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1 Introduction

In this paper, we develop a new numerical method for the Saint-Venant system
of shallow water equations. The Saint-Venant system is a hyperbolic system of
balance laws, which was developed in [11] and still used in a wide variety of
applications related to modeling water flows in rivers, canals, lakes, coastal areas
and even in deep oceans in the situations in which the horizontal length scale is
much greater than the vertical length scale. In the one-dimensional (1-D) case,
the Saint-Venant system reads as

⎧
⎪⎨

⎪⎩

ht+(hu)x =0,

(hu)t+
(
hu2+ g

2 h2
)

x=−ghBx ,

Bt=0,

(1.1)

where x and t are the spatial and temporal variable, respectively, h=h(x,t) is the
water depth, u=u(x,t) is the velocity, B=B(x) is the bottom topography assumed
to be time-independent, and g is acceleration due to gravity.

The Jacobian of the system (1.1) has three eigenvalues λ±(h,u)=u±
√

gh and
λ0 = 0. Therefore, the system (1.1) is hyperbolic as long as h ≥ 0 and is strictly
hyperbolic if λ+λ− ̸=0. There are three possible flow regimes depending on the
above eigenvalues: (i) if λ−λ+<0 then the flow is subcritical, (ii) if λ+λ−>0 then
the flow is supercritical, (iii) if λ+λ−=0 then the flow is critical. It is easy to show
that the system (1.1) admits the following equilibria:

q :=hu≡Const, E :=
u2

2
+g(h+B)≡Const, (1.2)

where q and E denote the discharge and total energy, respectively. The steady
states (1.2) are of great practical importance as many physically relevant water
waves are, in fact, their small perturbations. “Lake at rest” steady states or still-
water equilibria given by

u≡0, h+B≡Const, (1.3)

form a subclass of (1.2). When u ̸≡ 0, the steady states (1.2) are called moving-
water equilibria.

It is well-known that a good numerical method for the Saint-Venant system
(1.1) should be capable of exactly preserving all of the equilibria given by (1.2)
or at least the still-water equilibria (1.3). Such schemes are called well-balanced as
they respect a delicate balance between the flux and source terms in the discharge
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equation in (1.1). Derivation of well-balanced schemes for the shallow water
equations has been an active area of research since the pioneering works [2] and
[16]. Numerous still-water equilibria preserving schemes have been developed
[1, 4, 5, 7, 13, 18–21, 26, 28]. Further research has been done to construct moving-
water equilibria preserving schemes [3, 6, 8–10, 19, 24, 27, 31–34]. An advantage
of moving-water equilibria preserving schemes over their still-water equilibria
preserving ones has been clearly demonstrated in [9, 10, 19, 33].

In this paper, we rigorously derive a simple moving-water equilibrium pre-
serving extension of the Harten-Lax-van Leer (HLL) scheme, originally devel-
oped for hyperbolic systems of conservation laws in [17], to the 1-D Saint-Venant
system (1.1). We proceed along the lines of the HLL-type scheme recently intro-
duced in [12] for the compressible Euler equations with gravity. The HLL-type
scheme presented here is close to the numerical schemes derived in [3,24], which
were constructed under the assumption that the flow is subcritical. We, however,
focus on extending the HLL-type approach to all possible flow regimes. The nov-
elty of our scheme is also in solving the cubic equation that needs to be solved
to compute the values of h given the values of the equilibrium variables q and E.
While in the aforementioned papers, this was done approximately using New-
ton’s method (which may or may not converge, especially near the critical points
in transcritical flow regimes), we work out the required details and use the exact
solution.

The paper is organized as follows. In Section 2, we present the HLL-type ap-
proximate Riemann problem solver for different flow regimes. In Section 3, we
introduce the first-order numerical scheme based on the previously developed
approximate Riemann problem solver. We also investigate the well-balanced
properties of the designed scheme and introduce its second-order extension. In
Section 4, we describe the exact solver for the cubic equation that relates the equi-
librium and conservative variables. Finally, in Section 5, we report the results of
several numerical experiments designed to demonstrate the performance of the
proposed HLL-type schemes.

2 HLL-type approximate Riemann problem solver

In this section, we derive the HLL-type approximate solution of the Riemann
problem for the Saint-Venant system (1.1) subject to the following initial data:

w(x,0)=

{
wL, x<0,

wR, x>0,
w=(h,q,B)⊤ (2.1)
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with the prescribed values of wL := (hL,qL := hLuL,BL)⊤ and wR := (hR,qR :=
hRuR,BR)⊤. We also introduce the corresponding energy values

EL :=
u2

L

2
+g(hL+BL), ER :=

u2
R

2
+g(hR+BR).

Since we need a Riemann problem solver for all three flow regimes, we will study
each of them separately.

Before designing the HLL-type Riemann problem solver, we introduce the
signal speeds

λL =min
{

λ−(hL,uL),λ−(hR,uR)
}

, λR =max
{

λ+(hL,uL),λ+(hR,uR)
}

.

Depending on the signs of λL and λR, we will distinguish between the supercrit-
ical, subcritical and critical cases.

2.1 Supercritical case

We begin with the supercritical case. For symmetry reasons, it is enough to ana-
lyze the case of two positive eigenvalues (λL > 0 and λR > 0). We therefore seek
an approximate solution in the following form:

W sup(x,t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wL, if x
t <0,

w∗
L, if 0< x

t <λL,

w∗
R, if λL <

x
t <λR,

wR, if λR <
x
t .

(2.2)

We note that the evolution of the bottom topography satisfying the trivial equa-
tion Bt=0 is decoupled from the evolution of h and q. Therefore, B∗

L=B∗
R=BR, and

one has to determine the remaining four unknowns h∗L, h∗R, q∗L and q∗R; see Fig. 1,
where the function W sup(x,t) is schematically presented in the (x,t)-plane on the

rectangle [−∆x
2 , ∆x

2 ]×[0,∆t] with ∆x> 0 being a fixed (small) number and ∆t> 0

determined using the CFL condition with the CFL number 1
2, namely, λRµ≤ 1

2 ,

where µ := ∆t
∆x .

We first use the consistency relation

1

∆x

∆x/2∫

−∆x/2

W

( x

∆t
,wL,wR

)
dx=

1

∆x

∆x/2∫

−∆x/2

W
( x

∆t
,wL,wR

)
dx, (2.3)
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Figure 1: Structure of the HLL-type approximate Riemann problem solver W sup(x,t).

where W is the exact solution of the Riemann problem (1.1), (2.1) and W=W sup.
This gives

1

2
hL+λLµh∗L+(λR−λL)µh∗R+

(
1

2
−λRµ

)
hR

=
1

2
(hL+hR)−µ(qR−qL), (2.4)

1

2
qL+λLµq∗L+(λR−λL)µq∗R+

(
1

2
−λRµ

)
qR

=
1

2
(qL+qR)−µ

(
hRu2

R+
g

2
h2

R−hLu2
L−

g

2
h2

L

)
−µghBx, (2.5)

where ghBx is a discretization of the source term, which will be determined in Sec-
tion 3.1.1 from the well-balanced requirement. In order to obtain two additional
equations, we impose the equilibrium relations across the stationary λ0-wave,
that is, we require

q∗L =qL,
1

2

(
q∗L
h∗L

)2

+g(h∗L+BR)=EL. (2.6)

We note that the equilibrium relations (2.6) allow one to directly compute two
dependent variables: h∗L satisfies the following cubic equation:

(h∗L)
3+

1

g
(gBR−EL)(h

∗
L)

2+
q2

L

2g
=0, (2.7)
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whose solution is discussed in Section 4 below. The remaining two unknowns
can now be computed from (2.4) and (2.5), which result in

h∗R =
1

λR−λL

(
λRhR−λLh∗L−(qR−qL)

)
,

q∗R =
1

λR−λL

(
λRqR−λLqL−

(
hRu2

R+
g

2
h2

R−hLu2
L−

g

2
h2

L

)
−ghBx

)
.

(2.8)

Remark 2.1. In the case when λL < 0 and λR < 0, the values of h∗L, h∗R, q∗L and q∗R
are obtained in a similar manner:

q∗R =qR,

h∗R is a solution of the cubic equation

(h∗R)
3+

1

g
(gBL−ER)(h

∗
R)

2+
q2

R

2g
=0,

and then h∗L and q∗L are

h∗L =
1

λR−λL

(
λRh∗R−λLhL−(qR−qL)

)
,

q∗L =
1

λR−λL

(
λRqR−λLqL−

(
hRu2

R+
g

2
h2

R−hLu2
L−

g

2
h2

L

)
−ghBx

)
.

2.2 Subcritical case

In the subcritical case, we seek an approximate solution of the Riemann problem
(1.1) and (2.1) in a different form (compare with (2.2)):

W sub(x,t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wL, if x
t <λL,

w∗
L, if λL <

x
t <0,

w∗
R, if 0< x

t <λR,

wR, if λR <
x
t .

(2.9)

As before, the bottom topography equation Bt=0 is trivial, which implies B∗
L=BL

and B∗
R = BR and thus one has to determine h∗L, h∗R, q∗L and q∗R only; see Fig. 2,

where the function W sub(x,t) is schematically presented in the (x,t)-plane on
the rectangle [−∆x

2 , ∆x
2 ]×[0,∆t].
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Figure 2: Structure of the HLL-type approximate Riemann problem solver Wsub(x,t).

We again use the consistency relation (2.3), this time with W =W sub, which
gives

(
1

2
+λLµ

)
hL−λLµh∗L+λRµh∗R+

(
1

2
−λRµ

)
hR

=
1

2
(hL+hR)−µ(qR−qL), (2.10)
(

1

2
+λLµ

)
qL−λLµq∗L+λRµq∗R+

(
1

2
−λRµ

)
qR

=
1

2
(qL+qR)−µ

(
hRu2

R+
g

2
h2

R−hLu2
L−

g

2
h2

L

)
−µghBx. (2.11)

Since (2.10) and (2.11) again give only two nonlinear algebraic equations for the
four unknowns, additional relations have to be imposed. As in the supercritical
case, we impose the equilibrium conditions across the stationary λ0-wave:

q∗L=q∗R, (2.12)

1

2

(
q∗L
h∗L

)2

+g(h∗L+BL)=
1

2

(
q∗R
h∗R

)2

+g(h∗R+BR). (2.13)

We now need to solve the system (2.10)-(2.13). First, we note that equations
(2.11) and (2.12) give

q∗L=q∗R

=q∗ :=
1

λR−λL

(
λRqR−λLqL−

(
hRu2

R+
g

2
h2

R−hLu2
L−

g

2
h2

L

)
−ghBx

)
. (2.14)
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We then observe that Eq. (2.13) is nonlinear and if we use it then this will result
in a quintic equation, solving which will make the resulting scheme too cumber-
some. We therefore replace it with

1

2

(
q∗

ĥL

)2

+g(h∗L+BL)=
1

2

(
q∗

ĥR

)2

+g(h∗R+BR), (2.15)

so that the system (2.10)-(2.12) and (2.15) becomes a linear algebraic system for

the unknowns h∗L, h∗R, q∗L and q∗R. In (2.15), ĥL and ĥR are the averaged quantities

defined as follows. We first average the energies and introduce Ê := 1
2(EL+ER)

and then compute ĥL and ĥR as the roots of

h3+
gBL− Ê

g
h2+

(q∗)2

2g
=0, h3+

gBR− Ê

g
h2+

(q∗)2

2g
=0, (2.16)

respectively. Finally, we solve (2.10) and (2.15) to find

h∗L =
1

λR−λL
(λRhR−λLhL−λRD+qL−qR),

h∗R =
1

λR−λL
(λRhR−λLhL−λLD+qL−qR),

(2.17)

where

D :=
(q∗)2

2g

(
1

ĥ2
L

−
1

ĥ2
R

)

+(BL−BR). (2.18)

Remark 2.2. Notice that if BL = BR, then (2.16) implies ĥL = ĥR, (2.18), in turn,
implies D=0, and thus we obtain from (2.17) that

h∗L =h∗R =
1

λR−λL
(λRhR−λLhL+qL−qR).

2.3 Critical case

Finally, we consider the critical case, in which either λL or λR vanishes. Let us
assume that λL =0 (the case λR =0 is treated similarly) and seek an approximate
solution of the Riemann problem (1.1) and (2.1) in the following form, which is
simpler that either (2.2) or (2.9):

Wcr(x,t)=

⎧
⎪⎨

⎪⎩

wL, if x
t <0,

w∗, if 0< x
t <λR,

wR, if λR <
x
t .
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Figure 3: Structure of the HLL-type approximate Riemann problem solver W cr(x,t).

As in the previous two cases, Bt=0 implies B∗=BR∗ and one has to determine two
unknowns h∗ and q∗ only; see Fig. 3, where the function W cr(x,t) is schematically
presented in the (x,t)-plane on the rectangle [−∆x

2 , ∆x
2 ]×[0,∆t].

In the critical case, we simply use the consistency relation (2.3) with W=W cr

and obtain

h∗=hR−
1

λR
(qR−qL),

q∗=qR−
1

λR

(
hRu2

R+
g

2
h2

R−hLu2
L−

g

2
h2

L+ghBx

)
.

(2.19)

Remark 2.3. In the case when λL < 0 and λR = 0, the values of h∗ and qR are
obtained in a similar manner:

h∗=hL+
1

λL
(qR−qL),

q∗=qL+
1

λL

(
hRu2

R+
g

2
h2

R−hLu2
L−

g

2
h2

L+ghBx

)
.

3 Well-balanced HLL-type schemes

In this section, we use the approximate Riemann problem solver developed in
Section 2 to design well-balanced HLL-type schemes for the Saint-Venant sys-
tem (1.1).



256 C. Klingenberg et al. / Commun. Math. Res., 36 (2020), pp. 247-271

3.1 First-order scheme

We begin with the derivation of the first-order scheme.
For the sake of simplicity, we introduce uniform finite-volume cells

Cj=
[
xj− 1

2
,xj+ 1

2

]

of size ∆x:=xj+ 1
2
−xj− 1

2
centered at xj=

1
2(xj− 1

2
+xj+ 1

2
). We assume that at a certain

time level t= tn, the computed quantities (solution cell averages),

wn
j ≈

1

∆x

∫

Cj

w(x,tn)dx

are available. They are then evolved in time in the finite-volume fully discrete
framework

wn+1
j =wn

j −µ

(
F

−
j+ 1

2
−F

+
j− 1

2

)
, (3.1)

where, as before, µ := ∆t
∆x and F∓

j± 1
2

are numerical fluxes derived by the HLL-type

approximate Riemann problem solver developed in Section 2.
In order to design the HLL-type numerical fluxes, we first rewrite the Saint-

Venant system (1.1) in the vector form,

wt+ f (w)x = s(w), w=

⎛

⎝
h
q
B

⎞

⎠,

f (w) :=

⎛

⎝
q

q2

h + g
2 h2

0

⎞

⎠, s(w) :=

⎛

⎝
0

−ghBx

0

⎞

⎠,

(3.2)

and consider the Riemann problems localized at the cell interfaces: (3.2) subject
to the following initial data

w(x,tn)=

{
wL :=wn

j , x< xj+ 1
2
,

wR :=wn
j+1, x> xj+ 1

2
,

prescribed at time level t = tn. Its approximate solution is given by either
W sup(x−xj+ 1

2
,t−tn), W sub(x−xj+ 1

2
,t−tn) or W cr(x−xj+ 1

2
,t−tn) as explained

in Section 2.
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We then follow [29] and define the numerical fluxes by applying the Rankine-
Hugoniot relations across the discontinuities in the approximate Riemann prob-
lem solver. In the supercritical case, the numerical fluxes are given by either

⎧
⎨

⎩

F−
j+ 1

2
= f (wL),

F
+
j+ 1

2
= f (wR)−λR(wR−w∗

R)−λL(w∗
R−w∗

L),
(3.3)

or ⎧
⎨

⎩

F−
j+ 1

2
= f (wL)+λL(w∗

L−wL)+λR(w∗
R−w∗

L),

F
+
j+ 1

2
= f (wR),

(3.4)

depending on whether λR > λL > 0 or λL < λR < 0, respectively. The intermedi-
ate values w∗

L and w∗
R are computed in Section 2.1. In the subcritical case, the

numerical fluxes are ⎧
⎨

⎩

F
−
j+ 1

2
= f (wL)+λL(w∗

L−wL),

F
+
j+ 1

2
= f (wR)−λR(wR−w∗

R)
(3.5)

with w∗
L and w∗

R computed in Section 2.2. Finally, in the critical case, the numeri-
cal fluxes are given by either

⎧
⎨

⎩

F−
j+ 1

2
= f (wL),

F+
j+ 1

2
= f (wR)−λR(wR−w∗),

(3.6)

or ⎧
⎨

⎩

F−
j+ 1

2
= f (wL)+λL(w∗−wL),

F+
j+ 1

2
= f (wR),

(3.7)

depending on whether λR >λL =0 or λL <λR =0, respectively. The intermediate
values w∗ are computed in Section 2.3.

Remark 3.1. We note that if Bj=Bj+1, then F−
j+ 1

2
=F+

j+ 1
2

as expected since in this

case, the system of balance laws (3.2) is locally conservative at x= xj+ 1
2
.

3.1.1 Well-balanced source discretization

In order to complete the derivation of the well-balanced HLL-type scheme, we
need to make sure that if the approximate solution at time t= tn is at (moving-
water) equilibrium (1.2), that is, if there exist two constants Q and E such that

qn
j =qn

j+1=Q,
1

2

⎛

⎝
qn

j

h
n
j

⎞

⎠
2

+g
(

h
n
j +Bj

)
=

1

2

⎛

⎝
qn

j+1

h
n
j+1

⎞

⎠
2

+g
(

h
n
j+1+Bj+1

)
=E (3.8)
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for all j, then the intermediate values would satisfy

w∗
L=w∗

R =wR in the supercritical case with 0<λL <λR, (3.9)

w∗
L=w∗

R =wL in the supercritical case with λL <λR <0, (3.10)

w∗
L=wL, w∗

R=wR in the subcritical case, (3.11)

w∗=wR in the critical case with 0=λL<λR, (3.12)

w∗=wL in the critical case with λL<λR =0. (3.13)

This will imply that F−
j+ 1

2
=F

+
j− 1

2
and hence

wn+1
j =wn

j −µ

(
F−

j+ 1
2
−F+

j− 1
2

)
=wn

j ,

which means that the approximate solution at time t= tn+1 will stay at the steady
state.

Theorem 3.1. If the approximate solution at time t= tn satisfies (3.8) and the following
source discretization,

ghBx =
g

2
(BR−BL)(hR+hL)−

hR−hL

4
(uR−uL)

2 (3.14)

is utilized in the approximate Riemann problem solver presented in Section 2, then (3.9)-
(3.13) are satisfied and the resulting first-order HLL-type scheme (3.1) and (3.3)-(3.7) is
well-balanced.

Proof. We consider the three possible cases: (i) supercritical, (ii) subcritical and
(iii) critical.

(i) For the sake of simplicity, we will only consider the case when λR >λL > 0
(the other supercritical case when λL < λR < 0 is treated similarly). In this

case, we first use (2.6) and (3.8) to obtain h∗L = h
n
j+1 and q∗L =Q. Next, we

substitute this into (3.14) and then into (2.8) to obtain h∗R =h
n
j+1 and q∗R =Q.

Thus, (3.9) is satisfied.

(ii) In this case, we first use (2.14), (3.8) and (3.14) to obtain q∗L = q∗R =Q, which
are then substituted into (2.18), which together with the second equation
in (3.8) gives D = hR−hL. This, in turn, is substituted into (2.17) to obtain
h∗L=hL and h∗R =hR and hence (3.11) is satisfied.
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(iii) Finally, in the critical case we will only consider the case when λR >λL = 0
(the other critical case when λL<λR=0 is treated similarly). In this case, we
substitute (3.8) and (3.14) into (2.19), which results in (3.12).

Remark 3.2. For the still-water equilibria (1.3), the source discretization (3.14)
reduces to

ghBx =
g

2
(BR−BL)(hR+hL),

which has been used in a variety Godunov-type schemes (see, e.g., [1, 20]) to
ensure still-water equilibria preserving property.

Remark 3.3. The source discretization (3.14) is the same as one used in [27] and
[10] in the context of WENO and central-upwind schemes, respectively, as well
as several other moving-water equilibria preserving methods. We note that in the
case of flat bottom topography, (3.14) is inconsistent as its right-hand side (RHS)
does not vanish. In the case of a smooth solution, the first term in the RHS of
(3.14) is an approximation of −ghbx , while the last term on the RHS of (3.14) is
proportional to (∆x)3 so that the size of the local truncation error of the resulting
HLL-type scheme is not significantly affected (this is also true for the second-
order HLL-type scheme presented in Section 3.2 below). However, if the solution
is nonsmooth, which is a generic case for the nonlinear hyperbolic system (1.1),
then the lack of consistency may become more transparent. A way to cure this
defect is subject of future study and is beyond the scope of this paper.

3.2 Second-order scheme

We now extend the designed HLL-type scheme to the second order of accuracy.
The extension is carried out using the semi-discrete approach. We assume that at
a certain time level t the solution, realized in terms of its cell averages,

wj(t)≈
1

∆x

∫

Cj

w(x,t)dx

is available. They are then evolved in time by solving the system of ODEs,

d

dt
wj(t)=−

1

∆x

(
F−

j+ 1
2
(t)−F+

j− 1
2
(t)

)
, (3.15)
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where the numerical fluxes are still given by (3.3)-(3.7), but the values of wL and
wR at the cell interface x= xj+ 1

2
are now computed using a piecewise linear re-

construction as described below.
We follow the approach from [34] (also see [10, 33]) and reconstruct the equi-

librium variables (E and q) rather than the conservative ones (h and q). We first
compute

Ej :=
1

2

⎛

⎝
qn

j

h
n
j

⎞

⎠
2

+g
(

h
n
j +Bj

)
for all j, (3.16)

and then use the generalized minmod limiter [23,25,30] to evaluate the numerical
derivatives

(Ex)j=minmod

(

θ
Ej+1−Ej

∆x
,
Ej+1−Ej−1

2∆x
θ

Ej−Ej−1

∆x

)

, (3.17)

(qx)j=minmod

(

θ
qj+1−qj

∆x
,
qj+1−qj−1

2∆x
,θ

qj−qj−1

∆x

)

, (3.18)

where θ∈[1,2] is a parameter helps to control the smoothness of the reconstructed
values (larger values of θ correspond to sharper, but more oscillatory reconstruc-
tions) and the minmod function is defined as

minmod(α,β,γ)=
1

2

(
sgn(α)+sgn(γ)

)
min

(
|α|,|β|,|γ|

)
.

The reconstructed point values of E and q are then

EL=Ej+
∆x

2
(Ex)j, ER =Ej+1−

∆x

2
(Ex)j+1,

qL=qj+
∆x

2
(qx)j, qR =qj+1−

∆x

2
(qx)j+1.

As in [34], the bottom topography is not reconstructed since

1

∆x

(
Bj+1−Bj

)
=Bx

(
xj+ 1

2

)
+O

(
(∆x)2

)

as long as B is sufficiently smooth. Finally, the required point values hL and hR

are obtained by solving the corresponding cubic equations,

h3
L+

1

g

(
gBj−EL

)
h2

L+
q2

L

2g
=0, h3

R+
1

g

(
gBj+1−ER

)
h2

R+
q2

R

2g
=0, (3.19)

whose solution is discussed in Section 4 below.
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Remark 3.4. If there are two physically relevant solutions of some of the cubic
equations in (3.19), we choose hL and hR in the same flow regime as the cell cen-
tered values in cells Cj and Cj+1, respectively, as suggested in [33]. If some of the
cubic equations in (3.19) have no positive real solutions, we then set

hL=

(
q2

L

g

) 1
3

or hR =

(
q2

R

g

) 1
3

,

respectively, which corresponds to the critical flow regime as explained in Sec-
tion 4 below.

Remark 3.5. Notice that at the moving-water equilibria, the equilibrium variables
E and q are constant and hence the slopes in (3.18) are 0 and all of the interface
values will coincide with the corresponding cell centered values. Therefore, the
resulting second-order semi-discrete scheme (3.15) and (3.3)-(3.7) will be well-
balanced as the proof of Theorem 3.1 is still valid.

Remark 3.6. The system of ODEs (3.15) has to be solved using a sufficiently sta-
ble and accurate ODE solver. In the numerical examples reported in Section 5,
we have use the three-stage third-order strong stability preserving (SSP) Runge-
Kutta solver; see, e.g., [14, 15].

4 Variable transformation

In this section, we describe the way to solve Eqs. (2.7) for hL and (3.19) for hL

and hR, that is, we show how one can switch from the equilibrium variables q, E
and B to the conservative variables h, q and B. To this end, we need to solve the
following cubic equation:

P(h) :=h3+a0h2+a2=0, (4.1)

where

a0 :=
1

g
(gB−E), a2 :=

q2

2g
.

We note that a2≥0 and from the definition of E in (1.2), a0 <0 as long as h>0 (in
this paper we do not consider the case of dry areas).

One can easily show that:

• the polynomial P has either one or three real roots;
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• the limits at infinities are limh→±∞ P(h)=±∞;

• P attains a local maximum at h̃1=0 and a local minimum at h̃2=− 2a0
3 >0;

• P has a nonphysical negative root h̄1<0;

• Since P(0)>0, P has at least one positive root if P(h̃2)≥0⇐⇒ a2 ≤− 4
27 a3

0;

• Depending on the value of a2, we can distinguish between the following
three physically relevant cases:

⎧
⎪⎨

⎪⎩

a2=0 → fluid at rest,

0< a2<− 4
27 a3

0 → sub/supercritical flow,

a2=− 4
27 a3

0 → critical flow.

Fluid at Rest. In this case, the unique physically relevant double root is h̄2 =
h̄3=−a0.

Critical Flow. In this case, the unique physically relevant double root is h̄2 =
h̄3=− 2a0

3 .

Sub/Supercritical Flow. In this case, there are two physically relevant roots: the

supercritical (h̄2<h̃2) and subcritical (h̄3>h̃2) ones. In order to find these roots, we
make the substitution h= t− a0

3 and rewrite Eq. (4.1) in the following depressed
form:

Q(t) := t3−
a2

0

3
t+

27a2+2a3
0

27
=0.

According to [22], the roots of Q can be written in the following explicit form:

t̄i =−
2

3
a0 cos

(
φ+2πi

3

)
, i=1,2,3,

where φ∈ (0,π) such that

cosφ=1+
27a2

2a3
0

.

Thus, the corresponding roots of P are

h̄i =−
1

3
a0

[
2cos

(
φ+2πi

3

)
+1

]
, i=1,2,3. (4.2)
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Figure 4: Roots of P(h) in the sub/supercritical flow case.

It is straightforward to check that

h̄1<0< h̄2< h̃2< h̄3,

which means that the three roots in (4.2) are nonphysical (h̄1), supercritical (h̄2)
and subcritical (h̄3), respectively; see Fig. 4.

5 Numerical examples

In this section, we demonstrate the performance of the developed second-order
HLL-type numerical scheme. Since the scheme is derived for different flow regi-
mes, we use the following set of equilibria as a basis for our numerical experi-
ments:

Subcritical flow: qeq=4.42, Eeq=22.06605, (5.1)

Transcritical flow: qeq=1.53, Eeq=11.090714039778195, (5.2)

Supercritical flow: qeq=24, Eeq=91.624. (5.3)

We consider either continuous,

B(x)=

{
0.2−0.05(x−10)2, if 8≤ x≤12,

0, otherwise,
(5.4)

or discontinuous,

B(x)=

{
0.2, if 8≤ x≤12,

0, otherwise,
(5.5)

bottom topographies.
In all of the numerical examples, we take the acceleration due to gravity g=

9.812, the minmod parameter θ=1.3, the CFL number 0.5, and use uniform finite-
volume meshes on the computational domain [0,25].
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Example 5.1 (Moving-water equilibria preserving well-balanced test). In the
first example, we consider the initial data, given in terms of the equilibrium vari-
ables q and E:

q(x,0)≡qeq, E(x,0)≡Eeq,

where qeq and Eeq are given by one of the equilibrium states (5.1), (5.2) or (5.3).
We notice that the initial data given by (5.1)-(5.3) are in terms of the equilibrium
variables q and E instead of the original conservative variables q and h. How-

ever, in order to initiate the computations at time t = 0, the values of hj(0) are
required. They can be obtained by solving the nonlinear algebraic equation (3.16)
as described in Section 4. It should be pointed out that in the transcritical flow
case (5.2), the shape of the bottom topography will influence the solution proce-
dure. In order to single out the unique solution, we refer to [10, Remark 4.1]. In
particular, if B is the continuous function given by (5.4), then the flow is

{
subcritical, if xj<10,

supercritical, if xj>10,
(5.6)

and if B is the discontinuous function given by (5.5), then the flow is

⎧
⎪⎨

⎪⎩

subcritical, if xj<8,

critical, if 8≤ xj≤12,

supercritical, if xj>12.

(5.7)

We use two different bottom topographies, (5.4) and (5.5), and compute the
numerical solution of the resulting six initial value problems until the final time
t=20 by the HLL-type scheme using 200 cells. In order to test the well-balanced
property of the studied schemes, we measure the L1-error of the computed solu-
tions and report the obtained results in Table 1. These results demonstrate that
the HLL-type scheme preserves the moving-water equilibria within the machine

Table 1: Example 5.1: L1-errors in h, q and E for the HLL-type scheme in three different flow regimes
with two different bottom topographies.

∥h(·,20)−heq∥1 ∥q(·,20)−qeq∥1 ∥E(·,20)−Eeq∥1

B(x)

qeq, Eeq
(5.1) (5.2) (5.3) (5.1) (5.2) (5.3) (5.1) (5.2) (5.3)

(5.4) 4.99E-16 6.94E-17 8.29E-14 1.55E-15 3.91E-15 5.83E-13 8.44E-15 4.55E-14 3.86E-12

(5.5) 5.55E-17 <1.0E-17 5.23E-14 1.11E-16 <1.0E-17 6.57E-13 4.44E-16 3.06E-14 2.14E-12
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error in all of the cases. This verifies the desired well-balanced property of the
proposed scheme.

Example 5.2 (Convergence to moving-water equilibria). In this example, we
consider the following four initial-boundary value problems with the “lake at
rest” initial conditions and the boundary conditions that correspond to the equi-
libria defined in (5.1)-(5.3), namely:

Subcritical flow:

{
h(x,0)=2−B(x), q(x,0)=0,

q(0,t)=4.42, h(25,t)=2,
(5.8)

Transcritical flow without a shock:

{
h(x,0)=0.66−B(x), q(x,0)=0,

q(0,t)=1.53, h(25,t)=0.66,
(5.9)

Transcritical flow with a shock:

{
h(x,0)=0.33−B(x), q(x,0)=0,

q(0,t)=0.18, h(25,t)=0.33,
(5.10)

Supercritical flow:

{
h(x,0)=2−B(x), q(x,0)=0,

h(0,t)=2, q(0,t)=24.
(5.11)

Remark 5.1. In case (5.9), the downstream boundary condition (h(25,t)=0.66) is
imposed only when the flow is subcritical.

We take the continuous bottom topography (5.4) and compute the numerical
solutions using the HLL-type scheme until the final time t=200 with 200 uniform
cells for all of the aforementioned four cases. In Figs. 5-8, we plot the obtained
numerical results. As one can see, the water depth h obtained by the proposed
HLL-type scheme are very close to the corresponding steady states in all of the
four cases. One can also observe that both q and E converge to constants in cases
(5.8), (5.9) and (5.11). However, Fig. 7 shows that q and E do not become flat in
the transcritical case with a shock, (5.10), since the errors at the shock are O(1).

We now verify whether the computed solutions converge to the steady states
given by (5.1)-(5.3). To this end, we measure the L1-norm of the differences in h, q
and E between the corresponding computed and steady-state solutions. In order
to ensure that the discrete steady states has been reached, we run the simulation
until very large final times: T=500 in the case (5.8) and T=200 in the cases (5.9)
and (5.11). The obtained results are reported in Table 2. As one can clearly see,
in the cases (5.8) and (5.11), the discrete steady-state solutions coincide with the
steady states (5.1) and (5.3), respectively. On the other hand, in the transcriti-
cal case (5.9), the discrete and continuous steady states are slightly different; see
Fig. 9.
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Figure 5: Example 5.2: h+B (left, the blue line denotes the bottom topography B(x)), q (middle) and
E (right), computed by the HLL-type scheme in the case (5.8).
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Figure 6: Example 5.2: Same as in Fig. 5, but for the case (5.9).
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Figure 7: Example 5.2: Same as in Fig. 5, but for the case (5.10).
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Figure 8: Example 5.2: Same as in Fig. 5, but for the case (5.11).
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Figure 9: Example 5.2: Continuous and discrete equilibria in the transcritical case (5.9): h (zooms at
x∈ [0,7], left, and at x∈ [15,25], middle) and E (right).

Table 2: Example 5.2: L1-norm of the differences in h, q and E between the corresponding computed
and steady-state solutions in three different flow regimes.

L1-differences

Initial data
(5.8) (5.9) (5.11)

∥h(·,T)−heq∥1 4.54E-12 0.0012 6.93E-14

∥q(·,T)−qeq∥1 4.97E-12 5.17E-12 6.22E-13

∥E(·,T)−Eeq∥1 2.74E-11 0.0106 4.65E-12

Example 5.3 (Small perturbations of moving-water equilibria). In the final ex-
ample, we test the ability of the HLL-type scheme to capture propagation of small
perturbations of moving-water equilibria. To this end, we add a small distur-
bance in the water depth to the equilibria (5.1)-(5.3), namely, we consider the
following initial data:

h(x,0)=heq(x)+0.05·χ[5.75,6.25], q(x,0)≡qeq,

where χ[5.75,6.25] is a characteristic function of the interval [5.75,6.25]. We consider

both continuous (5.4) and discontinuous (5.5) bottom topographies. The equilib-

rium state heq(x) is represented by its cell averages, {hj(0)}, which are obtained
precisely the same way as in Example 5.1. We note that this example was con-
sidered in [10], where it was demonstrated that a second-order central-upwind
scheme that was capable of preserving the “lake at rest” (still-water) equilibria
only, generated very large oscillation especially when a coarse mesh was used.

We compute the numerical solutions using the proposed HLL-type scheme
until t=1 in the supercritical case and until t=1.5 in the transcritical and subcriti-
cal cases with 100 and 1000 uniform cells, respectively. In Figs. 10-12, we compare
the difference between the obtained h and the background moving steady state
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Figure 10: Example 5.3: The difference between h and the background moving steady state water depth
for the subcritical flow (5.1) over the continuous (left) and discontinuous (right) bottom topographies.
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Figure 11: Example 5.3: Same as in Fig. 10, but for the transcritical flow (5.2).

0 5 10 15 20 25
-0.05

0

0.05

0.1
100 cells
1000 cells

0 5 10 15 20 25
-0.05

0

0.05

0.1
100 cells
1000 cells

Figure 12: Example 5.3: Same as in Fig. 10, but for the supercritical flow (5.3).

water depth heq. As one can see, the obtained results are oscillation-free on both
coarse and fine meshes in the continuous bottom topography case. When B is dis-
continuous, small spurious waves are generated over the bottom discontinuities.
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However, the results obtained by the proposed scheme are of the same quality as
those computed by a moving-water equilibria preserving central-upwind scheme
developed in [10].
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