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A B S T R A C T

This paper is devoted to the simulation of compressible magnetohydrodynamic (MHD) flows
with the Lattice Boltzmann Method (LBM). The usual LBM is limited to low-Mach flows. We pro-
pose a robust and accurate numerical method based on the vectorial kinetic construction of
[5,25], which allows us to extend the LBM to arbitrary Mach flows. We also explain how to ad-
just the numerical viscosity in order to obtain stable and accurate results in smooth or discontin-
uous parts of the flow and reduced divergence errors. The method can handle shock waves and
can be made second order in smooth regions. It is also very well adapted to computing with
Graphics Processing Unit (GPU). Our GPU implementation in 2D achieves state-of-the-art accu-
racy, with near-optimal performance. We finally present numerical computations of a tilt insta-
bility that demonstrate the capability of the method to handle physically relevant simulations.

© 20XX

1. Introduction

The MagnetoHydroDynamics (MHD) system is a fundamental model used in many fields of physics: astrophysics, plasma physics,
geophysics... Indeed, the MHD model is commonly adopted as an excellent framework for collisional plasma environments. The nu-
merical approximation of this system is a difficult task. Compared to other models in fluid mechanics, it contains more conservative
unknowns and more physical scales. It is also subject to complex phenomena such as occurrence of shock waves, current sheet forma-
tion, magnetic reconnection, instabilities and turbulent behaviors.

Many numerical methods have been developed for solving MHD. THe MHD equations enter the category of nonlinear hyperbolic
systems. The finite volume method with various upwind numerical fluxes based on approximate Riemann solvers are natural choices,
because those methods are known to handle in robust way shock waves arising in nonlinear hyperbolic systems. One of the first works
based on upwind schemes for solving the MHD equations is [9]. Other notable works extending the initial idea of Godunov to MHD
are, among many others, [7,10,19,40,45]. An additional specificity is that the magnetic field has to satisfy a divergence-free condi-
tion, which is generally difficult to be verified by numerical solutions. When this condition is not respected numerically, this generally
leads to nonphysical solutions and instabilities that may lead to the crash of the computations. See, for instance, [3,20,44]. In order to
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deal with the divergence-free condition, we adopt here a modified version of the MHD equations by a divergence cleaning term pro-
posed in [20].

We propose a simple scheme, based on an abstract kinetic interpretation, for computing two-dimensional MHD solutions. The ki-
netic interpretation is vectorial and has been first proposed by Bouchut in [5] and Aregba-Natalini in [1]. In this approach, the origi-
nal system of conservation laws is represented by a system of transport equations coupled through a so-called collision source term.
The idea originates from the Boltzmann kinetic theory of gases, but it is purely abstract and has no physical meaning. It leads to nat-
ural numerical methods, where the transport step and the collision step are made separately. Many interesting features arise from this
representation. We can mention the possibility to design explicit schemes with very large time steps, simplified parallel implementa-
tions [2,14]. It can also be used for establishing simplified stability proofs [5]. Finally, we would like to mention that the vectorial ki-
netic representation permits to construct schemes for compressible flows, while the usual scalar Lattice Boltzmann approach only
handles low-Mach flows.

In this paper, we solve the kinetic representation with a Lattice-Boltzmann Method (LBM), where the transport step is solved ex-
actly on a regular grid. The same approach has already been used in [25] for solving compressible Euler equations. An important as-
pect of the LBM is the choice of the relaxation parameter in the collision step. The choice of the parameter allows adjusting the numer-
ical viscosity of the LBM scheme. We provide an analysis in a simplified one-dimensional framework which shows that it is possible to
adjust more precisely the numerical viscosity with a generalized matrix relaxation parameter. We also show that the divergence
cleaning effect is improved if the relaxation parameter is chosen differently for the physical variables and the divergence cleaning po-
tential.

In order to capture fine structures, it is necessary to consider very fine meshes. We have programmed the algorithm in a very effi-
cient way in order to address recent GPUs (Graphic Processing Units) or multicore CPUs (Central Processing Units). GPU hardware is
notably known to be especially efficient for LBM computations. This is due to the simplicity of the computations and the regularity of
memory access [27,37,54].

We describe a very simple but very efficient implementation, which relies on the OpenCL [30] and PyOpenCL [34] libraries, and
the memory optimizations used for reaching high performance. The program allows performing full MHD simulations on grids as fine
as within a few hours.

Finally, we apply the whole approach to several MHD simulations: the classical Orszag-Tang test and a more physical study of
ideal MHD instabilities (tilt modes) and associated formation of quasi-singular current sheets.

2. Mathematical model

2.1. MHD equations with divergence cleaning

The MagnetoHydroDynamic (MHD) system is a model used in many fields of physics. It consists of an extension of the compress-
ible Euler equations for taking into account magnetic effects. It reads:

where the notations are defined as follows. The velocity and magnetic field are denoted

the pressure is given by a perfect-gas law with a constant polytropic exponent

The other variables are the density , the total energy .
A difficulty is that the magnetic field has to satisfy an additional divergence-free condition

(1)

Standard finite volume methods do not guarantee that the numerical magnetic field is divergence-free. More annoying: the diver-
gence errors generally grow with the simulation time, which leads to physically wrong results. For limiting the divergence errors, we
adopt the divergence cleaning method described in [20].

The MHD equations with Divergence Cleaning [20] (called the MHD-DC equations in the following) read:
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The MHD-DC system contains an additional unknown, the divergence cleaning potential . The divergence cleaning velocity is a
positive parameter .

When the magnetic field satisfies the divergence-free condition (1) and the potential is a constant, then the MHD-DC equations
simply reduce to the usual MHD equations. In other words, the MHD-DC equations are a generalization of the MHD equations, where
the magnetic field can have a non-vanishing divergence.

It is possible to show that the MHD-DC system, as the MHD system, is hyperbolic [20]. However this system is not strictly hyper-
bolic, which leads to some difficulties, such as non-uniqueness of the Riemann problems in some situations [51].

The interest of the MHD-DC formulation is for numerical approximations. Indeed, standard approximations of the usual MHD
equations suffer from drifting errors along time of the divergence constraint. This has been observed by several authors [3,20,44]. A
review on this topic is developed for instance in [52]. Approximations of the MHD-DC generally have a much better behavior. In this
generalized model, the divergence errors propagate at the wave speed . The errors are then damped at the boundaries of the compu-
tational domain or by the numerical diffusion in the domain. In [20] several divergence corrections are proposed. Another term can
for instance be considered: a damping relaxation term of the divergence cleaning potential . With this choice, the MHD system is
transformed into a parabolic system of conservation laws, which does not fit into the kinetic framework. Therefore we choose to con-
sider only the correction that leads to a conservative and hyperbolic model, in order to be able to apply the general theory of vectorial
kinetic representations given in [1,5]. Theoretically, the parameter can take any value. But in practice it is generally chosen larger
than all the wave speeds of the MHD system (see [20]). Let us introduce the conservative variables

and the flux ( is a vector of

With this definition, we can make more precise the choice of the divergence cleaning parameter . We denote by , the
real eigenvalues of the jacobian of the flux

It can be shown that is one of the eigenvalues [20]. Let us decide that . Then we choose to be the largest eigenvalue:

(2)

In this work, we assume that all the fields do not depend on the space variable. We are thus computing two-dimensional solu-
tions. If we set

the MHD equations can also be written as a two-dimensional system of nine conservation laws

(3)

where we use the notation for the partial derivative . If the fields depend only on the space variable, the system reduces
to

(4)
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In this case, the mathematical analysis is simplified. We shall perform an analysis of the numerical viscosity of the kinetic method
in this simplified framework.

2.2. Kinetic representation

The Lattice-Boltzmann Method (LBM) originated from the physical kinetic interpretation of the Navier-Stokes equations [12]. In
the physical world, the fluid particles can have arbitrary velocities. The main idea of the LBM is that it is possible to construct abstract
kinetic interpretations of the Navier-Stokes equations in which the particles velocities can take a few number of given values. This
makes it possible to solve the kinetic model directly in an efficient way. We refer to [50] for a history of the LBM.

Initially devised for solving incompressible Navier-Stokes equations, the LBM is based on a single scalar particle distribution func-
tion. More recently, it has been extended to other systems of conservation laws. Extensions to MHD can be found in [21,39]. Dellar, in
[21] showed that it is not possible to rely on a single scalar kinetic function for approximating the MHD equations. He proposes to rep-
resent the magnetic part of the equations with a vectorial kinetic formulation. Another vectorial kinetic interpretation of the MHD
equations was also previously proposed in [17] for building a numerical flux for a Finite Volume method.

The resulting hybrid kinetic model (scalar for the fluid part, vectorial for the magnetic part) is, however, limited to low-Mach
number flows.

Several attempts have been done to extend the LBM to arbitrary Mach flows with a scalar kinetic function. For instance, in [28,29,
36] the Maxwell distribution is approximated with more velocities in the lattice. The additional degrees of freedom allow to comput-
ing a discrete Maxwellian distribution that matches exactly the moments of the compressible Euler equations. These approaches re-
quire quite large lattices. For instance, in [36] the authors propose a D3Q39 LBM with 39 kinetic velocities for approximating the
five-equation, three-dimensional, compressible Euler equations. In addition, the methods proposed in [28,29,36] become unstable
when the temperature exits from a given range. Another method is presented in [46] for improving the stability of the scalar LBM for
compressible flow. It relies on the classical D2Q9 or D3Q27 lattices. However, the LBM is supplemented with a finite-difference ap-
proximation of the temperature equation. This approach is thus not fully an LBM method.

For addressing transonic and supersonic flows, we think that a fully vectorial kinetic model is preferable. The general theory of lat-
tice vectorial kinetic model is discussed in [1,5,25,31]. It is valid for any hyperbolic system of conservation laws and is no more lim-
ited to low-Mach number flows. It relies on a relatively small set of kinetic data. For instance, the LBM proposed by Dubois in [25] re-
quires only 30 transported kinetic quantities compared to the 39 kinetic velocities of [36]. In this work Dubois observes that while
very robust and promising, his method is quite numerically diffusive. For obtaining accurate results, it is therefore necessary to con-
sider refined meshes.

Let us finally mention that the vectorial kinetic approach is also of interest for low Mach numbers flows and the incompressible
limit [6,55].

The vectorial kinetic approach can be used on arbitrary unstructured meshes at any order of approximation [2,13]. When the lat-
tice velocities are aligned with the mesh, it is possible to adopt the simple exact transport step of the LBM. This is the method that we
present here.

We consider a real number and four velocities , defined by

We consider vectorial distribution functions , . The conservative variable is related to the kinetic data by

Usually, in the Lattice-Boltzmann philosophy, the kinetic system is a set a transport equations coupled through a relaxation source
term and reads (with )

(5)

The equilibrium function also called the Maxwellian state is chosen as

One can check that
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(6)

When the relaxation time then from (5) we see that

and thus from (6) we recover the MHD equations (3).
In order to approximate, (5) we first introduce a time step . Assume that we know the solution at time , where is

an integer. For computing the solution at time , one first solves the free transport equation

(7)

for . This gives the solution at time . At this time , it is clear that the distribution functions have
deviated from the equilibrium , because of the free transport evolution. In order to recover the consistency of the approxima-
tion, a classical choice is to force a return (also called a relaxation or projection) to equilibrium at each time step:

But it appears that this choice is not the most accurate one. It is better to apply an over-relaxation. Let be a relaxation parameter
. The approximate solution has a jump in time at times , and is given by

The computation of the jumps at times are called the collision steps.
Let us remark that when the collision step reads

We recover the simple projection on the Maxwellian state associated to the conservative data. This scheme is a first order in time
approximation of the original equations. An interesting case is the case of over-relaxation . Then the scheme is a second order in
time approximation of the original equations. See for instance [22]). See also below for a mathematical analysis in the one-
dimensional case. We shall see that the choice of the relaxation parameter amounts to introducing some numerical viscosity in the
numerical scheme. With this interpretation, corresponds to the maximal viscosity. The case leads to a second order accu-
rate scheme, with third order dispersive terms replacing the diffusive terms.

3. Numerical method

For solving (5) numerically, we first construct a structured grid of the square The space step is given by
and the grid-points are then as follows

For a simpler presentation we can assume periodic boundary condition, which amounts to the following equivalences

We denote by and the approximation of and at the grid points and time just after the collision step. The
values of the kinetic vectors just before the collision step are denoted . For solving the kinetic system (5) we treat the transport and
the relaxation terms separately.

3.1. Transport solver

The transport Eq. (7) admits an exact solution

If we assume that the time step satisfies the transport operator then reduces to a simple shift. Before the collision step, we
have thus
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(8)

3.2. Relaxation

At the end of the transport step, we can compute the conservative data

(9)

The usual projection method would be to write

(10)

As stated above, it is more accurate to consider a second order relaxed scheme

but this second order scheme may suffer from numerical instabilities, particularly in shock waves. It is possible to add some dissi-
pation. This dissipation provides a better stability in numerical cases when sharp fronts are generated.

For intoducing the dissipative mechanism, we consider a relaxation step of the form

(11)

where . We see that the whole algorithm is extremely simple. It is a succession of “shifts” (8) and “collisions” (11).
For the scheme is second order but unstable in shocks. For the scheme is very robust, entropy dissipative, but quite dif-

fusive.
With a simple one-dimensional analysis recalled in Section 3.4, we can give an estimate of the numerical viscosity introduced by

the relaxation parameter . Roughly speaking (see a more precise formulation in Section 3.4), the numerical viscosity scales like

where is the maximal wave speed of the MHD-DC system, according to (2). We observe that indeed vanishes when and
that it has the right sign if satisfies the subcharacteristic condition

(12)

For the two-dimensional case, it is more difficult to give a rigorous stability condition. In practice, we have observed that the sta-
bility is ensured with the following subcharacteristic condition

(13)

It would be interesting to construct a rigorous strategy for choosing locally the optimal value of . Let us mention that many finite
volume schemes have been designed for solving MHD equations, with specific Riemann solvers. We can mention for instance the
solver of [7], based on a relaxation approach, with proven stability and accuracy features. However, the solver presented in [7] is
more complicated to program and less computationally efficient. We can thus compensate the slightly lower accuracy of the kinetic
scheme by finer meshes, without increasing too much the computational load. For a quantitative comparison of the relative efficien-
cies of the finite volume/difference methods and the LBM, we refer for instance to [38,53]

3.3. Boundary conditions

For the moment, we have assumed periodic boundary conditions. But Dirichlet or Neumann conditions are also possible. Neu-
mann conditions are a good candidate for handling variables associated with outgoing waves. Indeed, because of the hyperbolic na-
ture of the equations, it is not possible to impose all the physical data at the boundaries. The number of boundary conditions depends
on the wave pattern. We refer to [23], for a specific analysis of the boundary conditions in the over-relaxation scheme.
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3.4. Analysis of the numerical viscosity in the one-dimensional case

In this section, we state some results about the numerical viscosity of the kinetic relaxation scheme in the one-dimensional case.
This one-dimensional analysis will give us simple intuitions for adjusting the relaxation parameter in the two-dimensional case. We
consider the one-dimensional MHD-DC system (4). For more simplicity, we will denote and . The equations then read

For the analysis, it is possible to replace the scalar relaxation parameter by a matrix , for more generality. In the following, we
establish the comparison between matrices in the usual way, by the comparison of the associated quadratic form (the resulting order
is thus not total).

It is then possible to prove the following result:
Theorem 1. If the relaxation matrix satisfies and if at the initial time, then, up to second-order terms in , is a solu-
tion of the following system of conservation laws

(14)

Remark 1. The proof is based on standard Taylor expansions. For the scalar case , it can be found (for instance) in [15]. The
approach is classical in the analysis of the Lattice Boltzmann Method (LBM). See for instance [24,42].
Remark 2. For the proof, based on a Chapman-Enskog expansion, is also given in [11].

The above analysis allows recovering formally the so-called sub-characteristic condition. Assuming that , the second-order
(“viscous”) terms have the good sign, which ensures stability of the model, if the following matrix is positive:

(15)

A fully rigorous mathematical proof of stability of the kinetic model is given by Bouchut in [5], Section 3.2, pp. 140–142.
Bouchut’s proof is not based on asymptotic expansions but on fully non-linear entropy estimates. Let us emphasize that the vectorial
kinetic construction ensures stability even when shock waves occur and is not limited by a low-Mach assumption.

From (14), we formally observe that the scheme is second-order accurate in time in the over-relaxation case, when

Finally, this analysis provides a way to numerically approximate, up to second order in time, the second-order system of conserva-
tion laws

(16)

If the diffusion matrix ) is small, it is natural to take

(17)

Let us remark that if is large enough then the above matrix is well defined.
In order to check practically the accuracy of the approximation, we apply the above analysis for a simplified system of two conser-

vation laws.
We consider the one-dimensional isothermal Euler equations with a diagonal diffusion of . Hence the full fluid system

we are interested in is given by

(18)

This system is a very simplified version of the MHD equation, where the magnetic field is assumed to vanish and the gas is sup-
posed to be isothermal. We have chosen to use this specific non-physical diffusion for our first test since it is exactly the type of diffu-
sion that is apparent in a standard finite volume code using a Lax-Friedrichs flux.

The diffusion matrix for (18) is simply given by

(19)

From (17), the inverse of the relaxation matrix is given by



CO
RR

EC
TE

D
PR

OO
F

8 H. Baty et al. / Applied Mathematics and Computation xxx (xxxx) 127667

(20)

with

For our first test of the matrix relaxation, we solve (18) comparing the Lattice Boltzmann scheme using (17) as relaxation matrix
and a standard explicit centered finite volume scheme for approximating (18). In this centered scheme, the time step is taken very
small in such way that the stability condition is satisfied and that the time integration error can be neglected. In other words, the
equivalent PDE of both schemes is (16). Hence, given the parameters in both schemes are set to represent the same diffusion , one
should get the same type of diffusion for both schemes.

To test this we take the simple case of a stationary viscous shock.
The initial data for this shock tube problem are

(21)

where the sound speed is set as while for the left state we have chosen

(22)

For the diffusion we use . For the Lattice Boltzmann scheme, we set . The results on a grid of 128 cells at time
are shown in Fig. 1. The test shows that the matrix relaxation lattice Boltzmann scheme provides the correct diffusion and therefore
results in the right viscous profile. The conclusion of this section is that the relaxation parameter is related to numerical viscosity. In
1D it can indeed be adjusted to fit the exact viscosity up to second order. For two-dimensional computations the analysis is more com-
plicated, but heuristically we expect a similar behavior.

In the following, for simplicity reasons, we only consider scalar relaxation.

Fig. 1. Viscous Shock Test with : Comparison of the viscous profiles for of the finite volume and the lattice Boltzmann scheme. The small staircase effect is typi-
cal of the LBM scheme and is due to the over-relaxation. It can be removed by only plotting every other point.
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4. GPU implementation

We have implemented the above LBM algorithm. The LBM is particularly well adapted to parallelism. It is possible to provide very
efficient implementations on GPU (Graphic Purpose Units) hardware.

4.1. OpenCL

Today Graphic Processing Units (GPU) have more and more computation power. The Open Computing Language (OpenCL) is a
software environment for simplifying the use of the GPUs for general computing. It is also possible to use OpenCL for driving a hetero-
geneous set of general multicore processors.

In the OpenCL terminology, an accelerator is a parallel computing device, such as a GPU or a multicore CPU. A kernel is a (gener-
ally small) program that is executed on several of the computing cores of the GPU. For instance, the Nvidia GPU GTX 1660 has 448
computing cores. Thanks to the OpenCL command queue management, it is possible to launch several million kernel instances, which
are dispatched on the hundreds of cores of the GPU.

The OpenCL runtime is a library of C functions, called from the host, in order to drive the GPU. The OpenCL runtime, because it is
written in C is quite heavy to use in practice: the verbosity is high, the API is not very user-friendly and memory management is cum-
bersome. For this reason it is advised to use OpenCL wrappers written in a higher-level language such as C++ or Python. We have
used the Python OpenCL wrapper written by Andreas Klöckner, PyOpenCL [34], which makes OpenCL initializations and calls much
easier and shorter to program.

The OpenCL language is a C-like language for writing the kernels that will be executed on the computing cores.
In order to perform a complex task, a kernel has to be executed many times. Each execution of a kernel is called a work-item. Each

work-item is identified by a unique global ID .
For more details on OpenCL, we refer for instance to [16,30,34].

4.2. OpenCL implementation of the LBM algorithm

We have implemented the above algorithm using PyOpenCL.
The different devices used in this paper are listed in Table 1. In this table, we also describe the hardware: size of the accelerator

memory, size of the fast-access cache memory, number of compute units and number of processing elements. The AMD processor was
used inside a virtual environment, which implies a non-negligible loss of performance. PyOpenCL allows us to select either the CPU or
the GPU for the computations. With the OpenCL AMD drivers, when the CPU is selected, it is also possible to choose the number of ac-
tivated CPU cores through a Linux environment variable. This is useful for estimating (in a crude way) the efficiency of the OpenCL
parallelism.

The LBM is very simple. Our implementation is made of two OpenCL kernels, a few C functions and a small Python driver for ini-
tializing the memory buffers, launching the OpenCL kernel and plotting the results. The role of the first OpenCL kernel is to compute
the initial condition directly into the memory buffer created on the OpenCL accelerator. The role of the second kernel is to perform a
time step of the LBM. The time-stepping is driven from the PyOpenCL program.

The most important point is to take care of the organizations of the kinetic data into memory. Indeed ensuring aligned memory ac-
cess is essential for performance. In practice all the values for kinetic velocities in cells are arranged in a single memory
buffer fn[], with the following storage

where Nx is the number of grid points in the direction and Ny is the number of grid points in the direction. Then, in the
OpenCL kernel, each cell is associated to the work-item

Table 1
Characteristics of the OpenCL devices tested in this paper. CU stands for “Compute Units” and “PE” for “Processing Elements”.
short name name

V100 Tesla V100-PCIE-16GB
Quadro Nvidia Quadro P6000
GTX Nvidia GTX 1660
AMD AMD EPYC 7551 32-core
CPU Intel Xeon E5-2609 v4
Iris 640 Intel Iris Graphics 640
short name type frequency memory cache CU PE
V100 GPU 1.4 GHz 16 GB 48 kB 80 5120
Quadro GPU 1.5 GHz 24 GB 32 kB 30 3840
GTX GPU 1.6 GHz 6 GB 48 kB 22 1408
AMD CPU 2 GHz 48 GB 32 kB 1–24 1–24
Intel CPU 1.7 GHz 64 GB 32 kB 16 16
Iris 640 GPU 1.0 GHz 4 GB 64 kB 48 192
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This numbering ensures that neighboring work-items will access neighboring memory locations during the shift algorithm (8). For
instance, if work-item access data in global memory, for reading or writing, at location imem, then work-item access loca-
tion imem+1.

This property is still true in the relaxation algorithm. First, the kinetic data are copied in processor registers in an aligned way. The
computations of the conservative data (9), equilibrium (10) and collisions (11) are done in registers, which ensure very fast memory
access. Finally, the kinetic data are copied back to the global buffer fn[] in a fully aligned way.

We rmk that thanks to the chosen organization into memory, we do not have to use the local cache memory for accelerating the al-
gorithm.

In order to measure the efficiency of the implementation, we perform a memory bandwidth test for a grid. One time-step
of the method implies the read access in the global memory of the set of fields of the previous time-step. The local computations are
done in registers. Then there is another write access to global memory for storing the data of the next time-step. The memory size in
Gigabyte of one set of fields is

where is the number of bytes for storing one floating-point number ( for single precision and for double pre-
cision). We then perform a given number of time iterations and measure the elapsed time (in ) in the OpenCL kernels. We
perform two kinds of experiments. In the first experiment, we deactivate the numerical computations and only perform the shift oper-
ations. The memory bandwidth (in GB ) of the shift algorithm is then given by

In the second experiment, we reactivate the computations and measure how the bandwidth is reduced. This allows to evaluating
how the elapsed time is shared between memory transfers and computations. The results are given in Table 2. We observe a good effi-
ciency of the shift algorithm in the shift-only case: the transfer rates are not very far from the maximal bandwidth of the device, at
least for the GPU accelerators. From these results we also observe that the LBM algorithm is clearly memory bound. When the single
precision computations are activated on the GPU devices (GTX, Quadro, V100), the elapsed time of the shift-and-relaxation test is not
very different from the shift-only test. For the double precision computations, we observe that the V100 device outperforms all the
other GPUs.

5. Numerical applications to MHD

5.1. Smooth vortex (performance test)

The smooth vortex test is a classical test for MHD codes. It is described for instance in [26]. Because this is an exact solution, it al-
lows us to assess the accuracy of the solver. Here we also used this test to evaluate the efficiency of the parallel implementation. The
test case is built upon a single vortex, which is a stationary solution of the MHD system, to which a constant drift velocity is added. In
the moving frame centered on , with , the analytical solution reads in polar coordinates

Table 2
Bandwidth efficiency of the LBM algorithm. Comparison of the data transfer rates of the shift-only algorithm and of the shift-and-relaxation algo-
rithm for different computing devices and floating-point accuracies. The resulting bandwidth is compared with the maximal memory bandwidth
advertised by the vendor of the hardware device. Let us observed that the maximal measured bandwidth can be smaller than the vendor’s specifi-
cations. For instance, for the V100 GPU, the practical bandwidth is measured to 825 GB/s in [48]. This has to be compared with the theoretical
bandwidth of 900 GB/s.

prec. (GB/s, shift-only) (GB/s, shift-relax) max. (GB/s)

Intel float32 17.58 13.38 60
Intel float64 19.12 17.48 60
Iris 640 float32 26.20 24.98 34
Iris 640 float64 20.08 3.78 34
GTX float32 147.54 146.94 192
GTX float64 148.76 49.72 192
Quadro float32 336.45 329.06 432
Quadro float64 344.50 127.21 432
V100 float32 692.31 676.44 900
V100 float64 705.88 610.17 900
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with . The results shown below are obtained with and the parameter set

The computational domain is the square , with . We compute the solution at time . The grid
contains points in and directions. For this smooth test case, we can take a relaxation parameter without triggering insta-
bilities. The cleaning parameter is set to and the kinetic speed to in order to enforce the subcharacteristic condition (13)
with a security margin. We compute the error in the norm at the final time between the exact solution and the numerical solu-
tion on the first component of the momentum (the other components of the solution would give similar results):

Asymptotically, the order of the scheme is evaluated by

The obtained numerical results are summed up in Table 3, where we give the convergence study and a performance evaluation of
the implementation. OpenCL permits to run the same code on a multicore CPU or a GPU. We have tested several CPU or GPU hard-
ware in single or double precision. Table 3confirms the second order of accuracy of the scheme in the case . In addition we ob-
serve a good efficiency of the implementation on several types of GPU. On CPU there is also a speedup achieved by the OpenCL paral-
lelism, but it is very sensitive to the OpenCL drivers. For instance, with the same hardware (an Intel Xeon two-CPU system) the pro-
gram runs almost three times faster with the OpenCL Intel drivers than with the open source POCL drivers. Let us finally mention that
when it is run on only one core, the code is very slow. This is due to the fact that our implementation is not really optimized for cor-
rectly harnessing the CPU cache. Here, with a more clever tiling strategy, the one-core run could probably be accelerated by an order
of magnitude (see for instance [32]).

5.2. Orszag-Tang vortex

The Orszag-Tang test case [18,41,43] is often used to test a numerical method for MHD. It consists in a vortex system where turbu-
lent structures and shocks develop. The domain is and the boundary conditions are periodic in and .
The initial conditions are given in Table 4.

As in the previous test case, we took and . But we have to set the relaxation parameter to in order to avoid in-
stabilities in the shock waves. In Figs. 2 and 3 we present several snapshots of the evolution of the vortex. In Fig. 4 we compare the re-
sults obtained with several grid refinements. The grid refinement clearly improves the sharpness of the shock profiles.

Table 3
Convergence and performance study. Some tests are done in single precision (float32) and others in double precision (float64). The speedup is a
comparison for N=1024 with the slowest device. “CU” means “Compute Units”: it is the number of activated cores in a CPU computation or of
OpenCL compute units for a GPU computation.

CU accuracy N=128 N=256 N=512 N=1024 speedup

AMD 1 float32 11.9 s 159 s 621 s 6396 s 1
AMD 24 float32 1.01 s 9.4 s 153 s 1380 s 5
POCL 16 float32 2.30 s 17.3 s 96.6 s 644 s 10
Intel 16 float32 0.75 s 3.93 s 32 s 226 s 30
Intel 16 float64 0.82 s 5.62 s 53 s 315 s 20
GTX 22 float32 0.04 s 0.31s 2.46 s 19.48 s 330
Quadro 30 float32 0.017 s 0.15 s 1.06 s 8.25 s 780
Quadro 30 float64 0.15 s 0.81 s 5.67 s 45.53 s 140
V100 80 float32 0.015 s 0.084 s 0.54 s 3.93 s 1600
V100 80 float64 0.031 s 0.21 s 1.17 s 8.35 s 770

float64 0.0507 0.0130 0.0033 0.0008
float64 - 1.96 1.99 2.00
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Table 4
Initial states for the Orszag-Tang test case.
Variables States

5/3

0

0

Fig. 2. Snapshots of for the Orszag-Tang configuration recorded at times and . Grid size is .

Fig. 3. Snapshots of for the Orszag-Tang configuration recorded at times (left) and (right). Grid size is .

5.3. MHD tilt instability

In this test-case, we consider a squared spatial domain . We define .
The initial condition is an MHD equilibrium given by:

(23)
(24)

(25)

(26)

(27)

where and are the Bessel functions of the first kind of orders zero and one respectively.
We add an initial perturbation of this equilibrium of the form:
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Fig. 4. Snapshots of for the Orszag-Tang configuration recorded at time . Grid sizes are (top left), (top right) and
(bottom).

with .
This kind of test-case has been studied in [35,47,49]. The given initial condition is a formal stationary solution of the MHD system.

However, when perturbed, an instability develops. A detailed description of the different stages of this instability can be found in [4,
47]. In [33,47], the study of the tilt instability was also made for a compressible MHD system. In [35,49] the equations are incom-
pressible, which leads to slightly different results.

The
For the analysis of the simulation results, we consider the current density given by:

and we are interested in the third component of , i.e. . We will also look at the kinetic energy of the system, which is computed
as the integral over the spatial domain of the kinetic energy density:

We apply Dirichlet boundary conditions in this test case: the data in the boundary cells are simply kept constant and equal to the
initial condition. Finally, the numerical scheme involves the following parameters

and for all variables, except for the kinetic variables associated with where (see Section 5.3). In our numerical
tests, we have noticed that choosing leads to an unstable numerical solution, due to the lack of dissipation.

The instability is illustrated in Figs. 5, 6, 7 for different times and the numerical approach presented above. An important numeri-
cal feature of the tilt instability is the formation of a current sheet: as time advances, the current density concentrates in a thin layer
on the boundary of the magnetic islands.

Current sheets and current peak
Current sheets develop at the edges of the magnetic islands. The width of these current sheets, as well as the maximum intensity of

the current density, highly depend on the numerical implementation. We compare our results with those of [35], based on a sophisti-
cated adaptive algorithm (mixing grid refinement and adaptive order of interpolation).
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Fig. 5. Snapshots of the magnetic current density recorded at (non-dimensioned) times and . Grid size is .

Fig. 6. Snapshots of the magnetic current density recorded at times and . Grid size is .

Fig. 7. Snapshots of the magnetic current density recorded at times and . Grid size is .

In Fig. 8, we zoom on the top right current sheet different grid sizes and at time . The finest current structures are obtained
with the finest grid (here the grid). In Fig. 9, we present the ratio of the maximum current density over the initial
current density . This ratio increases with the grid refinement and should be infinite in the case of a perfectly ideal MHD system
[35], i.e. without numerical viscosity.

The maximum ratio we can obtain is 14.2 with the grid. In comparison, [35] obtained a ratio of 5 for the simulation
with a first-order method and 32,768 triangles. They improved the ratio up to 41 with their adaptive grid algorithm near the current
sheets. In conclusion, our method seems to have a higher numerical viscosity, which limits the maximum current peak, but the com-
putations are certainly much faster. Indeed, adaptive methods are known to suffer from overhead due to the algorithm complexity.

Kinetic energy growth rate
During the development of the instability, the kinetic energy of the system presents an exponential behavior near :

The growth rate of the kinetic energy has been studied for instance in [47], where the growth rate was estimated to . In
[35], the study is limited to the incompressible case. Then, the grid-converged value for the growth rate is estimated to . In [33]
for a similar configuration, the growth rate is evaluated to . This work probably gives the best estimation because the simula-
tion is conducted with a very accurate adaptive scheme.

The simulations of the tilt instability that we perform are post-processed at regular time intervals. In Figs. 10 and 11, we show the
time evolution of the total kinetic energy . One can note that the growth of the kinetic energy happens in two stages: in a first
stage, the growth is faster than exponentially, then slows down and after two seconds the second stage begins with exponential
growth. When the grid resolution is higher, the first stage tends to vanish and the second stage begins sooner.
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Fig. 8. Snapshots of the magnetic current density near the top right current sheet. The snapshots time is . Grid sizes are (top left),
(top right), (bottom). We observe a sharpening of the current sheet with the grid refinement.

Fig. 9. Ratio of the peak current and the initial current density for simulation grids ranging from to .

Fig. 10. Growth of the kinetic energy during the simulation. Measures that have been accounted for the linear regression are identified with green marks and the re-
gression line is in red. Results for grid sizes and . (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 11. Growth of the kinetic energy during the simulation. Measures that have been accounted for the linear regression are identified with green marks and the re-
gression line is in red. Results for grid size . Growth rates from (16384 degrees of freedom) to ( degrees of
freedom). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In a logarithmic scale, the linear regression of the kinetic energy growth is performed with the Scipy function linregress and the
regression line is illustrated in Figs. 10 and 11. The results of the linear regression are reported in Table 5 and Fig. 11. The converged
growth rate is close to for our simulations. It is higher than the results of [47] and [35] but slightly lower than the most accu-
rate results of [33]. Our results seem thus to be quite correct on the finest mesh.

In Table 5, we summarize the characteristics of the linear regression for each mesh size.

Divergence cleaning effect
In order to ensure a magnetic field close to a divergence-free field, we have presented the divergence cleaning procedure in

Section 2.1. Here we compare two strategies for the numerical implementation of the divergence cleaning equation:

1. the kinetic variables associated with the conservative variable are solved numerically like any other kinetic variable. This
means that in the relaxation step, the relaxation coefficient is set to and the order of resolution is close to 2,

2. during the relaxation step, the kinetic variables associated with the macro-variable are relaxed with a coefficient , which
comes down to setting

Now, the order of resolution is 1 and the waves associated with the perturbations of the divergence-free constraint are better
damped than with . In [20], several strategies are proposed for damping the divergence errors. One of the methods is to
introduce a viscous damping term. In its spirit our proposal is similar, but the viscous term is introduced here in a numerical way.

These two options are compared in Figs. 12, 13, 14 for different times. For obtaining those plots, the divergence of the magnetic
field is computed with a simple centered finite difference approximation

At time , one can notice the effects of the boundary conditions that have propagated towards the center of the domain. The
perturbations of the divergence-free constraint have been more attenuated with the second strategy than with the first one. At time

, the divergence-free constraint is mainly violated at the edges of the magnetic vortices and close to the domain boundaries. Once

Table 5
Characteristics of the linear regression for the kinetic energy growth rate for each mesh size: range of values that have been accounted for and
growth rate.
Mesh Size Regression range Growth rate

[5.6,6.7] 0.390
[4.9,5.9] 0.904
[4.3,5.3] 1.082
[3.9,4.9] 1.330
[3.7,4.7] 1.403
[3.0,4.5] 1.433
[3.0,4.5] 1.450
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Fig. 12. Snapshots of the divergence of the magnetic field recorded at times for both strategies of divergence cleaning. Grid size is .

Fig. 13. Snapshots of the divergence of the magnetic field recorded at times for both strategies of divergence cleaning. Grid size is .

Fig. 14. Snapshots of the divergence of the magnetic field recorded at times for both strategies of divergence cleaning. Grid size is .

more, the results are better with the second divergence cleaning strategy. Finally, at time , when the vortices have begun to align,
the divergence-free constraint is strongly perturbed, but results are still better with the second strategy.

Because the second strategy is more precise than the first, all other test cases previously exposed in this paper are computed with
the second strategy.

6. Conclusion

In this work we have proposed a fast and robust Lattice-Boltzmann solver for the two-dimensional MHD equations with diver-
gence cleaning. The method is general and can be extended to other systems of conservation laws.

We have provided a preliminary one-dimensional analysis in order to evaluate the numerical viscosity of the numerical scheme.
We have shown that in principle, the numerical viscosity can be adjusted to a specific viscosity. An interesting challenge would be to
extend the analysis to higher dimensions, but this leads to complex calculations because of cross second-order derivatives. If this
analysis is possible, this would lead to a scheme where the physical resistive terms could be approximated properly.

The kinetic representation of the equations is very well adapted to massive parallel computing. The simplicity of the algorithm al-
lows achieving almost optimal efficiency on GPU hardware. This leads to the possibility to conduct computations on very fine uni-
formly refined meshes.

When conducting the simulations, we observed that the limiting factor was memory rather than computation time. In order to ex-
tend the method to even finer meshes or to three-dimensional computations, the memory management has to be improved. An obvi-
ous possibility is to distribute the computations on several GPUs, using a task-based runtime system (such as in [8]). This approach
could also be mixed with a compression strategy in order to reduce memory occupation and data transfers.
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