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Abstract

We consider kinetic models for a multi component gas mixture without chemical reactions. In the litera-
ture, one can find two types of BGK models in order to describe gas mixtures. One type has a sum of BGK 
type interaction terms in the relaxation operator, for example the model described by Klingenberg, Pirner 
and Puppo [20] which contains well-known models of physicists and engineers for example Hamel [16]
and Gross and Krook [15] as special cases. The other type contains only one collision term on the right-
hand side, for example the well-known model of Andries, Aoki and Perthame [1]. For each of these two 
models [20] and [1], we prove existence, uniqueness and positivity of solutions in the first part of the paper. 
In the second part, we use the first model [20] in order to determine an unknown function in the energy 
exchange of the macroscopic equations for gas mixtures described by Dellacherie [11].
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we shall concern ourselves with a kinetic description of two gases. This is tra-
ditionally done via the Boltzmann equation for the two density distributions f1 and f2. Under 
certain assumptions the complicated interaction terms of the Boltzmann equation can be sim-
plified by a so called BGK approximation, consisting of a collision frequency multiplied by the 
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deviation of the distributions from local Maxwellians. This approximation is constructed in a 
way such that it has the same main properties of the Boltzmann equation namely conservation 
of mass, momentum and energy. In addition, it has an H-theorem with an entropy inequality 
leading to an equilibrium which is a Maxwellian. BGK models give rise to efficient numerical 
computations, which are asymptotic preserving, that is they remain efficient even approaching 
the hydrodynamic regime [22,17,13,3,12,4,9]. The existence and uniqueness of solutions to the 
BGK equation for one species of gases in bounded domain in space was proven by Perthame and 
Pulvirenti in [18].

In this paper, we are interested in extensions of a BGK model to gas mixtures since in ap-
plications one often has to deal with mixtures instead of a single gas. From the point of view 
of physicists, there are a lot of BGK models proposed in the literature concerning gas mixtures. 
Examples are the model of Gross and Krook in 1956 [15], the model of Hamel in 1965 [16], 
the model of Garzo, Santos and Brey in 1989 [14] and the model of Sofonea and Sekerka 
in 2001 [23]. They all have one property in common. Just like the Boltzmann equation for gas 
mixtures contains a sum of collision terms on the right-hand side, these kind of models also have 
a sum of collision terms in the relaxation operator. In 2017 Klingenberg, Pirner and Puppo [20]
proposed a kinetic model for gas mixtures which contains these often used models by physicists 
and engineers as special cases. Moreover, in [20] consistency of this model, like conservation 
properties, positivity and the H-Theorem, is proven. Since the models from physicists men-
tioned above are special cases of the model proposed in [20], consistency of all these models 
is also proven. Another possible extension to gas mixtures was proposed by Andries, Aoki and 
Perthame in 2002 [1]. In contrast to the other models it contains only one collision term on the 
right-hand side. Consistency like conservation properties, positivity and the H-Theorem is also 
proven there. Brull, Pavan and Schneider proved in [6] that the model [1] can be derived by an 
entropy minimization problem. In recent works, there is the effort to extend this type of BGK 
model for gas mixtures to gas mixtures with chemical reactions, see for example the model of 
Bisi and Cáceras [5].

To summarize, there are two types of BGK models for gas mixtures in the literature, the 
model of Andries, Aoki and Perthame [1] and the model of Klingenberg, Pirner and Puppo [20]. 
The main difference is that [1] contains one relaxation operator on the right-hand side, treating 
collisions of one species with itself and collisions of one species with the other one in a com-
mon relaxation. Whereas the model [20] separates the intra- and interspecies interactions. The 
motivation of the model [1] was to derive the momentum and energy exchange for the corre-
sponding fluid equations of Maxwellian molecules since in this case it is possible to compute the 
exchange terms from the Boltzmann equation. The model [20] contains parameters which can 
be chosen freely. For a special choice of these parameters, they also obtain the exchange terms 
of Maxwellian molecules, see [20] for details, but for other choices they can obtain different 
exchange terms. The free parameters can also be used to fix it to data from physical experiments. 
Numerical simulations of this two models are presented in [2] and [10]. A further issue of kinetic 
models is to capture the right transport coefficients on the Navier–Sokes level. For the model 
[18] these coefficients are computed in [18]. For the model [20] this is done in [19]. Due to the 
free parameters in this model one has the freedom to choose some transport coefficients such that 
they fit to experiments. Extensions to an ES-BGK model of the model [20] are also given in [21].

Our aim is to prove existence, uniqueness and positivity of solutions to the BGK model for 
mixtures developed in [20] and the model of Andries, Aoki and Perthame in [1]. This work is 
largely motivated by [18] where the global existence of mild solutions of the BGK equation for 
one species was established, and [24] where global existence of mild solutions of the ES-BGK 
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for one species is shown. There is also a result concerning the Boltzmann equation for mixtures 
in a similar fashion in [25].

The outline of the paper is as follows: in subsection, we will present the BGK model for two 
species developed in [20] and in subsection 2.2 the model of Andries, Aoki and Perthame. In 
subsection 3.1, we prove bounds on the macroscopic quantities which we need in order to show 
existence and uniqueness of non-negative solutions in section 3.2. In section 4, we will deduce 
that all classical solutions with positive initial data remain positive for all later times. In section 5, 
we want to use the model from subsection 2.1 in order to determine an unknown function in the 
macroscopic equations for gas mixtures of Dellacherie in [11].

2. BGK models for mixtures

In this section, we will present the two types of BGK models for gas mixtures [20] developed 
by Klingenberg, Pirner and Puppo and [1] by Andries, Aoki and Perthame. For simplicity in the 
following, we consider a mixture composed of two different species, but it could be extended to 
an arbitrary number of species.

2.1. The BGK approximation for mixtures with two relaxation terms

Since we consider a mixture composed of two different species, our kinetic model has two 
distribution functions f1(x, v, t) > 0 and f2(x, v, t) > 0 where x ∈ R

N and v ∈ R
N, N ∈ N are 

the phase space variables and t ≥ 0 the time.
Furthermore, for any f1, f2 : � ⊂ R

N × R
N × R

+
0 → R with (1 + |v|2)f1, (1 + |v|2)f2 ∈

L1(RN), f1, f2 ≥ 0, we relate the distribution functions to macroscopic quantities by mean-
values of fk , k = 1, 2

∫
fk(v)

⎛
⎝ 1

v

mk|v − uk|2

⎞
⎠dv =:

⎛
⎝ nk

nkuk

NnkTk

⎞
⎠ , k = 1,2, (1)

where nk is the number density, uk the mean velocity and Tk the mean temperature of species k
(k = 1, 2). Note that in this paper we shall write Tk instead of kBTk , where kB is Boltzmann’s 
constant.

The distribution functions are determined by two equations to describe their time evolution. 
Furthermore, we only consider binary interactions. So the particles of one species can interact 
with either themselves or with particles of the other species. We take this into account by in-
troducing two interaction terms in both equations. This means that the right-hand side of the 
equations consists of a sum of two collision operator. This structure is also described in [7,8]. 
We are interested in a BGK approximation of the interaction terms. This leads us to define two 
types of equilibrium distributions. Due to the interaction of a species k with itself, we expect a 
relaxation towards an equilibrium distribution Mk . And due to the interaction of a species with 
the other one, we expect a relaxation towards a different equilibrium distribution Mkj . Then the 
model can be written as:

∂tf1 + v · ∇xf1 = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂tf2 + v · ∇xf2 = ν22n2(M2 − f2) + ν21n1(M21 − f2), (2)
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f1(t = 0) = f 0
1 ,

f2(t = 0) = f 0
2 ,

with the Maxwell distributions

Mk(x, v, t) = nk√
2π

Tk

mk

N
exp(−|v − uk|2

2 Tk

mk

), k = 1,2,

M12(x, v, t) = n12√
2π T12

m1

N
exp(−|v − u12|2

2T12
m1

),

M21(x, v, t) = n21√
2π T21

m2

N
exp(−|v − u21|2

2T21
m2

).

(3)

Within the next page the unknown variables will be explained. ν11n1 and ν22n2 are the collision 
frequencies of the particles of each species with itself, while ν12n2 and ν21n1 are related to inter-
species collisions. To be flexible in choosing the relationship between the collision frequencies, 
we now assume the relationship

ν12 = εν21, 0 < ε ≤ 1. (4)

The restriction on ε is without loss of generality. If ε > 1, exchange the notation 1 and 2 and 
choose 1

ε
. In addition, we assume that all collision frequencies are positive. For the existence and 

uniqueness proof, we assume the following restrictions on our collision frequencies

νjk(x, t)nk(x, t) = ν̃jk

nk(x, t)

n1(x, t) + n2(x, t)
, j, k = 1,2, (5)

with constants ν̃11, ν̃12, ν̃21, ν̃22 > 0. This means that the collision frequencies are given by a 
constant times the relative density.

The structure of the collision terms ensures that if one collision frequency νkl → ∞ the corre-
sponding distribution function becomes Maxwell distribution. In addition at global equilibrium, 
the distribution functions become Maxwell distributions with the same velocity and temperature 
(see section 2.8 in [20]). The Maxwell distributions M1 and M2 in (3) have the same moments 
as f1 and f2, respectively. With this choice, we guarantee the conservation of mass, momentum 
and energy in interactions of one species with itself (see section 2.2 in [20]). The remaining pa-
rameters n12, n21, u12, u21, T12 and T21 will be determined using conservation of the number of 
particles, total momentum and energy, together with some symmetry considerations. Our model 
contains three free parameters as will be explained now. If we assume that

n12 = n1 and n21 = n2, (6)

we have conservation of the number of particles, see Theorem 2.1 in [20]. If we further assume 
that u12 is a linear combination of u1 and u2

u12 = δu1 + (1 − δ)u2, δ ∈R, (7)
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then we have conservation of total momentum provided that

u21 = u2 − m1

m2
ε(1 − δ)(u2 − u1), (8)

see Theorem 2.2 in [20]. If we further assume that T12 is of the following form

T12 = αT1 + (1 − α)T2 + γ |u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0, (9)

then we have conservation of total energy provided that

T21 =
[

1

N
εm1(1 − δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1 − α)T1 + (1 − ε(1 − α))T2,

(10)

see Theorem 2.3 in [20]. In order to ensure the positivity of all temperatures, we need to restrict δ

and γ to

0 ≤ γ ≤ m1

N
(1 − δ)

[
(1 + m1

m2
ε)δ + 1 − m1

m2
ε

]
, (11)

and
m1
m2

ε − 1

1 + m1
m2

ε
≤ δ ≤ 1, (12)

see Theorem 2.5 in [20].
In the following, we want to study the integral version of (2) for N = 3.

Definition 2.1.1. We call (f1, f2) with (1 + |v|2)fk ∈ L1(RN), f1, f2 ≥ 0 a mild solution to (2)
under the conditions of the collision frequencies (5) iff f1, f2 satisfy

fk(x, v, t) = e−αk(x,v,t)f 0
k (x − tv, v)

+ e−αk(x,v,t)

t∫
0

[ν̃kk

nk(x + (s − t)v, s)

nk(x + (s − t)v, s) + nj (x + (s − t)v, s)
Mk(x + (s − t)v, v, s)

+ ν̃kj

nj (x + (s − t)v, s)

nk(x + (s − t)v, s) + nj (x + (s − t)v, s)
Mkj (x + (s − t)v, v, s)]]eαk(x+(s−t)v,v,s)ds,

(13)

where αk is given by

αk(x, v, t) =
t∫

0

[ν̃kk

nk(x + (s − t)v, s)

nk(x + (s − t)v, s) + nj (x + (s − t)v, s)

+ν̃kj

nj (x + (s − t)v, s)

nk(x + (s − t)v, s) + nj (x + (s − t)v, s)
]ds,

(14)

for k, j = 1, 2, k 
= j .
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By construction, a classical solution is always a mild solution. But in order to also allow 
solutions with a lower regularity, in the following, we want to study existence, uniqueness and 
positivity of mild solutions.

2.2. BGK approximation for mixtures with one collision term

The next model also describes a gas mixture of Maxwellian molecules, but it contains only 
one term on the right-hand side [1].

∂tf1 + v · ∇xf1 = (ν11n1 + ν12n2)(M
(1) − f1),

∂tf2 + v · ∇xf2 = (ν22n1 + ν21n1)(M
(2) − f2).

(15)

The Maxwell distributions are given by

M(k) = nk√
2π T (k)

mk

3
exp( − mk|v − u(k)|2

2T (k)
), k = 1,2, (16)

with the interspecies velocities

u(k) = uk + 2
mj

mk + mj

χkj

νkknk + νkjnj

nj (uk − uj ), k, j = 1,2, k 
= j, (17)

and the interspecies temperatures

T (k) = Tk − mk

3
|u(k) − uk|2

+ 2

3

mkmj

(mk + mj)2

4χkj

νkknk + νkjnj

nj (
3

2
(Tk − Tj ) + mk

|uj − uk|2
2

),

for k, j = 1,2, k 
= j,

(18)

where χ12, χ21, ν12 and ν21 are parameters which are related to the differential cross section. 
For the detailed expressions see [1]. We still assume for the existence proof that the collision 
frequencies have the shape given in (5).

Definition 2.2.1. We call (f1, f2) with (1 + |v|2)fk ∈ L1(RN), f1, f2 ≥ 0 a mild solution to (2)
under the conditions of the collision frequencies (5) iff f1, f2 satisfy

fk(x, v, t) = e−αk(x,v,t)f 0
k (x − tv, v)

+ e−αk(x,v,t)

t∫
0

[ν̃kk

nk(x + (s − t)v, s)

nk(x + (s − t)v, s) + nj (x + (s − t)v, s)

+ ν̃kj

nj (x + (s − t)v, s)

nk(x + (s − t)v, s) + nj (x + (s − t)v, s)
]M(k)(x + (s − t)v, v, s)]eαk(x+(s−t)v,v,s)ds

(19)

where αk is given as in Definition 2.1.1, k, j = 1, 2, k 
= j .
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3. Existence and uniqueness of solutions to the BGK equation for two species

In this section, we start considering several estimates on the macroscopic quantities which we 
will use in subsection 3.2 for the existence and uniqueness of mild solutions. This will be done 
for the model described in subsection 2.1. The proof for the model presented in subsection 2.2 is 
very similar. So we just illustrate this in remarks.

3.1. Estimates on the macroscopic quantities

First, we present some estimates on macroscopic quantities which we need later for the exis-
tence and uniqueness proof.

Theorem 3.1.1. For any pair of functions (f1, f2) with (1 + |v|2)fk ∈ L1(RN), f1, f2 ≥ 0, we 
define the moments and macroscopic parameters as in (1), (7), (8), (9) and (10) and set

Nq(fk) = sup
v

|v|qfk(v), q ≥ 0, k = 1,2. (20)

Then the following estimates hold

(i.1) nk

T
N/2
k

≤ CN0(fk) for k = 1, 2,

(i.2) n1

T
N/2
12

≤ CN0(f1),

(1.3) n2

T
N/2
21

≤ CN0(f2).

Proof. The proof of (i.1) is exactly the same as the proof of the inequality (2.2) in [18]. We 
deduce the estimate (i.2) and (i.3) from (i.1). Furthermore, since we assumed that f1, f2 ≥ 0, 
γ ≥ 0, 0 ≤ α ≤ 1, ε ≤ 1 and condition (11) both the temperatures T1 and T2 and all coefficients 
in T12 and T21 are positive. All in all, this leads to the estimates

n1

T
N/2
12

= n1

(αT1 + (1 − α)T2 + γ |u1 − u2|2)N/2
≤ n1

αN/2T
N/2

1

≤ CN0(f1),

n2

T
N/2
21

= n2

(ε(1−α)T1 + (1− ε(1−α))T2 +
[

1
N

εm1(1− δ)
(

m1
m2

ε(δ −1)+ δ +1
)

− εγ
]
|u1 −u2|2)N/2

≤ n2

(1 − ε(1 − α))N/2T
N/2
2

≤ CN0(f2). �

Remark 1. Similar estimates as (i.2) and (i.3) can also be obtained for T (1), T (2) from (18) in the 
model presented in subsection 2.2 in an analogously way if the coefficient in front of |u1 − u2|2
in (18) is non-negative meaning χ12n2

ν11n1+ν12n2
≤ 1 and χ21n1

ν22n2+ν21n1
≤ 1. This is reasonable in order 

to ensure the positivity of the temperatures T (1) and T (2).
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Theorem 3.1.2. For any pair of functions (f1, f2) with (1 + |v|2)fk ∈ L1(RN), f1, f2 ≥ 0, we 
define the moments as in (1), (7), (8), (9) and (10), then we have

(ii.1) nk(Tk + |uk|2) q−N
2 ≤ CqNq(fk) for q > N + 2, k = 1, 2,

(ii.2) n1(T12 + |u12|2) q−N
2 ≤ Cq(Nq(f1) + n1

n2
Nq(f2)) for q > N + 2,

(ii.3) n2(T21 + |u21|2) q−N
2 ≤ Cq(n2

n1
Nq(f1) + Nq(f2)) for q > N + 2.

Proof. The proof of (ii.1) is exactly the same as the proof of the inequality (2.3) in [18].
In order to prove (ii.2), estimate n1(T12 + |u12|2) using that fk ≥ 0, (7) and (9) by

n1(T12 + |u12|2) ≤ n1(NT12 + |u12|2)
= n1(αNT1 + (1 − α)NT2 + γN |u1 − u2|2 + |δu1 + (1 − δ)u2|2)
= n1(αNT1 + (1 − α)NT2 + (δ2 + Nγ )|u1|2 + ((1 − δ)2 + γ )|u2|2
+ 2(δ(1 − δ) − Nγ )u1 · u2.

Using that |u1 + u2|2 ≥ 0 and |u1 − u2|2 ≥ 0, we can estimate the term (δ(1 − δ) − Nγ )u1 · u2
from above by |δ(1 − δ) − Nγ | 1

2 (|u1|2 + |u2|2) and obtain

n1(T12 + |u12|2) ≤ n1[αNT1 + (δ2 + Nγ + |δ(1 − δ) − Nγ |)|u1|2 + (1 − α)NT2

+ ((1 − δ)2 + Nγ + |δ(1 − δ) − Nγ |)|u2|2]
≤ n1[max{α, δ2 + Nγ + |δ(1 − δ) − Nγ |}(NT1 + |u1|2)]
+ max{1 − α, ((1 − δ)2 + Nγ + |δ(1 − δ) − Nγ |)}(NT2 + |u2|2)].

Set A1 := max{α, δ2 + Nγ + |δ(1 − δ) − Nγ |} and A2 := max{1 − α, ((1 − δ)2 + Nγ + |δ(1 −
δ) − Nγ |)}. Then

n1(T12 + |u12|2) ≤ n1[A1(NT1 + |u1|2) + A2(NT2 + |u2|2)]

= A1

∫
|v|2f1(v)dv + A2

n1

n2

∫
|v|2f2(v)dv.

We split the integration with respect to the velocity v into |v| > R12 and |v| ≤ R12 for some R12
determined later. We obtain

n1(T12 + |u12|2) ≤
∫

|v|>R12

|v|q
|v|q−2

(A1f1(v) + A2
n1

n2
f2(v))dv

+
∫

|v|≤R12

|v|2(A1f1(v) + A2
n1

n2
f2(v))dv.

Again, since q > N +2, we can estimate the integral 
∫
|v|>R12

1
|v|q−2 dv from above by CqR

N−q+2
12 . 

In the second integral, we use that |v|2 ≤ R2 . Then we get
12
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n1(T12 + |u12|2) ≤ CR
N−q+2
12 (A1Nq(f1) + A2

n1

n2
Nq(f2)) + Cn1R

2
12.

Now we choose R12 = ( n1

A1Nq(f1)+A2
n1
n2

Nq(f2)
)

1
N−q and obtain

n1(T12 + |u12|2) ≤ Cn
1− 2

q−N

1 (A1Nq(f1) + n1

n2
A2Nq(f2))

2
q−N ,

which is equivalent to the required estimate (ii.2).
The proof of (ii.3) is similar to the proof of (ii.2). �

Lemma 3.1.3. For any pair of functions (f1, f2) with (1 + |v|2)fk ∈ L1(RN), f1, f2 ≥ 0, we 
define the moments as in (1), (7), (8), (9) and (10). Let q ∈ N or q − 1

2 ∈ N, then there exists a 
constant A > 0 such that

|δu1 + (1 − δ)u2|q ≤ A|u1|q + A|u2|q,

(αT1 + (1 − α)T2 + γ |u1 − u2|2)q ≤ A(T
q

1 + T
q

2 + |u1 − u2|2q).

This lemma can be proven by induction with respect to q .

Theorem 3.1.4. For any pair of functions (f1, f2) with (1 + |v|2)fk ∈ L1(RN), f1, f2 ≥ 0, we 
define the moments as in (1), (7), (8), (9) and (10), then we have

(iii.1) nk |uk |N+q

[(Tk+|uk |2)Tk]N/2 ≤ CqNq(fk) for any q > 1, k = 1, 2,

(iii.2) n1|u12|q
T

N/2
12

≤ n1C(
|u1|q

(T1)
N/2 + |u2|q

(T2)
N/2 ) for any q > 1,

(iii.3) n2|u21|q
T

N/2
21

≤ n2C(
|u1|q

(T1)
N/2 + |u2|q

(T2)
N/2 ) for any q > 1.

Proof. The proof of (iii.1) is exactly the same as the proof of the inequality (2.3) in [18]. Esti-
mate (iii.2) is a consequence of Lemma 3.1.3 using that γ ≥ 0, 0 ≤ α ≤ 1 and condition (11), 
since we have

n1|u12|q
T

N/2
12

= n1|δu1 + (1 − δ)u2|q
(αT1 + (1 − α)T2 + γ |u1 − u2|2)N/2

≤ n1
A(|u1|q + |u2|q)

(αT1 + (1 − α)T2)N/2

≤ n1
A|u1|q

(αT1)N/2
+ n1

A|u2|q
((1 − α)T2)N/2

.

The proof of (iii.3) is similar to the proof of (iii.2). �
Consequences 3.1.5. For any pair of functions (f1, f2) with (1 + |v|2)fk ∈ L1(RN), f1, f2 ≥ 0, 
we define the moments as in (1), (7), (8), (9) and (10), then we have

(iv.1) supv |v|qMk[fk] ≤ CqNq(fk) for q > N + 2 or q = 0,
(iv.2) supv |v|qM12[f1, f2] ≤ Cq(Nq(f1) + n1

n2
Nq(f2)) for q > N + 2 or q = 0,

(iv.3) supv |v|qM21[f1, f2] ≤ Cq(n2
n1

Nq(f1) + Nq(f2)) for q > N + 2 or q = 0.
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Proof. The proof of (iv.1) is exactly the same as the proof of the inequality (2.3) in [18]. Now, 
the proof of (iv.2). First for q > N +2. First, we compute the maximum of M12[f1, f2] and |v −
u12|qM12[f1, f2] similar to the case of one species. The maximum of the Maxwell distribution 
M12[f1, f2] in v is reached when v = u12. Therefore

max
v

M12[f1, f2] = n1

(2π T12
m1

)N/2
.

For the maximum of |v − u12|qM12[f1, f2], we compute the gradient in v and obtain by using 
product rule

∇v(|v − u12|qM12[f1, f2]) = v|v − u12|q−1M12[f1, f2] − m1

T12
|v − u12|q(v − u12)M12[f1, f2].

The condition that this expression is equal to zero is equivalent to

(v − m1

T12
|v − u12|(v − u12)) = 0

for v 
= u12. We can exclude v = u12 since it is a minimum. From this expression, we can deduce

|v − u12|2 = T12

m1
|v|.

If we insert this into |v − u12|qM12[f1, f2], we obtain

max
v

(|v − u12|qM12[f1, f2]) = max
v

(|v − u12|q n1

(2π T12
m1

)N/2
e−|v|),

which takes its maximal value for v = 0. For |v| → ∞, the expression |v − u12|qM12[f1, f2]
tends to zero, so it is equal to the supremum. All in all, we obtain

sup
v

|v|qM12[f1, f2] ≤ sup
v

|v − u12|qM12[f1, f2] + sup
v

|u12|qM12[f1, f2]

≤ C(n1T
q−N

2
12 + n1

|u12|q
T

N/2
12

) = C(n1(αT1 + (1 − α)T2 + γ |u1 − u2|2) + n1
|u12|q
T

N/2
12

).

Since q − N > 0, we can use Lemma 3.1.3 in the first term twice and (iii.2) in the second term 
on the right-hand side and obtain

sup
v

|v|qM12[f1, f2]

≤ C(n1(T1 + |u1|2) q−N
2 + n1

|u1|q
T

N/2
1

+ n1

n2
n2((T2 + |u2|2) q−N

2 + |u2|q
T

N/2
2

)).

The first and the third term on the right-hand side can be estimated using (ii.1) and the other two 
terms can be estimated in the same way as in the proof of (iv.1) for one species by CNq(f1) and 
C n1 Nq(f2), respectively. Combining both, we get
n2
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sup
v

|v|qM12[f1, f2] ≤ Cq(Nq(f1) + n1

n2
Nq(f2)).

For q = 0, we use

sup
v

M12[f1, f2] ≤ n1

T
N/2
12

≤ n1

T
N/2

1

≤ CN0(f1),

using (i.1). The proof of (iv.3) is similar to the proof of (iv.2). �
Remark 2. For the multi-species model of Andries, Aoki and Perthame in subsection 2.2, we 
can obtain the same estimates

(i.2*/ i.3*) nk

(T (k))
N
2

≤ CN0(fk), k = 1, 2,

(ii.2*/ii.3*) nk(T
(k) + |u(k)|2) q−N

2 ≤ Cq(Nq(fj ) + nj

nk
Nq(fk)) for q > N + 2, j 
= k,

(iii.2*/iii3*) nk |u(k)|q
(T (k))

N
2

≤ nkC(
|u1|2
T

N/2
1

+ |u2|2
T

N/2
2

),

(iv.2*/iv.3*) supv |v|qM(k)[f1, f2] ≤ Cq(
nj

nk
Nq(fk) + Nq(fj )) for q > N + 2 or q = 0, j 
= k.

analogously to the estimates (i.2/i.3)/(ii.2/ii.3)/(iii.2/iii.3)/(iv.2/iv.3), since u(1), u(2)

are also linear combinations of u1 and u2 and T (1), T (2) are also combinations of T1, T2,

|u1 − u2|2.

3.2. Existence and uniqueness

In this section, we want to show existence and uniqueness of non-negative solutions in a cer-
tain function space using the estimates of the previous section. For the existence and uniqueness 
proof, we make the following assumptions:

Assumptions 3.2.1.

1. We assume periodic boundary conditions. Equivalently, we can construct solutions satisfy-
ing

fk(t, x1, ..., xN , v1, ..., vN) = fk(t, x1, ..., xi−1, xi + ai, xi+1, ...xN , v1, ...vN)

for all i = 1, ..., N and a suitable {ai} ∈ R
N with positive components, for k = 1, 2.

2. We require that the initial values f 0
k , k = 1, 2 satisfy assumption 1.

3. We are on the bounded domain in space � = {x ∈R
N |xi ∈ (0, ai)}.

4. Suppose that f 0
k satisfies f 0

k ≥ 0, (1 + |v|2)f 0
k ∈ L1(� × R

N) with 
∫

f 0
k dxdv = 1, 

k = 1,2.
5. Suppose Nq(f 0

k ) := supf 0
k (x, v)(1 + |v|q) = 1

2A0 < ∞ for some q > N + 2.
6. Suppose γk(x, t) := ∫

f 0
k (x − vt, v)dv ≥ C0 > 0 for all t ∈ R.

7. Assume that the collision frequencies are written as in (5) and are positive.

With this assumptions, we can show the following Theorem.
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Theorem 3.2.1. Under the Assumptions 3.2.1 and the definitions (1), (7), (8), (9) and (10), there 
exists a unique non-negative mild solution (f1, f2) ∈ C(R+; L1((1 + |v|2)dvdx) of the initial 
value problem (2). Moreover, for all t > 0 the following bounds hold:

|uk(t)|, |u12(t)|, |u21(t)|, Tk(t), T12(t), T21(t),Nq(fk)(t) ≤ A(t) < ∞,

nk(t) ≥ C0e
−t > 0,

Tk(t), T12(t), T21(t) ≥ B(t) > 0,

for k = 1, 2 and some constants A(t), B(t).

Proof. The idea of the proof is to find a Cauchy sequence of functions in a certain space which 
converges towards a solution to (2). The sequence will be constructed in a way such that each 
member of the sequence satisfies an inhomogeneous transport equation. In this case, we know 
results of existence and uniqueness. In order to show that this sequence is a Cauchy sequence, 
we need to show that the Maxwellians on the right-hand side of (2) are Lipschitz continuous with 
respect to f1, f2.

The proof is structured as follows: First, we proof some estimates on the macroscopic quanti-
ties (1), (7), (8), (9) and (10). From this we can deduce Lipschitz continuity of the Maxwellians 
M1, M2, M12, M21 with respect to f1 and f2 which finally leads to the convergence of this 
Cauchy sequence to a solution to (2).

Step 1: Gronwall estimate on Nq(fk(t)) given by (20)

If f1 is a mild solution according to Definition 2.1.1, we have

Nq(f1) = sup
v

|v|qf1 ≤ e−α1(x,v,t) sup
v

|v|qf 0
1 (x − tv, v)

+ sup
v

|v|q [e−α1(x,v,t)

t∫
0

[ν̃11
n1(x + (s − t)v, s)

n1(x + (s − t)v, s) + n2(x + (s − t)v, s)
M1(x + (s − t)v, v, s)

+ ν̃12
n2(x + (s − t)v, s)

n1(x + (s − t)v, s) + n2(x + (s − t)v, s)
M12(x + (s − t)v, v, s)]eα1(x+(s−t)v,v,s)ds].

Since α1 is non-negative, we can estimate e−α1(x,v,t) in front of the initial data from above by 1. 
Since we assumed that the collision frequencies have the shape given in (5), we can estimate the 
integrand in the exponential function e−α1(x,v,t)eα1(x+(s−t)v,v,s) by a constant and obtain

Nq(f1) = sup
v

|v|qf1 ≤ sup
v

|v|qf 0
1 (x − tv, v)

+ sup
v

|v|q [
t∫

0

e−C(t−s)[C n1(x + (s − t)v, s)

n1(x + (s − t)v, s) + n2(x + (s − t)v, s)
M1(x + (s − t)v, v, s)

+ C
n2(x + (s − t)v, s)

n1(x + (s − t)v, s) + n2(x + (s − t)v, s)
M12(x + (s − t)v, v, s)]]ds].
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Using assumption 5 (in the Assumptions 3.2.1) and the fact that, we can estimate e−C(t−s) from 
above by 1 since s is between 0 and t , we get

Nq(f1) = sup
v

|v|qf1 ≤ 1

2
A0 +

t∫
0

C sup
x

[ n1(x, s)

n1(x, s) + n2(x, s)
sup
v

|v|qM1(x, v, s)

+ n2(x, s)

n1(x, s) + n2(x, s)
sup
v

|v|qM12(x, v, s)]ds].

With (iv.1) and (iv.2), we obtain

Nq(f1) = sup
x,v

|v|qf1

≤ 1

2
A0 +

t∫
0

Cq sup
x

[n1(x, s) + n2(x, t)

n1(x, s) + n1(x, s)
Nq(f1)(s) + n1(x, s)

n1(x, s) + n2(x, s)
Nq(f2(s))]ds

≤ 1

2
A0 +

t∫
0

Cq [sup
x

Nq(f1)(s) + sup
x

Nq(f2)(s)]ds.

Similarly, we can estimate Nq(f2) by

Nq(f2) = sup
v

|v|qf2 ≤ 1

2
A0 +

t∫
0

Cq [sup
x

Nq(f1)(s) + sup
x

Nq(f2)(s)]ds.

We add both inequalities and obtain

Nq(f1) + Nq(f2) ≤ A0 +
t∫

0

Cq [sup
x

Nq(f1)(s) + sup
x

Nq(f2)(s)]ds.

With Gronwalls Lemma, we obtain

Nq(f1)(t) + Nq(f2)(t) ≤ A0e
Cq t for q > N + 2 or q = 0. (21)

Step 2: Estimate on the densities

If fk ≥ 0 is a solution, it satisfies

∂tfk + v · ∇xfk = ν̃kk

nk

nk + nj

(Mk − fk) + ν̃kj

nj

nk + nj

(Mkj − fk)

≥ −(ν̃kk + ν̃kj )fk.

If we write this in the mild formulation, this leads to
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fk(t, x, v) ≥ e−(ν̃kk+ν̃kj )t f 0
k (x − tv).

Integrating this with respect to v leads with assumption 6 (in Assumptions 3.2.1) to the estimate 
of the densities

nk(x, t) ≥ e−(ν̃kk+ν̃kj )t

∫
f 0

k (x − vt, v)dv

≥ e−(ν̃kk+ν̃kj )t γk(x, t) ≥ e−(ν̃kk+ν̃kj )tC0 > 0.

(22)

Step 3: Estimate on the temperatures

Now, we estimate the temperatures from below. First, we consider T N/2
k . We can estimate it 

from below using (i.1)

T
N/2
k (t) ≥ Cnk(t)

N0(fk(t))
.

Using (21) and (22), we obtain

T
N/2
k (t) ≥ Ce−(ν̃kk+ν̃kj )tC0

AeCqt
=: B(t) > 0.

We obtain the same estimate for T N/2
12 using (i.2), (21) and (22), and for T N/2

21 using (i.3), (21)
and (22).

Step 4: Estimates on the velocities

We estimate Tk + |uk|2, T12 + |u12|2, and T21 + |u21|2 first using (ii.1), (ii.2) and (ii.3), 
respectively and then using (21) and (22). For example

T12 + |u12|2 ≤ Cq(Nq(f1) + n1
n2

Nq(f2))
2

q−N

n
2/(q−N)

1

≤ CqAe
Cq

2
q−N

t

e
−C 2

q−N
t
C

2
q−N

0

< A(t) < ∞.

Step 5: Lipschitz continuity

The next step of the proof is to show Lipschitz continuity of the operators fk �→ Mk[fk], 
(f1, f2) �→ n2

n1+n2
M12[f1, f2] and (f1, f2) �→ n1

n1+n2
M21[f1, f2], when (f1, f2) are restricted to

� = {(f1, f2) ∈ L1(� ×R
N ; (1 + |v|2)dvdx)|fk ≥ 0,Nq(fk) < A,min(nk, Tk) > C,k = 1,2}.

(23)

The proof for fk �→ Mk[fk] is given in [18]. So it remains to show Lipschitz continuity for 
(f1, f2) �→ n2

n1+n2
M12[f1, f2] and for (f1, f2) �→ n1

n1+n2
M21[f1, f2]. We only prove the first case 

since the second one is similar to one the first one. For any pair (f i
1, f i

2 ), i = 1, 2 in the subset �, 
define (ni , ui , T i ) as their corresponding moments. Set
1 12 12
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(n�
1 , n�

2 , u�
12, T

�
12) = �(n1

1, n
1
2, u

1
12, T

1
12) + (1 − �)(n2

1, n
2
2, u

2
12, T

2
12),

and

M12(�) = n�
1

(2πT �
12/m1)N/2

e
− |v−u�

12|2
2T �

12/m1
n�

2

n�
1 + n�

2

.

Then we have

∫
| n1

2

n1
1 + n1

2

M12[f 1
1 , f 1

2 ] − n2
2

n2
1 + n2

2

M12[f 2
1 , f 2

2 ]|(1 + |v|2)dv

=
∫

|M12(1) − M12(0)|(1 + |v|2)dv.

Now, we use the Taylor formula with first derivative as remainder and the chain rule and obtain

∫
| n1

2

n1
1 + n1

2

M12[f 1
1 , f 1

2 ] − n2
2

n2
1 + n2

2

M12[f 2
1 , f 2

2 ]|(1 + |v|2)dv

=
∫

|∂M12

∂�
(�)|(1 + |v|2)dv

≤
1∫

0

∫
(|∂M12

∂n�
1

(�)
∂n�

1

∂�
| + |∂M12

∂u�
12

(�)
∂u�

12

∂�
| + |∂M12

∂T �
12

(�)
∂T �

12

∂�
|

+|∂M12

∂n�
2

(�)
∂n�

2

∂�
|(1 + |v|2)dvd�

=
1∫

0

∫
(|∂M12

∂n�
1

(�)||n1
1 − n2

1| + |∂M12

∂u�
12

(�)||u1
12 − u2

12|

+|∂M12

∂T �
12

(�)||T 1
12 − T 2

12| + |∂M12

∂n�
2

(�)||n1
2 − n2

2|(1 + |v|2)dvd�.

An explicit calculation of the derivatives leads to

∫
| n1

2

n1
1 + n1

2

M12[f 1
1 , f 1

2 ] − n2
2

n1
1 + n2

2

M12[f 2
1 , f 2

2 ]|(1 + |v|2)dv

≤
1∫

0

((1 + |u�
12|2 + NT �

12)|n1
1 − n2

1|

+C[ n�
2

n� + n�

n�
1

(T �)1/2
(1 + |u�

12|2 + T �
12)]|u1

12 − u2
12|
1 2 12
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+C[ n�
2

n�
1 + n�

2

n�
1

T �
12

(1 + |u�
12|2 + T �

12)]|T 1
12 − T 2

12|

+(1 + |u�
12|2 + NT �

12)|n1
2 − n2

2|d�.

The main difference to the one species case is the additional term | ∂M12
∂n2

(�)| and the term 

∂n�
1
(

n�
1 n�

2
n�

1 +n�
2
). For the second term, we computed ∂n�

1
(

n�
1 n�

2
n�

1 +n�
2
) = n�

2
n�

1 +n�
2

− n�
1 n�

2
(n�

1 +n�
2 )2 which we 

can estimate from above by 
n�

2
n�

1 +n�
2

≤ 1. All terms in front of the norms | · | are bounded by a 

constant due to the estimate on the temperature T N/2
12 and the estimate on T12 + |u12|2 proven in 

step 2 and 3. Furthermore, we can estimate

|n1
1 − n2

1| ≤
∫

(1 + |v|2)|f 1
1 − f 2

1 |dv,

and

|n1
2 − n2

2| ≤
∫

(1 + |v|2)|f 1
2 − f 2

2 |dv,

U := n�
1 n�

2

n�
1 + n�

2

|u1
12 − u2

12| =
n�

1 n�
2

n�
1 + n�

2

|αu1
1 + (1 − α)u1

2 − αu2
1 − (1 − α)u2

2|

≤ n�
2 (n1

1 + n2
1)

n�
1 + n�

2

α|u1
1 − u2

1| +
n�

1 (n1
2 + n2

2)

n�
1 + n�

2

(1 − α)|u1
2 − u2

2|.

Since 
n�

2
n�

1 +n�
2

and 
n�

1
n�

1 +n�
2

are smaller or equal 1, we can estimate

U ≤ (n1
1 + n2

1)α|u1
1 − u2

1| + (n1
2 + n2

2)(1 − α)|u1
2 − u2

2|
≤ α|n1

1u
1
1 − n1

1u
2
1 + n2

1u
1
1 − n2

1u
2
1| + (1 − α)|n1

2u
1
2 − n1

2u
2
2 + n2

2u
1
2 − n2

2u
2
2|

≤ α|n1
1u

1
1 − n1

1u
2
1| + α|n2

1u
1
1 − n2

1u
2
1| + (1 − α)|n1

2u
1
2 − n1

2u
2
2| + (1 − α)|n2

2u
1
2 − n2

2u
2
2|

≤ α|n1
1u

1
1 − n2

1u
2
1 + n2

1u
2
1 − n1

1u
2
1| + α|n1

1u
1
1 − n2

1u
2
1 + n2

1u
1
1 − n1

1u
1
1|

+ (1 − α)|n1
2u

1
2 − n2

2u
2
2 + n2

2u
2
2 − n1

2u
2
2| + (1 − α)|n1

2u
1
2 − n2

2u
2
2 + n2

2u
1
2 − n1

2u
1
2|

≤ α[|n1
1u

1
1 − n2

1u
2
1| + |u2

1||n2
1 − n1

1| + |n1
1u

1
1 − n2

1u
2
1| + |u1

1||n2
1 − n1

1|]
+ (1 − α)[|n1

2u
1
2 − n2

2u
2
2| + |u2

2||n2
2 − n1

2| + |n1
2u

1
2 − n2

2u
2
2| + |u1

2||n2
2 − n1

2|].

Due to the previous estimates on the velocities in step 4, the velocities are bounded and therefore

U ≤ C[
∫

(1 + |v|)2|f 1
1 − f 2

1 |dv +
∫

(1 + |v|2)|f 1
2 − f 2

2 |dv].

In an analogous way, we can estimate
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n�
1 n�

2

n�
1 + n�

2

|T 1
12 − T 2

12| ≤ C[
∫

(1 + |v|)2|f 1
1 − f 2

1 |dv +
∫

(1 + |v|2)|f 1
2 − f 2

2 |dv].

This all combines to the desired Lipschitz estimate.

Step 6: Existence and Uniqueness of non-negative solutions in �̄ (see definition of � in (23)).

Now, introduce the sequence {(f n
1 , f n

2 )} of mild solutions to

∂tf
n
1 + v · ∇xf

n
1 = ν̃11

nn−1
1

nn−1
1 + nn−1

2

(M1[f n−1
1 ] − f n

1 )

+ ν̃12
nn−1

2

nn−1
1 + nn−1

2

(M12[f n−1
1 , f n−1

2 ] − f n
1 ),

∂tf
n
2 + v · ∇xf

n
2 = ν̃22

nn−1
2

nn−1
1 + nn−1

2

(M2[f n−1
2 ] − f n

2 )

+ ν̃21
nn−1

1

nn−1
1 + nn−1

2

(M21[f n−1
1 , f n−1

2 ] − f n
2 ),

f 0
1 = f1(t = 0),

f 0
2 = f2(t = 0).

(24)

Since the zeroth functions are known as the initial values, these are inhomogeneous transport 
equations for fixed n ∈N. For an inhomogeneous transport equation, we know the existence of a 
unique mild solution in the periodic setting

f n
1 (x, v, t) = e−αn−1

1 (x,v,t)f 0
1 (x − tv, v)

+ e−αn−1
1 (x,v,t)

t∫
0

[ν̃11
nn−1

1 (x + (s − t)v, s)

nn−1
1 (x + (s − t)v, s) + nn−1

2 (x + (s − t)v, s)
Mn−1

1 (x + (s − t)v, v, s)

+ ν̃12
nn−1

2 (x + (s − t)v, s)

nn−1
1 (x + (s − t)v, s) + nn−1

2 (x + (s − t)v, s)
Mn−1

12 (x + (s − t)v, v, s)]

× eαn−1
1 (x+(s−t)v,v,s)ds

(25)

f n
2 (x, v, t) = e−αn−1

2 (x,v,t)f 0
2 (x − tv, v)

+ e−αn−1
2 (x,v,t)

t∫
0

[ν̃22
nn−1

2 (x + (s − t)v, s)

nn−1
1 (x + (s − t)v, s) + nn−1

2 (x + (s − t)v, s)
Mn−1

2 (x + (s − t)v, v, s)

+ ν̃21
nn−1

1 (x + (s − t)v, s)

nn−1
1 (x + (s − t)v, s) + nn−1

2 (x + (s − t)v, s)
Mn−1

21 (x + (s − t)v, v, s)]

× eαn−1
2 (x+(s−t)v,v,s)ds

(26)
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Now, we show that {(f n
1 , f n

2 )} is a Cauchy sequence in �. Then, since �̄ is complete, we can 
conclude convergence in �̄. First, we show that {(f n

1 , f n
2 )} is in �.

• f n
1 , f n

2 are in L1((1 + |v|2)dvdx) since f 0
1 , f 0

2 are in L1((1 + |v|2)dvdx).
• f n

1 , f n
2 ≥ 0 since f 0

1 , f 0
2 ≥ 0.

• Nq(f n
k ) < A, min(nn

k , T
n
k ) > C, since all estimates in step 1, 2 and 4 are independent of n.

Now, {(f n
1 , f n

2 )} is a Cauchy sequence in � since we have

||f n
1 − f n−1

1 ||L1((1+|v|2)dvdx)

≤
∫
�

∫
Rn

e−αn−1
1 (x,v,t)

t∫
0

eαn−1
1 (x+(s−t)v,v,s)|ν̃n−1

11

nn−1
1 (x + (s − t)v, s)

nn−1
1 (x + (s − t)v, s) + nn−1

2 (x + (s − t)v, s)

Mn−1
1 (x + (s − t)v, v, s) − ν̃n−2

11

nn−2
1 (x + (s − t)v, s)

nn−2
1 (x + (s − t)v, s) + nn−2

2 (x + (s − t)v, s)

Mn−2
1 (x + (s − t)v, v, s)|ds(1 + |v|2)dxdv

+
∫
�

∫
Rn

e−αn−1
1 (x,v,t)

t∫
0

eαn−1
1 (x+(s−t)v,v,s)|ν̃n−1

12

nn−1
2 (x + (s − t)v, s)

nn−1
1 (x + (s − t)v, s) + nn−1

2 (x + (s − t)v, s)

Mn−1
12 (x + (s − t)v, v, s) − ν̃n−2

12

nn−2
2 (x + (s − t)v, s)

nn−2
1 (x + (s − t)v, s) + nn−2

2 (x + (s − t)v, s)

Mn−2
12 (x + (s − t)v, v, s)|ds(1 + |v|2)dxdv.

Now, we use the Lipschitz continuity of the Maxwellians

||f n
1 − f n−1

1 ||L1((1+|v|2)dvdx)

≤ C

∫
�

∫
Rn

e−αn−1
1 (x,v,t)

t∫
0

eαn−1
1 (x+(s−t)v,v,s)|f n−1

1 (x + (s − t)v, v, s)

− f n−2
1 (x + (s − t)v, v, s)|ds(1 + |v|2)dxdv

+
∫
�

∫
Rn

e−αn−1
1 (x,v,t)

t∫
0

eαn−1
1 (x+(s−t)v,v,s)[|f n−1

1 (x + (s − t)v, v, s) − f n−2
1 (x + (s − t)v, v, s)|

+ |f n−1
2 (x + (s − t)v, v, s) − f n−2

2 (x + (s − t)v, v, s)|]ds(1 + |v|2)dxdv

≤ e−Ct

t∫
0

eCs[||f n−1
1 (s) − f n−2

1 (s)||L1((1+|v|2)dvdx + ||f n−1
2 (s) − f n−2

2 (s)||L1((1+|v|2)dvdx]ds.

Similarly, we get for species 2
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||f n
2 − f n−1

2 ||L1((1+|v|2)dvdx) ≤ e−Ct

t∫
0

eCs[||f n−1
1 (s) − f n−2

1 (s)||L1((1+|v|2)dvdx

+||f n−1
2 (s) − f n−2

2 (s)||L1((1+|v|2)dvdx]ds.

Doing this inductively, we obtain

||f n
1 − f n−1

1 ||L1((1+|v|2)dvdx)

≤ (e−Ct )n

t∫
0

· · ·
t∫

0

eCs1 · · · eCsn [||f 1
1 (sn) − f 0

1 ||L1((1+|v|2)dvdx

+||f 1
2 (sn) − f 0

2 ||L1((1+|v|2)dvdx]ds1 · · ·dsn

≤ 1

Cn
(1 − e−Ct )n[ sup

0≤s≤t

||f 1
1 (s) − f 0

1 ||L1((1+|v|2)dvdx + sup
0≤s≤t

||f 1
2 (s) − f 0

2 ||L1((1+|v|2)dvdx],

with a constant C > 1. So, for species one, we obtain

sup
0≤t≤T

||f n+m
1 − f n

1 ||L1((1+|v|2)dvdx)

≤ sup
0≤t≤T

[||f n+m
1 − f n+m−1

1 ||L1((1+|v|2)dvdx) + · · · + ||f n+1
1 − f n

1 ||L1((1+|v|2)dvdx)

≤ sup
0≤t≤T

((
1

C
(1 − e−Ct ))n+m + · · · + (

1

C
(1 − e−t ))n)[ sup

0≤s≤t

||f 1
1 (s) − f 0

1 ||L1((1+|v|2)dvdx)

+ sup
0≤s≤t

||f 1
2 (s) − f 0

2 ||L1((1+|v|2)dvdx)]

≤ ((C(T ))n+m + · · · + C(T )n)[ sup
0≤s≤T

||f 1
1 (s) − f 0

1 ||L1((1+|v|2)dvdx)

+ sup
0≤s≤T

||f 1
2 (s) − f 0

2 ||L1((1+|v|2)dvdx)]

≤ C(T )n
∞∑

j=1

(C(T ))j [ sup
0≤s≤T

||f 1
1 (s) − f 0

1 ||L1((1+|v|2)dvdx)

+ sup
0≤s≤T

||f 1
2 (s) − f 0

2 ||L1((1+|v|2)dvdx)]

≤ C(T )n

1 − C(T )
[ sup
0≤s≤T

||f 1
1 (s) − f 0

1 ||L1((1+|v|2)dvdx)

+ sup
0≤s≤T

||f 1
2 (s) − f 0

2 ||L1((1+|v|2)dvdx)],

which converges to zero as n → ∞ since C(T ) = 1−e−CT

C
< 1. In order to prove that the limit is 

a mild solution to (2) and the uniqueness of solutions to (2), we use standard arguments similar 
as in the proof of the fix point Theorem of Banach and the Theorem of Picard–Lindelöf. �
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Remark 3. M(1) and M(2) in the model of Andries, Aoki and Perthame in [1] and subsection 2.2
have the same structure as M12 and M21, respectively, meaning that the velocities u(1) and u(2)

and the temperatures T (1) and T (2) of M(1) and M(2), respectively have the same structure as 
the velocities u12 and u21 and the temperatures T12 and T21. So the proof of Theorem 3.2.1 for 
the model in subsection 2.2 and [1] goes through analogously as for the model in subsection 2.1
and [20].

4. Positivity of solutions of the BGK approximation for two species

In this section, we want to show that every classical solution with positive initial data remains 
positive.

4.1. Idea of the proof

Our aim is to prove that all classical solutions to (2)–(10) under the Assumptions 3.2.1 with 
positive initial data are positive for all larger times t > 0. The idea of the proof is as follows. 
In the previous section, we stated our result about existence and uniqueness of non-negative 
solutions. Then, with a Gronwall estimate on the densities, we deduce that this non-negative 
solution can be estimated from below by an exponential function. Considering the solution along 
characteristics, we will see that when the densities are positive the solution is also positive. 
With this and continuity in time, we can conclude that for positive initial data there cannot be a 
solution which becomes zero or negative at a time t > 0. So all classical solutions to (2)–(10) are 
positive.

4.2. Estimate on the densities

Lemma 4.2.1. If fk ≥ 0 is a mild solution to (2)–(10) and

γk(x, t) :=
∫

f 0
k (x − vt, v)dv ≥ C0 > 0,

for all t ≥ 0, k = 1, 2, then the densities satisfy the estimate

nk(x, t) ≥ C0e
−(ν̃kk+ν̃kj )t ,

for all t ≥ 0 where C0 > 0 is a positive constant.

Proof. See step 2 in the proof of Theorem 3.2.1. �
4.3. Positivity of non-negative solutions

Lemma 4.3.1 (Positivity of non-negative solutions). Let (f1, f2) with f1, f2 ≥ 0 be a mild so-
lution to (2)–(10) with positive initial data under the Assumptions 3.2.1. Then f1, f2 are even 
positive, that means f1, f2 > 0 a.e.

Proof. We prove the statement for f1, the proof for f2 is analogously. Let f1 part of the non-
negative mild solution to (2)–(10). Then it satisfies by definition
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f1(x, v, t) = e−α1(x,v,t)f 0
1 (x − tv, v)

+ e−α1(x,v,t)

t∫
0

[ν̃11
n1(x + (s − t)v, s)

n1(x + (s − t)v, s) + n2(x + (s − t)v, s)
M1(x + (s − t)v, v, s)

+ ν̃12
n2(x + (s − t)v, s)

n1(x + (s − t)v, s) + n2(x + (s − t)v, s)
M12(x + (s − t)v, v, s)]]

× eα1(x+(s−t)v,v,s)ds.

(27)

We assumed that all collision frequencies are positive and according to Lemma 4.2.1 all densities 
are positive. So the right-hand side of (27) is positive, therefore

f1(x, v, t) > 0,

for positive initial data. So non-negative solutions to (2)–(10) are even positive. �
4.4. Positivity of solutions

Theorem 4.4.1. Let (f1, f2) be a classical solution to (2)–(10) with positive initial data. Then 
the solution is positive meaning f1, f2 > 0.

Proof. According to Theorem 3.2.1 there exists a non-negative solution to (2)–(10) and it is 
the only non-negative solution to (2)–(10). So there could exist another classical solution which 
at a certain time becomes zero and negative afterwards. But due to continuity in time, it could 
only happen if it reaches zero first. According to Lemma 4.2.1 this is not possible, because a 
non-negative solution always stays positive. So the unique solution to (2)–(10) with positive 
initial data is positive meaning f1, f2 > 0. �
5. Determination of an unknown function in the energy exchange of Dellacherie

This final section will show the usefulness of our kinetic description in a macroscopic model 
by Dellacherie [11]. In particular in this section, we choose the space dimension N equal to 3
and want to use the model described in subsection 2.1 in order to determine an unknown func-
tion in the energy exchange in the macroscopic model of Dellacherie [11]. In subsection 5.1, 
we introduce the macroscopic model of Dellacherie and compare the moment equations of our 
kinetic model in subsection 2.1 with the model of Dellacherie in order to determine his unknown 
function in the energy exchange.

5.1. Macroscopic model of Dellacherie

We consider the macroscopic model for a two component gas mixture from the literature [11]. 
Each gas consisting of particles of the mass mk is characterized by a density nk , a mean veloc-
ity uk and an energy Ek , k = 1, 2. Dellacherie in [11] proposes a macroscopic model for gas 
mixtures given by
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∂t

⎛
⎜⎜⎜⎜⎜⎜⎝

m1n1
m2n2

m1n1u1
m2n2u2
m1n1E1
m2n2E2

⎞
⎟⎟⎟⎟⎟⎟⎠

+ ∇x ·

⎛
⎜⎜⎜⎜⎜⎜⎝

m1n1u1
m2n2u2

m1n1u1 ⊗ u1 + p11
m2n2u2 ⊗ u2 + p21
u1(m1n1E1 + p1)

u2(m2n2E2 + p2)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

λu(u2 − u1)

λu(u1 − u2)

λT (T2 − T1) + λuU(u1, u2) · (u2 − u1)

λT (T1 − T2) + λuU(u1, u2) · (u1 − u2),

⎞
⎟⎟⎟⎟⎟⎟⎠

(28)

where U(u1, u2) is an unknown function of the velocities u1, u2 and λu, λT are relaxation pa-
rameters determined by physical experiments. The temperature Tk and the pressure pk are related 
by the equation of an ideal gas given by pk = nkTk . The unknown function U is inside the relax-
ation term in the energy equations which forces the gas mixture to go to a common velocity in 
thermodynamic equilibrium. In the one dimensional case, Dellacherie [11] has the following re-
striction on U . He can show that his macroscopic model for gas mixtures satisfies an H-Theorem 
as soon as U verifies the condition

min(u1, u2) ≤ U(u1, u2) ≤ max(u1, u2). (29)

With this restriction on U in (29) Dellacherie is able to prove that for λu, λT → 0 the model 
converges formally to a macroscopic model for the densities, the total momentum and the total 
energy.

5.2. Comparison with the energy exchange terms obtained from the BGK model for mixtures

Now, our aim is to derive a macroscopic equation for the energy of the kinetic BGK model (2)
and to determine the parameter γ in the definition of the mixture temperature T12 in (9).

Lemma 5.2.1. Assume (4), the conditions (6), (7) and (9). Then the momentum and energy ex-
change term of species 1 of the model (2) are given by

Fm1,2 = m1ν12n1n2(1 − δ)(u2 − u1), (30)

FE1,2 = [ν12
1

2
n1n2m1(δ − 1)(u1 + u2 + δ(u1 − u2))

+ 3

2
ν12n1n2γ (u1 − u2)] · (u1 − u2) + 3

2
ν12n1n2(1 − α)(T1 − T2).

(31)

The momentum and energy exchange terms of species 1 are obtained by multiplying the 
right-hand side of the first equation of (2) by v and |v|2, respectively and integrating the result 
with respect to v, for more details see the proof of Theorem 2.3 in [20]. We will get the following 
relationship between the energy exchange of the two models (2) and (28).

Theorem 5.2.2. Assume δ < 1. The two energy exchange terms (31) and the one in (28) coincide 
if U is of the form

U(u1, u2) = 1

2

(u1 + u2) · (u1 − u2)

|u1 − u2|2 (u1 − u2) + c(u1 − u2) + V⊥(u1, u2), c ∈R,

where V⊥ is a function orthogonal to u1 − u2.
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Proof. In order to have equality with the exchange term from Dellacherie, we want that

Fvel
E1,2

:= [ν12
1

2
n1n2m1(δ − 1)(u1 + u2 + δ(u1 − u2))

+ 3

2
ν12n1n2γ (u1 − u2)] · (u1 − u2)

!= −λuU(u1, u2) · (u1 − u2),

which is equivalent to

[1

2
ν12n1n2 m1(δ − 1)(u1 + u2 + δ(u1 − u2)) + 3

2
ν12n1n2γ (u1 − u2) + λuU(u1, u2)]

·(u1 − u2) = 0.

(32)

This means that

[ν12
1

2
n1n2m1(δ − 1)(u1 + u2 + δ(u1 − u2)) + 3

2
ν12n1n2γ (u1 − u2) + λuU(u1, u2)]

has to be orthogonal to u1 − u2.
We split all terms in a term parallel and a term orthogonal to u1 − u2:

U(u1, u2) = v(u1, u2)(u1 − u2) + V⊥(u1, u2),

u1 + u2 =
[
(u1 + u2) · (u1 − u2)

|u1 − u2|
]

u1 − u2

|u1 − u2| + u⊥(u1, u2).

Now the fact that the whole expression has to be orthogonal to u1 − u2 means that the sum of 
coefficients in front of u1 − u2 in (32) has to vanish. This leads to

[ν12
1

2
n1n2m1(δ − 1)(

(u1 + u2) · (u1 − u2)

|u1 − u2|2 + δ) + 3

2
ν12n1n2γ + λuv(u1, u2)] = 0. (33)

In order to get equality in the exchange of momentum, we have to choose

δ = 1 − λu

m1ν12n1n2
. (34)

If we use this expression for δ given by (34) and solve (33) for γ , we obtain

γ = 1

3
m1(1 − δ)

(u1 + u2) · (u1 − u2)

|u1 − u2|2 + 1

3
m1(1 − δ)δ − 2

3
λuv(u1, u2)

1

n1n2ν12

= 1

3
m1(1 − δ)

(u1 + u2) · (u1 − u2)

|u1 − u2|2 + 1

3
m1(1 − δ)δ − 2

3
m1(1 − δ)v(u1, u2).

(35)

Since we assumed γ to be a parameter independent of the velocities, we deduce

v(u1, u2) = 1

2

(u1 + u2) · (u1 − u2)

|u1 − u2|2 − c, c ∈R,

for δ < 1. �
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For γ this leads to

γ = 1

3
m1(1 − δ)δ + 2

3
m1(1 − δ)c. (36)

We also get a restriction on U like Dellacherie.

Lemma 5.2.3 (Restriction on the constant c). If we assume that all temperatures are positive, we 
get the following restriction on the constant c given by

−1

2
δ ≤ c ≤ −1

2
(
m1

m2
ε(1 − δ)) + 1

2
. (37)

Proof. In order to have positive temperatures in the two species BGK model, we need that γ
satisfies the condition (11).

We see from (34) that δ ≤ 1, since λu, m1, ν12, n1, n2 are assumed to be positive. This leads 
to the restriction on the constant c given by (37). �

γ is a non-negative number, so the right-hand side of the inequality in (11) must be non-
negative. This condition is equivalent to (12). With this restriction on δ, we can deduce from (37)
the estimate

−1

2
≤ c ≤ 1

2
.

This corresponds to the estimate (29) on U from [11]. With (37), we have a more restrictive 
estimate on the function U and with (35) an explicit expression of the parallel part of U . The 
orthogonal part does not matter because it does not enter in the exchange term.

5.3. Determine c by symmetry arguments

In the kinetic model in [20] the mixture temperature T12 of species 1 is given by (9) and the 
one of species 2 by (10). Due to symmetry arguments, we choose the term in front of |u1 − u2|2
in the temperature T21 such that it is equal to εγ = 1

3εm1(1 − δ)δ + ε 2
3m1(1 − δ)c using γ given 

by (36). Comparing the coefficient in front of |u1 − u2|2 with this expression for εγ leads to a 
value for the constant c given by

c = 1

4
(1 − δ)(1 − m1

m2
ε).

It remains to show that this specific c satisfies the estimates (37). First, the estimate from below. 
If we use (12), we obtain

c = −1

4
(
m1

m2
ε − 1)(1 − δ) ≥ −1

4
δ(1 + m1

m2
ε)(1 − δ).

Rearranging (12) to
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1 − δ ≤ 2

1 + m1
m2

ε
, (38)

leads to

c ≥ −1

2
δ.

The estimate on this specific c from above is equivalent to

1

4

m1

m2
ε(1 − δ) + 1

4
(1 − δ) ≤ 1

2
.

By using (38), we get

1

4
(
m1

m2
ε + 1)(1 − δ) ≤ 1

4

2

1 − δ
(1 − δ) = 1

2
.

In summary, we are able to determine more accurately the energy exchange in a model by Del-
lacherie.
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