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Abstract
In this paper, we study the zero relaxation time limits to a one dimensional hydro-
dynamic model of two carrier types for semiconductors. First, we introduce the
flux approximation coupled with the classical viscosity method to obtain the uni-
form L p

loc, p ≥ 1, bound of the approximation solutions ρ
ε,δ
i and other estimates

of (uε,δ
i , Eε,δ) with the help of the high energy estimates (Jungel and Peng Comm

Partial Differ Equ 58:1007–1033, 1999). Then, we apply the compensated compact-
ness method coupled with the scaled variables technique (Marcati and Natalini Arch
Ration Mech Anal 129:129–145, 1995) to prove the zero-relaxation-time limits with
arbitrarily large initial data, and arbitrary adiabatic exponents γi > 1.

Mathematics Subject Classification 35L65 · 76N10 · 65M12 · 78A35

1 Introduction

In this paper, we study the zero relaxation time limits to the following one-dimensional
hydrodynamic model of two carrier types for semiconductors

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρi t + (ρi ui )x = 0,

(ρi ui )t + (ρi (ui )2 + Pi (ρi ))x = ρi E − ai (x)ρi ui
τi

, i = 1, 2,

Ex = ρ1 + ρ2 − b(x),

(1.1)
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in the region (−∞,+∞) × [0,∞], with bounded initial data

(ρi , ui )|t=0 = (ρi0(x), ui0(x)), lim|x |→∞(ρi0(x), ui0(x)) = (0, 0), ρi0(x) ≥ 0

(1.2)

and a condition at −∞ for the electric potential

lim
x→−∞ E(x, t) = E0, for a.e. t ∈ (0,∞), (1.3)

where E0 is a fixed constant, (ρ1, u1) and (ρ2, u2) are the (density, velocity) pairs for
electrons (i = 1) and holes (i = 2) respectively, E is the electric potential and the
given function b(x) represents the impurity doping profile, and ai (x) ≥ 0 are damping
coefficients (cf. [1,3,6,17,20] and the references cited therein). The pressure-density
relations are Pi (ρi ) = 1

γi
(ρi )

γi , where γi > 1 correspond to the adiabatic exponents,
τi > 0 are the momentum relaxation times.

When damping coefficients ai (x) = 1, the global existence of entropy solutions
of the initial-boundary value problem of (1.1) was first studied by using the viscosity
method [3] and the Godunov scheme method [20]), respectively, where the adiabatic
exponents γi are limited in the region (1, 5

3 ] to ensure the uniform L∞ estimates of
the approximation solutions.

The global solutions of the Cauchy problem of (1.1) was obtained in [6,17], where
the approximation solutions were constructed by the Lax-Friedrichs scheme and the
Godunov scheme. Due to the lack of a technique to obtain the a-priori L∞ estimate,
it is a long-standing open problem to study the Cauchy problem of (1.1) by using the
vanishing viscosity method.

Recently, in [11], the author introduced the following classical viscosity method
coupled with the flux approximation to study the problem (1.1)-(1.3).

Consider

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρi t + ((ρi − 2δ)ui )x = ερi xx ,

(ρi ui )t + (ρi (ui )2 − δ(ui )2 + Si (ρi , δ))x
= ε(ρi ui )xx + (ρi − 2δ)E − ai (x)(ρi−2δ)ui

τi
,

Ex = (ρ1 − 2δ) + (ρ2 − 2δ) − b(x)

(1.4)

with the initial data

(ρ
ε,δ
i (x, 0), uε,δ

i (x, 0)) = (ρi0(x) + 2δ, ui0(x)) ∗ Gε, (1.5)

where (ρi0(x), ui0(x)) are given in (1.2), δ > 0denotes a regular perturbation constant,
the perturbation pressures

Si (ρi , δ) =
∫ ρi

2δ

t − 2δ

t
P ′
i (t)dt, (1.6)
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Gε is a mollifier such that (ρε,δ
i (x, 0), uε,δ

i (x, 0)) are smooth and

lim|x |→∞(ρ
ε,δ
i (x, 0), uε,δ

i (x, 0)) = (2δ, 0), lim|x |→∞(ρ
ε,δ
i x (x, 0), uε,δ

i x (x, 0)) = (0, 0).

(1.7)

The existence result of solutions in [11] is summarized as follows:

Theorem 1 (Existence:) Let the initial data ρi0(x) ∈ L∞(IR) ∩ L1(IR), ui0(x) ∈
L∞(IR), the doping profile b(x) ∈ L1(IR) and the damping coefficients ai (x) ≥ 0.
Then,

(I) for fixed ε, δ, τi > 0 and γi > 1, the problem (1.4)–(1.7) has a global smooth
solution (ρ

ε,δ,τi
i , uε,δ,τi

i , Eε,δ,τi ) satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2δ ≤ ρ
ε,δ,τi
i , wi (ρ

ε,δ,τi
i , uε,δ,τi

i ) ≤ M(1 + t),
zi (ρ

ε,δ,τi
i , uε,δ,τi

i ) ≤ M(1 + t)

|ρε,δ,τi
i (·, t) − 2δ|L1(R) ≤ M,

lim|x |→∞(ρ
ε,δ,τi
i (x, t), uε,δ,τi

i (x, t)) = (2δ, 0),

lim|x |→∞(ρ
ε,δ,τi
i x (x, t),mε,δ,τi

i x (x, t)) = (0, 0)

(1.8)

and

2δ ≤ ρ
ε,δ,τi
i ≤ M(t), |uε,δ,τi | ≤ M(t), |Eε,δ,τi | ≤ M, (1.9)

where wi , zi are Riemann invariants of (1.4)

wi (ρi , ui ) = 1

θi
(ρi )

θi + ui , zi (ρi , ui ) = 1

θi
(ρi )

θi − ui , θi = γi − 1

2
,

(1.10)

M is a positive constant and M(t) a positive function of t . Both M and M(t) are
independent of ε, δ, τi , but M(t) could tend to +∞ as the time t → +∞;

(II) there exists a subsequence (still labelled) (ρε,δ,τi (x, t), uε,δ,τi (x, t),
Eε,δ,τi (x, t)), which converges pointwisely to the bounded functions (ρτi (x, t),
uτi (x, t), Eτi (x, t)) as δ, ε tend to zero, and (ρτi (x, t), uτi (x, t), Eτi (x, t)) is a
weak entropy solution of the problem (1.1)–(1.3).

In this paper,we study the relaxation limits of (ρε,δ,τi (x, t), uε,δ,τi (x, t), Eε,δ,τi (x, t)),
as δ, ε, τi tend to zero. Since our proof on the above bipolar hydrodynamic model is
completely same to the following unipolar model for semiconductor devices, to avoid
the use of knotty mathematical symbols, we only consider
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρt + ((ρ − 2δ)u)x = ερxx ,

(ρu)t + (ρu2 − δu2 + S(ρ, δ))x = ε(ρu)xx + (ρ − 2δ)E − 1
τ
a(x)(ρ − 2δ)u,

Ex = (ρ − 2δ) − b(x)

(1.11)

with (1.5)-(1.7), where the subscript i is deleted.
As did in [15], we introduce the scaled variables in (1.11)

N τ (x, ξ) = ρε,δ

(

x,
ξ

τ

)

, J τ (x, ξ) = 1

τ
mε,δ

(

x,
ξ

τ

)

, ϒτ (x, ξ) = Eε,δ

(

x,
ξ

τ

)

,

(1.12)

where mε,δ = ρε,δuε,δ , then (1.11) is rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

N τ
ξ + ((N τ − 2δ)U τ )x = ε

τ
N τ
xx ,

τ 2 J τ
ξ + (τ 2(N τ (U τ )2 − δ(U τ )2) + S(N τ , δ))x

= ετ J τ
xx + (N τ − 2δ)ϒτ − a(x)(N τ − 2δ)U τ ,

ϒτ
x = (N τ − 2δ) − b(x),

(1.13)

where U τ (x, ξ) = J τ (x,ξ)
N τ (x,ξ)

= 1
τ
uε,δ(x, ξ

τ
).

When a(x) = 1, based on the uniform L∞ bound assumption on the approxi-
mate solutions constructed by using the fractional step Lax-Friedrichs and Godounov
schemes, the authors in [15] proved that the limit (N (x, ξ), J (x, ξ), ϒ(x, ξ)) of the
sequence (N τ (x, ξ), J τ (x, ξ), ϒτ (x, ξ)), as τ ↓ 0+, is a solution of the following
well-known drift-diffusion equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nξ + Jx = 0

P(N )x = Nϒ − a(x)J ,

ϒx = N − b(x)

(1.14)

in the sense of distributions.
After giving up the attempt to obtain the uniform L∞ bound on the approximate

solutions, the authors in [6] constructed a family of positive and convex entropies
to deduce the high energy estimates of solutions and the uniform L p, 1 ≤ p < ∞,
estimates of approximate solutions, constructed by the Lax-Friedrichs and Godounov
schemes. Based on the L p estimates and the technical assumption γ = 1 + 2

n , n ≥
1 being an integer, the zero relaxation limit of (N τ (x, ξ), J τ (x, ξ), ϒτ (x, ξ)) was
proved by using the compensated compactness method.
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In this paper, we extend the results in [6] to any γ > 1 and an arbitrary bounded
function a(x) ≥ 1, by using the viscosity method given in (1.11). The new technique
we used is to introduce a perturbation parameter δ > 0 on the flux functions so
that we may obtain the uniformly positive lower bound on the viscosity solutions
ρε,δ,τ (x, t) ≥ 2δ. With the help of this key explicit bound, we may choose the suitable
relation among δ, the viscosity parameter ε and the relaxation time τ to obtain the
necessary estimates (for instance, the estimates in Lemma 7) and to prove the the zero
relaxation limit for any γ > 1.

Mainly we have the following theorem:

Theorem 2 (Relaxation Limit:) Let a(x) ≥ 1 be bounded. Suppose all conditions in
Theorem 1 are true and the initial data (ρ0(x), u0(x)) tend to zero sufficiently fast as
|x | → ∞, such that f (ρ0(x), u0(x)) ∈ L1(IR) for any continuous function f (ρ, u)

satisfying f (0, 0) = 0. Let ε = o(τ 2l(τ, δ)), where

l(τ, δ) =

⎧
⎪⎨

⎪⎩

(2δ)γ−2, for γ ≥ 2,

τ
2(2−γ )
γ−1 , for 1 < γ < 2.

(1.15)

Then, there exists a subsequence (still labelled) (N τ (x, ξ), J τ (x, ξ), ϒτ (x, ξ)), which
satisfies on any set QL = IR × (0, L), L > 0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N τ (x, ξ) → N (x, ξ) a.e. in L p
loc(QL), p ≥ 1,

N τ (x,ξ)−2δ
N τ (x,ξ)

J τ (x, ξ)⇀J (x, ξ) weakly in L2(QL),

ϒτ (x, ξ)) → ϒ(x, ξ) a.e. in L∞
loc(QL),

(1.16)

as ε ↓ 0+, τ ↓ 0+, δ ↓ 0+, where the limit (N (x, ξ), J (x, ξ), ϒ(x, ξ)) is a weak
solution of the drift-diffusion equations (1.14) in the sense of distributions.

2 Proof of theMain Theorem

In this section, we shall prove Theorem 2. First, following the ideas in [6], we construct
the necessary convex entropy-entropy flux pairs of (1.13).

We rewrite the first two equations in (1.13) as follows

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N τ
ξ + ((N τ − 2δ)U τ )x = ε

τ
N τ
xx ,

J τ
ξ + ((N τ (U τ )2 − δ(U τ )2) + 1

τ 2
S(N τ , δ))x

= ε
τ
J τ
xx + 1

τ 2
(N τ − 2δ)(ϒτ − a(x)U τ ).

(2.1)

For simplicity, we first omit all the superscripts ε, δ and τ .
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A convex, physical entropy-entropy flux pair of the left-hand side of (2.1) is

⎧
⎪⎪⎨

⎪⎪⎩

η∗(N ,U ) = τ 2
(
1
2NU 2 + a2τ N

γ

γ−1

)

q∗(N ,U ) = τ 2
(
1
2NU 3 + γ a2τ N

γU
γ−1

) (2.2)

and the general entropy-entropy flux pair satisfies

η(N , J ) = N
∫ 1

−1
g

(
J

N
+ Aτ yN

θ

)

(1 − y2)λdy (2.3)

and

q(N , J ) = N
∫ 1

−1
g

(
J

N
+ Aτ yN

θ

) (
J

N
+ θ Aτ yN

θ

)

(1 − y2)λdy, (2.4)

where λ = 3−γ
2(γ−1) , θ = γ−1

2 , aτ = 1

γ
1
2 τ

and Aτ = 1
θτ
.

We choose g(x) = x2k in (2.3). Since

(
J

N
+ Aτ yN

γ−1
2

)2k

=
2k∑

i=0

Ci
2k

(
J

N

)i

A2k−i
τ y2k−i N (2k−i)(γ−1)/2

=
2k∑

i=0

Ci
2k A

2k−i
τ y2k−i N (2k−i)(γ−1)/2−i J i ,

where Ci
k = k !

(k−i) ! i ! and

∫ 1

−1
yi (1 − y2)λd y = 0, for i odd, (2.5)

we deduce that

η(N , J ) = N
∫ 1

−1

∑

i≤2k, i even

Ci
2k A

2k−i
τ y2k−i (1 − y2)λN (2k−i)(γ−1)/2−i J i d y

= N
∫ 1

−1

k∑

i=0

C2i
2k A

2(k−i)
τ y2(k−i)(1 − y2)λN (k−i)(γ−1)−2i J 2i d y. (2.6)

Hence

η(N , J ) =
k∑

i=0

β
(k)
i A2(k−i)

τ Nα
(k)
i J 2i , (2.7)
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Zero relaxation time limits to a hydrodynamic model... 1037

where

β
(k)
i = C2i

2k

∫ 1

−1
y2(k−i)(1 − y2)λd y, 0 ≤ i ≤ k, (2.8)

α
(k)
i = (k − i)(γ − 1) − 2i + 1, 0 ≤ i ≤ k, (2.9)

which are constants independent of τ .
Similarly, we have from (2.4) that

q(N , J ) = J

N
η(N , J )

+
∫ 1

−1

∑

i≤2k, i odd

θCi
2k A

2k−i+1
τ y2k−i+1(1 − y2)λN (2k−i+1)θ−i+1 J idy.

(2.10)

When i = 0, we replace the following function in (2.7)

β
(k)
i A2(k−i)

τ Nα
(k)
i = β

(k)
0 A2k

τ Nk(γ−1)+1 (2.11)

with

β
(k)
0 A2k

τ (Nk(γ−1) − (2δ)k(γ−1))N (2.12)

because N is also an entropy, and let

η(k)
τ (N , J ) =

k∑

i=1

β
(k)
i A2(k−i)

τ Nα
(k)
i J 2i + β

(k)
0 A2k

τ (Nk(γ−1) − (2δ)k(γ−1))N .

(2.13)

Then the corresponding flux

q(k)
τ (N , J ) = J

N

k∑

i=1

β
(k)
i A2(k−i)

τ Nα
(k)
i J 2i + β

(k)
0 A2k

τ (Nk(γ−1)

−(2δ)k(γ−1))J + R(k)
τ , (2.14)

where

R(k)
τ =

∫ 1

−1

∑

i≤2k, i odd

θCi
2k A

2k−i+1
τ y2k−i+1(1 − y2)λN (2k−i+1)θ−i+1 J id y.

(2.15)

Obviously, q(k)
τ (N , J ) goes to zero when J tends to zero, 0 < β

(k)
i ≤ 2C2i

2k and
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∂η
(k)
τ

∂ J
=

k∑

i=1

2iβ(k)
i A2(k−i)

τ Nα
(k)
i J 2i−1, (2.16)

or equivalently

∂η
(k)
τ

∂ J
= 2

k−1∑

i=0

(i + 1)β(k)
i+1A

2(k−i−1)
τ Nα

(k)
i+1 J 2i+1. (2.17)

Now, we prove Theorem 2 by the following several Lemmas.

Lemma 3 For any positive integer k, the viscosity-flux approximation solutions of
(1.13) satisfy the entropy inequalities :

d

dξ

∫

IR

k∑

i=1

β
(k)
i A2(k−i)τ 2i

(
Nα

(k)
i J 2i

)
(ξ, x)

+β
(k)
0 A2k(Nk(γ−1) − (2δ)k(γ−1))N (ξ, x)dx

≤ 2
k−1∑

i=0

(i+1)β(k)
i+1A

2(k−i−1)τ 2i
∫

IR

N − 2δ

N

(
ϒNα

(k)
i+1+1 J 2i+1

−a(x)Nα
(k)
i+1 J 2(i+1)

)
(ξ, x)dx . (2.18)

Proof of Lemma 3 Multiplying system (2.1) by (
∂η

(k)
τ

∂N ,
∂η

(k)
τ

∂ J ), we may obtain the proof
of Lemma 3. ��
Lemma 4 For any positive integer k,

∫

IR

k∑

i=1

τ 2i
(
Nα

(k)
i J 2i

)
(ξ, x)dx ≤ M(ξ); (2.19)

⎧
⎨

⎩

∫

IR(Nk(γ−1) − (2δ)k(γ−1))N (ξ, x)dx ≤ M(ξ),

∫

IR(N − (2δ))Nk(γ−1)(ξ, x)dx ≤ M(ξ);
(2.20)

k−1∑

i=0

∫ ξ

0

∫

IR
τ 2i

N − 2δ

N

(
Nα

(k)
i+1 J 2(i+1)

)
(ξ, x)dxdt ≤ M(ξ), (2.21)

where M(ξ) is a positive bounded function ξ , which could go to infinite as ξ goes to
infinite.

Proof of Lemma 4 First, by using the first equation and the third equation in (1.13), we
may obtain (cf. [11,15])

∫

IR
N (ξ, x) − 2δdx ≤ M, |ϒ(ξ, x)|L∞(IR×IR+) ≤ M . (2.22)
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Zero relaxation time limits to a hydrodynamic model... 1039

Choose k = 1 in (2.18), which is corresponding to the convex, physical entropy given
in (2.2). By (2.9), α(1)

1 = −1. So, we have from (2.18) that

d

dξ

∫

IR
β

(1)
1 τ 2

(
N−1 J 2

)
(ξ, x) + β

(1)
0 A2(N γ−1 − (2δ)γ−1)N (ξ, x)dx

≤ 2β(1)
1

∫

IR

N − 2δ

N

(
ϒ J−a(x)N−1 J 2

)
(ξ, x)dx

≤ 2β(1)
1

∫

IR

ϒ2

2
(N − 2δ) − 1

2
a(x)N−2 J 2(N − 2δ)dx, (2.23)

which deduces
∫

IR
τ 2

(
N−1 J 2

)
(ξ, x)dx ≤ M,

∫

IR
(N γ−1 − (2δ)γ−1)N (ξ, x)dx ≤ M

(2.24)

and

∫ ξ

0

∫

IR
(N − 2δ)N−2 J 2dxdt ≤ M . (2.25)

From the second inequality in (2.24), we may obtain

∫

IR
(N − 2δ)N γ−1(ξ, x)dx ≤ M . (2.26)

In fact, when γ > 1, we have

(N − 2δ)N γ−1 ≤ N γ − (2δ)γ = (N γ−1 − (2δ)γ−1)N + (2δ)γ−1(N − 2δ),

(2.27)

which deduces (2.26).
Let k = 2 in (2.18). Since α

(2)
1 = γ − 2, α(2)

2 = −3, we have from (2.18) that

d

dξ

∫

IR
β

(2)
1 A2τ 2

(
N γ−2 J 2

)
(ξ, x) + β

(2)
2 τ 4

(
N−3 J 4

)
(ξ, x)

+β
(2)
0 A4(N 2(γ−1) − (2δ)2(γ−1))N (ξ, x)dx

≤ 2β(2)
1 A2

∫

IR

N − 2δ

N

(
ϒN γ−1 J−a(x)N γ−2 J 2

)
(ξ, x)dx

+4β(2)
2 τ 2

∫

IR

N − 2δ

N

(
ϒN−2 J 3−a(x)N−3 J 4

)
(ξ, x)dx

≤ 2β(2)
1 A2

∫

IR

1

2
(N − 2δ)N γ−1ϒ2 − 1

2
(N − 2δ)a(x)N γ−3 J 2dx

+4β(2)
2 τ 2

∫

IR

1

2
(N − 2δ)N−2ϒ2 J 2 − 1

2
(N − 2δ)a(x)N−4 J 4dx

123



1040 Y.-b. Hu et al.

≤ M − β
(2)
1 A2

∫

IR
a(x)(N − 2δ)N γ−3 J 2dx

−2β(2)
2 τ 2

∫

IR
a(x)(N − 2δ)N−4 J 4dx (2.28)

due to the second inequality in (2.22), (2.25) and (2.26).
Then we may obtain from (2.28) that

∫

IR
τ 2

(
N γ−2 J 2

)
(ξ, x) + τ 4

(
N−3 J 4

)
(ξ, x)dx ≤ M(ξ), (2.29)

∫

IR
(N (2(γ−1) − (2δ)2(γ−1))N (ξ, x)dx ≤ M(ξ), (2.30)

∫ ξ

0

∫

IR
(N − 2δ)N γ−3 J 2dxdξ ≤ M(ξ) (2.31)

and

∫ ξ

0

∫

IR
τ 2(N − 2δ)N−4 J 4dxdξ ≤ M(ξ). (2.32)

Similarly to the proof of (2.26), we may obtain from (2.30) that

∫

IR
(N − 2δ)N 2(γ−1)(ξ, x)dx ≤ M(ξ). (2.33)

Now, we complete the proof of Lemma 4 by induction. Suppose the conclusions in
Lemma 4 are true for k. By simple calculations, when k is replaced by k + 1, the
right-hand side of (2.18) replaced by

2
k∑

i=0

(i + 1)β(k+1)
i+1 A2(k−i)τ 2i

∫

IR

N − 2δ

N

(
ϒNα

(k+1)
i+1 +1 J 2i+1

−a(x)Nα
(k+1)
i+1 J 2(i+1)

)
(ξ, x)dx

≤
k∑

i=0

(i+1)β(k+1)
i+1 A2(k−i)τ 2i

∫

IR
(N − 2δ)ϒ2Nα

(k+1)
i+1 +1 J 2i

−a(x)(N − 2δ)Nα
(k+1)
i+1 −1 J 2(i+1)dx . (2.34)

When i = 0, since α
(k+1)
1 + 1 = k(γ − 1), we have

∫

IR
(N − 2δ)ϒ2Nα

(k+1)
1 +1dx ≤ M(ξ) (2.35)

due to (2.20).
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Since

α
(k+1)
i+1 + 2 = (k − i)(γ − 1) − 2(i + 1) + 1 + 2

= (k − i)(γ − 1) − 2i + 1 = α
(k)
i , (2.36)

we have for any 1 ≤ i ≤ k,

k∑

i=1

(i+1)β(k+1)
i+1 A2(k−i)τ 2i

∫

IR
(N − 2δ)ϒ2Nα

(k+1)
i+1 +1 J 2i dx ≤ M(ξ) (2.37)

due to (2.21). Finally if we replace k with k+1 and integrate (2.18) on [0, ξ), we have

∫

IR

k+1∑

i=1

β
(k+1)
i A2(k+1−i)τ 2i

(
Nα

(k+1)
i J 2i

)
(ξ, x)

+β
(k+1)
0 A2(k+1)(N (k+1)(γ−1) − (2δ)(k+1)(γ−1))N (ξ, x)dx

≤ M −
k∑

i=0

(i + 1)β(k+1)
i+1 A2(k−i)τ 2i

∫ ξ

0

∫

IR
a(x)(N − 2δ)Nα

(k)
i+1−1 J 2(i+1)dxdξ.

(2.38)

Thus the conclusions in Lemma 4 are true for any k. Lemma 4 is proved. ��
For any p ≥ 1, we can choose k sufficiently large such that k(γ − 1) > p, thus we

have from (2.20) and (2.22) that

Lemma 5

N ∈ L p(QL), p ≥ 1. (2.39)

Moreover, we have

Lemma 6

(N − 2δ)
J

N
∈ L2(QL). (2.40)

Proof of Lemma 6 We have

(N − 2δ)2
J 2

N 2 ≤

⎧
⎪⎨

⎪⎩

(N − 2δ) J 2

N2 , for 0 ≤ N − 2δ ≤ 1,

(N − 2δ) J 2
N ≤ (N − 2δ)Nα

(k)
1 −1 J 2, for N − 2δ ≥ 1,

(2.41)

because α
(k)
1 = (k−1)(γ −1)−1 > 0 for large k. Then we obtain the proof of (2.40)

by using (2.25) and (2.21). Lemma 6 is proved. ��
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Lemma 7

τ 2 J → 0, τ 2
(
J 2

N
− δ

J 2

N 2

)

→ 0, in L2
loc(IR × IR+). (2.42)

Proof of Lemma 7 First, by using the following estimates, given in Theorem 1, on the
viscosity solutions

2δ ≤ ρ, ρθ − u ≤ M(1 + t), ρθ + u ≤ M(1 + t), (2.43)

we have

2δ ≤ N , N θ − τ
J

N
≤ M

(
ξ

τ
+ 1

)

, N θ + τ
J

N
≤ M

(
ξ

τ
+ 1

)

(2.44)

or

τ(2δ)θ ≤ τN θ ≤ M(ξ + 1), |τ 2 J

N
| ≤ M(ξ + 1). (2.45)

Thus we have

τ 4 J 2 ≤ 2τ 4(N − 2δ)2
J 2

N 2 + 2(2δ)2τ 4
J 2

N 2 , (2.46)

where the first term tends to zero in L1
loc(IR × IR+) and the second tends to zero in

L∞
loc(IR × IR+) due to (2.40) and the second estimate in (2.45), when τ → 0, δ → 0.
Moreover,

τ 4(N
J 2

N 2 − δ
J 2

N 2 )2 ≤ 2τ 4(N − 2δ)2
J 4

N 4 + 2τ 4(δ)2
J 4

N 4 , (2.47)

where the second term tends to zero due to (2.45), and the first satisfies

τ 4(N − 2δ)2
J 4

N 4 ≤

⎧
⎪⎨

⎪⎩

τ 4(N − 2δ) J 4

N4 , for 0 ≤ N − 2δ ≤ 1,

τ 4(N − 2δ) J 4

N3 ≤ τ 4(N − 2δ)Nα
(k)
2 −1 J 4, for N − 2δ ≥ 1,

(2.48)

due to α
(k)
2 − 1 = (k − 2)(γ − 1) − 4 > −3 for a large k.

Since τ 4(N − 2δ) J 4

N4 tends to zero due to (2.32), and τ 4(N − 2δ)Nα
(k)
2 −1 J 4 tends

to zero due to the estimate (2.21), so we complete the proof of Lemma 7. ��
Lemma 8

ε

τ
l(τ, δ)N 2

x ∈ L1
loc(IR × IR+), ετ 3l(τ, δ)J 2x ∈ L1

loc(IR × IR+), (2.49)
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where

l(τ, δ) =

⎧
⎪⎨

⎪⎩

(2δ)γ−2, for γ ≥ 2,

τ
2(2−γ )
γ−1 , for γ < 2.

(2.50)

Proof of Lemma 8 By simple calculations, we have from the convex entropy given in
(2.2)

ε

τ
(Nx , Jx ) · ∇2η�(N , J ) · (Nx , Jx )

T

= ετ

[(
J 2

N 3 + a2τ γ N γ−2
)

N 2
x − 2

J

N 2 Nx Jx + 1

N
J 2x

]

= ετ

[
J 2

N 3 N
2
x − 2

J

N 2 Nx Jx + 1

N
J 2x

]

+ ε

τ
N γ−2N 2

x ≥ ε

τ
N γ−2N 2

x (2.51)

and

ε

τ
(Nx , Jx ) · ∇2η�(N , J ) · (Nx , Jx )

T

= ετ

[(
J 2

N 3 + a2τ γ N γ−2
)

N 2
x − 2

J

N 2 Nx Jx + 1
J 2

N3 + a2τ γ N γ−2

(
J

N 2

)2

J 2x

]

+ετ

(
1

N
− 1

J 2

N3 + a2τ γ N γ−2

(
J

N 2

)2
)

J 2x ]

≥ ετ

(
1

N
− 1

J 2

N3 + a2τ γ N γ−2

(
J

N 2

)2
)

J 2x

= ετ
N γ

τ 2 J 2 + N γ+1 J
2
x (2.52)

due to a2τ γ = 1
τ 2
. Thus, multiplying system (2.1) by (

∂η�

∂N ,
∂η�

∂ J ) and using the results
of Lemma 4 for k = 1, we have

ε

τ
N γ−2N 2

x ∈ L1
loc(IR × IR+), ετ

N γ

τ 2 J 2 + N γ+1 J
2
x ∈ L1

loc(IR × IR+). (2.53)

Moreover, when γ ≥ 2, since N ≥ 2δ, we have N γ−2 ≥ (2δ)γ−2; when γ < 2, since

N ≤ M

τ
1
θ

due to the first estimate in (2.45), we have N γ−2 ≥ τ
2(2−γ )
γ−1 . Thus we obtain

the proof of the first part in (2.49).
Furthermore, from the estimates in (2.45), we have

τ 4
J 2

N 2 ≤ M, τ 2N γ−1 ≤ M . (2.54)
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Then

N γ

τ 2 J 2 + N γ+1 ≥ cτ 2N γ−2 (2.55)

for a suitable constant c > 0. Thus we obtain the proof of the second part in (2.49).
Lemma 8 is proved. ��

To complete the proof of Theorem 2, from now on, we consider N and J with the
superscript τ .

Lemma 9 If ε = o(τ 2l(τ, δ)), then

ε

τ
N τ
xx and ετ J τ

xx + (N τ − 2δ)ϒτ − a(x)(N τ − 2δ)U τ (2.56)

lie in a compact set of H−1
loc (IR × IR+).

Proof of Lemma 9 First, for any given test function φ ∈ H1
0 (IR × IR+), if we choose

ε to go zero sufficiently fast than τ and δ, more precisely, if ε = o(τ l(τ, δ)), we have
from the first estimate in (2.49) that

∣
∣
∣
∣

∫ ∞

0

∫ ∞

−∞
ε

τ
N τ
xxφdxdt

∣
∣
∣
∣ ≤

( ε

τ l

) 1
2
(∫ ∫

�

ε

τ
l(N τ

x )2d�

) 1
2
(∫ ∫

�

(φx )
2d�

) 1
2 → 0,

(2.57)

where � is any bounded set in IR × IR+. Then ε
τ
N τ
xx is compact in H−1

loc (IR × IR+).

Similarly, if ε = o(τ 2l(τ, δ)), we may prove that ετ J τ
xx is compact in H−1

loc (IR× IR+).
Second, from the estimates in (2.39) and (2.40), (N τ −2δ)ϒτ −a(x)(N τ −2δ)U τ

are uniformly bounded in L2
loc(IR× IR+), and so compact in H−1

loc (IR× IR+) by using
the Sobolev imbedding theorem. Lemma 9 is proved. ��
Proof of Theorem 2 Since the conclusions in (2.39),(2.40),(2.42) and (2.56), we may
apply the Div-Curl lemma (cf. [16,19]) to the following pairs of functions

(N τ , (N τ − 2δ)U τ ), (τ 2 J τ , τ 2(N τ (U τ )2 − δ(U τ )2) + S(N τ , δ)) (2.58)

to obtain (cf. [6,12,15])

(N τ )γ+1 = N (N τ )γ , (2.59)

where we used

S(N τ , δ)) =
∫ ρ

2δ

t − 2δ

t
P ′(t)dt → (N τ )γ , as δ, τ → 0, (2.60)

N is theweak limit of N τ and f (uτ ) denotes theweak limit of f (uτ ) in L p
loc(IR× IR+).

Thus the technique, given in [6,14], deduces the pointwise convergence of N τ in
L p
loc(IR × IR+), p ≥ 1.
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Since the uniform estimate (2.40) of N τ (x,ξ)−2δ
N τ (x,ξ)

J τ (x, ξ) in L2(QL), there exists a

function J (x, ξ) ∈ L2(QL) such that the second limit in (1.16) is true.
Since the right-hand side of the third equation in (1.13), (N τ − 2δ) − b(x) is

uniformly bounded in L1
loc(IR × IR+), and so compact in W−1,α

loc (IR × IR+) by the
Sobolev imbedding theorem, moreover, at the same time, the left-hand side of ϒτ

x is
bounded in W−1,∞

loc (IR × IR+), thus ϒτ
x is compact in H−1

loc (IR × IR+).
From the third equation and the first equation in (1.13), we have

ϒτ
t = ∫ x

−∞ N τ
t dx = εN τ

x − (N τ − 2δ)U τ , (2.61)

which is compact in H−1
loc (IR × IR+) by (2.40) and the first estimate in (2.49). Then

we may apply the Div-Curl lemma to the following pairs of functions

(0, ϒτ ), (ϒτ , 0) (2.62)

to obtain (ϒτ )2 = (ϒτ )2, which deduces the pointwise convergence of ϒτ in
L∞
loc(IR × IR+).
Letting ε, δ, τ in (1.13) go to zero, we may prove that the limit (N , J , ϒ) satisfies

the drift-diffusion equations (1.14) in the sense of distributions. Thus, we complete
the proof of Theorem 2. ��
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