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Abstract: Chemotaxis describes the movement of an organism, such as single or multi-cellular1

organisms and bacteria, in response to a chemical stimulus. Two widely used models to describe2

the phenomenon are the celebrated Keller-Segel equation and a chemotaxis kinetic equation. These3

two equations describe the organism movement at the macro- and mesoscopic level respectively,4

and are asymptotically equivalent in the parabolic regime. How the organism responds to a5

chemical stimulus is embedded in the diffusion/advection coefficients of the Keller-Segel equation6

or the turning kernel of the chemotaxis kinetic equation. Experiments are conducted to measure the7

time dynamics of the organisms’ population level movement when reacting to certain stimulations.8

From this one infers the chemotaxis response, which constitutes an inverse problem.9

In this paper we discuss the relation between both the macro- and mesoscopic inverse problems,10

each of which is associated to two different forward models. The discussion is presented in the11

Bayesian framework, where the posterior distribution of the turning kernel of the organisms12

population is sought after. We prove the asymptotic equivalence of the two posterior distributions.13

Keywords: inverse problems; Bayesian approach; kinetic chemotaxis equation; Keller Segel model;14

multiscale modeling; asymptotic analysis; velocity jump process; mathematical biology15

1. Introduction16

Chemotaxis is the phenomenon of organisms directing their movements upon17

certain chemical stimulation. Every motile organism exhibits some type of chemotaxis.18

Mathematically, there are two main-stream mathematical models used to describe this19

phenomenon: One at the macroscopic population level and the other at the mesoscopic20

level.21

The most famous model in the first category is the Keller-Segel equation, introduced
in [1–3]. The equation traces the evolution of bacteria density when chemical stimulation
is introduced to the system:

∂

∂t
ρ−∇ · (D · ∇ρ) +∇ · (ρΓ) = 0, (1)

where ρ(x, t) is the cell density at location x at time t > 0. In this equation, both22

the advection term and the diffusion process integrate the external chemical density23

information, meaning both the diffusion matrix D[c](x, t) and the drift vector Γ[c](x, t)24

depend on the chemoattractant’s density c.25

However, the model is inaccurate in certain regimes. It overlooks the detailed
bacteria’s reaction to the chemoattractants, and is thus macroscopic in nature. This
inspires the second category of modeling, where the motion of individual bacteria is
accounted. The associated modeling is thus mesoscopic. When bacterial movements are
composed of two states: running in a straight line with a given velocity v and tumbling
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from one velocity v to another v′, the according mathematical model is termed the
run-and-tumble model. It is described by the mesoscopic chemotaxis equation [4–6]:

∂

∂t
f (x, t, v) + v·∇x f (x, t, v) = K[c]( f ) (2)

:=
∫

V
K[c](x, t, v, v′) f (x, t, v′)− K[c](x, t, v′, v) f (x, t, v)dv′.

In the equation, f (x, t, v) is the population density of bacteria with velocity v ∈ V ⊂ R3
26

at space point x ∈ R3 at time t > 0. The tumbling kernel K[c](x, t, v, v′) encodes the27

probability of bacteria changing from velocity v′ to v. It depends on the chemoattractant28

concentration c(x, t).29

Abbreviating the notation and calling f ′ := f (x, t, v′) and K′[c] := K[c](x, t, v′, v) as
in [5], the tumbling term on the right hand side of equation (2) reads

K[c]( f ) =
∫

V
K[c] f ′ − K′[c] f dv′ .

Because bacteria are usually assumed to move with constant speed, conventionally30

we have V = Sn−1. Moreover, since the cell doubling time is much longer than the31

chemotaxis time scale, we remove the birth-death effect from the equation.32

Both models above are empirical in nature. The coefficients, such as D, Γ and K that33

encode the way bacteria respond to the environment are typically unknown ahead of34

time. Since the chemoattractant concentration c depends on space and time, so do D,35

Γ and K. However, except for very few well studied bacteria, these quantities are not36

explicitly known and cannot be measured directly. One thus needs to design experiments37

and use measurable quantities to infer the information. This constitutes the inverse38

problem we study. One such experiment was reported in [7] where the authors studied39

phototaxis and use video recording of the seaweed motion (ρ in time) to infer D and Γ40

in (1).41

There are various ways to conduct inverse problems, and in this paper, we take42

the viewpoint of Bayesian inference. This is to assume that the coefficients are not43

uniquely configured in reality, but rather follow a certain probability distribution. The44

measurements are taken to infer this probability. In the process of such inference, one45

nevertheless needs to incorporate the forward model. The two different forward models46

described above then lead to two distinctive posterior distributions as the inference.47

One natural question is to understand the relation between the two resulting pos-48

terior distributions. We answer this question in this article by asymptotic analysis. To49

be specific, we will show that the two models are asymptotically equivalent in the long50

time and large space regime, and (D, Γ) can be uniquely determined by a given K. As51

such, the associated two inverse problems are asymptotically equivalent too. The equiv-52

alence is characterized by the distance (we use both the Kullback–Leibler divergence53

and the Hellinger distance) between the two corresponding posterior distributions. We54

show that this distance vanishes asymptotically as the Knudsen number, a quantity55

that measures the mean free path between two subsequent tumbles, becomes arbitrarily56

small.57

The rest of the paper is organized as follows: In section 2 we present the asymptotic58

relation between the two forward models. This can be seen as an adaption of the results59

in [5] to our setting. The analysis serves as the foundation to link the two inverse60

problems. In section 3 we formulate the Bayesian inverse problems corresponding to61

the scaled chemotaxis equation and the Keller Segel model as underlying models. The62

well-posedness and convergence of the two corresponding posterior distributions is63

shown in section 4. The results are summarized and discussed in section 5.64

We should stress that both mathematical modeling of chemotaxis and Bayesian65

inference are active research areas. In formulating our problems, we select the most66

widely-accepted models and methods.67
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For modeling chemotaxis, the two models (1)-(2) are the classical ones, and were68

derived from the study of a biased random walk [1,6]. They assume the organisms69

passively depend on the environment. When bacteria actively respond and change the70

environment, a parabolic or elliptic equation for c can be added to describe such feedback71

to the environment [2,3,8]. The coupled system consisting of equation (1) and a parabolic72

equation for c, where the chemo-attractant is assumed to be produced by the bacteria73

population, can exhibit blow-up solutions. Therefore, some particular form of D[c],74

Γ[c] are proposed to eliminate the unwanted behavior. These models include volume75

filling [9], quorum sensing models [10], or the flux limited Keller Segel system [11].76

On the kinetic level, additional variables were introduced to describe the intracellular77

responses of the bacteria to the chemoattractant in the signalling pathway [12–15] and78

the asymptotic limit of the newer models sometimes reveal interesting phenomenon79

such as fractional diffusion [16]. The asymptotic equivalence of the classical model to the80

Keller Segel model was extensively studied e.g. in [5,6,17,18]. In particular, the current81

paper heavily depends on the techniques shown in [5].82

There is also a vast literature on inverse problems. For Bayesian inference perspec-83

tive in scientific computing, interested readers are referred to monographs [19,20] and84

the references therein. In comparison, linking two or multiple inverse problems in differ-85

ent regimes are relatively rare. In [21], the authors studied the asymptotic equivalence86

between the inverse kinetic radiative transport equations and its macroscopic counter-87

part, the diffusion equation. In [22], the convergence of Bayesian posterior measures for88

a parametrized elliptic PDE forward model was shown in a similar fashion.89

2. Asymptotic analysis for kinetic chemotaxis equations and the Keller-Segel model90

The two problems we will be using are chemotaxis kinetic equation and the Keller-91

Segel equation. We review these two models in this section and study their relation.92

It serves as a cornerstone for building the connection of the two associated inverse93

problems.94

Throughout the paper, we assume the chemoattractant density c is a given function95

of (x, t) and is not produced or consumed by the bacteria. While it is an approximation,96

it is valid in many experiments where one has tight control over the matrix environment.97

We claim, and will show below that the two equations (2) and (1) are asymptotically
equivalent in the long time large space regime. Denote ε the scaling parameter, then in a
parabolic scaling, the chemotaxis equation to be considered has the following form:

ε2 ∂

∂t
fε(x, t, v) + εv·∇x fε(x, t, v) = Kε( fε)

:=
∫

V
Kε(x, t, v, v′) fε(x, t, v′)− Kε(x, t, v′, v) fε(x, t, v)dv′

fε(x, 0, v) = f0(x, v).

(3)

Formally, when ε→ 0, the tumbling term dominates the equation and we expect, in the
leading order:

fε → f∗ , with K∗( f∗) = 0 ,

where K∗ can be viewed as the limiting operator as Kε. This means the limiting solution
is almost in the null space of the limiting tumbling operator. Furthermore, due to the
specific form of the tumbling operator, one can show that under certain conditions such
null space is one dimensional, compare e.g. [5] Lemma 2 and following derivations. We
thus formally write

N (K∗) = {αF : α ∈ R , with
∫

V
Fdv = 1} ,

and denote f∗ = ρF. Conventionally we call F the local equilibrium. Due to the form
of K, this is a function only of v. Inserting this formula back into (3) and perform
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asymptotic expansion up to the second order, and following [5], we find that ρ satisfies
the Keller-Segel equation:

∂

∂t
ρ−∇ · (D · ∇ρ) +∇ · (ρΓ) = 0, (4)

ρ(x, 0) = ρ0(x) =
∫

V
f0(x, v) dv.

A rigorous proof of the convergence of a subsequence of fε can be found in [5], theorem
3, where the authors discussed a nonlinear extension of the present model.

From now on, we confine ourselves to kernels having the form of

Kε = K0 + εK1 . (5)

Remark 1. Because our aim is to compare the posterior distributions for the kinetic model (3)98

and the macroscopic model (4), this choice is reasonable. As shown in [5], higher order terms in ε99

would not affect the macroscopic equation. Therefore they would not be reconstructable by the100

macroscopic inverse problem.101

In order to rigorously justify the above intuition on the convergence fε → ρF and
ensure the existence of solutions to equations (3), (4), we suppose (K0, K1) to be an
element of the admissible set

A = {(K0, K1) ∈
(

C1(R3 × [0, ∞)×V ×V)
)2
| ‖K0‖C1 , ‖K1‖C1 ≤ C and (6)

0 < α ≤ K0 symmetric and K1 antisymmetric in (v, v′)}

for some preset constants C, α > 0. For any (K0, K1) ∈ A it is straightforward to show
that

F ≡ 1/|V| , with |V| :=
∫

V
1 dv . (7)

Remark 2. With (K0, K1) assumed to be symmetric and antisymmetric, the local equilibrium F
in (7) is explicit and simple. This is e.g. the case for one typical choice of the tumbling operator:
K[c,∇c] = a[c] + εb[c]φ(v · ∇c − v′ · ∇c) with antisymmetric φ. It has been extensively
studied in [5]. For better readability we use this form of the tumbling kernel throughout the
paper. We should mention, however, it is possible to relax this assumptions on the tumbling
kernel while maintaining the same macroscopic limit. In particular, if there exists one uniform
velocity distribution F(v) > 0 that is positive, bounded and satisfies∫

V
F dv = 1,

∫
V

vF(v) dv = 0 and K0(x, t, v′, v)F(v) = K0(x, t, v, v′)F(v′)

for all considered K0 in the admissible set, then all statements and arguments provided in this102

paper still hold true. Note that by these requirements, assumption (A0) in Chalub et al.[5] is103

satisfied.104

Suppose the initial data is smooth in the sense that f0 ∈ C1,+
c (R3 ×V), we have the105

following theorem on convergence. It can be viewed as an adaption of the results in [5].106

Theorem 1. Suppose Kε has the form of (5) with (K0, K1) ∈ A and suppose the initial condition107

f0 ∈ C1,+
c (R3 ×V), then the solution fε to the chemotaxis equation (3) satisfies the following:108

a) For sufficiently small ε, the solution fε of equation (3) exists and is bounded in L∞([0, T], L1
+ ∩109

L∞(R3 ×V)
)

for T < ∞.110
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b) The solution fε converges to ρF in L∞([0, T]; L1
+ ∩ L∞(R3 ×V)

)
, where ρ satisfying the111

Keller-Segel equation (4) with coefficients112

D =
∫

V
v⊗ κ(x, t, v) dv (8)

Γ = −
∫

V
vθ(x, t, v) dv (9)

Here θ and κ solve the cell problems:113

K0(κ) = vF , and K0(θ) = K1(F).

where Ki(g) :=
∫

V Kig′ − K′i gdv′ for i = 0, 1.114

c) The boundedness and the convergence is uniform in A.115

Sketch of proof.116

a) First of all, we have the maximum principle so that117

‖ fε(·, t, ·)‖L1(R3×V) = ‖ f0‖L1(R3×V) < ∞ , (10)

and following the same arguments as in [5], we integrate in time for118

fε(x, t, v) = f0(x, v) +
∫ t

0
Kε( fε)

(
x− vs

ε
, t− s, v

)
ds (11)

≤ f0(x, v) +
∫ t

0

∫
V

Kε

(
x− vs

ε
, t− s, v, v′

)
fε

(
x− vs

ε
, t− s, v′

)
dv′ ds

≤ f0(x, v) + 2C
∫ t

0

∫
V

fε

(
x− vs

ε
, t− s, v′

)
dv′ ds .

Noting that f0 ∈ L1
+ ∩ L∞ and 0 < Kε = K0 + εK1 ≤ (1 + ε)C ≤ 2C for sufficiently119

small ε, we have:120

‖ fε(·, t, ·)‖L∞(R3×V) ≤ ‖ f0‖L∞(R3×V) + 2C|V|
∫ t

0 ‖ fε(·, s, ·)‖L∞(R3×V) ds. (12)

Calling the Grönwall lemma one obtains a bound on ‖ fε(·, t, ·)‖L∞(R3×V). Since121

the only role Ki played is its boundedness by C, as in (11), the estimate we get is122

uniform in A and is independent of ε for ε small enough.123

b) We show that fε is a Cauchy sequence in ε. For the purpose, we call fε and f ε̃ the
solutions of the chemotaxis equation (3) with the scaling being ε and ε̃. We also
denote the difference f̂ε,ε̃ := fε − f ε̃. Subtracting the two equations we have:

ε2∂t f̂ε,ε̃ + εv · ∇x f̂ε,ε̃=K0( f̂ε,ε̃) + εK1( f̂ε,ε̃)

− (ε2 − ε̃2)∂t f ε̃ − (ε− ε̃)v · ∇x f ε̃ + (ε− ε̃)K1( f ε̃) (13)

=Kε( f̂ε,ε̃)−(ε2 − ε̃2)∂t f ε̃ − (ε− ε̃)v · ∇x f ε̃ + (ε− ε̃)K1( f ε̃)︸ ︷︷ ︸
=:S

with a trivial initial data f̂ε,ε̃(x, 0, v) = 0. This is an equation with a source term S.
Using the argument as in a), L∞ boundedness of the time and spatial derivative
∂t f ε̃, ∇x f ε̃ in S can be shown, meaning S is of order ε− ε̃. Running (11) again with
this extra source term, we have

‖ fε − f ε̃‖L∞([0,T];L1∩L∞(R3×V)) = O(ε− ε̃) .

Hence { fε} is a Cauchy sequence, and thus converges to some f ∈ L∞([0, T], L1
+ ∩124

L∞(R3 ×V)).125



Version October 22, 2021 submitted to Computation 6 of 15

It remains to prove f = ρF almost everywhere in [0, T]×R3 ×V with ρ satisfying126

the Keller-Segel equation (4) with D, Γ as given in equations (8)- (9). This follows127

by arguments rather similar to those in [5], and is therefore omitted from here.128

Since only the boundedness of (K0, K1) is seen in the proof, the convergence is129

uniform in A.130

131

3. Bayesian inverse problem setup132

Associated with the two forward models, there are two inverse problems. We133

describe the inverse problem setup and present them with the Bayesian inference formu-134

lation.135

In the lab setup, it is assumed that the bacteria plate is large enough so that the136

boundary plays a negligible role. At the initial time, the bacteria cells are distributed on137

the plate. One then injects chemoattractants onto the plate through a controlled manner,138

so to have c(t, x) explicitly given, forcing Ki, and (D, Γ) to be functions of (t, x, v) or139

(t, x) only. The bacteria density at location x at time t is then measured.140

Measuring is usually done by taking high resolution photos of the plate at time t141

and counting the bacteria in a small neighbourhood of location x. Another possibility is142

taking a sample of the bacteria at location x and measuring the bacteria density of the143

sample by classical techniques like optical density OD 600 or flow cytometry, see e.g.144

[23,24]. This however describes an invasive technique and thus allows measurements at145

only one time t.146

The whole experiment is to take data of the following operator:

Aε
K0 ,K1

: f0 →
∫

fε(t, x, v)dv

if the dynamics of the bacteria is modeled by (3), and

A0
K0,K1

= AD ,Γ : ρ0 :=
∫

V
f0dv→ ρ(t, x)

if the dynamics of the bacteria is modeled by (4). Noting that (D, Γ) are uniquely147

determined by (K0, K1) by equations (8),(9), we can equate AD ,Γ with A0
K0,K1

. Although148

the more natural macroscopic inverse problem would be to recover the diffusion and149

drift coefficients D, Γ in (4), we choose to formulate the inverse problem for the tumbling150

kernel (K0, K1). This allows us to compare the solution for both the kinetic and the151

macroscopic inverse problem.152

Remark 3. In order to reasonably compare the solutions to the inverse problems, the solutions153

have to be of the same kind. We choose to reconstruct (K0, K1) in both the kinetic and macroscopic154

inverse problem, see Figure 1 (left). The macroscopic inverse problem is thus also formulated155

for (K0, K1) which (D, Γ) is a function of. Alternatively one could also reconstruct (D, Γ) from156

both models. In the kinetic setting this would mean to reconstruct (Kchem
0 , Kchem

1 ) and then157

transform to values of (Dchem, Γchem) by equations (8),(9), see Figure 1 (right).158

We do not choose this alternative, because the information on the tumbling kernel (K0, K1) is159

microscopic and thus more detailed. Furthermore, with a fixed (K0, K1), (D, Γ) can be uniquely160

determined, and thus the convergence can be viewed as a mere consequence, see also Remark 5.161

Multiple experiments can be conducted using different initial profile, but the same162

controlled c(t, x) is used to ensure the to-be-reconstructed Ki is unchanged from exper-163

iment to experiment. Denoting k ∈ [1 , · · · , K] the indices of the different initial data164

setups, and j = (j1, j2) ∈ [1 , · · · , J1]⊗ [1 , · · · , J2] the indices of the measuring time and165

location, with tj = tj1 being the measuring time, and χj = χj2 ∈ Cc(R3) being the spatial166
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chemotaxis

(Kchem
0 , Kchem

1 )

Keller Segel

(KKS
0 , KKS

1 )compare

chemotaxis

(Kchem
0 , Kchem

1 )

(Dchem, Γchem)

Keller Segel

(DKS, ΓKS)compare

Figure 1. Two ways to compare the inverse problems: determining and comparing the tumbling
kernels for both underlying chemotaxis and Keller Segel models (left) or determining the drift or
diffusion coefficient for the Keller Segel model and the tumbling kernel for the chemotaxis model
and calculating the corresponding drift and diffusion coefficients.

test function, then with (3) and (4) being the forward models, we take the measurements,167

respectively:168

Gε,chem
jk (K0, K1) =Mj

(
Aε

K0,K1
( f (k)0 )

)
=
∫
R3

∫
V

f (k)ε (x, tj, v) dv χj(x)dx , (14)

GKS
jk (K0, K1) =Mj

(
A0

K0,K1
(ρ

(k)
0 )
)

=
∫
R3

ρ(k)(x, tj) χj(x)dx , (15)

whereMj are the measuring operator with (δj, χj) being the test functions. One can
think of χj a compactly supported blob function concentrated at a certain location,
meaning all the bacteria cells in a small neighborhood are counted towards this particular
measurement, see Figure 2. This is a reasonable model when counting bacteria in a small
neighbourhood or taking samples with a pipette.

Figure 2. Measurement of the bacteria density (blue) at two different measuring times tj, t j̃. The
location of the test functions is indicated by the support in space of the test functions χj, χ j̃.

Throughout the paper we assume the initial data and the measuring operators are
controlled:

‖ f (k)0 ‖L1 , ‖ f (k)0 ‖L∞ < Cρ , ∀k

max{‖χj‖L1 , ‖χj‖L2 , ‖χj‖L∞ , |supp χj|dx} < Cx , ∀j .
(16)

Remark 4. The measurements Gε,chem
jk (K0, K1),GKS

jk (K0, K1) are formulated in a rather general169

form in equations (14),(15) due to the freedom in the choice of the test function χj ∈ Cc(R3).170

However, all subsequent derivations also hold true for the specific case of pointwise measure-171

ments with tj := tj1 and xj := xj2 . The measurements would then be Gε,chem
jk (K0, K1) =172 ∫

V f (k)ε (xj, tj, v) dv and GKS
jk (K0, K1) = ρ(k)(xj, tj), which would correspond to measuring173

operatorsMj with test functions (δtj1
, δxj2

).174

Since measuring error is not avoidable in the measuring process, we assume it175

introduces additive error and collect the data of the form176

yε,chem
jk = Gε,chem

jk (K0, K1) + ηjk

yKS
jk = GKS

jk (K0, K1) + ηjk .
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where the noise ηjk is assumed to be a random variable independently drawn from a177

Gaussian distribution N(0, γ2) of known variance γ2 > 0.178

In the Bayesian form, the to-be-reconstructed parameter (K0, K1) is assumed to be
a random variable, and the goal is to reconstruct its distribution. Suppose a-priori we
know that the parameter is drawn from the distribution µ0, then the Bayesian posterior
distributions for (K0, K1) should be

µ
y
ε,chem(K0, K1) =

1
Zε,chem µ

(K0,K1)
ε,chem (y) µ0(K0, K1)

=
1

Zε,chem e
− 1

2γ2 ‖G
ε,chem(K0,K1)−y‖2

µ0(K0, K1) ,
(17)

using (3) as the forward model, and

µ
y
KS(K0, K1) =

1
ZKS µ

(K0,K1)
KS (y) µ0(K0, K1)

=
1

ZKS e
− 1

2γ2 ‖G
KS(K0,K1)−y‖2

µ0(K0, K1) ,
(18)

using (4) as the forward model. In the formula Z◦ is the normalization constant to ensure∫
1dµ

y
◦(K0, K1) = 1 and

µ
(K0,K1)
◦ (y) = e

− 1
2γ2 ‖G

◦(K0,K1)−y‖2

is the likelihood of observing the data y from a model with a tumbling kernel or diffusion179

and drift term derived by (K0, K1).180

In Section 4 we need to specify the conditions on µ0 to ensure the well-definedness of µ
y
◦.181

Remark 5. Since the macroscopic model does not explicitly depend on (K0, K1), it is the dis-182

tribution of µ
y
KS(D, Γ) that is of interest. There are two ways to derive it starting with a prior183

distribution on (K0, K1): The natural way would be to transform the prior distribution to a prior184

on (D, Γ) by equations (8)-(9) and then consider the inverse problem of reconstructing (D, Γ).185

This approach is displayed by the lower path in Figure 3. If, however, the posterior distribu-186

tion µ
y
KS(K0, K1) is calculated ahead of the transformation (as in our case), one could instead187

transform this posterior distribution directly to a distribution in the (D, Γ) space following the188

upper path in Figure 3. Naturally the question arises whether the two ways lead to the same189

posterior distribution. It turns out they do. Considering the second possibility, we see that the190

likelihood and thus the normalization constant only depend on (D, Γ), because we are in the191

macroscopic model. Hence, only the prior distribution is transformed just like it is the case for the192

first possibility.

µ0(K0, K1)

µ0(D, Γ)

µ
y
KS(K0, K1)

µ
y
KS(D, Γ)

transform transform

inverse problem

inverse problem

Figure 3. Two ways to determine the posterior distribution µ
y
KS(D, Γ) from a prior µ0(K0, K1) on

the tumbling kernels.
193

4. Convergence of posterior distributions194

One natural question arises: the two different forward models provide two different195

posterior distribution functions of (K0, K1). Which distribution is the correct one, or196

rather, what is the relation between the two posterior distributions?197



Version October 22, 2021 submitted to Computation 9 of 15

As discussed in Section 2, the two forward models are asymptotically equivalent198

in the long time large space regime, so it is expected that the two posterior distribution199

converge as well. This suggests the amount of information given by the measurements200

is equally presented by the two forward models. However, this convergence result201

is not as straightforward as it may seem. One issue comes from the control of initial202

data and the measurement operator. For each initial data, the solution converges in203

L∞([0, T]; L1
+ ∩ L∞(R3 × V)

)
, we now have a list of initial data, and the solutions are204

tested on a set of measuring operators, so we need a uniform convergence when tested205

on the dual space. Furthermore, to show the convergence of two distribution functions,206

a certain metric needs to be given on the probability function space, how does the207

convergence for one set of fixed (K0, K1) translates to the convergence on the entire208

admissible set also needs to be taken care of.209

By choosing the admissible set (6), we formulated an assumption on the tumbling210

kernels (K0, K1) ahead of time. With this a-priori knowledge we showed the uniform211

boundedness and convergence of the solutions fε to the chemotaxis equation (3) over the212

function setA in Theorem 1. This will play a crucial role in the convergence proof for the213

inverse problem. From here and on, we assume the prior distribution µ0 is supported on214

A.215

Before diving in to show the convergence, as an a-priori estimate, we first show the216

well-posedness of the Bayesian posterior distributions in Lemma 1, following [19,20].217

Lemma 1. If the initial conditions f (k)0 ∈ C1,+
c (R3 ×V) and the test functions χj ∈ Cc(R3)218

satisfy (16) then the following properties of the posterior distributions hold true:219

a) The measurements Gε,chem and GKS are uniformly bounded on A (and uniformly in ε).220

b) For small enough ε, the measurements Gε,chem and GKS are Lipschitz continuous with re-221

spect to the tumbling kernels (K0, K1) under the norm ‖(K0, K1)‖∗ := max(‖K0‖∞, ‖K1‖∞)222

on A.223

c) The posterior distributions are well-posed and absolutely continuous w.r.t. each other.224

Proof. a) For every (j, k), we have:225

|GKS
jk (K0, K1)| =

∣∣∣∣∫R3
ρ(k)(x, tj) χj(x)dx

∣∣∣∣
≤ ‖χj(x)‖∞‖ρ(k)(·, tj)‖L1(R3) = ‖χj(x)‖∞‖ρ(k)0 ‖L1(R3)

≤ CxCρ

where we used the density conservation: ‖ρ(·, t)‖L1(R3) = ‖ρ0‖L1(R3) for all t.226

Analogously we have |Gε,chem
jk (K0, K1)| ≤ CxCρ. Note that this bound is indepen-227

dent of ε.228

b) For the chemotaxis model, we have for (K0, K1), (K̃0, K̃1) ∈ A

|Gε,chem
jk (K0, K1)− Gε,chem

jk (K̃0, K̃1)| =
∣∣∣∣∫R3

∫
V
( f (k)ε − f̃ (k)ε )(x, tj, v) dv χj(x) dx

∣∣∣∣
≤ ‖χj‖∞

∫
supp χj

∫
V
| f̄ (k)ε (x, tj, v)| dv dx ≤ Cx|V||supp χj|dx‖ f̄ (k)ε (·, tj, ·)‖L∞(R3×V)

≤ C2
x|V|‖ f̄ (k)ε (·, tj, ·)‖L∞(R3×V), (19)
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where f (k)ε and f̃ (k)ε are solutions to the initial value problem (3) with initial
condition f (k)0 and tumbling kernels Kε = K0 + εK1 and K̃ε = K̃0 + εK̃1 respectively.

Their difference f̄ (k)ε := f (k)ε − f̃ (k)ε satisfies the scaled difference equation:

ε2 ∂

∂t
f̄ (k)ε (x, t, v) + εv·∇x f̄ (k)ε (x, t, v) = K̃ε( f̄ (k)ε ) + K̄ε( f (k)ε )

f̄ (k)ε (x, 0, v) = 0.

Here, K̄ denotes the tumbling operator with kernel K̄ε := Kε − K̃ε. Integration in s
at (x− vs, t− s, v) shows

f̄ (k)ε (x, t, v) =
∫ t

0
K̃ε( f̄ (k)ε )

(
x− vs

ε
, v, t− s

)
+ K̄ε( f (k)ε )

(
x− vs

ε
, v, t− s

)
ds

=
∫ t

0

∫
V

K̃ε f̄ ′(k)ε

(
x− vs

ε
, v, v′, t− s

)
− K̃′ε f̄ (k)ε

(
x− vs

ε
, v, v′, t− s

)
dv′

+
∫

V
K̄ε f ′(k)ε

(
x− vs

ε
, v, v′, t− s

)
− K̄′ε f (k)ε

(
x− vs

ε
, v, v′, t− s

)
dv′ ds.

This yields

‖ f̄ (k)ε (·, t, ·)‖L∞(R3×V) ≤2‖K̃ε‖∞|V|
∫ t

0
‖ f̄ (k)ε (·, t− s, ·)‖L∞(R3×V) ds

+ 2‖Kε − K̃ε‖∞|V|‖ f (k)ε ‖∞t

≤4C|V|
∫ t

0
‖ f̄ (k)ε (·, s, ·)‖L∞(R3×V) ds

+ 4‖(K0 − K̃0, K1 − K̃1)‖∗|V|c f T

since one has ‖Kε‖∞ ≤ 2‖(K0, K1)‖∗ ≤ 2C for small enough ε < 1 and f (k)ε ≤ c f is
bounded in L∞ uniformly on A by Theorem 1 a). Additionally, c f can be chosen

to be independent of k by inserting the uniform boundedness of ‖ f (k)0 ‖L∞ in (16)
into equation (12). The Grönwall Lemma thus gives

‖ f̄ (k)ε (·, t, ·)‖L∞(R3×V) ≤ L(T, C, Cρ)‖(K0 − K̃0, K1 − K̃1)‖∗

with some coefficient L depending on T, C and Cρ. Inserting this in equation (19)229

results in the desired Lipschitz continuity.230

We similarly study the Lipschitz continuity of the Keller-Segel measurements231

GKS
jk (K0, K1). The proof strategy is almost the same. With some computational232

effort, one can see:233

|GKS
jk (K0, K1) − GKS

jk (K̃0, K̃1)| ≤ ‖χj‖L2‖(ρ(k) − ρ̃(k))(·, tj)‖L2

≤ Cxc(‖D− D̃‖L∞([0,T]×R3;R3×3) + ‖Γ− Γ̃‖L∞([0,T]×R3;R3))

where (Γ, D), (Γ̃, D̃) are the drift and diffusion terms derived by the collision234

operators defined by (K0, K1) and (K̃0, K̃1) respectively by equations (8)-(9). The235

constant c monotonously depends on the L2 norms of ρ(k) and ∇xρ(k) which are236

bounded uniformly on A. By the linear relation between D and κ and Γ and θ,237

this directly translates to238

|GKS
jk (K0, K1)− GKS

jk (K̃0, K̃1)| ≤ c̃cCx
(
‖κ − κ̃‖L∞([0,T]×R3;L2(V; dv

F ;R3))

+‖θ − θ̃‖L∞([0,T]×R3;L2(V; dv
F ))

)
,
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with constant c̃ depending only on V. Finally, the Lax-Milgram theorem shows
the continuous dependence of

‖θ − θ̃‖L2(V; dv
F ) + ‖κ − κ̃‖L2(V; dv

F ;R3) ≤ ĉ‖(K0, K1)− (K̃0, K̃1)‖∗

where ĉ only depends on V, α, C.239

c) By a), the likelihoods e
− 1

2γ2 ‖G
◦(K0,K1)−y‖2

are bounded away from zero and bounded240

uniformly on A (and in ε). Thus, also the normalization constants Z are. Part b)241

guarantees the measurability of the likelihoods. In total, this shows that the poste-242

rior distributions are well-defined and continuous with respect to each other. Since243

the likelihoods are continuous in y, well-posedness of the posterior distributions244

is given.245

246

We are now ready to show the convergence of the two posterior measures. There247

are two quantities we use to measure the difference between two distributions:248

• Kullback Leibler divergence

dKL(µ1, µ2) :=
∫
A

(
log

dµ1

dµ2
(u)
)

dµ2(u)

• Hellinger metric

dHell(µ1, µ2)
2 =

1
2

∫
A

(√
dµ1

dµ0
(u)−

√
dµ2

dµ0
(u)

)2

dµ0(u).

The two metrics both evaluate the distance between the two probability measures249

µ1 and µ2 that are either absolutely continuous with respect to each other or with250

respect to a third probability measure µ0. Both are frequently used for comparing two251

distribution functions e.g. in Machine Learning [25–30] or inverse problem settings252

[22,31]. Even though the Kullback-Leibler divergence lacks the symmetry and triangle-253

inequality properties of a metric, it gained popularity due to its close connection to254

several information concepts such as the Shannon entropy or the Fisher information255

metric [32]. Conversely, the Hellinger metric is a true metric. Although it does not have256

a demonstrative interpretation as the Kullback-Leibler divergence, its strength lies in the257

fact that convergence in the Hellinger metric implies convergence of the expectation of258

any polynomially bounded function with respect to either of the posterior distributions,259

as explained in [19]. In particular the mean, covariance and further moments of the260

distributions converge.261

Before comparing the posterior measures, we need to have a look at the convergence262

of the measurements G◦(K0, K1).263

Lemma 2. Assuming the initial and testing functions satisfy (16), the chemotaxis measurements264

Gε,chem converge to the Keller-Segel measurements GKS uniformly on A as ε→ 0.265
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Proof. Theorem 1 shows the convergence of fε to ρF in L∞([0, T], L1
+ ∩ L∞(R3 × V))266

uniformly on A. As a consequence, we have the convergence of the measurements:267 ∣∣∣Gε,chem
jk (K0, K1)− GKS

jk (K0, K1)
∣∣∣

=

∣∣∣∣∫R3

∫
V

f (k)ε (x, tj, v) dv χj(x)dx−
∫
R3

ρ(k)(x, tj)χj(x)dx
∣∣∣∣

≤
∫
R3

∫
V
| f (k)ε (x, tj, v)− ρ(k)(x, tj)F(v)| dv |χj(x)|dx

≤ ‖ f (k)ε (·, tj, ·)− ρ(k)(·, tj)F‖L∞(R3×V)|V|‖χj‖L1(R3)

→ 0

where we used the form F = 1
V . By the uniform convergence of fε to ρF, this holds268

uniformly on A. Since initial data and measuring test functions that satisfy (16) we have269

the uniform convergence over (j, k) as well.270

We can now proof the following theorem on the asymptotic equivalence of the two271

posterior measures describing the distribution of the tumbling kernels (K0, K1) ∈ A if272

the dynamics of the bacteria is modelled by the kinetic (3) or macroscopic equation (4).273

Theorem 2. Let the measurement of the macroscopic bacteria density be of the form (14) and (15)
for a underlying kinetic chemotaxis model or a Keller Segel model respectively. The measuring
test functions χj ∈ Cc(R3) and initial data f (k)0 ∈ C1,+

c (R3 × V) are assumed to satisfying
(16). Given a prior distribution µ0 on A and an additive centered Gaussian noise in the data, the
posterior distribution for the tumbling kernel derived from the kinetic chemotaxis equation and
the macroscopic Keller Segel equation as underlying models are asymptotically equivalent in the
Kullback Leibler divergence

dKL(µ
y
ε,chem, µ

y
KS)

ε→0−−→ 0.

Proof of Theorem 2. With the above Lemmas one can proceed as in the proof in [31].274

The integrand of the Kullback-Leibler divergence is by the definition of the normalization275

constants of order276

log
dµ

y
ε,chem

dµ
y
KS

(K0, K1) = log

µ0(K0, K1)µ
(K0,K1)
ε,chem (y)

Zε,chem
ZKS

µ0(K0, K1)µ
(K0,K1)
KS (y)


= log

ZKS

Zε,chem + log
µ
(K0,K1)
ε,chem (y)

µ
(K0,K1)
KS (y)

= O(|Zε,chem − ZKS|) +O(|µ(K0,K1)
ε,chem (y)− µ

(K0,K1)
KS (y)|)

= O(|µ(K0,K1)
ε,chem (y)− µ

(K0,K1)
KS (y)|)

Thus, we estimate277

|µ(K0,K1)
ε,chem (y)− µ

(K0,K1)
KS (y)|

=

∣∣∣∣∣exp

(
−‖y− G

ε,chem(K0, K1)‖2

2γ2

)
− exp

(
−‖y− G

KS(K0, K1)‖2

2γ2

)∣∣∣∣∣
≤ c

∣∣∣‖y− Gε,chem(K0, K1)‖2 − ‖y− GKS(K0, K1)‖2
∣∣∣
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for the Lipschitz constant c < ∞ of exp(− |x|2γ2 ) and∣∣∣‖y− Gε,chem(K0, K1)‖2 − ‖y− GKS(K0, K1)‖2
∣∣∣

=

∣∣∣∣tr[(2y− Gε,chem(K0, K1)− GKS(K0, K1)
)T(
Gε,chem(K0, K1)− GKS(K0, K1)

)]∣∣∣∣
≤ ‖2y− Gε,chem(K0, K1)− GKS(K0, K1)‖ · ‖Gε,chem(K0, K1)− GKS(K0, K1)‖.

The first factor is bounded uniformly on A and in ε by Lemma 1 a) and Lemma 2 shows
that the second factor converges to 0 uniformly on A. It follows that

dKL(µ
y
ε,chem, µ

y
KS)→ 0.

278

The boundedness of the the Hellinger metric by the Kullback Leibler divergence

d2
Hell(µ1, µ2) ≤ dKL(µ1, µ2)

as shown in Lemma 2.4 in [33] together theorem 2 yield the asymptotic equivalence of279

the posterior distributions also in the Hellinger metric.280

Corollary 1. In the framework of Theorem 2, one has

dHell(µ
y
ε,chem, µ

y
KS)

ε→0−−→ 0

5. Summary and Discussion281

In this article, we considered bacterial movement in an environment with an attract-282

ing chemical substance that was not produced or consumed by the bacteria. The bacteria283

density was modelled to follow a chemotaxis equation (3) on the kinetic level and a284

Keller Segel equation (4) on the macroscopic level. We studied the reconstruction of the285

tumbling coefficient using the measurement of the bacteria density at different time and286

location using different initial data. After adapting the results from [5] in the parabolic287

scaling, we study the equivalence between the reconstructions using the two different288

underlying models in the Bayesian framework. Assumptions on the prior information289

are made to guarantee the uniform convergence of the two forward models, enabling us290

to show that the posterior distributions are properly defined and the convergence of the291

two posterior distributions holds true. The distance between two posterior distributions292

is measured in both the Kullback-Leibler divergence and the Hellinger metric.293

The work presented here serves as a cornerstone of future research. On one hand,294

the study here can help design an efficient inversion solver. Most inversion solvers are295

composed of many iterations of forward solvers. Since kinetic chemotaxis equation lies296

on the phase space and is numerically much more expensive, the limiting Keller-Segel297

equation can serve as a good substitute for generating a good initial guess and speeding298

up the computation. On the other hand, the approach performed in this study is rather299

general, and with small modification, it also provides the foundation for explaining300

experiments, such as [7].301
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