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Abstract. A well-balanced second order finite volume central scheme for the magnetohydro-4
dynamic (MHD) equations with gravitational source term is developed in this paper. The scheme5
is an unstaggered central scheme that evolves the numerical solution on a single grid and avoids6
solving Riemann problems at the cell interfaces using ghost staggered cells. A subtraction technique7
is used on the conservative variables with the support of a known steady state in order to manifest8
the well-balanced property of the scheme. The divergence-free constraint of the magnetic field is9
satisfied after applying the constrained transport method (CTM) for unstaggered central schemes at10
the end of each time-step by correcting the components of the magnetic field. The robustness of the11
proposed scheme is verified on a list of numerical test cases from the literature.12
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1. Introduction. Ideal Magnetohydrodynamics (MHD) equations model prob-16

lems in physics and astrophysics. The MHD system is a combination of the Navier-17

Stokes equations of fluid dynamics and the Maxwell equations of electromagnetism.18

A gravitational source term is added to the ideal MHD equations in two space dimen-19

sions in order to model more complicated problems arising in astrophysics and solar20

physics such as modeling wave propagation in idealized stellar atmospheres [16, 3].21

From electromagnetic theory, the magnetic field B must be solenoidal i.e. ∇ ·B = 022

at all times. The divergence-free constraint on the magnetic field reflects the fact that23

magnetic mono-poles have not been observed in nature. The induction equation for24

updating the magnetic field imposes the divergence on the magnetic field. Hence, a25

numerical scheme for the MHD equations should maintain the divergence-free prop-26

erty of the discrete magnetic field at each time-step. Numerical schemes usually fail27

to satisfy the divergence-free constraint and numerical instabilities and unphysical28

oscillations may be observed [17]. Several methods were developed to overcome this29

issue. The projection method, in which the magnetic field is projected into a zero30

divergence field by solving an elliptic equation at each time step [4].31

Another procedure is the Godunov-Powell procedure [14, 12, 7], where the Godunov-32

Powell form of the system of the MHD equations is discretized instead of the original33

system. The Godunov-Powell system has the divergence of the magnetic field as a34

part of the source term. Hence, divergence errors are transported out of the domain35

with the flow.36

A third approach is the CTM [5, 15, 6]. The CTM was modified from its original37

form to the case of staggered central schemes [1]. It was later extended to the case of38

unstaggered central schemes [19]. Hence, a numerical scheme for the MHD equations39

should maintain the divergence-free property of the discrete magnetic field at each40

time-step. A finite volume second-order accurate unstaggered central scheme is used41

to model the MHD equations with a gravitational source term. Finite volume central42

schemes were first introduced in 1990 by Nessyahu and Tadmor (NT) [11]. The NT43

scheme is based on evolving piecewise linear numerical solution on two staggered grids.44
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2 F. KANBAR, R. TOUMA, AND C. KLINGENBERG

The most significant property of central schemes is that they avoid solving Riemann45

problems arising at the cell interfaces. Our scheme is UC (unstaggered central) type46

scheme that was first developed in [9, 18]. These schemes allow the evolution of the47

numerical solution on a single grid instead of using two different grids. UC schemes48

were first developed for hyperbolic systems of conservation laws and then extended to49

hyperbolic systems of balance laws[23, 21, 22, 20]. The UC schemes introduced the50

possibility of avoiding solving Riemann problems and switching between two grids.51

The approach is achieved by the help of ghost staggered cells used implicitly to avoid52

Riemann problems at the cell interfaces.53

In the presence of a gravitational source term on the right hand side of the MHD54

system, one has to consider a well-balanced technique that provides the numerical55

scheme with the ability to preserve hydrostatic equilibrium. In this paper we extend56

the reconstruction technique on the conservative variables, previously developed in57

[2, 10] for the system of Euler equations, for the system of MHD equations. The idea58

is to evolve the error function between the vector of conserved variables and a given59

steady state, instead of evolving the vector of conserved variables. This error function60

is defined as ∆U = U − Ũ , where Ũ is a given steady state. Knowing the steady61

state (analytically or numerically) is a key ingredient for the implementation of the62

proposed scheme.63

The paper is divided into the following sections. The MHD model is presented in64

section 2 and the finite volume scheme is described in section 3 followed by the CTM65

in section 4. Numerical experiments are illustrated in section 5 and finally some66

concluding remarks and future work are given in section 6.67

2. The model. The system of MHD equations with gravitational source term68

in two space dimensions is given by:69

(2.1)

{
Ut + F (U)x +G(U)y = S(U), (x, y) ∈ Ω ⊂ R2, t > 0.

U(x, y, 0) = U0(x, y),
70

where

U =



ρ
ρu1

ρu2

ρu3

E
B1

B2

B3


, F (U) =



ρu1

ρu2
1 +Π11

ρu1u2 +Π12

ρu1u3 +Π13

Eu1 + u1Π11 + u2Π12 + u3Π13

0
Λ2

−Λ3


,

G(U) =



ρu2

ρu2u1 +Π21

ρu2
2 +Π22

ρu2u3 +Π23

Eu2 + u1Π21 + u2Π22 + u3Π23

−Λ3

0
Λ1


, S(U) =



0
0

−ρϕy

0
−ρu2ϕy

0
0
0


.

Here ρ is the fluid density, ρu is the momentum with u = (u1, u2, u3), p is the pressure,71

B = (B1, B2, B3) is the magnetic field, and E is the kinetic and internal energy of72

the fluid given by the following equation E = p
γ−1 + 1

2ρ|u|
2 + 1

2 |B|2 with γ the ratio73
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(xi− 1
2
, yj− 1

2
)

(xi, yj)

(xi−1, yj+1) (xi+1, yj+1)

(xi+1, yj−1)(xi−1, yj−1)

Fig. 1: The cells of the main grid Ci,j (blue cell) and of the staggered grid
Di− 1

2 ,j−
1
2
(green cell).

of specific heats. ϕ = ϕ(x, y), with ϕx = 0 and ϕy = g, is the gravitational potential74

and it is a given function. The conservation of the total energy (internal, kinetic75

and magnetic) has the gravitational potential energy as a source term. Λ = u × B,76

Π11,Π22 and Π33 are the diagonal elements of the total pressure tensor and Π12,Π1377

and Π23 are the off-diagonal tensor are given by the following formulas:78

Πii = p+ 1
2 (B

2
j +B2

k −B2
i ) and Πij = − 1

2BiBj , for i, j, k = 1, 2, 3.79

To determine the time-step using the CFL condition, we present the eigenvalues of80

the flux jacobian in the x-direction,81

λ1 = u1−cf , λ2 = u1− b1, λ3 = u1−cs, λ4 = u1, λ5 = u1, λ6 = u1+cs, λ7 = u1+ b1,82

λ8 = u1 + cf . The eigenvalues of the flux jacobian in the y-direction are analogously83

defined.84

Here,85

(2.2) cf =

√
1

2

(
a2 + b2 +

√
(a2 + b2)

2 − 4a2b21

)
,86

and87

(2.3) cs =

√
1

2

(
a2 + b2 −

√
(a2 + b2)

2 − 4a2b21

)
,88

are respectively the fast and slow wave speeds with a =
√

γp
ρ is the sound speed and89

b =
√

b21 + b22 + b23 with bi =
Bi√
ρ , i ∈ {1, 2, 3}. For additional reading on the hyperbolic90

analysis of the system, readers are refered to [8, 13].91

3. The unstaggered two-dimensional finite volume central scheme. We
consider a Cartesian decomposition of the computational domain Ω where the control

cells are the rectangles Ci,j =
[
xi− 1

2
, xi+ 1

2

]
×

[
yj− 1

2
, yj+ 1

2

]
centered at the nodes

(xi, yj). We define the dual staggered cells Di+ 1
2 ,j+

1
2
= [xi, xi+1]× [yj , yj+1] centered

at (xi+ 1
2
, yj+ 1

2
). Here, xi+ 1

2
= xi+

∆x
2 and yj+ 1

2
= yj +

∆y
2 , where ∆x = xi+ 1

2
−xi− 1

2

and ∆y = yj+ 1
2
− yj− 1

2
. The visualization of the 2D grids is given in figure 1. Before

proceeding with the derivation of the 2D numerical method, and for convenience, we
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4 F. KANBAR, R. TOUMA, AND C. KLINGENBERG

introduce the average value notations:

ρi,j+ 1
2
=

ρi,j + ρi,j+1

2
, ρi+ 1

2 ,j
=

ρi,j + ρi+1,j

2
, ρi,(j) =

ρi,j+ 1
2
+ ρi,j− 1

2

2

ρ(i),j =
ρi+ 1

2 ,j
+ ρi− 1

2 ,j

2
, [[ρ]]i,j+ 1

2
= ρi,j+1 − ρi,j

[[ρ]]i+ 1
2 ,j

= ρi+1,j − ρi,j , [[ρ]]i,(j) = ρi,j+ 1
2
− ρi,j− 1

2
, [[ρ]](i),j = ρi+ 1

2 ,j
− ρi− 1

2 ,j
.

We assume that Ũ is a given stationary solution of system (2.1) and we define ∆U =92

U− Ũ. We substitute U = ∆U+ Ũ in the balance law (2.1), we obtain:93

(3.1) (∆U)t + F (∆U+ Ũ)x +G(∆U+ Ũ)y = S(∆U+ Ũ, x, y).94

On the other hand, since Ũ is a stationary solution, then balance law in (2.1) reduces95

to96

(3.2) F (Ũ)x +G(Ũ)y = S(Ũ, x, y).97

Subtracting equation (3.2) from equation (3.1), we obtain98

99

(3.3) (∆U)t + [F (∆U+ Ũ)− F (Ũ)]x + [G(∆U+ Ũ)−G(Ũ)]y100

= S(∆U+ Ũ, x, y)− S(Ũ, x, y).101102

Using the fact that the source term S(U, x, y) in (2.1) is linear in terms of the con-103

served variables, then equation (3.3) reduces to104

(∆U)t + [F (∆U+ Ũ)− F (Ũ)]x + [G(∆U+ Ũ)−G(Ũ)]y = S(∆U, x, y).(3.4)105106

The proposed numerical scheme consists of evolving the balance law (3.4) instead of107

evolving the balance law in system (2.1).108

The numerical solution U will be then obtained using the formula U = ∆U + Ũ.109

The numerical scheme that we shall use to evolve ∆U(x, y, t) follows a classical finite110

volume approach; it evolves a piecewise linear function Li,j(x, y, t) defined on the111

control cells Ci,j and used to approximate the analytic solution ∆U(x, y, t) of system112

(2.1). Without any loss of generality we can assume that ∆Un
i,j is known at time tn113

and we define Li,j(x, y, t
n) on the cells Ci,j as follows.114

Li,j(x, y, t
n) = ∆Un

i,j + (x− xi)
(∆Un,x

i,j )′

∆x
+ (y − yj)

(∆Un,y
i,j )

′

∆y
, ∀(x, y) ∈ Ci,j ,115

116

where
(∆Un,x

i,j )′

∆x and
(∆Un,y

i,j )′

∆y are limited numerical gradients approximating117

∂∆U
∂x (x, yj , t

n)|x=xi
and ∂∆U

∂y (xi, y, t
n)|y=yj

, respectively, at the point (xi, yj , t
n). In118

order to approximate the spatial numerical derivatives, the (MC-θ) limiter is consid-119

ered which is defined as120

(∆un
i )

′ = minmod

[
θ
(
∆un

i −∆un
i−1

)
,
∆un

i+1 −∆un
i−1

2
, θ

(
∆un

i+1 −∆un
i

)]
(3.5)121

122

where θ is a parameter such that 1 < θ < 2, while the minmod function is defined as:123

minmod(a, b, c) =

{
sign(a)min{|a|, |b|, |c|}, if sign(a) = sign(b) = sign(c)

0, Otherwise.
124
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WELL-BALANCED SCHEME FOR MHD 5

The (MC-θ) limiter (3.5) is used to compute the quantities (∆Un,x
i,j )′ and (∆Un,y

i,j )
′125

in order to avoid spurious oscillations. Next, we integrate the balance law (3.4) over126

the rectangular box Rn
i+ 1

2 ,j+
1
2

= Di+ 1
2 ,j+

1
2
× [tn, tn+1],127

128

(3.6)

∫∫∫
R

i+1
2
,j+1

2

(∆U)t + [F (∆U+ Ũ)− F (Ũ)]x + [G(∆U+ Ũ)−G(Ũ)]ydR129

=

∫∫∫
R

i+1
2
,j+1

2

S(∆U, x, y)dR.130

131

We use the fact that ∆U is approximated using piecewise linear interpolants similar132

to Li,j on the cells Ci,j ; following the derivation of the unstaggered central schemes133

in [18], equation (3.6) is rewritten as:134

135

(3.7) ∆Un+1
i+ 1

2 ,j+
1
2

= ∆Un
i+ 1

2 ,j+
1
2
− 1

∆x∆y

∫∫∫
R

i+1
2
,j+1

2

[F (∆U+ Ũ)− F (Ũ)]x136

+ [G(∆U+ Ũ)−G(Ũ)]ydR+
1

∆x∆y

∫∫∫
R

i+1
2
,j+1

2

S(∆U, x, y)dR.137

138

For the flux integrals, we apply the divergence theorem that converts the volume139

integral into a surface integral. Equation (3.7) becomes then:140

141

(3.8)

∆Un+1
i+ 1

2 ,j+
1
2

= ∆Un
i+ 1

2 ,j+
1
2
− 1

∆x∆y

∫ tn+1

tn

∫
∂Rxy

[F (∆U+ Ũ)− F (Ũ)] · nxdAdt142

− 1

∆x∆y

∫ tn+1

tn

∫
∂Rxy

[G(∆U+ Ũ)−G(Ũ)] · nydAdt143

+
1

∆x∆y

∫∫∫
R

i+1
2
,j+1

2

S(∆U, x, y)dR,144

145

where Rxy = [xi, xi+1] × [yi, yi+1], and n = (nx, ny) is the outward pointing unit146

normal at each point on the boundary ∂Rxy(the boundary of Rxy), see figure 2. The147

integral of the source term is being approximated using the midpoint quadrature rule148

both in time and space:149

∫∫∫
R

i+1
2
,j+1

2

S(∆U)dR = ∆x∆y∆tS(∆U
n+ 1

2
i,j ,∆U

n+ 1
2

i+1,j ,∆U
n+ 1

2
i,j+1,∆U

n+ 1
2

i+1,j+1),

(3.9)

150

151

with152
153

S(∆U
n+ 1

2
i,j ,∆U

n+ 1
2

i+1,j ,∆U
n+ 1

2
i,j+1,∆U

n+ 1
2

i+1,j+1) =154 S(∆U
n+ 1

2
i,j ) + S(∆U

n+ 1
2

i+1,j) + S(∆U
n+ 1

2
i,j+1) + S(∆U

n+ 1
2

i+1,j+1)

4

 .155

156
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(xi, yj) (xi+1, yj)

(xi+1, yj+1)(xi, yj+1)

n = (0, 1)

n = (0,−1)

n = (1, 0)n = (−1, 0)

Fig. 2: The boundary ∂Rxy and the outward pointing unit normal vector n = (nx, ny)
on each side of the boundary.

The forward projection step in equation (3.8) consists of projecting the solution at157

time tn onto the staggered grid. It is performed using linear interpolations in two158

space dimensions in addition to Taylor expansions in space; we obtain:159

160

(3.10) ∆Un
i+ 1

2 ,j+
1
2
=

1

2
(∆U

n

i+ 1
2 ,j

+∆U
n

i+ 1
2 ,j+1)161

− 1

16
([[∆Un,x]]i+ 1

2 ,j
+ [[∆Un,x]]i+ 1

2 ,j+1)162

− 1

16
([[∆Un,y]]i,j+ 1

2
+ [[∆Un,y]]i+1,j+ 1

2
).163

164

Here, ∆Un,x and ∆Un,y are the spatial partial derivatives of ∆Un that are approxi-165

mated using the (MC-θ) limiter (3.5).166

Finally, the evolution step (3.8) at time tn+1 on the staggered nodes can be written167

as,168

169

(3.11) ∆Un+1
i+ 1

2 ,j+
1
2

= ∆Un
i+ 1

2 ,j+
1
2

170

− ∆t

2
[Dx

+F (∆U
n+ 1

2
i,j + Ũi,j)−Dx

+F (Ũi,j) +Dx
+F (∆U

n+ 1
2

i,j+1 + Ũi,j+1)171

−Dx
+F (Ũi,j+1)]172

− ∆t

2
[Dy

+G(∆U
n+ 1

2
i,j + Ũi,j)−Dy

+G(Ũi,j) +Dy
+F (∆U

n+ 1
2

i+1,j + Ũi+1,j)173

−Dy
+G(Ũi+1,j)]174

+∆t.S(∆U
n+ 1

2
i,j ,∆U

n+ 1
2

i+1,j ,∆U
n+ 1

2
i,j+1,∆U

n+ 1
2

i+1,j+1).175
176

Here Dx
+ and Dy

+ are the forward differences given by,177

Dx
+F (Ui,j) =

F (Ui+1,j)−F (Ui,j)
∆x , Dy

+F (Ui,j) =
F (Ui,j+1)−F (Ui,j)

∆y .178

The predicted values in equation (3.11) are generated at time tn+
1
2 using a first order179
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Taylor expansion in time in addition to the balance law (2.1):180

∆U
n+ 1

2
i,j = ∆Un

i,j +
∆t

2

[
−
(Fn

i,j)
′

∆x
+

F̃ ′
i,j

∆x
−

(Gn
i,j)

′

∆y
+

G̃′
i,j

∆y
+ Sn

i,j

]
,(3.12)181

182

where
(Fn

i,j)
′

∆x ,
F̃ ′

i,j

∆x ,
(Gn

i,j)
′

∆y and
G̃′

i,j

∆y denote the approximate flux derivatives with183

(Fn
i,j)

′ = JFn
i,j

·Un,x
i,j , F̃ ′

i,j = JF̃i,j
· Ũx

i,j , (G
n
i,j)

′ = JGn
i,j

·Un,y
i,j , G̃

′
i,j = JG̃i,j

· Ũy

i,j . Here,184

we also use the (MC-θ) limiter (3.5) to compute the slopes Un,x
i,j , Ũ

x

i,j , U
n,y
i,j , and Ũ

y

i,j185

in order to avoid spurious oscillations. Sn
i,j is the discrete source term.186

In order to retrieve the solution at the time tn+1 on the original cells Ci,j , we project187

the solution obtained on the ghost cells (∆Un+1
i+ 1

2 ,j+
1
2

) back onto the oroginal grid via188

linear interpolations in two space dimensions and Taylor expnsions in space,189
190

(3.13) ∆Un+1
i,j =

1

2
(∆U

n+1

i,j− 1
2
+∆U

n+1

i,j+ 1
2
)191

− 1

16
([[∆Un+1,x]](i),j− 1

2
+ [[∆Un+1,x]](i),j+ 1

2
)192

− 1

16
([[∆Un+1,y]]i− 1

2 ,(j)
+ [[∆Un+1,y]]i+ 1

2 ,(j)
),193

194

where ∆Un+1,x
i,j and ∆Un+1,y

i,j denote the spatial partial derivatives of the numerical195

solution obtained at time tn+1 and at the node (xi, yj) approximated using the (MC-196

θ) limiter (3.5).197

To complete the presentation of the numerical scheme, we need to verify the well-198

balanced property of the proposed scheme and to show that it is capable of maintaining199

stationary solutions of the Euler system with gravitational source term.200

Suppose that the numerical solution obtained at time t = tn satisfies Un
i,j = Ũi,j , i.e.,201

∆Un
i,j = 0. Performing one iteration using the proposed numerical scheme, one can202

show that:203

1. ∆U
n+ 1

2
i,j = 0.204

2. ∆Un+1
i+ 1

2 ,j+
1
2

= 0.205

3. ∆Un+1
i,j = 0.206

In fact, it is straight forward to establish 2 and 3 once 1 is established. We will present207

the proof of 1 only.208

209

The prediction step (3.12) leads to210
211

(3.14) ∆U
n+ 1

2
i,j = ∆Un

i,j +
∆t

2

[
−

F ′(∆Un
i,j + Ũi,j)

∆x
+

F ′(Ũi,j)

∆x
212

−
G′(∆Un

i,j + Ũi,j)

∆y
+

G′(Ũi,j)

∆y
+ S(∆Un

i,j , x, y)

]
.213

214

But since ∆Un
i,j = 0, then we obtain,215

∆U
n+ 1

2
i,j =

∆t

2

[
−F ′(Ũi,j)

∆x
+

F ′(Ũi,j)

∆x
− G′(Ũi,j)

∆y
+

G′(Ũi,j)

∆y

]
.216

217

Hence, ∆U
n+ 1

2
i,j = 0. Therefore, we conclude that the updated numerical solution218

remains stationary up to machine precision.219
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4. The constrained transport method (CTM). In this work we consider220

the version of CTM developed in [19]. At the end of each iteration, we apply the221

CTM corrections to the magnetic field components. Starting from a magnetic field222

that satisfies the divergence-free constraint ∇ · Bn
i,j = 0, we would like to prove223

∇·Bn+1
i,j = 0. The discrete divergence using central differences at time tn is given by,224

∇ ·Bn
i,j =

(
∂Bx

∂x

)n

i,j

+

(
∂By

∂y

)n

i,j

225

=
(Bx)

n
i+1,j − (Bx)

n
i−1,j

2∆x
+

(By)
n
i,j+1 − (By)

n
i,j−1

2∆y
226

= 0.227228

The vector of conserved variables Un+1 is computed by the numerical scheme, but229

∇ ·Bn+1
i,j might not be zero. Therefore, whenever needed, we correct the components230

of the magnetic field Bn+1
i,j by discretizing the induction equation at the cell centers231

of Ci,j ,232

∂

∂t

(
Bx

By

)
− ∂

∂x

(
0
Ω

)
+

∂

∂y

(
Ω
0

)
= 0,233

234

where Ω = (−u × B)z = −uxBy + uyBx. Hence, the discretization of the induction
equation is the following,

(Bx)
n+1

i+1
2
,j+1

2

−(Bx)
n

i+1
2
,j+1

2

∆t +
Ω

n+1
2

i+1
2
,j+3

2

−Ω
n+1

2

i+1
2
,j− 1

2

2∆y = 0,

(By)
n+1

i+1
2
,j+1

2

−(By)
n

i+1
2
,j+1

2

∆t −
Ω

n+1
2

i+3
2
,j+1

2

−Ω
n+1

2

i− 1
2
,j+1

2

2∆x = 0.

Then,235

(4.1)

(Bx)
n+1
i+ 1

2 ,j+
1
2
= (Bx)

n
i+ 1

2 ,j+
1
2
− ∆t

2∆y

(
Ω

n+ 1
2

i+ 1
2 ,j+

3
2

− Ω
n+ 1

2

i+ 1
2 ,j−

1
2

)
,

(By)
n+1
i+ 1

2 ,j+
1
2
= (By)

n
i+ 1

2 ,j+
1
2
+ ∆t

2∆x

(
Ω

n+ 1
2

i+ 3
2 ,j+

1
2

− Ω
n+ 1

2

i− 1
2 ,j+

1
2

)
.

236

Now, we compute Ω
n+ 1

2

i+ 1
2 ,j+

1
2

using the numerical solution computed at time tn and237

tn+1 in order to obtain second order of accuracy in time,238

Ω
n+ 1

2

i+ 1
2 ,j+

1
2

=
1

2

[
Ωn+1

i+ 1
2 ,j+

1
2

+Ωn
i+ 1

2 ,j+
1
2

]
,239

=
1

2

[
Ωn+1

i+ 1
2 ,j+

1
2

+
Ωn

i,j +Ωn
i+1,j +Ωn

i,j+1 +Ωn
i+1,j+1

4

]
.240

241

Next, we calculate ∇ · (B)n+1
i+ 1

2 ,j+
1
2

242

243

(4.2) ∇·(B)n+1
i+ 1

2 ,j+
1
2

=
(Bx)

n+1
i+ 3

2 ,j+
1
2
− (Bx)

n+1
i− 1

2 ,j+
1
2

2∆x
+
(By)

n+1
i+ 1

2 ,j+
3
2
− (By)

n+1
i+ 1

2 ,j−
1
2

2∆y
.244

245

Substituting the magnetic field components on the staggered grid in (4.2) from their246

values in (4.1) leads to,247
248

(4.3) ∇ · (B)n+1
i+ 1

2 ,j+
1
2

=
1

4

[
∇ ·Bn

i,j +∇ ·Bn
i+1,j+1 +∇ ·Bn

i+1,j +∇ ·Bn
i,j+1

]
= 0.249

250
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Finally, we compute the magnetic field on the main grid Bn+1
i,j as the average of its251

values on the staggered grid,252

Bn+1
i,j =

1

4

[
Bn+1

i+ 1
2 ,j+

1
2

+Bn+1
i+ 1

2 ,j−
1
2

+Bn+1
i− 1

2 ,j+
1
2

+Bn+1
i− 1

2 ,j−
1
2

]
.253

254

Hence,255

∇ ·Bn+1
i,j = 0.(4.4)256

257

5. Numerical Experiments. A list of numerical experiments has been consid-258

ered in order to verify the robustness and accuracy of our method. The time-step is259

computed with CFL number 0.485. The MC-θ limiter is used with θ = 1.5.260

5.1. 2D shock tube problem. For the first numerical test case, we consider261

a shock tube problem for the system of ideal MHD equations extracted from [1].262

The simulation takes place over the computational domain [−1, 1] × [0, 1]. U =263

[ρ, u1, u2, u3, B2, B3, p] is initially given as U = [1, 0, 0, 0,
√
4, 0, 1] for x < 0.5 and264

U = [0.125, 0, 0, 0,−
√
4, 0, 0.1] for x > 0.5 and B1 = 0.75

√
4. This test case features265

seven discontinuities. It was originally introduced for the non-scaled MHD equations266

[1]. Hence, dropping π from the initial data makes it a valid test case for the scaled267

MHD equations. We compute the solution at the final time t = 0.25 on 400 × 400268

grid. Because the numerical divergence at the final time was zero, there was no need269

to apply the CTM. The cross sections in figure 3 show a very good agreement with270

the results in the literature. In order to investigate the effect of the CTM on the271

computed solution, we did a convergence study in figure (4) while applying the CTM.272

As it is very clear in the figures above, applying the CTM for the UC schemes has273

a small smearing out effect on the solution. For the sake of comparison, we plot a274

cross section of the energy component with and without applying CTM on a 400 ×275

400 grid points in figure 5.
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Fig. 3: 2D shock tube problem: cross sections of the 8 components at time t = 0.25.

276

5.2. Four stages Ideal MHD Riemann problem. This test case is consid-277

ered to prove the ability of our scheme to solve ideal MHD problems and preserve278
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Fig. 4: 2D shock tube problem: cross sections of the 8 components at time t = 0.25
on 200×200 (dashed line), 400 × 400 (solid red line), and 800 × 800 (solid black line)
grid points.
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Fig. 5: 2D shock tube problem: a cross section of the energy component at time
t = 0.25 on 400×400 grid points with and without applying CTM.

the divergence-free constraint. The initial data consist of four constant states [1, 19]279

. The initial four constant states are given as follows,280

(5.1) (ρ, u1, u2, p) =


(1, 0.75, 0.5, 1) if x > 0 and y > 0

(2, 0.75, 0.5, 1) if x < 0 and y > 0

(1,−0.75, 0.5, 1) if x < 0 and y < 0

(3,−0.75,−0.5, 1) if x > 0 and y < 0

281

with an initial uniform magnetic field B = (2, 0, 1). The numerical solution is com-282

puted in the square [−1, 1]× [−1, 1] on 400×400 grid points.283

Figure 6 illustrates the density at the final time tf = 0.8 with and without ap-284

plying constrained transport treatment to the magnetic field components. Similar285
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Fig. 6: Four stages Riemann problem: ρ with CTM (left) and without CTM (right)
at the final time t = 0.8.

Fig. 7: Four stages Riemann Problem: divB with CTM (left) and without CTM
(right) at the final time t = 0.8.

comparison on the divergence of the magnetic field is illustrated in figure 7. The re-286

sults highlight the robustness of the numerical scheme in the sense that even without287

treatment we are able to show numerical simulation while other schemes simply blow288

up without special treatment of the magnetic field.289

5.3. MHD vortex. For our third test case, we consider the MHD vortex for the290

homogeneous ideal MHD equations [2]. The initial data represent a moving stationary291

solution of the system of the ideal MHD equations and are given by, r2 = x2+y2, ρ = 1,292

u1 = u0 − κp exp(
1−r2

2 )y, u2 = v0 + κp exp(
1−r2

2 )x, u3 = 0, B1 = −mp exp(
1−r2

2 )y,293

B2 = −mp exp(
1−r2

2 )x, B3 = 0, and p = 1 +
(

m2
p

2 (1− r2)− κ2
p

2

)
. We set the pa-294

rameters mp = 1, κp = 1, u0 = 0, and v0 = 0. The vortex is advected through the295

domain [−5, 5] × [−5, 5] with a velocity (u0, v0). Steady state boundary conditions296

are used in this test case. In figure 8, we present the pressure profile at the final time297

t = 100 2π√
eκp

≈ 100 3.14
κp

on different grids. The steady state gets preserved exactly as298

the background solution Ũ is the vortex itself.299
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Fig. 8: MHD vortex: pressure profile at the final time on different grid points.

5.4. Hydrodynamic wave propagation. The aim of this test case is to test300

the well-balanced property of the subtraction method by simulating a steady state301

solution under hydrodynamic wave propagation. The experiment is carried out in two302

steps. The first step is to check that the subtraction method preserves the steady state.303

The initial data are the hydrodynamic steady state in the computational domain304

[0, 4]× [0, 1].305

ρ(x, y) = ρ0 exp(−
y

H
), p(x, y) = p0 exp(−

y

H
),u = 0,B = 0.(5.2)306

307

With H = p0

gρ0
= 0.158, p0 = 1.13 and g = 2.74. The subtraction method preserves308

the hydrodynamic steady state exactly after choosing the reference solution Ũ at the309

steady state itself. Figure 9 shows a very simple comparison of the density and the310

energy cross sections at t = 0 and the final time t = 1.8. The second step is to add311

perturbation to the steady state as a time dependent sinusoidal wave that propagates312

from the bottom boundary of the vertical velocity and exits from the top one. The313

wave formula is the following,314

(5.3) un
2i,{0,−1}

= exp(−100(xi,{0,−1} − 1.9)2)c sin(6πtn).315

The bottom boundary is a localized piston at x = 1.9. Figure 10 shows the profile316

of the wave at the final time t = 1.8 for c = 0.003 (left) and for c = 0.3 (right) for317

800× 200 grid points. The waves propagate in both cases from bottom to top under318

the effect of the pressure and gravity forces. The case where c = 0.003 models a319

small perturbation and c = 0.3 models a stronger wave. The results are in a very320

good agreement with the ones in [7]. Additionally, they match the results of the321

most accurate (third order) of the three schemes compared in [7]. Hence, the scheme322

is well-balanced in the sense that it preserves the steady state and can capture its323

perturbations.324

5.5. MHD wave propagation. In this test case, we model propagating waves325

that not only undergo the effects of pressure and gravity, but also that of the mag-326

netic field. The test case is extracted from [7]. We consider the magnetohydrodynamic327

steady state defined as,328

329

ρ(x, y) = ρ0 exp(−
y

H
), p(x, y) = p0 exp(−

y

H
),u = 0,B = (0, µ, 0),∇ ·B = 0.(5.4)330

331
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Fig. 9: Hydrodynamic wave propagation: a comparison of the cross sections of the
density ρ (left) and the energy E (right) initially and at the final time t = 1.8.

Fig. 10: Hydrodynamic wave propagation: wave profile u2 for c = 0.003 (left) and
c = 0.3 (right) at the final time t = 1.8.

Where µ is a parameter that takes different values for each part of the experiment.332

The waves model a perturbation of the steady state that starts from the bottom333

boundary of the normal velocity as follows,334

(5.5) un
i,{0,1} =

{
Bi,{0,1}
|Bi,{0,1}|

c sin(6πtn) for x ∈ [0.95, 1.05],

0 Otherwise,
335

with c = 0.3. The computational domain is [0, 2] × [0, 1]. We use the wave propa-336

gation boundary conditions suggested in [7]. These boundary conditions are periodic337

boundaries in the x-direction for U and p and Neumann type boundary conditions in338

the y-direction as the following,339

ρni,1 = ρni,2e
∆y
H , ρni,0 = ρni,1e

∆y
H340

ρni,ny−1 = ρni,ny−2e
−∆y
H , ρni,ny = ρni,ny−1e

−∆y
H341342

for 1 ≤ i ≤ nx. Similar boundary conditions for the momentum ρu and the pressure343

p. Energy boundary conditions are computed from the pressure. For the magnetic344

field boundary conditions, we simply copy the data from the cell before. We present345

the profile of the velocity in the direction of the magnetic field,346

uB =< u,B > /|B|,(5.6)347348
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at the final time t = 0.54 for different values of µ. As µ increases, the effect of the349

magnetic field on the propagating wave increases. The wave profile gets compressed as350

the magnetic field takes higher values. The plasma parameter is given by β = 2p
B2 [7].351

It measures the relative strength of the thermal pressure to the magnetic field, and352

is crucial in determining the dynamics of the plasma. The β-isolines are illustrated353

in black and the lines of the magnetic field are illustrated in white. The parameter β354

indicates the effects of the pressure and the magnetic field on the propagating wave355

such that, for β > 1, the region is pressure dominated, while for β < 1, the region is356

magnetic field dominated. In figure 11, the profile of the velocity in the direction of the357

magnetic field, in the case of µ almost zero, is illustrated, which is exactly the velocity358

in the y-direction in this case. The wave propagates freely along the computational359

domain taking a radial profile in the absence of the magnetic field on 400 × 200 grid360

points. Figure 12, shows the profile of the propagating wave under the effect of a361

stronger magnetic field for µ = 1 on 400 × 200 grid points without applying CTM. In362

addition, figure 12 presents the divergence of the magnetic field which is clearly not363

zero. On the other hand, we present the same results with applying CTM on 1200 ×364

600 grid points in figure 13. Applying the CTM results in a zero discrete divergence365

of the magnetic field up to machine precision. Another effect of applying the CTM366

is the diffusion we see in figure 13, which was resolved by evolving the solution on a367

finer grid. Additionally, we present the velocity in the direction perpendicular to the368

magnetic field in figure 14 for µ = 1 at different times.369

Our results, obtained with the second order scheme, are comparable with the results370

in [7], obtained with third order schemes, which ensures the robustness of our scheme371

and its capability of solving physically challenging problems, such as wave propagation372

under the effect of pressure and gravity.

0.5 1 1.5

0.2

0.4

0.6

0.8

-0.3 -0.15 0 0.15 0.3 0.45 0.6 0.75

Fig. 11: MHD wave propagation: velocity in a direction parallel to the magnetic field
uB =< u,B > /|B| for µ = 0 on 400 × 200 grid points at the final time t = 0.54.

373

6. Conclusion. In conclusion, we develop a two-dimensional second order un-374

staggered finite volume central scheme for the system of MHD equations. The pro-375

posed scheme is capable of preserving any type of known equilibrium states due to376

a special reformulation that computes the numerical solution in terms of a specific377

reference state. A comparison between the obtained numerical results and the corre-378

sponding literature ensures the robustness and the accuracy of the developed schemes.379

In this work, we chose the CTM as a procedure to clean the divergence of the mag-380

netic field, which is applied dynamically whenever needed. Meaning that, in the test381
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Fig. 12: MHD wave propagation: velocity in a direction parallel to the magnetic field
uB =< u,B > /|B| for µ = 1 on 400 × 200 grid points at the final time t = 0.54
without CTM.

Fig. 13: MHD wave propagation: velocity in a direction parallel to the magnetic field
uB =< u,B > /|B| for µ = 1 on 1200 × 600 grid points at the final time t = 0.54
with CTM.

cases where the numerical divergence is zero at the final time and no numerical in-382

stabilities had been observed, we do not apply it. This leaves us with a second order383

well-balanced finite volume numerical scheme that captures solutions of the MHD384

equations and satisfies the divergence-free constraint. All our computations are done385

on a Cartesian grid in 2D. A triangular mesh can be considered in future work.386
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