed. We introduce this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

0/
24

 to
 1

32
.1

87
.2

53
.3

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



570 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

mechanism by examining the time dependence, and playing with the singularity in
the initial data. It turns out that if one places a special set of singularity in the initial
data and introduces the corresponding singularity to the measuring operator that is
concentrated at the compatible time and location, we can prove that the coefficients
K and \sigma are uniquely reconstructable. Furthermore, the values can be directly read
off from the measurements.

The mathematical machinery that allows us to explicitly express the reconstruc-
tion is a technique termed singular decomposition. It is a technique that is specifi-
cally designed for studying inverse problems from kinetic theory, and has been tra-
ditionally used to investigate stationary radiative or photon transport equation; see
[2, 3, 4, 6, 12, 24, 33, 38] for instance. The most classical use of the singular decom-
position allows the data to be v dependent, but the measuring location is typically
set only to be on the boundary. Difficulties are introduced when only velocity inde-
pendent measurements are available [5, 11, 33, 44]. In this setting, one no longer has
the luxury of freedom from the velocity dependence. In our project, however, we use
measurements in time, containing information from the interior of the domain. The
main task in this project is to investigate if this freedom could counter the difficulties
induced by the loss of velocity information. It turns out from our study that the
availability of short time data is also crucial. In both the reconstruction of \sigma and K,
we heavily rely on the design of initial/measuring time and locations that precisely
reflect the parameters to be reconstructed.

Using measurements to identify bacteria motion is of high practical interests to bi-
ologists. However, even though chemotaxis and inverse problems are both very active
areas of research, largely hindered by the lack of rigorous mathematical tools, very
little is known theoretically if the experiments can truly reflect bacteria chemotaxis
behavior. In practice, the most popular parabolic Keller--Segel model is on the macro-
scopic level, and it is common for practitioners to assume a heuristically obtained
parametrized form for the model coefficients and estimate only these parameters by
experimental data [18, 17, 34, 40]. Numerically, one can study the identifiability of
the chemoattractant sensitivity for the macroscopic models, as in [14, 16], where it
was shown how the reconstruction from the regularized problem converges to the true
solution as the noise vanishes.

As the techniques such as kinetic theory and singular decomposition ripen, we
are convinced that these applications can be reexamined afresh, with a more rigorous
viewpoint. It is our aim to prove the unique reconstructability of the kinetic tumbling
kernel K and loss coefficient \sigma using only the macroscopic measurements. Hopefully
these arguments provide foundations to the algorithms that execute the reconstruction
in reality.

The article is structured as follows: In section 2, we provide the problem setup.
Sections 3 and 4 build the heart of this article and contain the proofs of the unique
reconstructability of \sigma and K, respectively. For both cases, the singular decomposi-
tion technique will be used for carefully prepared initial data and measurement test
function. The article is concluded by section 5.

2. Problem setup. We describe the setup of the lab experiment in this section.
In the lab experiment, bacteria are placed in an environment with a fixed chemical

concentration in a controlled manner, so K and \sigma can be thought as constants in time.
Along time, we take measurement of the macroscopic bacteria density locally in time
and space.

Mathematically we view (1.1) as the model equation for bacteria motion. Though
bacteria are supported in an agar plate so the plate provides certain boundary con-
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KINETIC CHEMOTAXIS KERNEL RECONSTRUCTION 571

ditions, for simplicity, we assume the domain is infinitely big so the boundary has no
effect on the dynamics. We should note, however, that the inversion mechanism that
is to be employed in this paper requires a compactly supported initial condition and
data measurement at small time, so boundary conditions, even if included in the sys-
tem, are expected to play no role in the reconstruction. Hence we expect the inversion
mechanism to be easily extended to treat the interior of a finite domain problem in a
rather straightforward manner.

The initial condition can be controlled, and we prescribe it as \phi (x, v). In par-
ticular, singularity in the v domain can be realized. To be more specific, in lab
experiments, one can confine bacteria in a thin pipe and release bacteria from the
pipe into the environment to generate an initial condition that is singular in velocity.
These experiments were conducted, for example, in [39] where E.coli bacteria were ex-
amined, and in [26] where the authors manipulated synthetic microswimmers through
microconfinement. The authors of [43] and the references therein investigate another
possibility, showing that Euglena gracilis algae can be controlled by polarized light.

All results in this paper are presented for d= 3, but the method can be extended
to deal with a d= 2-dimensional setup as well.

For all given initial data \phi (x, v), we denote the solution to the PDE (1.1) equipped
with initial data (1.2) by f\phi , and the macroscopic quantity is

\rho \phi (x, t) := \langle f\phi \rangle =
\int 
V

f\phi dv .

This builds the following map:

\Lambda K : \phi \rightarrow \rho \phi (t, x) .

To be more compatible with the real practice, for each detector, we let \psi (x, t) \in 
C\infty 
c present its profile, then the detector's reading would be \rho \phi tested on this test

function, the output of the following measurement operator:

M\psi (f\phi ) =M\psi (\rho \phi ) =

\int T

0

\int 
\BbbR 3

\rho \phi \psi (x, t)dxdt .(2.1)

Since the measurement operator only acts on the density \rho \phi , we abuse the notation
and let M\psi (f\phi ) =M\psi (\rho \phi ) when \rho \phi = \langle f\phi \rangle .

It is immediate that for every fixed \psi , the measurement is the one instance of
reading of \Lambda K [\phi ]:

M\psi (f\phi ) =

\int T

0

\int 
\BbbR 3

\psi (t, x)\Lambda K [\phi ](t, x)dtdx .

We claim that \Lambda K encodes all the needed information to uniquely recover \sigma and
K, and the reconstruction process depends on the special design of \phi and \psi , namely,
the following.

Theorem 2.1. Under mild conditions, one can uniquely reconstruct \sigma and K
using the map \Lambda K . Moreover, by properly choosing (\phi ,\psi ), the reconstruction can be
explicit using the reading of M\psi (f\phi ).

Throughout the paper we assume \sigma and K are time independent, and the admis-
sible sets are,

\scrA \sigma = \{ \sigma \in C+(\BbbR 3 \times V ) | \| \sigma \| \infty \leq C\sigma \} ,
\scrA K = \{ K \in C+(\BbbR 3 \times W ) | \| K\| \infty \leq CK\} ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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572 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

where we set W := \{ (v, v\prime ) \in V \times V | v \not = v\prime \} . The reconstruction procedure is
performed on these sets.

3. Reconstructing \bfitsigma . We dedicate this section to reconstructing \sigma (x, v), and
showing the following theorem.

Theorem 3.1 (unique reconstruction of \sigma ). Let \sigma \in \scrA \sigma and K \in \scrA K . The map
\Lambda K uniquely determines \sigma (x, v). In particular, for any (x, v), by a proper choice of
\phi and \psi , one can explicitly express \sigma (x, v) in terms of M\psi (\rho \phi ), with \rho \phi being the
density associated with f\phi that solves (1.1).

Remark 3.2. We note the statement of the result can be extended to treat time
dependent \sigma as well. To recover \sigma (x, t, v) at a particular time t-horizon, the data
\phi need to be provided, and the measurements need to be collected close enough to
t. As the following proof shows, if \phi is provided at t0 > t - C with C = (| V | CK) - 1

for CK being the bound from the admissible set, the time dependence of \sigma can be
reconstructed as well.

The main technique used in the proof is termed the singular decomposition de-
veloped in [12], and then extensively used in other following works [2, 3, 4, 6, 24, 38].
The idea is to design a special set of sources \phi that introduces singularity to the
solution. In a short time, the singularity is mostly preserved along the propagation
trajectory. By properly choosing the compatible \psi , the singular information can be
picked up by the measurements. Mathematically, to identify the singular compo-
nent of the solution, we decompose f\phi into parts that exhibit different regularity. In
particular, we decompose f into

f\phi = f\phi ,0 + f\phi ,\geq 1,

where f\phi ,0 and f\phi ,\geq 1 solve the following equations, respectively:\biggl\{ 
\partial tf\phi ,0 + v \cdot \nabla f\phi ,0 = - \sigma f\phi ,0,
f\phi ,0(x, t= 0, v) = \phi (x, v),

(3.1)

and \biggl\{ 
\partial tf\phi ,\geq 1 + v \cdot \nabla f\phi ,\geq 1 = - \sigma f\phi ,\geq 1 +\scrL (f\phi ,0 + f\phi ,\geq 1),

f\phi ,\geq 1(x, t= 0, v) = 0.
(3.2)

As a direct consequence,

M\psi (\rho \phi ) =M\psi (\rho \phi ,0) +M\psi (\rho \phi ,\geq 1) ,

where we denote \rho \phi ,i :=
\int 
f\phi ,idv for i\in \{ 0,\geq 1\} .

Intuitively, the division of f\phi into the two components is to separate the particles
that behave differently. In particular, f\phi ,0 denotes the number of bacteria on the phase
space that tumble out of the state they were in. So in some sense, the distribution
function ``decays"" along the trajectory with rate \sigma . f\phi ,\geq 1, on the other hand, collects
the distribution of all remaining bacteria. The right-hand side of (3.2) has three
terms, representing the bacteria tumbling out of the state (thereby decaying in the
distribution sense by \sigma ), tumbling in from the source f\phi ,0, and tumbling in by f\phi ,\geq 1.
Since f\phi ,0 contains \sigma information solely, one would expect to reconstruct \sigma if f\phi ,0
information can be identified from the full f\phi .

The core of analysis lies in designing a special set of \phi and \psi that has compatible
singularities to each other so that

M\psi (\rho \phi ) =M\psi (\rho \phi ,0) and M\psi (\rho \phi ,\geq 1) = 0 ,(3.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

0/
24

 to
 1

32
.1

87
.2

53
.3

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



KINETIC CHEMOTAXIS KERNEL RECONSTRUCTION 573

so we have access to the value of M\psi (\rho \phi ,0) that will be further used to reconstruct
\sigma . When the context is clear below, we drop the \phi dependence in \rho to have a concise
notation.

We now list the conditions for \phi and \psi so to have (3.3) hold true. Let \phi x,\psi x \in 
C\infty 
c (\BbbR 3), \phi v \in C\infty 

c (\BbbR 2), and \psi t \in C\infty 
c (\BbbR ) be nonnegative functions compactly sup-

ported in the unit ball Bn(0,1)\subset \BbbR n :

supp(\phi x), supp(\psi x)\subset B3(0,1), supp(\phi v)\subset B2(0,1), supp(\psi t)\subset B1(0,1),

0\leq \phi x,\psi x, \phi v,\psi t \leq 1 with \phi x(0) =\psi x(0) = \phi v(0) =\psi t(0) = 1, and(3.4)

1 =

\int 
\BbbR 3

\phi x(x)dx=

\int 
\BbbR 3

\psi x(x)dx=

\int 
\BbbR 2

\phi v(y)dy=

\int 
\BbbR 
\psi t(t)dt.

Letting (xi, vi) \in \BbbR 3 \times V be the initial location and velocity of the bacteria con-
centration, and (xm, tm)\in \BbbR 3\times (0, T ) be the measurement location and time, we now
set the initial data \phi and measurement test function \psi to be

\phi (x, v) =
1

\varepsilon 3\delta 2
\phi x

\biggl( 
x - xi
\varepsilon 

\biggr) 
\phi v

\biggl( 
\BbbP vi(v)
\delta 

\biggr) 
j(v;vi) \in C\infty 

c ,

\psi (x, t) =
1

\eta 
\psi x

\biggl( 
x - xm
\varepsilon 

\biggr) 
\psi t

\biggl( 
t - tm
\eta 

\biggr) 
\in C\infty 

c(3.5)

for small scaling parameters \varepsilon , \delta , \eta > 0. Furthermore, \BbbP vi : \BbbS \setminus \{  - vi\} \rightarrow \BbbR 2 denotes the
stereographic projection on the direction of  - vi, with its absolute Jacobi determinant
given by j(v;vi) := 1/((1 + \langle v, vi\rangle )2| \langle v, vi\rangle | ). Accordingly, we also define a quantity
that will be used in the later discussion:

C\phi ,\psi =

\int 
\BbbR 3

\phi x(x)\psi x(x) dx .(3.6)

For the measurement M\psi (\rho \phi ,0) to be nontrivial, the two pairs (xi, vi) and (xm, tm)
should be compatible to each other. Indeed, we require

xm := xm(tm) = xi + vitm ,

so that the measurement location at tm indeed receives the data transported from xi
in the direction of vi.

The proof of the theorem is based on the following two lemmas.

Lemma 3.3. Let \phi and \psi be defined as in (3.5). Let \sigma and K be selected from the
admissible sets. The solution to (3.1) gives

lim
\varepsilon \rightarrow 0

lim
\eta ,\delta \rightarrow 0

M\psi (\rho 0) = e - 
\int tm
0

\sigma (xi+vis,vi) dsC\phi x\psi x
.

Similarly, we have the following lemma.

Lemma 3.4. Let \phi and \psi be defined as in (3.5), with tm < T that satisfies
CK | V | T < 1. Let \sigma and K be selected from the admissible sets. The solution to
(3.2) gives

lim
\varepsilon \rightarrow 0

lim
\delta ,\eta \rightarrow 0

M\psi (\rho \geq 1) = 0 .

Theorem 3.1 is a quick corollary of these two lemmas.

Proof of Theorem 3.1. Under the conditions listed in Lemmas 3.3 and 3.4, we
have

lim
\varepsilon \rightarrow 0

lim
\eta ,\delta \rightarrow 0

M\psi (\rho \phi ) = lim
\varepsilon \rightarrow 0

lim
\eta ,\delta \rightarrow 0

M\psi (\rho 0) =C\phi x\psi x
e - 

\int tm
0

\sigma (xi+vis,vi) ds .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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574 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

Then we have the immediate conclusion that

\sigma (xm, vi) = - \partial tm ln

\biggl( 
1

C\phi x\psi x

lim
\varepsilon \rightarrow 0

lim
\delta ,\eta \rightarrow 0

(M\psi (\rho \phi ))

\biggr) 
.(3.7)

Remark 3.5. We stress that the result only provides a unique reconstruction but
does not give a stability bound. The explicit reconstruction of \sigma is seen in (3.7).
However, we should note that the formula includes a time derivative outside the limit
taking of the small parameters. This may bring some extra difficulty in the stability
analysis. Moreover, we would like to point out that both lemmas and the proof of
the theorem do not have specific dimension dependence. The result holds true for
d= 2 as well. This is slightly different from the classical kinetic inverse problem using
an albedo operator to infer photon scattering coefficient. Since in these problems,
the data are confined on the boundary, so the data automatically lose one dimension
of freedom, making the results sensitive to the dimensionality of the problem. Here
the data are taken in the interior and we have the freedom to adjust time. This
mechanism is independent of the dimension d so the result easily extends.

We now give proofs for the two lemmas above. It amounts to detailed calculations.

Proof of Lemma 3.3. According to the equation for f0 in (3.1), we can explicitly
compute f0 along the trajectory of the bacteria propagation:

f0(x, t, v) = e - 
\int t
0
\sigma (x - vs,v) ds\phi (x - vt, v) .(3.8)

Inserting this into the definition of the measurement (2.1), we have

M\psi (\rho 0) =

\int T

0

\int 
\BbbR 3

\int 
V

f0(x, t, v)dv \psi (x, v)dxdt

=

\int T

0

\int 
\BbbR 3

\int 
V

e - 
\int t
0
\sigma (x - vs,v) ds\phi (x - vt, v)dv \psi (x, t)dxdt .

Plugging the form of \phi and \psi into (3.5), we have

M\psi (\rho 0)

=
1

\varepsilon 3\delta 2\eta 

\int T

0

\int 
\BbbR 3

\int 
V

e - 
\int t
0
\sigma (x - vs,v) ds\phi x

\biggl( 
x - vt - xi

\varepsilon 

\biggr) 
\phi v

\biggl( 
\BbbP vi(v)
\delta 

\biggr) 
j(v)dv

\cdot \psi x
\biggl( 
x - xm
\varepsilon 

\biggr) 
\psi t

\biggl( 
t - tm
\eta 

\biggr) 
dxdt

=
1

\varepsilon 3

\int T - tm
\eta 

 - tm
\eta 

\int 
\BbbR 3

\int 
\BbbR 2

e - 
\int tm+\eta \~t
0

\sigma (x - \BbbP  - 1
vi

(\delta y)s,\BbbP  - 1
vi

(\delta y)) ds \phi x

\Biggl( 
x - \BbbP  - 1

vi (\delta y)(tm + \eta \~t) - xi

\varepsilon 

\Biggr) 

\cdot \phi v (y)\psi x
\biggl( 
x - xm
\varepsilon 

\biggr) 
\psi t
\bigl( 
\~t
\bigr) 
dy dxd\~t,

where we substituted \~t := t - tm
\eta and y :=

\BbbP vi
(v)

\delta into the last equation. Now fixing \varepsilon 

and letting \eta \rightarrow 0, \delta \rightarrow 0, then by continuity of \sigma ,\phi x, \BbbP  - 1
vi , and (3.4), the dominated

convergence theorem yields
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KINETIC CHEMOTAXIS KERNEL RECONSTRUCTION 575

lim
\eta ,\delta \rightarrow 0

M\psi (\rho 0)

=
1

\varepsilon 3

\int 
\BbbR 3

e - 
\int tm
0

\sigma (x - vis,vi) ds\phi x

\biggl( 
x - vitm  - xi

\varepsilon 

\biggr) 
\psi x

\biggl( 
x - xm
\varepsilon 

\biggr) 
dx

\cdot 
\int 
\BbbR 
\psi t
\bigl( 
\~t
\bigr) 
d\~t

\int 
\BbbR 2

\phi v (y) dy

=

\int 
\BbbR 3

e - 
\int tm
0

\sigma (xm+\varepsilon \~x - vis,vi) ds\phi x (\~x)\psi x (\~x) d\~x .

We used the substitution \~x := x - xm

\varepsilon in the last equation. Now set \epsilon \rightarrow 0 and using
the continuity of \sigma , we obtain

lim
\varepsilon \rightarrow 0

lim
\eta ,\delta \rightarrow 0

M\psi (f\phi ,0)

= e - 
\int tm
0

\sigma (xm - vis,vi) ds
\int 
\BbbR 3

\phi x (\~x)\psi x (\~x) d\~x= e - 
\int tm
0

\sigma (xi+vis,vi) dsC\phi x\psi x
,

where we used (3.6). The proof is concluded.

To prove Lemma 3.4, we will first introduce the following lemma.

Lemma 3.6. Let g satisfy the following equation,\Biggl\{ 
\partial tg+ v \cdot \nabla g= - \sigma g+\scrL (g) +\scrL (h) , (x, t, v)\in \BbbR 3 \times [0, T ]\times V,

g(x, t= 0, v) = 0 ,
(3.9)

where \scrL and \sigma are defined in (1.3)--(1.4) for K \in \scrA K and h is a given positive function,
then the measurement of g with respect to a general measurement test function \psi \in C\infty 

c

is bounded by

M\psi (\langle g\rangle )\leq CK | V | eCK | V | TM\psi 

\biggl( \int t

0

ess sup
x

(\langle h\rangle (x, s))ds
\biggr) 
.(3.10)

Proof. The proof is a direct calculation. Integrating (3.9) along the characteris-
tics, we have

ess sup
x

\langle g\rangle = ess sup
x

\int 
V

g(x, t, v)dv

= ess sup
x

\int 
V

\int t

0

[ - \sigma g+\scrL (g) +\scrL (h)] (x - vs, t - s, v)dsdv

\leq CK

\int 
V

\int t

0

(ess sup
x

\langle g\rangle + ess sup
x

\langle h\rangle )(x - vs, t - s))dsdv

=CK | V | 
\int t

0

ess sup
x

(\langle g\rangle (x, s))ds+CK | V | 
\int t

0

ess sup
x

(\langle h\rangle (x, s))ds\underbrace{}  \underbrace{}  
=:\alpha (t)

,

where we used the positivity of g [27] and \sigma as well as the boundedness of K in the
inequality and a change of variables. We call the integral form of Gronwall's lemma
and use the fact that g(x, t= 0, v) = 0 and \alpha is nondecreasing in order to obtain
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576 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

ess sup
x

\langle g\rangle \leq \alpha (t)e
\int t
0
CK | V | ds =CK | V | eCK | V | t

\int t

0

ess sup
x

(\langle h\rangle (x, s))ds.

Noting that M\psi (\langle g\rangle ) is a linear operator and preserves the monotonicity, we conclude
(3.10).

With the above lemma at hand, we can readily prove Lemma 3.4.

Proof of Lemma 3.4. We further decompose f\geq 1 = f1 + f2 + \cdot \cdot \cdot + fN + f\geq N+1 for
some N \in \BbbN to be chosen later, with each level of fn, n\geq 1, satisfying\Biggl\{ 

\partial tfn + v \cdot \nabla fn = - \sigma fn +\scrL (fn - 1) ,

fn(x, t= 0, v) = 0 ,
(3.11)

and the last level\Biggl\{ 
\partial tf\geq N+1 + v \cdot \nabla f\geq N+1 = - \sigma f\geq N+1 +\scrL (fN ) +\scrL (f\geq N+1) ,

f\geq N+1(x, t= 0, v) = 0 .

Then the measurement decomposes accordingly, i.e.,

M(\rho \geq 1) =M(\rho 1) +M(\rho 2) + \cdot \cdot \cdot +M(\rho N ) +M(\rho \geq N+1) .

Our objective is to show that in the scaling limit, all the M(\rho i) vanish for i\leq N and
M(\rho \geq N+1) is arbitrarily small for a big N .

\bullet To do so we first write an explicit expression for M(\rho n) for an arbitrary
n \in \BbbN . We integrate (3.11) along characteristics and use the fact that \sigma , fn
are nonnegative to see that

fn(x, t, v0) =

\int t

0

[ - \sigma fn +\scrL (fn - 1)](x - v0s0, t - s0, v0)ds0

\leq CK

\int t

0

\langle fn - 1\rangle (x - v0s0, t - s0)ds0

=CK

\int t

0

\int 
V

fn - 1(x - v0s0, t - s0, v1)dv1 ds0 .

In this notation, v0 is the last direction in which the bacteria of fn run, and
s0 is the time for which they run into this direction. Respectively, vj , and sj
denote the direction and time in which the bacteria run after their (n - j)-th
tumble.
By induction,

fn(x, t, v0)
(3.12)

\leq CnK

\int t

0

\int 
V

\int t - s0

0

\int 
V

. . .

\int t - 
n - 2\sum 
j=0

sj

0

\int 
V

f0

\left(  x - n - 1\sum 
j=0

sjvj , t - 
n - 1\sum 
j=0

sj , vn

\right)  
dvn dsn - 1. . .dv2 ds1 dv1 ds0

\leq CnK

\int t

0

\int 
V

. . .

\int t - 
n - 2\sum 
j=0

sj

0

\int 
V

\phi 

\left(  x - n - 1\sum 
j=0

sjvj  - 

\left(  t - n - 1\sum 
j=0

sj

\right)  vn, vn

\right)  
dvn dsn - 1. . .dv1 ds0,
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KINETIC CHEMOTAXIS KERNEL RECONSTRUCTION 577

where we bounded f0(x, t, v) by \phi (x  - vt, v) using (3.8) and noting \sigma \geq 0.
Inserting this into the measurement and calling the dominated convergence
theorem, we have

M(\rho n)

=

\int 
\BbbR 3

\int T

0

\int 
V

fn(x, t, v0)dv0\psi (x, t)dtdx

\leq CnK

\int 
\BbbR 3

\int T

0

\int 
V

\biggl[ \int t

0

\int 
V

. . .

\int t - 
n - 2\sum 
j=0

sj

0

\int 
V

\phi 

\left(  x - n - 1\sum 
j=0

sjvj

 - 

\left(  t - n - 1\sum 
j=0

sj

\right)  vn, vn

\right)  dvn dsn - 1. . .dv1 ds0

\biggr] 
dv0\psi (x, t)dtdx

\delta ,\eta \rightarrow 0 -  -  -  - \rightarrow CnK

\int 
\BbbR 3

\int 
V

\int tm

0

\int 
V

. . .

\int tm - 
n - 2\sum 
j=0

sj

0

1

\varepsilon 3
\psi x

\biggl( 
x - xm
\varepsilon 

\biggr) 

\cdot \phi x

\left(  x - \sum n - 1
j=0 sjvj  - 

\Bigl( 
tm  - 

\sum n - 1
j=0 sj

\Bigr) 
vi  - xi

\varepsilon 

\right)  
dsn - 1. . .dv1 ds0 dv0 dx

=CnK

\int 
\BbbR 3

\int 
V

\int tm

0

\int 
V

. . .

\int tm - 
n - 2\sum 
j=0

sj

0

\psi x (\~x)

\cdot \phi x

\Biggl( 
\~x+

\sum n - 1
j=0 sj(vi  - vj)

\varepsilon 

\Biggr) 
dsn - 1. . .dv1 ds0 dv0 d\~x.

In the last line we used the substitution \~x = x - xm

\varepsilon = x - xi - vitm
\varepsilon . Now for

\varepsilon \rightarrow 0, one has

\phi x

\Biggl( 
\~x+

\sum n - 1
j=0 sj(vi  - vj)

\varepsilon 

\Biggr) 
\rightarrow \phi (\~x)10

\left(  n - 1\sum 
j=0

sj(vi  - vj))

\right)  ,

where 1 denotes the indicator function.1 Using the dominated convergence
theorem again, we have

lim
\varepsilon \rightarrow 0

lim
\delta ,\eta \rightarrow 0

M(\rho n)\leq C\phi ,\psi C
n
K

\int 
V

\int tm

0

\int 
V

. . .

\int tm - 
\sum n - 2

j=0 sj

0

10

\left(  n - 1\sum 
j=0

sj(vi  - vj)

\right)  
dsn - 1. . .dv1 ds0 dv0

= 0,

where the last equality holds true, because the integration is taken on a
measure-zero set for a bounded integrand. We conclude M\psi (\rho n) = 0 in the
limit of \epsilon , \delta , \eta \rightarrow 0.

11A(a) = 1 for a is in the set A and zero elsewhere and 1a\prime := 1\{ a\prime \} for elements a\prime in some set.
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578 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

\bullet We now proceed to show the smallness of M(\rho \geq N+1). Applying Lemma 3.6
with g := f\geq N+1, h := fN , we have

M(\rho \geq N+1)\leq CK | V | eCK | V | TM

\biggl( \int t

0

ess sup
x

\langle fN \rangle (x, s)ds
\biggr) 
.(3.13)

Using estimate (3.12) for fN as well as maxx \phi (x, v)\leq 1
\varepsilon 3\delta 2\phi v

\Bigl( 
\BbbP vi

(v)

\delta 

\Bigr) 
j(v;vi),

we have\int t

0

ess sup
x

\langle fN \rangle (x, s)ds

\leq CNK

\int t

0

\int 
V

\biggl[ \int s

0

\int 
V

. . .

\int s - 
N - 2\sum 
j=0

sj

0

\int 
V

1

\varepsilon 3\delta 2
\phi v

\biggl( 
\BbbP vi(vN )

\delta 

\biggr) 
j(vN ;vi)

dvN dsN - 1. . .dv1 ds0

\biggr] 
dv0 ds

\leq 1

\varepsilon 3
CNK | V | N tN+1

\int 
V

1

\delta 2
\phi v

\biggl( 
\BbbP vi(vN )

\delta 

\biggr) 
j(vN ;vi)dvN .

Since the above integral over vN has value 1, (3.13) gives

M(\rho \geq N+1)\leq (CK | V | T )N+1eCK | V | T
\int 
\BbbR 3

\int T

0

1

\varepsilon 3
\psi (x, t)dtdx

\leq (CK | V | T )N+1eCK | V | T .

This shows M(\rho \geq N+1) becomes arbitrarily small as N grows, when CK | V | 
T < 1. In summary, this proves Lemma 3.4.

4. Reconstructing \bfitK . This section is dedicated to the reconstruction of K
from macroscopic measurements of the bacteria density \rho . The idea is similar to the
previous section: A class of special functions are used as the initial conditions and
the measurement test functions are designed accordingly. These functions carry a
certain type of singularity and are designed to be compatible with each other, so the
measurement singles out a trajectory that we would like to get information about. In
the end, we will prove the following theorem.

Theorem 4.1 (unique reconstruction of K). Let \sigma \in \scrA \sigma and K \in \scrA K . The
map \Lambda K uniquely determines K(x, v, v\prime ). In particular, for any (x, v, v\prime ), by a proper
choice of \phi and \psi , one can explicitly express K(x, v, v\prime ) in terms of M\psi (\rho \phi ) with \rho \phi 
being the density associated with f\phi that solves (1.1).

Note that K is the tumbling kernel, so the reconstruction necessarily needs at
least one scatter. To do so, we decompose f into three, instead of two, parts. Let
f\phi = f\phi ,0 + f\phi ,1 + f\phi ,\geq 2, where f\phi ,0 solves (3.1) using \phi as the initial data, and f\phi ,1
and f\phi ,\geq 2 solve the following:\biggl\{ 

\partial tf\phi ,1 + v \cdot \nabla f\phi ,1 = - \sigma f\phi ,1 +\scrL (f\phi ,0),
f\phi ,1(x, t= 0, v) = 0,

,(4.1)

and \biggl\{ 
\partial tf\phi ,\geq 2 + v \cdot \nabla f\phi ,\geq 2 = - \sigma f\phi ,\geq 2 +\scrL (f\phi ,1 + f\phi ,\geq 2),

f\phi ,\geq 2(x, t= 0, v) = 0.
(4.2)
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KINETIC CHEMOTAXIS KERNEL RECONSTRUCTION 579

To reconstruct K, we will design a special set of test functions and initial conditions
so as to have, in certain scenarios,

M\psi (\rho \phi ) =M\psi (\rho \phi ,1), M\psi (\rho \phi ,0) = 0=M\psi (\rho \phi ,\geq 2) ,(4.3)

and the measurement M\psi (\rho \phi ,1) is expected to give sufficient information to recon-
struct K. Similarly to notations above, we omit the \phi dependence in \rho and f when
the context is clear.

As in the previous case, this will again hold in the limit as the initial data and
measurement test functions become singular functions concentrated on initial velocity
vi and location xi and measurement location xm and time tm, respectively.

Unlike in the previous case, we require xm to avoid the line formed by xi + vitm
so as to ensure at least one scatter. This means we require the particle to initially
travel with velocity vi and change its direction to another \^v at a certain time tm - \^s.
As such, the measurement location is chosen to be

xm = xm(tm) = xi + \^s\^v+ (tm  - \^s)vi with \^s= \lambda tm, \lambda \in (0,1) , \^v \in V \setminus \{ vi\} .(4.4)

For the fixed tupel of (xi, vi, xm, tm), we should note that \^s, \^v are uniquely deter-
mined, and there is a unique tumbling point at (xi+vi(tm - \^s), \^v, vi) that contributes
information to the measurement. See Figure 4.1.

Furthermore, by gradually shrinking tm and xm  - xi, the ellipse of observation
shrinks, sustaining the geometry features, with \^s set to be a fixed fraction of tm,
pushing the tumbling point close to the starting point.

More specifically, let \phi x, \phi v,\psi x,\psi t be defined as in (3.4), and we set tm := \varepsilon \alpha for
some \alpha \in 

\bigl( 
3
4 ,1
\bigr) 
, then we let

\phi (x, v) =
1

\varepsilon 3\delta 2
\phi x

\biggl( 
x - xi
\varepsilon 

\biggr) 
\phi v

\biggl( 
\BbbP vi(v)
\delta 

\biggr) 
j(v;vi) \in C\infty 

c ,(4.5)

\psi (x, t) =
1

\nu 3\eta 
\psi x

\biggl( 
x - xm
\nu 

\biggr) 
\psi t

\biggl( 
t - tm
\eta 

\biggr) 
C\^s,\^v \in C\infty 

c(4.6)

for small scaling parameters \varepsilon , \delta , \eta , \nu > 0 and the constant

C\^s,\^v := \^s2(1 - \langle vi, \^v\rangle ) .(4.7)

Fig. 4.1. For a fixed tm > 0, the ellipse with focal points xi, xm and radius tm determines
all points x with distance \| x  - xi\| + \| x  - xm\| = tm. As vi is given, the unique tumbling point
xi + vi(tm  - \^s) is the intersection of the half-line starting at xi in direction vi with this ellipse.
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580 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

Note that the scaling of \psi is different from the one in (3.5), in particular, the scalings

of x are different in \phi and \psi . We request tm = \varepsilon \alpha 
\varepsilon \rightarrow 0 -  -  - \rightarrow 0. Note that \epsilon is the rate

at which \phi is converging to a delta-measure in x. Since \alpha < 1, the convergence of
the observation time tm \rightarrow 0 is slightly slower than the convergence of the initial
condition \phi . Small time requirements are typical when observing the propagation of
singularities; see, e.g., [13]. Here, we additionally made use of a particular relation
between time and spatial scaling which will be beneficial to control the influence of
the multiple tumble part M\psi (\rho \phi ,\geq 2).

We claim for this setup, with tm being very small, we will be able to achieve
the estimate (4.3), and the measurement exactly reflects the value of K(xi + vi(tm  - 
\^s), \^v, vi), as seen in the following lemmas.

Lemma 4.2. Let \sigma be from the admissible set, and let the (\phi ,\psi ) pairs be defined
as in (4.5)--(4.6), then M\psi (\rho 0) vanishes in the limit, meaning

lim
\varepsilon \rightarrow 0

lim
\delta ,\nu ,\eta \rightarrow 0

M\psi (\rho 0) = 0 .(4.8)

Lemma 4.3. Let K be from the admissible set, and let the initial data and test
functions be as defined in (4.5)--(4.6), then the measurement M\psi (\rho 1) reconstructs K,
in the sense that

lim
\varepsilon \rightarrow 0

lim
\delta ,\nu ,\eta \rightarrow 0

M\psi (\rho 1) =K(xi, \^v, vi) ,(4.9)

where \^v is the velocity after tumbling used in the construction of the measurement
location xm in (4.4).

Lemma 4.4. Assume K and \sigma are bounded and positive, then

lim
\varepsilon \rightarrow 0

lim
\delta ,\nu ,\eta \rightarrow 0

M\psi (\rho \geq 2) = 0.(4.10)

Together, these lemmas prove Theorem 4.1.

Proof of Theorem 4.1. Combining the previous three lemmas, in the limit (4.3)
holds true, meaning

lim
\varepsilon \rightarrow 0

lim
\delta ,\nu ,\eta \rightarrow 0

M\psi (\rho 
\phi 
f ) = lim

\varepsilon \rightarrow 0
lim

\delta ,\nu ,\eta \rightarrow 0
M\psi (\rho 1) =K(xi, \^v, vi).(4.11)

The rest of this section is dedicated to showing Lemmas 4.2, 4.3, and 4.4.
Lemma 4.2 states that the contribution from f0 in the measurement vanishes as

initial and measurement functions become singular. This is intuitively straightfor-
ward. Indeed, as illustrated in Figure 4.2, xm is not along the straight line from xi in
the direction of vi, so if \phi is singular enough, xm lies out of the support of f0.

Proof of Lemma 4.2. Recalling the solution to (3.1) is in (3.8). If we test it with

\psi , and make use of the change of variables \~t = t - tm
\eta , y =

\BbbP vi
(v)

\delta , and \~x = x - xm

\varepsilon , we
have
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KINETIC CHEMOTAXIS KERNEL RECONSTRUCTION 581

Fig. 4.2. Considering the situation of a point measurement of f0 at (xm, tm), where the initial
velocity is prescribed as \phi (x, v) = \~\phi (x)\delta vi (v), the support of f0(\cdot , tm, vi) equals supp\{ \~\phi (xi+vitm)\} \subset 
B(xi + vitm, \varepsilon ), the translated support of \~\phi . When \varepsilon becomes small, at some point B(xi + vitm, \varepsilon )
no longer contains xm, since xm \not = xi + vitm.

M\psi (\rho 0) =

\int T

0

\int 
\BbbR 3

\int 
V

f0(x, t, v)dv \psi (x, t)dxdt

=
C\^s,\^v

\varepsilon 3\delta 2\nu 3\eta 

\int T

0

\int 
\BbbR 3

\int 
V

e - 
\int t
0
\sigma (x - vs,v) ds\phi x

\biggl( 
x - vt - xi

\varepsilon 

\biggr) 
\cdot \phi v

\biggl( 
\BbbP vi(v)
\delta 

\biggr) 
j(v)dv \psi x

\biggl( 
x - xm
\nu 

\biggr) 
\psi t

\biggl( 
t - tm
\eta 

\biggr) 
dxdt

=
C\^s,\^v

\varepsilon 3

\int T - tm
\eta 

 - tm
\eta 

\int 
\BbbR 3

\int 
\BbbR 2

e - 
\int tm+\eta \~t
0

\sigma (xm+\nu \~x - \BbbP  - 1
vi

(\delta y)s,\BbbP  - 1
vi

(\delta y)) ds\phi v(y)

\cdot \phi x

\Biggl( 
xm + \nu \~x - \BbbP  - 1

vi (\delta y)(tm + \eta \~t) - xi

\varepsilon 

\Biggr) 
dy \psi x(\~x)\psi t(\~t)d\~xd\~t

\delta ,\nu ,\eta \rightarrow 0 -  -  -  -  - \rightarrow C\^s,\^v

\varepsilon 3
e - 

\int tm
0

\sigma (xm - vis,vi) ds\phi x

\biggl( 
xm  - vitm  - xi

\varepsilon 

\biggr) 
.

In the last step, we exchange the limit with the integration using the dominated
convergence theorem which is applicable because of the continuity of \sigma and \phi x. Noting
the construction of xm in (4.4),\bigm\| \bigm\| \bigm\| \bigm\| xm  - vitm  - xi

\varepsilon 

\bigm\| \bigm\| \bigm\| \bigm\| = \| \^s(\^v - vi)\| 
\varepsilon 

= \| \lambda (\^v - vi)\| \varepsilon \alpha  - 1 > 1

for any small enough, but fixed, \varepsilon > 0, making \phi x
\bigl( 
xm - vitm - xi

\varepsilon 

\bigr) 
= 0 according to the

definition of \phi x. This proves (4.8).

Proof of Lemma 4.4. Repeating the arguments in the proof of Lemma 3.4, we
estimate the remainder

M(\rho \geq 2)\leq 
1

\varepsilon 3
C2
K | V | eCK | V | TM

\biggl( \int t

0

sds

\biggr) 
=

1

\varepsilon 3
C

\int T

0

\int 
\BbbR 3

t2\psi (x, t)dxdtC\^s,\^v

=
C

\varepsilon 3
\~C

\int T

0

t2
1

\eta 
\psi t

\biggl( 
t - tm
\eta 

\biggr) 
dt \^s2,

where C :=C2
K | V | eCK | V | T /2 and \~C := (1 - \langle \^v, vi\rangle ) are positive constants and we used

f1 \leq tCK\varepsilon 
 - 3, which can be seen in (3.12). We employ the dominated convergence

theorem to the right-hand side to see
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lim
\eta \rightarrow 0

M(\rho \geq 2)\leq 
C

\varepsilon 3
\~Ct2m\^s2 =C \~C\lambda 2\varepsilon 4\alpha  - 3 \varepsilon \rightarrow 0 -  -  - \rightarrow 0,

because \alpha > 3
4 was chosen. Together with the nonnegativity of \rho \geq 2, we conclude

(4.10).

Lemma 4.3 lies at the core of Theorem 4.1, and the proof largely depends on
explicit derivation. Noting that according to (4.4), with fixed (xi, vi) and (xm, tm),
one finds a unique local point for the bacteria to tumble, xi + vi(tm  - \^s), so the
measurement should reflect K evaluated at this particular point.

Proof of Lemma 4.3. We first derive a closed form for f1 by solving (4.1) along
characteristics,

f1(x, t, v) =
1

\varepsilon 3\delta 2

\int t

0

\int 
V

e - 
\int s
0
\sigma (x - v\tau ,v)d\tau K(x - vs, v, v\prime )

\cdot e - 
\int t - s
0

\sigma (x - vs - v\prime \tau ,v\prime ) d\tau \phi x

\biggl( 
x - vs - v\prime (t - s) - xi

\varepsilon 

\biggr) 
(4.12)

\cdot \phi v
\biggl( 
\BbbP vi(v\prime )
\delta 

\biggr) 
j(v\prime ;vi)dv

\prime ds ,

where we have used the explicit solution f0 as in (3.8). Plugging it into the definition
of the measurement,

M\psi (\rho 1) =

\int T

0

\int 
\BbbR 3

\int 
V

f1(x, t, v)dv \psi (x, t)dxdt

=

\int T

0

\int 
\BbbR 3

\int 
V

\int t

0

\int 
V

C\^s,\^v

\varepsilon 3\delta 2\nu 3\eta 
e - 

\int s
0
\sigma (x - v\tau ,v)d\tau K(x - vs, v, v\prime )

\cdot e - 
\int t - s
0

\sigma (x - vs - v\prime \tau ,v\prime ) d\tau \phi x

\biggl( 
x - vs - v\prime (t - s) - xi

\varepsilon 

\biggr) 
\cdot \phi v

\biggl( 
\BbbP vi(v\prime )
\delta 

\biggr) 
j(v\prime )dv\prime dsdv \psi x

\biggl( 
x - xm
\nu 

\biggr) 
\psi t

\biggl( 
t - tm
\eta 

\biggr) 
dxdt .

Taking the limit and using dominant convergence theorem, we obtain

lim
\delta ,\nu ,\eta \rightarrow 0

M\psi (\rho 1)

=

\int tm

0

\int 
V

C\^s,\^v

\varepsilon 3
e - 

\int s
0
\sigma (xm - v\tau ,v)d\tau K(xm  - vs, v, vi)

\cdot e - 
\int tm - s
0

\sigma (xm - vs - vi\tau ,vi) d\tau \phi x

\biggl( 
xm  - vs - vi(tm  - s) - xi

\varepsilon 

\biggr) 
dv ds .

(4.13)

The formula above could be further reduced if we notice the support condition
for \phi x. In particular, if we denote the argument of \phi x,

xm - vs - vi(tm - s) - xi

\varepsilon , to be a, it
is straightforward to see that

\| a\| \geq \| xm  - xo\|  - s\| v - vi\| 
\varepsilon 

,

where we denote

xo = xi + vitm ,(4.14)

the location of the particle at time tm assuming it does not tumble. For small but
fixed \varepsilon > 0, this further gives the following.
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\bullet When s < c1 :=
\| xm - xo\| 

4 , since \| v - vi\| \leq 2,

\| a\| \geq \| xm  - xo\|  - 2s

\varepsilon 
=

\| xm  - xo\| 
2\varepsilon 

> 1 .(4.15)

\bullet When \langle vi, v\rangle > 1 - c2 := 1 - \| xm - xo\| 2

8t2m
, since \| v - vi\| =

\sqrt{} 
2 - 2 \langle vi, v\rangle ,

\| a\| >
\| xm  - xo\|  - s

\sqrt{} 
2\| xm - xo\| 2

8t2m

\varepsilon 
\geq \| xm  - xo\| 

2\varepsilon 
> 1 .(4.16)

That means that the integrand in (4.13) would be 0 due to the finite support of \phi x
in these two parts of the domain.

In this reduced domain, U = \{ (s, v) \in [c1, tm] \times \{ v \in V | \langle v, vi\rangle \leq 1  - c2\} \} , we
define the function \scrS : (s, v) \mapsto \rightarrow z := s(v  - vi). We note this function is injective. For
fixed z in its image, we can calculate its inverse:

\scrS  - 1(z) = (\zeta ,\omega )(z) =

\biggl( 
| z| 2

2| \langle z, vi\rangle | 
, vi +

z

\zeta (z)

\biggr) 
.(4.17)

So we conduct a change of variable by letting z = \scrS (s, v), we further reduce the
domain of (4.13) to \scrS (U), and use the definition (4.7) of C\^s,\^v, to see that

lim
\delta ,\nu ,\eta \rightarrow 0

M\psi (\rho 1)

=
1

\varepsilon 3

\int 
\scrS (U)

e - 
\int \zeta (z)
0 \sigma (xm - \tau \omega (z),\omega (z))d\tau K(xm  - \zeta (z)\omega (z), \omega (z), vi)

\cdot e - 
\int tm - \zeta (z)
0 \sigma (xm - \zeta (z)\omega (z) - vi\tau ,vi) d\tau \phi x

\biggl( 
xm  - z  - xo

\varepsilon 

\biggr) 
\cdot \^s2

\zeta (z)2
1 - \langle vi, \^v\rangle 

1 - \langle vi, \omega (z)\rangle 
dz

=

\int 
a - \scrS (U)

\varepsilon 

e - 
\int \zeta (a - \varepsilon \~z)
0 \sigma (xm - \tau \omega (a - \varepsilon \~z),\omega (a - \varepsilon \~z))d\tau 

\cdot K(xm  - \zeta (a - \varepsilon \~z)\omega (a - \varepsilon \~z), \omega (a - \varepsilon \~z), vi)

\cdot e - 
\int tm - \zeta (a - \varepsilon \~z)
0 \sigma (xm - \zeta (a - \varepsilon \~z)\omega (a - \varepsilon \~z) - vi\tau ,vi) d\tau \phi x (\~z)

\cdot \^s2

\zeta (a - \varepsilon \~z)2
1 - \langle vi, \^v\rangle 

1 - \langle vi, \omega (a - \varepsilon \~z)\rangle 
d\~z,

where we used the determinent of the Jacobian of \scrS being s2(1  - \langle v, vi\rangle ), and the
substitution \~z = a - z

\varepsilon for a := xm  - xo in the last step. For a visualization of the
quantities, see Figure 4.3. The fact that a small ball around a with radius of order
\varepsilon \alpha is contained in \scrS (U) for every \varepsilon ensures that a - \scrS (U)

\varepsilon will eventually contain the
full support B(0,1) of \phi x for small \varepsilon ; see Figure 4.4. Together with the continuity of
K,\sigma , \zeta ,\omega , this allows the application of the dominated convergence theorem,

lim
\delta ,\nu ,\eta \rightarrow 0

M\psi (\rho 1)
\varepsilon \rightarrow 0 -  -  - \rightarrow K(xi, \^v, vi)

\int 
B(0,1)

\phi x(\~z)d\~z =K(xi, \^v, vi),

where we used the form (4.17) of \zeta ,\omega to see \zeta (a - \varepsilon \~z)/\^s\rightarrow 1 while \omega (a - \varepsilon \~z)\rightarrow \^v.

Remark 4.5. The proof for all three lemmas are local-in-time, in the sense that the
measurement time is converging to 0. This means that we can easily extend the result
to deal with time dependent K as well. Suppose K(x, t, v, v\prime ) should be recovered for
a specific t value, then a new experiment is started at time t, meaning both the initial
data \phi and the measurements \psi should be prepared at reference time t.
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584 K. HELLMUTH, C. KLINGENBERG, Q. LI, AND M. TANG

Fig. 4.3. Geometry and quantities used in the proof, displayed in 2 dimensions (2D). In this
figure, xo = xi + vitm, the location of the particle assuming it does not tumble; see definition (4.14).
Note that tm is the length between xi and xo. The gray area is xi + vs for (s, v) \in U . This is the
annulus A in Figure 4.4(a) translated by xi.

(a) Sliced annulus A. (b) Image of S(U).

Fig. 4.4. Perturbation of U by \scrS in 2D. In a first step, A := \{ vs | (v, s) \in U\} is displayed. The
red dot marks \^v\^s which is bounded away from the boundaries of A by construction. The yellow slice
of an annulus is a neighborhood of \^v\^s that is bounded by the arches of two circles. The image of
\scrS (U) is obtained by shifting each point in vs\in A by  - vis. In this picture, the red dot is a= \scrS (\^s, \^v).
The image of the yellow area is bounded by the same arches of the circles, but the circles were shifted
in direction  - vi such that they touch 0. One can choose the yellow slice of the annulus large enough
such that a ball with radius of order \varepsilon \alpha ---whose boundary is depicted in green---is contained in the
yellow image area.

5. Conclusions. In this paper we work on a classical kinetic chemotaxis model,
and give a rigorous proof for using density measurement to reconstruct tumbling and
damping coefficients. As stated in the introduction, chemotaxis, as a mathematical
biology subject, has attracted extensive research. There are abundant models. What
we consider in this paper is a mere showcase of one of them (1.1) derived from the study
of biased random walks [1]. In this specific setting, we show that when given a special
design of initial data, the population density, one specific macroscopic quantity as a
function of time, contains sufficient information to recover the microscopic quantities,
such as the velocity tumbling kernel and its associated damping coefficient.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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There are many new directions that are left unexplored, and we list a few here:
\bullet Resultwise: In the current paper we only evaluate the uniqueness of the

reconstruction but not the stability. Indeed, as concluded in Lemma 3.3, the
reconstruction of \sigma requires differentiating the data. The stability of this
reconstruction is thus expected to be bad in the L\infty norm if the data are
also assumed to be in C. A proper norm that is higher than C1 needs to be
selected to obtain a good stability. How the details are involved is a nontrivial
task. We leave the discussion for stability for future work.

\bullet Modelwise: We only showcase unique reconstruction for a very specific set-
ting. More complicated models are not yet considered. We list a couple of
possible directions below:

-- we only consider the well-controlled case when the space distribution
of stimuli is fixed. But in practice, bacteria interact with the environ-
ment, and may provide self-attraction or self-repulsion. This changes
the chemical concentration and leads to some interesting patterns; see
[31, 32] and references therein. Mathematically, it is a convention to
couple the chemotaxis equation (1.1) with an elliptic or parabolic
equation for the chemical signal [7, 8, 9, 10]. However, it is almost
impossible to trace the bacteria trajectory and measure the time dy-
namics of chemical concentration simultaneously. This prevents the
quantification of most chemotaxis models except for some tightly con-
trolled case [17, 18, 23] or well studied species [25, 36]. It would be
interesting to study if the techniques presented in the current paper
can be extended to the above-mentioned more complicated settings;

-- more sophisticated kinetic chemotaxis models have been proposed in
the literature. For example, models that incorporate birth/death pro-
cesses [29, 30], the tumbling time [22], or the adaptation process with
internal variables [15, 35, 41, 42]. It would be interesting to investi-
gate whether macroscopic quantities can provide enough information
to recover the microscopic parameters for these more sophisticated
kinetic models.

Despite its obvious significance, the inverse problem in mathematical biology is
still in its infancy. Many related problems are left unaddressed. In the framework
of kinetic formulation for bacteria-motion, a singular decomposition technique has
demonstrated its flexibility and is very compatible with the kinetic formulation in
the inverse problem setting. We expect to further investigate various problems listed
above along this direction.

Acknowledgments. We would like to thank Marlies Pirner for the inspiring
discussions that influenced the design of Lemma 3.6. We also thank Beno\^{\i}t Perthame
for insightful comments regarding this work.
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