
Global entropy solutions for systems modelling polymer
flooding in enhanced oil recovery

Christian Klingenberg, Yun-guang Lu, and Changfeng Xue

Abstract. In this paper, we obtain the existence of global entropy solutions
for the Cauchy problem of the nonstrictly hyperbolic systems modelling poly-
mer flooding in enhanced oil recovery, under a more flexible condition on the
function �(T ), which models the adsorption of the polymer on rock. This work
improves the previous results in the paper ” Existence of Global Weak Entropy
Solutions to Some Nonstrictly Hyperbolic Systems” (SIAM J. Math. Anal.,
45(2013), 3592-3610), where �(T ) is limited to meas {T : �00(T ) = 0} = 0 or
�(T ) = bT for a nonnegative constant b.

1. Introduction

In this short paper, we are concerned with the existence of entropy solutions

of the Cauchy problem for the nonstrictly hyperbolic systems modelling polymer

flooding in enhanced oil recovery

(1.1)

⇢
St + f(S, T )x = 0,

(ST + �(T ))t + (Tf(S, T ) + ↵(T ))x = 0,

with bounded measurable smooth initial data

(1.2) (S(x, 0), T (x, 0)) = (S0(x), T0(x)), 0  S0(x)  S̄, lim
|x|!1

S0(x) = S̄,

where S̄ is a positive constant.

System (1.1) first appeared in [Fa], and the existence of a weak solution of the

Cauchy problem (1.1)-(1.2) was well studied in [Ba, JB, KK, AR, Te, IT, TW,

KR, FR, Frid, GP, GO, CNGM, Lu1, Lu2] when �(T ) = 0 and ↵(T ) = 0.

When ↵(T ) = 0 and �(T ) 6= 0, the Riemann problem of (1.1) was resolved in [JW].

The existence of a weak solution of the Cauchy problem (1.1)-(1.2) for general

functions �(T ) and ↵(T ) was proved when the following conditions (A) and (B),

or (A) and (C) on f(S, T ),↵(T ) and �(T ) are satisfied

(A) meas {S : fSS(S, T ) = 0} = 0 for any fixed T ;

(B) �
0
(T ) � 0, meas {T : �

00
(T ) = 0} = 0 or �(T ) = bT, b > 0

or

(C) �(T ) = 0 and ↵(T ) = 0.
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In this paper, instead of the condition (B) or (C), we obtain the existence

results under more flexible conditions on ↵(T ) and �(T ):

(D) ↵(T ) 2 C
1
,�(T ) 2 C

1
,�

0
(T ) � 0, |T↵0

(T )|  M(� + �
0
(T )) and |�00

(T )| 
M, |T�00

(T )|  M(�+ �
0
(T )) for a positive constant M and any fixed � > 0, where

M could depend on T in any compact set of (�1,1).

Remark 1. It is easy to check that the following functions ↵(T ),�(T ) satisfy

the condition (D):

(1.3) ↵(T ) =

8
<

:

0, for T  0,
1
↵0

T
↵0 , for 0  T  1,

g(T ), for T > 1

and

(1.4) �(T ) =

8
<

:

0, for T  0,
1
�0
T

�0 , for 0  T  1,

T � 1 +
1
�0
, for T > 1,

where g(T ) is an arbitrary C
1
smooth function satisfying g(1) =

1
↵0

, g
0
(1) = 1 and

↵0,�0 are constants satisfying ↵0 � �0 � 1,�0 � 2.

Mainly, we have the following existence results in this paper.

Theorem 1.1. Suppose (S0(x), T0(x)) are bounded, 0  S0(x)  S̄ and |T0(x)| 
M ; ln S̄ � lnS0(x) 2 L

1
(R) and T0(x) is of bounded total variation; ↵(T ),�(T )

are suitable smooth functions satisfying (D); f(S, T ) satisfies (A) and f(S̄, T ) =

0, | f(S,T )
S |  M, | fT (S,T )

S |  M . Then the Cauchy problem (1.1) and (1.2) has a
weak entropy solution.

2. The Proof of Theorem 1.1

To prove Theorem 1.1. we first study the smooth solutions for the following

parabolic system

(2.1)

(
St + (

(S��)
S f(S, T ))x = "Sxx,

(ST + �(T ))t + (
(S��)

S Tf(S, T ) + ↵(T ))x = "(ST + �(T ))xx,

with initial data

(2.2) (S
",�

(x, 0), T
",�

(x, 0)) = (� +
S̄ � �

S̄
S0(x), T0(x)),

where ", � are positive, small perturbation constants.

Then

(2.3)

⇢
�  S

",�
(x, 0)  S̄, lim|x|!1 S

",�
(x, 0) = S̄

0  ln S̄ � lnS
",�

(x, 0)  ln S̄ � lnS0(x) 2 L
1
(R).

Lemma 2.1. If the conditions in Theorem 1.1 are satisfied, then for fixed " >

0, � > 0, the global smooth solution (S
",�

(x, t), T
",�

(x, t)), of the Cauchy problem
(2.1) and (2.2) exists, and satisfies

(2.4) �  S
",�

(x, t)  S̄, |T ",�
(x, t)|  M, lim

|x|!1
S
",�

(x, t) = S̄, for fixed t,

(2.5)

Z 1

�1
|T ",�

x |(x, t)dx 
Z 1

�1
|T ",�

x |(x, 0)dx  M,
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and
(2.6)Z 1

�1
ln S̄�lnS

",�
(x, t)dx+"

Z t

0

Z 1

�1

1

(S",�)2
(S

",�
x )

2
dxdt  | ln S̄�lnS0(x)|L1(R)+Mt.

Proof of Lemma 2.1. Since �  S
",�
0 (x)  S̄ and f(S̄, T ) = 0, by applying

the maximum principle to the first equation in (2.1), we have �  S
",�

(x, t)  S̄.

Substituting the first equation in (2.1) into the second, we may rewrite the

second equation in (2.1) as

(2.7) Tt +

(S��)
S f + ↵

0
(T )

S + �0(T )
Tx = "Txx + "

2Sx + �
00
(T )Tx

S + �0(T )
Tx.

Then we have the estimates |T ",�
(x, t)|  M by applying the maximum principle

to (2.7).

Thus the existence of the viscosity solution for the Cauchy problem (2.1)-(2.2)

can be obtained by the standard theory of semilinear parabolic systems (c.f. [Lu]).

By using (2.7) and a technique from [Se] or [Lu], we may obtain the proof of

(2.5). To prove (2.6), multiplying the first equation in (2.1) by � 1
S , we have

(2.8) (ln S̄ � lnS)t �
1

S
(
(S � �)

S
f(S, T ))x = (ln S̄ � lnS)xx � "

1

S2
S
2
x,

where

(2.9)

1
S (

(S��)
S f(S, T ))x =

1
S (

(S��)
S f(S, T ))SSx +

1
S

(S��)
S f(S, T )TTx

= (
R S
S̄

1
⌧ (

(⌧��)
⌧ f(⌧, T ))⌧d⌧)x �

R S
S̄

1
⌧ (

(⌧��)
⌧ f(⌧, T )T )⌧d⌧Tx +

1
S

(S��)
S f(S, T )TTx

and

(2.10) |
Z S

S̄

1

⌧
(
(⌧ � �)

⌧
f(⌧, T )T )⌧d⌧ +

1

S

(S � �)

S
f(S, T )T |  M.

So, integrating (2.8) in R⇥ [0, t], we obtain the proof of (2.6) due to (2.5).

Lemma 2.2. If the condition (D) is satisfied, then there exists a subsequence
(still labelled T

",�
(x, t) ) such that

(2.11) T
",�

(x, t) ! T (x, t)

a.e. on any bounded and open set ⌦ ⇢ R ⇥R
+. Furthermore, if the condition (A)

is satisfied, then there exists a subsequence (still labelled S
",�

(x, t) ) such that

(2.12) S
",�

(x, t) ! S(x, t)

a.e. on any bounded and open set ⌦ ⇢ R⇥R
+.

Proof of Lemma 2.2. Since | T�00(T )
�+�0(T ) |  M for any fixed � > 0, we choose n

to be a large odd number such that | T�00(T )
�+�0(T ) |  n� 3, and multiply (2.7) by nT

n�1

to obtain

(2.13)
(T

n
)t + nT

n�1
(S��)

S f+↵0(T )
S+�0(T ) Tx

= "(T
n
)xx � "n(n� 1)T

n�2
(Tx)

2
+ "nT

n�1 2Sx+�00(T )Tx

S+�0(T ) Tx.
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Since

(2.14)

8
><

>:

|
(S��)

S f+↵0(T )
S+�0(T ) T |  M, nT

n�1 2Sx
S+�0(T )Tx|  nT

n�2
(Tx)

2
+ nT

n
(
Sx
S )

2
,

|nTn�1 �00(T )Tx

S+�0(T )Tx|  n(n� 3)T
n�2|(Tx)

2
,

we have from (2.13) and (2.14) that

(2.15) "nT
n�2

(Tx)
2  �(T

n
)t + nT

n�2
M |Tx|+ "(T

n
)xx + T

n
(
Sx
S )

2
.

Let K ⇢ R ⇥ R
+

be an arbitrary compact set and choose � 2 C
1
0 (R ⇥ R

+
) such

that �K = 1, 0  �  1. Multiplying (2.15) by � and integrating over R ⇥ R
+
, we

obtain immediately

(2.16) "T
n�2

(T
",�
x )

2
are bounded in L

1
loc(R⇥R

+
).

Thus, the terms in (2.13)

(2.17) nT
n�1

(S��)
S f + ↵

0
(T )

S + �0(T )
Tx+"n(n�1)T

n�2
(Tx)

2�"nT
n�1 2Sx + �

00
(T )Tx

S + �0(T )
Tx

are bounded in L
1
loc(R⇥R

+
) and

(2.18) "(T
n
)xx are compact in H

�1
loc (R⇥R

+
),

which deduce that

(2.19) ((T
",�

)
n
)t or ((T

",�
)
n
)t + cx are compact in H

�1
loc (R⇥R

+
)

for any constant c, by using the Murat’s lemma (c.f. [Mu]).

Finally, since ((T
",�

)
n
)x or ct+((T

",�
)
n
)x are bounded in L

1
loc(R⇥R

+
) and so

compact in H
�1
loc (R ⇥ R

+
), we may apply the div-curl lemma in the compensated

compactness theory [Ta] to the following special pairs of functions

(2.20) (c, (T
",�

)
n
), ((T

",�
)
n
, c)

to obtain

(2.21) (T ",�)n · (T ",�)n = (T ",�)2n,

which deduces the pointwise convergence of (T
",�

)
n
(x, t) ! T

n
(x, t) a.e. on any

bounded and open set ⌦ ⇢ R ⇥ R
+
, and so the conclusion (2.11) immediately

because n is a odd number, where f(✓",�) denotes the weak-star limit of f(✓
",�

).

Thanks to the pointwise convergence of T
",�

(x, t), we may use the Div-Curl

Lemma on the scalar conservation equation (the first equation in (2.1)) with a

space-time discontinuous flux [KT, Lu] to obtain the pointwise convergence of

S
",�

(x, t) in (2.12). Lemma 2.2 is proved.

Proof of Theorem 1.1. Letting ", � go to zero, we may easily prove from

(2.1) that the limit (S(x, t), T (x, t)) satisfies

(2.22)⇢ R1
0

R1
�1 S�t + f(S, T )�xdxdt+

R1
�1 S0(x)�(x, 0)dx = 0,R1

0

R1
�1 ST + �(T )�t + (Tf(S, T ) + ↵(T ))�xdxdt+

R1
�1 S0(x)T0(x)�(x, 0)dx = 0

for all test function � 2 C
1
0 (R⇥R

+
).
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Let C = ST +�(T ). Since �
0
(T ) � 0, then for any fixed S 2 (0, S̄], there exists

a smooth, inverse function T = ✓(S,C) and system (2.1) can be rewritten as

(2.23)

(
St + (

(S��)
S f(S, ✓(S,C)))x = "Sxx,

Ct + (
(S��)

S ✓(S,C)f(S, ✓(S,C)) + ↵(✓(S,C)))x = "Cxx.

Let (⌘(S,C), q(S,C)) be any convex entropy-entropy flux pair of the system

(2.24)

⇢
St + f(S, ✓(S,C))x = 0,

Ct + (✓(S,C)f(S, ✓(S,C)) + ↵(✓(S,C)))x = 0.

Multiplying the first and second equations of the system (2.24) by
@⌘(S,C)

@S and

@⌘(S,C)
@C , respectively, then adding the result, we have

(2.25)

⌘(S,C)t + q(S,C)x � �
@⌘(S,C)

@S (
f(S,✓(S,C))

S )x � �
@⌘(S,C)

@C (
✓(S,C)f(S,✓(S,C))

S )x

= "⌘(S,C)xx � "(⌘SSS
2
x + 2⌘SCSxCx + ⌘CCC

2
x)  "⌘(S,C)xx.

Let
@⌘
@vi

be the partial derivatives of the function ⌘ with respect to the first and the

second variables. Then we have

(2.26)

�
@⌘(S,C)

@S (
f(S,✓(S,C))

S )x + �
@⌘(S,C)

@C (
✓(S,C)f(S,✓(S,C))

S )x

= �
@⌘(S,ST+�(T ))

@v1
((

f(S,T )
S )SSx + (

f(S,T )
S )TTx)

+
@⌘(S,ST+�(T ))

@v2
((

Tf(S,T )
S )SSx + (

Tf(S,T )
S )TTx)

= �
@
@x

� R S
0

@⌘(S,ST+�(T ))
@v1

(
f(S,T )

S )S +
@⌘(S,ST+�(T ))

@v2
(T

f(S,T )
S )SdS

�

��
@
@T

� R S
0

@⌘(S,ST+�(T ))
@v1

(
f(S,T )

S )S +
@⌘(S,ST+�(T ))

@v2
(T

f(S,T )
S )SdS

�
Tx

+�
�@⌘(S,ST+�(T ))

@v1
(
f(S,T )

S )T +
@⌘(S,ST+�(T ))

@v2
(
Tf(S,T )

S )T

�
Tx.

Since Tx is locally bounded in L
1
(R ⇥ R

+
), letting ", � go to zero, we may prove

from (2.25) and (2.26) that the following entropy condition, for the limit functions

(S(x, t), T (x, t)) and any convex entropy-entropy flux pair (⌘, q),

(2.27)
R1
0

R1
�1 ⌘(S, ST + �(T ))�t + q(S, ST + �(T ))�x�dxdt � 0

holds, where � 2 C
1
0 (R ⇥ R

+ � {t = 0}) is a non-negative test function. So, we

complete the proof of Theorem 1.1.
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