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Abstract

Consider small particles of varying size being transported by a
fluid. If we allow these particels to coalesce their evolution may be
described by the coagulation model

ft +
p

m
.∇xf = Q(f) .

Here f denotes the particle density f(t, x,m, p) of particles with mass
m ∈ R

+, momentum p ∈ R
3, at time t > 0 and position x ∈ R

3. For
a general class of collion operators Q we prove existence of solutions.
Under some natural restriction on the initial data we have existence
without blowup of the solution.

1 Introduction

Consider small particles of varying sizes being transported by a fluid. One
example is aerosol sprays where tiny bubbles are floating in air; another exam-
ple is interstellar dust particles which are swept along by hydrogen molecules
(modeled as a fluid) in an accretion disc. The interaction between these
particles in general may allow for fragmentation or coagulation of particles
(like in a Smolouchovski equation) or more complicated interaction; some of
this is discussed in the following literature: the model descibed in Baranger
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[3] includes breakup and oscillations, Hylkema and Villedieu [16] leave out
oscillations in their model, Prince and Blanch [23] or Tsouris and Tavlarides
[25] descibe the case of bubbles or droplets in flow. For interstellar dynamics
or chemically reactive particles, the models may be even more complex (we
refer to Illner [17] or Williams [28]).
In this paper we restrict ourselves to the following interaction of particles:
assume that these particles may coalesce to form larger particles thus de-
pleting the population of smaller particles by way of increasing the amout
of larger size particles. (see Drake [13] for a review of the models, Penrose
and Buhagiar [21] where a particle model of coalescence and fragmentation is
derived, the so called Becker-Döring equations and Wagner [27] for numerical
aspects).
This can be modelled in three regimes: the microscopic, mesoscopic and
macroscopic regime. On a microscopic level we consider a finite number of
individual particles which move stochastically. The collision of particles leads
to the formation of new larger particles (recall we consider only coagulation
here) with a certain given rate. In case the number of particles gets very
large this approach it is quite costly numerically to handle this model.
The macroscopic regime is probably the most studied up to now. Here the
interacting particles are modeled at the contiuum level. Existence results for
deterministic models may be found in Amann [2], Collet and Poupaud [9],
Dubovskii [14] and finally Laurençot and Mischler [18], [19], [20] for the space
dependent case. Probabilistic ideas have also been put to use with success
in Aldous [1], Deaconu and Fournier [10] for instance (see also Bertoin [4]
and [5] for fragmentation processes). Macroscopic models are easy to write
down and the physical identification of the kernels and parameters one can
usually readily handle (though it is never trivial); nevertheless they do not
take into account the individual velocities of the particles, assuming usually
either space independence or a diffusion process for the particles. If a non
trivial interaction with a fluid is to be taken into account or if the particles’
density is very low and very inhomogeneous, it is necessary to look at the
mesoscopic regime.
On a mesoscopic level, the number of microscopically modelled particles has
gone to infinity while maintaining constant total mass. We now talk about
the particle density f(t, x,m, p) of particles with mass m ∈ R

+, momentum
p ∈ R

3, at time t > 0 and position x ∈ R
3. The evolution of f is given by a

2



Boltzmann-type equation

ft +
p

m
.∇xf = Q(f) (1.1)

where the collision operator Q is to be specified later. In comparison the
macroscopic description involves physically measurable variables like mass
density, velocity and temperature. The evolution of such macroscopic vari-
ables leads to a system of n balance laws (n ∈ N) which may formally be
derived from the mesoscopic description by taking moments and a closure
procedure relating the n+1st moment to the first n moments.
We want to address the following question: given a certain class of coagula-
tion processes (to be specified later) and given initially many very small par-
ticles, under which circumstances may this flow evolve for some time without
leading to a concentration of particles, i.e. without leading to a Dirac delta
mass distribution of particles. We proceed to give such an existence result
for the mesoscopic model under weak assumptions on the initial distribultion
of particles.
Existence of solutions to Boltzmann type equations can be very difficult to
obtain, possibly requiring the use of renormalized solutions as in the original
paper of DiPerna and Lions [11]; We refer to Cercignani’s book [8] and Villani
[26] for a review of the issues arising for Boltzmann like models. Fortunately
the existence theory for equation (1.1) turns out to be much simpler.
The coagulation equation (1.1) has been introduced and studied in the case
of spatial homogeneity: f = f(t,m, p) by Roquejoffre and Villedieu [24]. In
the spatially inhomogeneous case f = f(t, x,m, p) Escobedo, Laurencot and
Mischler [15] have studied existence for a more restrictive collision operator
than the one we consider, which in their case leads to a preservation of Lp

norms. We shall consider a more general class of collision operators and
show, that under some natural restriction on the initial data (but stronger
than in [15]), we have existence without blowup for any given finite time.
The method of our proof is very different from [15] and the two results are
really complementary.
Finally we would like to mention that a difficult open question for Eq. (1.1)
is whether its limit for an infinite rate of collisions corresponds to pressure-
less gas dynamics (as it physically should), even only in dimension one (see
Bouchut, James [6] and Brenier, Grenier [7], Poupaud, Rascle [22] for the
theory of pressureless gas dynamics in one space dimension).
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2 The main theorem and the L∞ bound

We study the following equation on f(t, x,m, p)

∂tf +
p

m
· ∇xf = Q(f) = Q+(f) −Q−(f), x, p ∈ R

d, m ∈ R
+ (2.1)

Q+(f) =
1

2

∫ m

0

∫

p′
B(m∗, m′, p∗, p′)f(t, x,m′, p′)f(t, x,m∗, p∗) dp′ dm′

Q−(f) = f(t, x,m, p)

∫ ∞

0

∫

p′
B(m,m′, p, p′)f(t, x,m′, p′) dp′ dm′,

(2.2)

where m∗ = m − m′ and p∗ = p − p′. Here Q+(f) is the contribution by
coagulation of smaller particles, Q−(f) is the depletion by coagulating with
other particles. These are irreversible processes. We have conservation of
mass and momentum but no preservation of kinetic energy. We assume the
following bound on B

B(m∗, m′, p∗, p′) ≤ C
m′α +m∗α

(inf(m′, m∗))β
×

(

|p′|

m′
+

|p∗|

m∗

)

, with α < 1, β < 1+α.

(2.3)

We say that a function f ∈ C1([0, T ] × R
d × R+ × R

d) is a strong solution
to (2.1) if

(1+m−1−β +mk +(|p|/m)k) f ∈ L∞([0, T ]×R
d×R+×R

d), ∀k > 0, (2.4)

if moreover

∃m0 > 0 s.t. f(t, x,m, p) = 0, ∀m ≤ m0, (2.5)

and of course if f satisfies (2.1) at every point (note that Q(f) is well defined
due to (2.4) and (2.5)). In that case we shall also assume that

∃m0 > 0 s.t. f 0(x,m, p) = 0 if m ≤ m0. (2.6)

However in general this last assumption is not very reasonnable and we do
not know whether strong solutions exist on any time interval. Therefore we
are interested in weak solutions.
The two relevant physical quantities for this problem are the total number
of particles, the mass and the kinetic energy which we assume to be finite

∫

Rd×R+×Rd

(1 +m+ |p|2/m) f 0(x,m, p) dx dmdp <∞. (2.7)
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A basic property of equation (2.1) is to preserve the total mass and to de-
crease the energy and the number of particles, i.e. we expect that for any
solution f
∫

Rd×R+×Rd

(1+m+|p|2/m) f(t, x,m, p) ≤

∫

Rd×R+×Rd

(1+m+|p|2/m) f 0(x,m, p).

(2.8)
Given an arbitray time interval [0, T ], we also define the following quantities

‖g‖k,m = sup
x,m′,p

(1 + |p|k) × (1 + |p|/m′ + |x|)1+0 ×
Im′≤m

m′β+1
× g(x,m′, p),

‖f‖∞k,m = sup
0≤t≤T

‖f(t, ., ., .)‖k,m,

(2.9)

where 1+0 denotes any exponent larger than 1. Those norms are L∞ bounds
with weights. Without additional assumptions on the rate of coagulation B,
it is not known whether the “ordinary” L∞ norm of the solution can be
bounded. Therefore we add weights in (2.9) so as to be able to a priori
bound the corresponding norms.
We call a weak solution to (2.1) on [0, T ], any function f satisfying (2.8),
such that f is a distributional solution to (2.1) and for which the a priori
estimates that we are able to prove are true, namely ‖f‖∞k,m < ∞ for any
k,m (Q(f) being well defined as a consequence). We are able to obtain an
existence result for this notion of weak solutions

Theorem 2.1. Assume the following mild restriction on the intial data:
∫

(1 +m+ |p|2/m)f 0(x,m, p) dx dmdp <∞

||f0||k,m <∞, ∀k,m .

||f 0||k+(4+0)N,2−N → 0 with N → ∞

(2.10)

Then for any T > 0, there exists f(t, x,m, p), defined on [0, T ]×R
d×R+×R

d,
such that it satisfies ||f ||∞k,m < ∞ ∀k,m and (2.8), and such that f is a
solution to (2.1) in a distributional sense.

The main ingredient for this proof is a L∞ estimate.

Lemma 2.2. For T > 0 and any f 0 satisfying (2.10) and (2.6), then any
strong solution f satisfies ||f ||∞k,m ≤ C(k,m) for a function C(k,m) which
does not depend on m0.
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Before proving this lemma, notice that any strong solution automatically
satisfies (2.8).

2.1 Beginning of the proof of Lemma 2.2

We wish to prove L∞ bounds on f with weights so, to this end, we multiply
equation (2.1) by the corresponding quantities,

(

∂t +
p

m
· ∇x

)

·

(

(

1 +
|p|

m
+ |x|

)1+0
1 + |p|k

mβ+1
f

)

= S1 + S2

=

(

1 +
|p|

m
+ |x|

)0+0
1 + |p|k

mβ+1

x · p

m|x|
f +

(

1 +
|p|

m
+ |x|

)1+0
1 + |p|k

mβ+1
Q(f).

And using the characteristics,

‖f(t)‖∞k,M ≤ ‖f 0‖k,M + sup
x,p,m≤M

∫ t

0

(S1 + S2)(t− s, x− sp/m,m, p) ds

= ‖f 0‖k,M + F 1 + F 2.

(2.11)

2.1.1 The contribution from F 1

It is the easiest part. One simply writes

F 1 ≤

∫ t

0

sup
x,p,m≤M

(

1 +
|p|

m
+ |x|

)0+0
1 + |p|k

mβ+1

|p|

m
f(t−s, x−sp/m,m, p) ds

≤

∫ t

0

‖f(s)‖k,M ds.

(2.12)

2.1.2 The contribution from F 2

We use the bound (2.3) and the structure of Q in (2.1) to obtain

F 2 ≤Mα sup
x,p,m≤M

∫ t

0

∫ m/2

0

∫

p′

(

1 +
|p|

m
+ |x− sp/m|

)1+0
1 + |p′ + p∗|k

mβ+1m′β

×

∣

∣

∣

∣

p′

m′
+
p

m

∣

∣

∣

∣

f(t−s, x−sp/m,m′, p′) f(t−s, x−sp/m,m∗, p∗) dp′dm′ds.
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Then, we divide the domain of integration in p′ as

F 2 ≤ Mα sup
x,p,m≤M

∫ t

0

∫ m/2

0

∫

|p′|≥m′|p|/m

. . .

+Mα sup
x,p,m≤M

∫ t

0

∫ m/2

0

∫

|p′|≤m′|p|/m

. . . = F 12 + F 22.

Dealing with the first term, we write

F 12 ≤ 2Mα sup
x,p,m≤M

∫ t

0

∫ m/2

0

∫

p′

(

1 +
|p′|

m′
+ |x− sp/m|

)1+0
1 + |p′ + p∗|k

mβ+1m′β

×
|p′|

m′
f(t−s, x−sp/m,m′, p′) f(t−s, x−sp/m,m∗, p∗) dp′dm′ds,

or, since m∗ ≥ m/2

F 12 ≤ 2M1+α

∫ t

0

∫ M/2

0

‖f(s)‖k+4+0,m′‖f(s)‖k,M−m′ dm′ ds

×

∫

p′

dp′

1 + |p′|3+0
.

(2.13)

Next, for F 22, we remark that coagulation rules imply that |p|/m is less
than the maximum of |p′|/m′ and |p∗|/m∗. As a consequence, in this case
|p|/m ≤ |p∗|/m∗, and

F 22 ≤ 4Mα sup
x,p,m≤M

∫ t

0

∫ m/2

0

∫

p′

(

1+
|p∗|

m∗
+|x−sp/m|

)1+0
1 + |p′+p∗|k

mβ+1m′β

×

(

|p′|

m′
+
|p|

m

)

f(t−s, x−sp/m,m′, p′) f(t−s, x−sp/m,m∗, p∗)dp′dm′ds.

Introducing as previously the corresponding multipliers, we end up with

F 22 ≤ 2Mα sup
x,p,m≤M

∫ m/2

0

‖f‖∞k+4+0,m′ ‖f‖∞k,m−m′

×

∫ t

0

∫

p′

1 + |p|/m

(1 + |p′|/m′ + |x− sp/m|)1+0
×

dp′ ds

1 + |p′|3+0
dm′.

The term on the second line is clearly bounded by

C sup
p′,m′

∫ t

0

1 + |p|/m

(1 + |x− sp/m|)1+0
ds.

Now we use the lemma
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Lemma 2.3. There exists a constant C (depending on T ) such that ∀ t ≤ T ,
∀ x, v ∈ R

d
∫ t

0

ds

(1 + |x− sv|)1+0
≤

C

1 + |v|
.

This implies that

F 22 ≤
CMα

t

∫ M/2

0

‖f‖∞k+4+0,m ‖f‖∞k,M−m dm. (2.14)

Proof of Lemma 2.3. It is a simple computation. First consider the case
where t× |v| ≤ |x|/2, then for any 0 ≤ s ≤ t

1

(1 + |x− sv|)1+0
≤

4

(1 + |x|)1+0
.

And so
∫ t

0

ds

(1 + |x− sv|)1+0
≤

4t

(1 + |x|)1+0
≤

4t

1 + |x|
≤

4t

1 + 2t |v|
.

This last quantity is dominated by 2/(1 + |v|) if t ≤ 1/2 and by 4t/(1 + |v|)
if t > 1/2; Consequently

∫ t

0

ds

(1 + |x− sv|)1+0
≤

2 + 4t

1 + |v|
.

Otherwise, of course

∫ t

0

ds

(1 + |x− sv|)1+0
≤

∫ 3t

0

ds

(1 + |x− sv|)1+0
.

This integral is the largest when v is parallel to x, i.e. x = αv with α ≤ 3t,
because |x − sv| may then vanish. We compute it in this (worst) situation
and moreover we may assume that |v| ≥ 1, since if |v| ≤ 1 then the integral
is bounded by t which less than 2t/(1 + |v|). Now assuming that |v| ≥ 1

∫ t

0

ds

(1 + |x− sv|)1+0
≤ 2 ×

∫ t

0

ds

(1 + s|v|)1+0
≤

2

|v|
×

∫ ∞

0

ds

(1 + s)1+0
≤

2C

|v|
.

So eventually the lemma is proved.
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2.2 Conclusion of the proof of Lemma 2.2

Combining Estimates (2.12), (2.13) and (2.14) together, we have (here the
constant C behaves like T (1 +m))

‖f(t)‖k,m ≤

∫ t

0

‖f(s)‖k,m ds+ ‖f 0‖k,m

+ C mα

∫ m/2

0

‖f‖∞k+4+0,m′ ‖f‖∞k,m−m′ dm′.

(2.15)

Now as initially we have

‖f 0‖k,m = G(k,m) <∞, ∀k. (2.16)

The estimate (2.15) becomes

‖f(t)‖k,m ≤G(k,m) +

∫ t

0

‖f(s)‖k,m ds

+ Cmα

∫ m/2

0

‖f‖∞k+4+0,m′ ‖f‖∞k,m−m′ dm′.

(2.17)

By a Gronwall lemma, this reduces to

‖f(t)‖k,m ≤ C eT G(k,m) + C eT mα

∫ m/2

0

‖f‖∞k+4+0,m′ ‖f‖∞k,m−m′ dm′.

Taking the supremum in t, we get

‖f‖∞k,m ≤ CG(k,m) + Cmα‖f‖∞k+4+0,m/2

∫ m/2

0

‖f‖∞k,m−m′ dm′. (2.18)

Applying another Gronwall lemma but with m as the “time variable”, we
find

‖f‖∞k,m ≤ eCmα‖f‖∞
k+4+0,m/2G(k,m). (2.19)

Given our approximation procedure, there exists m0 such that ‖f‖∞k,m0
= 0

for all k and we wish to prove estimates on ‖f‖∞k,m uniform inm0. We consider
the sequences

un = ‖f‖∞k+(4+0)(N−n),m02n , vn = G(k + (4 + 0)(N − n), m02
n),
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they satisfy the relation

un+1 ≤ eCmα
0 2nαunvn+1.

Of course we may choose the integer N as we wish. First of all, let us notice
that for any integer M , G(k+(4+0)n,M 2−n) converges toward zero thanks
to the hypothesis of Theorem 2.1. Furthermore as G(k+ (4 + 0)n,M 2−n) ≤
G(k+(4 +0)(n− logM), 2−n−log M) for M < 1, the same hypothesis implies
that supnG(k+ (4 + 0)n,M 2−n) exists and converges towards zero with M .

Hence we may define M such that eC × supnG(k + (4 + 0)n,M 2−n) < 1.
Now we take for N the largest integer such that M > m0 × 2N . We recall
that vN−n = G(k + (4 + 0)n,m0 2N−n) is precisely G(k + (4 + 0)n,M 2−n)
and therefore and eC vn ≤ 1 for all n ≤ N .
Then by induction it is easy to check that un ≤ 1 for 0 ≤ n ≤ N . Of course
u0 = v0 ≤ 1 and if it is true for un then

un+1 ≤ eC(m0 2n)α

vn+1 ≤ eCvn+1 ≤ 1.

Consequently ‖f‖∞k,m is bounded for all k and for all m up to at least M/2.
Now to conclude the proof, we apply (2.19) for m = M , then m = 2M and
so on, and we deduce that for any m > 0, ‖f‖∞k,m is bounded uniformly in
m0, as M is bounded from below uniformly in m0.

3 Existence of solutions to 2.1

3.1 Existence of strong solutions for a small time

As usually we are going to use a fixed point argument. Having chosen a
given f 0 (and thus a critical mass m0 such that (2.6) holds), we define the
space Ω in which we work: Ω is the space of all non negative functions
f ∈ C1([0, t0] × R

d × R+ × R
d), with f(0, x,m, p) = f 0(x,m, p), satisfying

(2.4) and such that (2.5) holds for the same parameter m0 as for f 0. The
distance on this space is

d(f, g) =‖(1 +m−β−1(f − g)‖L∞

+
∞
∑

k=1

2−k min
(

1,
∥

∥(mk + (|p|/m)k) |f − g|(t, x,m, p)
∥

∥

L∞

)

.
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We define the operator T on Ω as follows : For f ∈ Ω, Tf is the solution to
the equation

∂tTf +
p

m
· ∇xTf =

1

2

∫ m

0

∫

p′
B(m∗, m′, p∗, p′)f ′ f ∗ dm′ dp′

− Tf(t, x,m, p) ×

∫ ∞

0

∫

p′
B(m,m′, p, p′) f(t, x,m′, p′) dp′ dm′,

T f(0, x,m, p) = f 0(x,m, p).

(3.1)

This is a linear transport equation including a given source term and ab-
sorption. All coefficients are regular and well defined since f ∈ Ω and (2.3),
therefore the existence of a C1 solution is ensured. Moreover the source term
is always non negative and so the solution Tf is also non negative.
Then the source term, which we denote by Q+(f)(t, x,m, p), vanishes if m ≤
m0 because in this case both m′ and m∗ are necessarily less than m0 too and
f satisfies (2.5). Consequently Tf also satisfies (2.5) with m0.
Now thanks to (2.3), we have for example

m−β−1Q+(f) ≤ m−β−1

∫ m

m/2

∫

p′

m′α

m∗β
×

(

|p′|

m′
+

|p∗|

m∗

)

f ′ f ∗ dm′ dp′

≤ 21+β ‖m−β(1 + |p|/m) f‖L∞ ×

∫ m

m/2

∫

p′

1

1 + (m′)2
×

1

1 + |p′|4

× (1 + (m′)2) × (1 + |p|4) × (m′)α−β−1

(

1 +
|p′|

m′

)

f ′.

And as a consequence

m−β−1Q+(f) ≤ C ‖(1 +m−β−1 + (|p|/m)q) f‖L∞

× ‖(1 +m12+2α−4β +m−β−1 + (|p|/m)5r) f‖L∞,

by a Hölder estimate and with 1/q + β/(1 + β) = 1 and 1/r + (1 + β)/(1 +
β−α) = 1 or r = 2 whichever is larger. With the same kind of computation,
we may show that

(mk+(|p|/m)k)Q+(f) ≤ C ‖(m−2β + (|p|/m)2k+2) f‖L∞

× ‖(m2α+2k + (|p|/m)2k+2) f‖L∞.

From that it is easy to deduce that T is continuous on Ω and with the same
kind of bounds that it is contracting provided t0 is small enough, which gives
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a strong solution on [0, t0]. We leave the details to the reader but we note
that the time t0 is bounded from below by a quantity which depends only on
the ‖f 0‖k,m, k,m ∈ R+.

3.2 Weak stability

We prove the following

Proposition 3.1. Let fn ∈ L∞([0, t0], L
1(Rd ×R+ × R

d)) be a sequence of
solutions to (2.1) in the distributional sense with uniformly bounded mass and
energy, and ‖fn‖

∞
k,m uniformly bounded in n, for any m > 0, k > 0. Then up

to extracting a subsequence, fn converges towards f ∈ L∞([0, t0], L
1(Rd ×

R+×R
d)) for the weak−∗ topology of measures, a solution to (2.1) in the dis-

tributional sense with bounded mass and energy, f(t = 0, .) = f 0 = lim fn(t =
0, .).

Notice that if a function g(t, x,m, p) satisfies ‖g‖∞k,m < ∞ for all k, m, then
Q(g) is bounded in L∞ in time with values in L1

loc in x, m, p; And so is
(p/m) g. Consequently if g is also a solution to (2.1) in the distributional
sense, then ∂tg belongs to L∞ in time with values in a (local) Sobolev space
with negative exponent. And therefore, traces in time of g are well defined.

Proof. First of all, we note that because of the uniform bounds on
∫

Rd×R+×Rd

(1 +m+ |p|2/m) fn(t, x,m, p) dx dmdp,

we may extract a subsequence fn, which we denote by the same indices,
which converges to f ∈ L∞([0, t0], M

1(Rd × R+ × R
d)). Moreover ‖f‖∞k,m

is finite for all m > 0 and thus f ∈ L∞([0, t0], L
1(Rd × R+ × R

d)) and its
mass and energy are bounded.
Then (|p|/m)1+0fn ∈ L∞

loc(R
d × R+ × R

d) uniformly in n and consequently

p

m
fn −→

p

m
f in D′(Rd × R+ × R

d).

Now as ‖fn‖k,m is uniformly bounded for anym, Q+(fn) is uniformly bounded
in L∞

loc(R
d × R+ × R

d). For Q−(fn) we write, using (2.3)
∫ m

0

∫

p′
B(m,m′, p, p′) f ′

ndp
′ dm′ ≤ Cmα(1 + |p|/m)

∫ m

0

∫

p′

1+|p′|/m′

m′β
f ′

ndp
′dm′

≤ Cm1+α(1 + |p|/m) × ‖fn‖
∞
4,m,

12



and
∫ M

m

∫

p′
B(m,m′, p, p′) f ′

ndp
′ dm′ ≤

CMα

mβ
(1 + |p|/m)

∫ M

m

∫

p′
(1+|p′|/m′) f ′

n

≤
CMα

mβ
(1 + |p|/m) × ‖fn‖

∞
4,M .

Therefore denoting

Q−
M (fn) = fn(t, x,m, p) ×

∫ M

0

∫

p′
B(m,m′, p, p′) f ′

ndp
′ dm′,

We also know that Q−
M(fn) is uniformly bounded in L∞

loc for m ≤M . Finally,
again for m ≤M and because α < 1
∫ ∞

M

∫

p′
B(m,m′, p, p′) f ′

ndp
′ dm′ ≤

C

mβ
(1 + |p|/m)

∫ ∞

M

∫

p′
m′α(1 + |p′|/m′) f ′

n

≤
CMα−1

mβ
(1 + |p|/m)

∫ ∞

0

∫

p′
|p′| f ′

n dp
′ dm′,

and thus denoting ΩR = [0, t0] × B(0, R) × [0, R] × B(0, R),

‖RM(fn)‖L1(ΩR) =

∥

∥

∥

∥

fn(t, x,m, p)

∫ ∞

M

∫

p′
B(m,m′, p, p′) f ′

n

∥

∥

∥

∥

L1(ΩR)

≤ CMα−1 t0R
2d+1 ‖fn‖

∞
4,R ×

∫

Rd×R+×Rd

|p| fn(0, x,m, p).

We now wish to use the result of velocity averaging proved in [12]. The
only “difficulty” is that DiPerna, Lions and Meyer use the velocity variable
v = p/m. Consequently we change variable and define

gn(t, x,m, v) = md fn(t, x,m,mv).

The equation satisfied by gn is of course

∂tgn + v · ∇xgn = S1
n + S2

n,

with

S1
n(t, x,m, v) = md Q+(fn)(t, x,m,mv) +md Q−

M(fn)(t, x,m,mv),

S2
n(t, x,m, v) = md RM(fn)(t, x,m,mv).

13



As localization in t, x,m, v implies localization in t, x,m, p, the term S1
n is

uniformly bounded in L∞
loc. Moreover

‖S2
n(t, x,m, v)‖L1(ΩR) = ‖RM(fn)(t, x,m, p)‖L1([0, t0]×B(0,R)×[0, R]×B(0,R2)).

The variable m is now only a parameter and the result from DiPerna, Lions
and Meyer can be applied directly. Consequently we obtain that for any
φ ∈ C∞

c (R+×R
d),
∫

φ(m, v)gn dmdv is the sum of a term uniformly bounded

in H
1/2
loc by CMα and a term bounded in L1

loc by CMα−1.
Notice that for any ψ ∈ C∞

c (R+ × R
d), we may define φ(m, v) = ψ(m,mv)

and φ also belongs to C∞
c . Therefore

∫

ψ(m, p)fndmdp, which is precisely
equal to

∫

φ(m, v)gn dmdp, is also the sum of a term uniformly bounded in

H
1/2
loc by CMα and a term bounded in L1

loc by CMα−1.
We immediately deduce that

∫

ψ(m, p)fn dmdp converges strongly in L1
loc

toward
∫

ψ(m, p)f . As those averages are moreover uniformly bounded in
L∞

loc, the convergence holds in all Lp
loc, p <∞.

Decomposing the integrals in Q(fn) in integrals over a compact support in
m and p and a small remainder, as we have just done, it is easy to conclude
that Q(fn) converges strongly in L1

loc towards Q(f). Therefore f is also a
solution to (2.1).
It only remains to explain why f(t = 0, .) = lim fn(t = 0, .). For that note
that we have proved that p/mfn and Q(fn) are uniformly bounded in L1

loc

and consequently ∂tfn is uniformly bounded in L∞([0, t0] ×W−1,1
loc ). This

ensures compactness in time and so we indeed have f(t = 0, .) = f 0 =
lim fn(t = 0, .).

3.3 Conclusion of the existence proof for equation 2.1

We first take a sequence f 0
n ∈ C1 which approximates f 0 in L1. We may take

this sequence such that ‖f 0
n‖k,m is bounded by 2‖f 0‖k,m for all k > 0, m > 0,

the mass and energy of f 0
n is the same as the ones of f 0 and each f 0

n satisfies
(2.6) but with different parameters mn

0 of course since mn
0 → 0.

We know that there exists a time t0 such that we have a sequence fn of strong
solutions to (2.1) on [0, t0] with fn(t = 0, .) = f 0

n , fn has uniformly bounded
mass and energy and all ‖fn‖

∞
k,m are uniformly bounded.

We may apply Prop. 3.1 to obtain a solution f to (2.1), in the distributional
sense, with f(t = 0, .) = f 0, bounded mass and energy and ‖f‖k,m < ∞,
∀k,m > 0.

14



Prop. 2.2 eventually enables us to start again the procedure at the time t0
and to obtain a weak solution on any time interval [0, T ].
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