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Abstract In Klingenberg, Schnücke and Xia (Math. Comp. Available via http:

//dx.doi.org/10.1090/mcom/3126) an arbitrary Lagrangian-Eulerian Discon-
tinuous Galerkin (ALE-DG) method to solve conservation laws has been developed
and analyzed. In this paper, the ALE-DG method will be briefly presented. Further-
more, the semi-discrete method will be discretized by the so-called ϑ -method. The
ϑ -method is a generalization of the forward or backward Euler step. In particular,
the method degenerates to the forward Euler step for ϑ = 0 and to the backward
Euler step for ϑ = 1. The corresponding fully-discrete ϑ -Pk-ALE-DG method for
scalar conservation laws will be analyzed with respect to entropy stability, where
Pk denotes the space of polynomials of degree k which is used on a reference cell.
The main results are a cell entropy inequality for the fully-discrete ϑ -Pk-ALE-DG
method with respect to the square entropy function, when ϑ has a lower bound given
by a mesh parameter depending constant, and a cell entropy inequality for the fully-
discrete ϑ -P0-ALE-DG method with respect to the Kružkov entropy functions.
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1 Introduction

The present paper investigates an arbitrary Lagrangian-Eulerian discontinuous Galerkin
(ALE-DG) method to solve one dimensional conservation laws

∂tu+∂x f (u) = 0 in Ω × (0,T ) , u(x,0) = u0 (x) in Ω (1)

with periodic boundary conditions. The function u0 : Ω →R is sufficiently smooth
and compactly supported and the flux function f :R→R is at least one times con-
tinuously differentiable. This method was introduced and analyzed by Klingenberg
et al. in [9].

The Arbitrary Lagrangian-Eulerian (ALE) approach has been rigorously de-
scribed by Donea et al. in [5]. It is a kind of compromise between the Lagrangian
and Eulerian approach. These two approaches are the two commonly used descrip-
tions of motions in computational fluid dynamics. In the Lagrangian approach is the
motion described by mesh generating points, which are moving with the fluid. This
approach could produce distortions in the mesh. The distortions lead to numerical
artifacts. This has been discussed by Donea et al. in [5]. The Eulerian description, in
contrast to the Lagrangian approach, based on a fixed static mesh. Hence, numerical
artifacts by geometric distortions are avoided in this approach. Nevertheless, a draw-
back of the Eulerian approach is the loss of specific properties of the physical model.
For instance Springel discussed in [11] the lack of the Galilean invariance in cos-
mological hydrodynamical simulations. Furthermore, in the same paper, Springel
showed by numerical simulations with a second order finite volume moving mesh
method that the Galilei invariance is preserved when the mesh moves almost with
the fluid.

The main idea of the ALE approach is to described the fluid motion almost as in
the Lagrangian approach and if distortions with a destabilizing effect occur, the de-
scription of motion moves closer to the Eulerian approach. The implementation and
mathematical description of the ALE approach ensure by a mapping which connects
the physical domain with a suitable reference configuration. The mapping provides
a description of the grid velocity field. In addition, the test function space is de-
fined by the mapping, in the context of Galerkin methods. In general the mapping
is globally defined. This is quite unattractive for discontinuous Galerkin methods,
since these methods lose their local structure, when a global defined ALE mapping
is used. Furthermore, if the ALE approach is combined with numerical schemes,
which are derived by the method of lines approach, and the Jacobi matrix of the
mapping depends on spatial variables a geometric error could appear by an un-
suitable choice of the time integration method. This geometric error destabilizes the
numerical scheme. The geometric error does not appear, if the ALE method satisfies
the geometric conservation law (GCL). The error and the GCL have been analyzed
by Guillard and Farhat in [7].

The ALE-DG method in [9] is derived by local affine linear ALE mappings.
Hence, the method has a local structure like the DG methods for static grids and it
has been proven that the method to solve one dimensional conservation laws satis-
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fies the GCL for any first order time discretization method or high order single step
method in which the stage order is equal or higher than first order. Moreover, for the
semi-discrete method a cell entropy inequality with respect to the square entropy
function and a priori error estimates have been proven. For the time integration the
total variation diminishing (TVD) Runge-Kutta methods, which were introduced by
Shu in [10], are adopt. Hence, the ALE-DG method degenerates to the Runge-Kutta
discontinuous Galerkin (RK-DG) method on a static non moving mesh. The RK-
DG method was developed by Cockburn, Shu et al. in a series of papers [2, 3, 4]
and is designed for the Eulerian description of fluid motion. Over the last decades
this method has become quite popular in computational fluid dynamics. The TVD
Runge-Kutta methods are convex combinations of the forward Euler step. Hence, a
stability result for the forward Euler step could be extent by an adequate time step
regulation. This feature of the TVD Runge-Kutta methods has been proven by Got-
tlieb and Shu in [6]. According to this property of the TVD Runge-Kutta methods it
has been proven that the fully-discrete ALE-DG method satisfies a local maximum
principle and the average values of the ALE-DG solution are total variation stable.

The next step is the analysis of the fully-discrete ALE-DG method with respect
to entropy stability. Unfortunately, Chavent and Cockburn proved in [1] that the P1-
DG method to solve scalar conservation laws with a linear flux function on static
grids is unconditionally L∞

(
0,T ;L2 (0,1)

)
-unstable for any CFL restriction, when

the forward Euler step is used. Hence, we cannot expect entropy stability for the
forward Euler Pk-ALE-DG method, if k ≥ 1. In particular, the entropy stability for
the Pk-ALE-DG method with a TVD Runge-Kutta cannot be proven by Gottlieb
and Shu’s theorem and needs to be investigated separated from the forward Euler
Pk-ALE-DG method.

Jiang and Shu analyzed in [8] fully-discrete DG methods with respect to entropy
stability. They applied the ϑ -method for the time integration of the semi-discrete
DG method and proved for 1

2 ≤ ϑ ≤ 1 and polynomials of arbitrary degree a cell
entropy inequality with respect to the square entropy function. The ϑ -method for
the ordinary differential equation ∂tu = L (u, t) is given by

un+1 = un +∆ tL
(

un+ϑ , tn+ϑ

)
, (2a)

un+ϑ := (1−ϑ)un +ϑun+1, tn+ϑ := (1−ϑ) tn +ϑ tn+1. (2b)

In this paper, the ϑ -method is applied for the time integration of the semi-discrete
ALE-DG method and the corresponding ϑ -Pk-ALE-DG method is analyzed with
respect to entropy stability in the sense of the square entropy and the Kružkov en-
tropy functions.

This paper is organized as follows: It starts with a briefly presentation of the
ALE-DG method in section 2. Afterward, in the same section, two entropy inequal-
ities are proven for the fully-discrete method. It will be completed with some con-
cluding remarks in section 3.
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2 The ALE-DG method

This section is started with a summary of the main ingredients to describe the ALE-
DG method. Let Ω ⊆R be an open interval. It need to be assumed that it exists for
any time level t = tn a partition of the domain Ω with

Ω =
N⋃

j=1

Kn
j , Kn

j :=
(

xn
j− 1

2
,xn

j+ 1
2

)
, ∆

n
j := xn

j+ 1
2
− xn

j− 1
2
.

This assumption enables to define time-dependent straight lines for all j = 1, ...,N

x j− 1
2
(t) := xn

j− 1
2
+ω

n
j− 1

2
(t− tn) , ω

n
j− 1

2
:=

1
∆t

(
xn+1

j− 1
2
− xn

j− 1
2

)
,

where ∆t is specified by the partition of the time interval (0,T ). The straight lines
provide for any t ∈ [tn, tn+1] and all j = 1, ...,N time-dependent cells

K j (t) :=
(

x j− 1
2
(t) ,x j+ 1

2
(t)
)
, ∆ j(t) := x j+ 1

2
(t)− x j− 1

2
(t) .

The local grid velocity of the ALE-DG method is for all t ∈ [tn, tn+1) and x ∈ K j(t)
given by

ω (x, t) =
1

∆ j (t)

(
ω

n
j+ 1

2
−ω

n
j− 1

2

)(
x− x j− 1

2
(t)
)
+ω

n
j− 1

2
. (3)

The time-dependent cells can be connected with a reference cell [0,1] by an affine
linear mapping

χ j : [0,1]→ K j (t), ξ 7→ χ j (ξ , t) := ∆ j (t)ξ + x j− 1
2
(t) .

This mapping enables to define the following time-dependent finite dimensional test
function space

Vh (t) :=
{

v ∈ L2 (Ω) : (v◦χ j) ∈ Pk ([0,1])
}
,

where Pk ([0,1]) denotes the space of polynomials in [0,1] of degree at most k. The
test functions v ∈ Vh(t) are discontinuous in the points x j− 1

2
(t). Hence, the limits in

these points are defined by

v±
j− 1

2
:= lim

ε→0
v
(

x j− 1
2
(t)± ε, t

)
.

Finally, it should be mentioned that in [9] for sufficiently smooth functions u : Ω ×
(0,T )→R the following ALE transport equation has been proven
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d
dt

∫
K j(t)

uvdx =
∫

K j(t)
(∂tu)vdx+

∫
K j(t)

(∂x (ωu))vdx, ∀v ∈ Vh(t). (4)

2.1 The semi-discrete ALE-DG discretization

At the beginning, the solution u of the problem (1) is approximated by the function

uh (x, t) =
k

∑
`=0

u j
` (t)φ

j
` (x, t) ∈ Vh (t) , ∀t ∈ [tn, tn+1) and x ∈ K j (t) ,

where
{

φ
j

0 (x, t) , ...,φ
j

k (x, t)
}

is a basis of the space Vh (t) in the cell K j(t). The

coefficients u j
0 (t),...,u

j
k (t) are the unknowns of the ALE-DG method. In order to de-

termine these coefficients, the equation (1) is multiplied by a test function v ∈ Vh(t)
and the transport equation (4) as well as the integration by parts formula are ap-
plied. In general the function uh is discontinuous in the cell interface points x j− 1

2
(t).

Hence, in these points, the following Lax-Friedrichs flux is applied

ĝ
(
ω,u−,u+

)
:= ĝ+

(
ω,u−

)
− ĝ−

(
ω,u+

)
, ĝ± (ω,u) :=

1
2
(λ j (t)u±g(ω,u))

where g(ω,u) := f (u)−ωu and

λ j (t) := max
{
|∂ug(ω (x, t) ,u)| : u ∈ [m,M] , x ∈ K j (t)

}
(5)

with m := minx∈Ω u0 (x) and M := maxx∈Ω u0 (x). Finally, the semi-discrete ALE-
DG method can be summarized as:

Problem 1 (Semi-discrete ALE-DG method). Seek a function uh ∈ Vh(t), such
that for all v ∈ Vh(t) and j = 1, · · · ,N holds

0 =
d
dt

∫
K j(t)

uhvdx−
∫

K j(t)
g(ω,uh)(∂xv) dx

+ĝ
(

ω
n
j+ 1

2
,u−

h, j+ 1
2
,u+

h, j+ 1
2

)
v−

j+ 1
2
− ĝ
(

ω
n
j− 1

2
,u−

h, j− 1
2
,u+

h, j− 1
2

)
v+

j− 1
2
. (6)

The time discretization method for the problem (6) needs to be chosen carefully,
since according to Guillard and Farhat [7] the geometric conservation needs to be
respected. However, in [9] it has been proven that the ALE-DG method satisfies
the geometric conservation law for any single step method with stage order equal
or higher than first order. Hence, there is a lot of freedom in the choice of a time
discretization method for the ALE-DG method.

The capability of the ALE-DG method with a third order TVD Runge-Kutta
method for problems with a compressible flow have been shown by numerical ex-
periments for the inviscid Burgers’ equation and Euler equations in [9]. In particular,
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it has been shown numerically that the method is able to reach the optimal rate of
convergence and can handle strong singularities like shock waves.

2.2 Cell entropy inequalities

In this section, cell entropy inequalities for the fully-discrete ϑ -Pk-ALE-DG method
are discussed, where the ϑ -Pk-ALE-DG results from a discretization of the semi-
discrete formulation (6) with the ϑ -method (2). The corresponding method can be
written on the reference cell (0,1) as:

Problem 2 (The ϑ -Pk-ALE-DG method). For a given function ûn
h ∈ Vh(tn) seek a

function ûn+1
h ∈ Vh(tn+1), such that for all v̂ ∈ Pk ([0,1]) and j = 1, · · · ,N holds

0 =
∫ 1

0
∆

n+1
j ûn+1

h v̂ dξ −
∫ 1

0
∆

n
j ûn

hvdξ −
∫ 1

0
g
(

ω̂ (tn+ϑ ) , ûn+ϑ

h

)(
∂ξ v̂
)

dξ

+ĝ
(

ω
n
j+ 1

2
, ûn+ϑ ,−

h, j+ 1
2
, ûn+ϑ ,+

h, j+ 1
2

)
v̂−

j+ 1
2
− ĝ
(

ω
n
j− 1

2
, ûn+ϑ ,+

h, j− 1
2
, ûn+ϑ ,+

h, j− 1
2

)
v̂+

j− 1
2
,

where ûh := uh ◦χ j, v̂ := v◦χ j, ω̂ = ω ◦χ j and tn+ϑ is defined as in (2b).

At first, a cell entropy inequality with respect to the square entropy function
η (u) = 1

2 u2 is proven. The proof based on the upcoming discrete variation on the
ALE transport equation (4).

Lemma 1. Let u : [0,1]× [0,T ]→R be a sufficiently smooth function and η (u) =
1
2 u2. Then holds ∫ 1

0
∆

n+1
j un+1un+ϑ dξ −

∫ 1

0
∆

n
j unun+ϑ dξ

=
∫ 1

0
∆

n+1
j η

(
un+1) dξ −

∫ 1

0
∆

n
j η (un) dξ

+∆ t
∫ 1

0

(
∂ξ ω̂ (tn+ϑ )

)
η

(
un+ϑ

)
dξ

+
∫ 1

0

[
ϑ

2
∆

n
j − (1−ϑ)2

∆
n+1
j

]
η
(
un+1−un) dξ , (7)

where un+ϑ and tn+ϑ are defined as in (2b).

Proof. First of all, by a simple algebraic manipulation follows∫ 1

0
∆

n+1
j un+1un+ϑ dξ −

∫ 1

0
∆

n
j unun+ϑ dξ

=
∫ 1

0
∆

n+1
j η

(
un+1) dξ −

∫ 1

0
∆

n
j η (un) dξ
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+
∫ 1

0

(
∆

n+1
j −∆

n
j

)(
(2ϑ −1)η

(
un+1)+(1−ϑ)un+1un) dξ

+(2ϑ −1)
∫ 1

0
∆

n
j η
(
un+1−un) dξ . (8)

Next, it should be noted that ∂xω (tn+ϑ )∆
n+ϑ

j = ∂ξ ω̂ (tn+ϑ ). Hence, by the formula
(3) follows

∆ t∂ξ ω̂ (tn+ϑ ) = ∆ t
(

ω
n
j+ 1

2
−ω

n
j− 1

2

)
=
(

∆
n+1
j −∆

n
j

)
. (9)

Moreover, the identity (9) and the integration by substitution formula provide∫ 1

0

(
∆

n+1
j −∆

n
j

)(
(2ϑ −1)η

(
un+1)+(1−ϑ)un+1un) dξ

−(1−ϑ)2
∫ 1

0

(
∆

n+1
j −∆

n
j

)
η
(
un+1−un) dξ

= ∆ t
∫ 1

0

(
∂ξ ω (tn+ϑ )

)
η

(
un+ϑ

)
dξ . (10)

Finally, the discrete transport equation (7) follows by combining the equations (8)
and (10). ut

The discrete transport equation (7) provides only a cell entropy inequality, if it
can be ensured that∫ 1

0

[
ϑ

2
∆

n
j − (1−ϑ)2

∆
n+1
j

]
η
(
un+1−un) dξ ≥ 0. (11)

In fact it follows from a simple calculation that ϑ needs to satisfy

0 <

√
∆

n+1
j√

∆ n
j +
√

∆
n+1
j

≤ ϑ ≤ 1. (12)

It should be noted that on a static mesh the equation ∆ n
j =∆

n+1
j is satisfied. Hence,

in this case, (12) yields the restriction 1
2 ≤ ϑ ≤ 1. This is the same restriction as

in Jiang and Shu’s paper [8]. However, the restriction (12) ensures the upcoming
entropy inequality with respect to the square entropy function for the ϑ -Pk-ALE-
DG method.

Proposition 1. Suppose ϑ satisfies the restriction (12). Then the solution of the ϑ -
Pk-ALE-DG method satisfies with respect to the square entropy function η (u) = 1

2 u2

the cell entropy inequality

0 ≥
∫

Kn+1
j

η
(
un+1

h

)
dx−

∫
Kn

j

η (un
h) dx
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+∆ t
(

H
(

ω
n
j+ 1

2
,un+ϑ ,−

h, j+ 1
2
,un+ϑ ,+

h, j+ 1
2

)
−H

(
ω

n
j− 1

2
,un+ϑ ,−

h, j− 1
2
,un+ϑ ,+

h, j− 1
2

))
,

where H (ω,u−,u+) :=−
∫ u− f (u) du+ωη (u−)+ ĝ(ω,u−,u+)u−. Furthermore,

holds
∥∥un

h

∥∥
L2(Ω)

≤
∥∥u0

h

∥∥
L2(Ω)

.

Proof. The ϑ -Pk-ALE-DG can be written as follows

0 =
∫ 1

0
∆

n+1
j η

(
ûn+1

h

)
dξ −

∫ 1

0
∆

n
j η (ûn

h) dξ

+
∫ 1

0

[
ϑ

2
∆

n
j − (1−ϑ)2

∆
n+1
j

]
η
(
ûn+1

h − ûn
h
)

dξ

−∆ t
∫ 1

0
f
(

ûn+ϑ

h

)(
∂ξ ûn+ϑ

h

)
dξ +∆ t

∫ 1

0
∂ξ

(
ω̂ (tn+ϑ )η

(
ûn+ϑ

h

))
dξ

+∆ t
(

ĝ
(

ω
n
j+ 1

2
, ûn+ϑ ,−

h, j+ 1
2
, ûn+ϑ ,+

h, j+ 1
2

)
ûn+ϑ ,−

h, j+ 1
2
− ĝ
(

ω
n
j− 1

2
, ûn+ϑ ,−

h, j− 1
2
, ûn+ϑ ,+

h, j− 1
2

)
ûn+ϑ ,+

h, j− 1
2

)
,

when the test function v̂ = ûn+ϑ

h and the discrete transport equation (7) are applied.
The next steps ensues similar as in the proof of the entropy inequality for the semi-
discrete ALE-DG method in [9]. First of all, the integration by substitution formula
and the function H (ω,u−,u+) are applied to write the method as

0 ≥
∫ 1

0
∆

n+1
j η

(
ûn+1

h

)
dξ −

∫ 1

0
∆

n
j η (ûn

h) dξ +Θ
n+ϑ

j− 1
2

+∆ t
(

H
(

ω
n
j+ 1

2
, ûn+ϑ ,−

h, j+ 1
2
, ûn+ϑ ,+

h, j+ 1
2

)
−H

(
ω

n
j− 1

2
, ûn+ϑ ,−

h, j− 1
2
, ûn+ϑ ,+

h, j− 1
2

))
, (13)

where

Θ
n+ϑ

j− 1
2

:= ∆ t
(

g
(

ω
n
j− 1

2
,θ n+ϑ

j

)
− ĝ
(

ω
n
j− 1

2
, ûn+ϑ ,−

h, j− 1
2
, ûn+ϑ ,+

h, j− 1
2

))
[[ûn+ϑ

h ]] j− 1
2

with a value θ
n+ϑ

j between ûn+ϑ ,−
h, j− 1

2
and ûn+ϑ ,+

h, j− 1
2

and [[ûn+1
h ]] j− 1

2
:= ûn+ϑ ,+

h, j− 1
2
− ûn+ϑ ,−

h, j− 1
2

.

It should be noted that (13) is an inequality, since it has been assumed that ϑ satis-
fies the restriction (12) and thus the inequality (11) is satisfied, too. Moreover, the
term Θ

n+ϑ

j− 1
2

is non-negative, since the method is considered with a monotone and

consistent numerical flux. Next, the inequality (13) is transformed to the physical
domain by the integration by substitution formula. The inequality on physical do-
main provides the desired cell entropy inequality. Finally a summation of the cell
entropy inequality over all cells yields the L2-stability, since we consider the prob-
lem (1) with periodic boundary conditions. ut

The result in Proposition 1 holds merely for the square entropy function. Nev-
ertheless, for the piecewise constant ϑ -P0-ALE-DG method an entropy inequality
with respect to the Kružkov entropy functions can be proven. Henceforth, the up-
coming notation is used
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u j (t) :=
1

∆ j (t)

∫
K j(t)

uh (t) dx, ∆
n+1−ϑ

j := ϑ∆
n
j +(1−ϑ)∆

n+1
j . (14)

The following identity follows from a simple calculation

∆
n+1
j un+1

j −∆
n
j un

j = ∆
n+1−ϑ

j

(
un+1

j −un
j

)
+∆ t

(
ω

n
j+ 1

2
−ω

n
j− 1

2

)
un−ϑ

j , (15)

since ∆
n+1
j −∆ n

j = ∆ t
(

ωn
j+ 1

2
−ωn

j− 1
2

)
. The equation (15) provides the upcoming

formulation of the ϑ -P0-ALE-DG method

0 = un+1
j −un

j +
∆ t

∆
n+1−ϑ

j

(
ĝ+
(

ω
n
j− 1

2
,un+ϑ

j

)
− ĝ+

(
ω

n
j− 1

2
,un+ϑ

j−1

))
− ∆ t

∆
n+1−ϑ

j

(
ĝ−
(

ω
n
j+ 1

2
,un+ϑ

j+1

)
− ĝ−

(
ω

n
j+ 1

2
,un+ϑ

j

))
. (16)

In the following, an entropy inequality with respect to the Kružkov entropy functions
η` (u) := |u− `|, ` ∈R, is presented for the method (16).

Proposition 2. Suppose the CFL condition(
λ

n+ϑ

j +
1
2

max
t∈[tn,tn+1]

{∣∣∂xω (x, t)∆ j (t)
∣∣ : x ∈ K j (t)

}) ∆ t
∆

n+1−ϑ

j
≤ 1, (17)

where the parameters λ
n+ϑ

j and ∆
n+1−ϑ

j are given by (5) and (14) respectively.
Then the solution of the scheme (16) satisfies the cell entropy inequality

η`

(
un+1

j

)
−η`

(
un

j
)
+

∆ t
∆

n+1−ϑ

j

(
H`

(
ω,un+ϑ

j ,un+ϑ

j+1

)
−H`

(
ω,un+ϑ

j−1 ,u
n+ϑ

j

))
≤ 0,

where η` (u) := |u− `|, ` ∈R, are the Kružkov entropy functions and for all a,b ∈
[m,M], H` (ω,a,b) is given by

H` (ω,a,b) :=
1
2

∫ a

`
η
′
` (v)

(
λ

n
j + f ′ (v)−ω

n
j− 1

2

)
dv

−1
2

∫ b

`
η
′
` (v)

(
λ

n
j − f ′ (v)+ω

n
j+ 1

2

)
dv.

Proof. The integration by parts formula and the convexity of the functions η` pro-
vide (

un+1
j −un

j

)
η
′
`

(
un+1

j

)
≥ η`

(
un+1

j

)
−η`

(
un

j
)

+
∫ un+1

j

un+ϑ

j

(
v−un+ϑ

j

)
η
′′
` (v) dv. (18)
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Next, the scheme (16) is multiplied by η`

(
un+1

j

)
and the integration by parts for-

mula, the functions H` (ω,a,b), (9) and (18) are applied. This results in

0 ≥ η`

(
un+1

j

)
−η`

(
un

j
)
+Θ

n+ϑ

j

+
∆ t

∆
n+1
j

(
H`

(
ω,un+ϑ

j ,un+ϑ

j+1

)
−H`

(
ω,un+ϑ

j−1 ,u
n+ϑ

j

))
, (19)

where

Θ
n+ϑ

j :=

(
1− ∆ t

∆
n+1−ϑ

j
C
(

λ
n+ϑ

j ,ω (tn+ϑ )
))∫ un+1

j

un+ϑ

j

(
v−un+ϑ

j

)
η
′′
` (v) dv

+
∫ un+1

j

un+ϑ

j−1

(
ĝ+
(

ω
n
j+ 1

2
,v
)
− ĝ+

(
ω

n
j+ 1

2
,un+ϑ

j−1

))
η
′′
` (v) dv

∫ un+1
j

un+ϑ

j+1

(
ĝ−
(

ω
n
j+ 1

2
,v
)
− ĝ−

(
ω

n
j+ 1

2
,un+ϑ

j+1

))
η
′′
` (v) dv, (20)

C
(

λ
n+ϑ

j ,ω (tn+ϑ )
)

:= λ
n+ϑ

j +
1
2

∂xω (tn+ϑ )∆ j (tn+ϑ ) .

The inequality (19) is almost the desired cell entropy inequality. Nevertheless, it
need to be ensured that the term Θ

n+ϑ

j is non-negative. In fact the integrals in
equation (20) are non-negative, since the functions η` are convex and the func-
tions ĝ± (ω,u) are monotone increasing. It should be noted that η ′′` are Dirac delta
distributions. However, the products in all the integrals are well defined, since the
delta distributions are multiplied with continuous functions. Furthermore, the term
in front of the first integral in equation (20) is non-negative by the CFL condition
(17). Hence, the term Θ

n+ϑ

j is non-negative and the inequality (19) yields the de-
sired cell entropy inequality. ut

3 Conclusions

In this paper, an ALE-DG method for solving scalar conservation laws has been
presented. A cell entropy inequality with respect to the Kružkov entropy functions
has been proven for the fully discrete ϑ -P0-ALE-DG method. Likewise, a cell en-
tropy inequality with respect to the square entropy function has been proven for
the fully discrete ϑ -Pk-ALE-DG method, when ϑ satisfies the restriction (12). Cell
entropy inequalities are very useful in the analysis of numerical methods. Besides
the convergence to the physical relevant solution, cell entropy inequalities provide
certain stability properties and statements about the qualitative behavior of a nu-
merical method. For instance, a cell entropy inequality with respect to the square
entropy function provides the L2-stability of the method and is the key to a priori er-
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ror estimates. Hence, in future works, it is of particular interest to prove cell entropy
inequalities or at least the L2-stability for the ALE-DG method when other time
integration methods like the explicit third order TVD-RK methods are adopted.
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