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Abstract: Existence of solutions to three different systems of Eqs. (1.1), (1.2) and (1.3)
coming from physically relevant models is shown, each needing a different proof which
are given in Sects. 2, 3 and 4. The unifying theme is the presence of source terms and the
general method of proof is vanishing viscosity together with compensated compactness.
For system (1.2) entropy-entropy flux pairs of Lax type are constructed and estimates
from singular perturbation theory of ODEs are used. For (1.1) and (1.3) weak entropy-
entropy flux pairs are constructed following the compensated compactness framework
set up by Diperna [4].

1. Introduction

In this paper we consider the Cauchy problem for an extended model of isothermal flow
[15]:

ρt + (ρu)x + h(x, t)ρu = 0

(ρu)t + (ρu2 + p(ρ))x + h(x, t)ρu2 = 0

 , (1.1)

whereρ is the density,u the velocity,p = p(ρ) is the pressure. For the special case

h(x, t) =
a′(x)
a(x)

the functiona (which depends onx only) represents the cross-sectional

area of a variable duct.
We also consider the related system

(aρ)t + (aρu)x = 0

ut + (u2 +
∫ ρ

0

p′(s)
s

ds)x = 0

 , (1.2)
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wherea = a(x). For a(x) = 1, system (1.2) was first derived by S. Earnshaw [5] for
isentropic flow (see also [22], p. 168).

Systems (1.1) forh(x, t) =
a′(x)
a(x)

and (1.2) are of interest because resonance occurs.

This means there is a coincidence of wave speeds from different families of waves. To
see this, we may augment either system by the equation

at = 0.

Thus one wave of the augmented system has zero wave speedλ0 = 0. One of the
other waves may have coinciding wave speed in the transsonic regime:

λk(Ũ ) = λ0 with ∇λk · Rk |Ũ 6= 0.

(HereRk is an eigenvector and̃U = (ã, ũ, ρ̃ũ), thus we may have non-linear resonance.)
Finally, we consider an extended river flow equation [22]

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p(ρ))x + a(x)ρ + cρu|u| = 0

 . (1.3)

System (1.3) also appears in the paper [12], where the functiona(x) corresponds phys-
ically to the slope of the topography andcρ|u| to a friction term.

T.P. Liu studied existence and qualitative behaviour of solutions for near constant
data to resonant systems of this type by using Glimm’s random choice method [15, 16].
In [7] Glimm, Marshall and Plohr solved (1.1) numerically by using the random choice
method. In [6] Embid, Goodman and Majda considered steady state solutions to varying
channel flow. Recently in [8], Isaacson and Temple solved the Riemann problem for
a general inhomogeneous system of this type. Our interest in studying this resonant
problem is motivated by their papers.

Remark 1.After announcing Theorem 1 and 2 at the Conference on Hyperbolic Prob-
lems in Stony Brook in 1994 (as set down in our preprint [10]), we learned that inde-
pendently Chen and Glimm had arrived at a theorem related to our Theorem 2, namely

existence of solutions to (1.1) withh(x, t) =
a′(x)
a(x)

(see their preprint [2]). Their method

of proof involves approximating the solution with a Godunov scheme which incorpo-
rates the steady state solutions. In our proof of Theorem 2 the viscosity method is used.
Here the main difficulty was to find upper bound estimates (ρε, uε) and positive lower
bound estimatesρε ≥ c(t, ε) > 0 for this viscous approximation.

Our Theorems 1 and 3 are not touched in [2].

Theorem 1 (Existence of Solutions to (1.2)).Let
1.a(x) ≥ c > 0 are bounded and nondecreasing (or nonincreasing) onR, wherec is a
constant.
2. w0(x) ≤ M , z0(x) ≥ 0 (or w0(x) ≤ 0, z0(x) ≥ −M ), where

w = u +
∫ ρ

0

√
p′(s)
s

ds z = u −
∫ ρ

0

√
p′(s)
s

ds (1.4)
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are two Riemann invariants of the systems (1.1), (1.2), (1.3). We usew0(x) = w|t=0,
z0(x) = z|t=0.

3. g(ρ) :=
√

p′(ρ)
ρ ∈ C2(0, ∞), g ≥ d > 0, g′ ≥ 0 for ρ ≥ 0, whered is a positive

constant.
Then the Cauchy problem (1.2) with bounded initial data(ρ, u)|t=0 = (ρ0(x), u0(x)),

(ρ0(x) ≥ 0) has a global weak solution in the sense of distributions.

Remark 2.For the special choice ofp(ρ) =
∫ ρ

s2(ρ + δ)γ−3ds (γ > 3, δ > 0) (see [17]),
assumption 3 in Theorem 1 is satisfied.

Theorem 2 (Existence of Solutions to (1.1)).Let
1. h(x,t) be continuous, bounded inR × R+, h(x, t) ≥ 0 (or h(x, t) ≤ 0) and|h(x, t)| ≤
α(1 + t)−1, whereα is a positive constant depending on the bound of the initial data.
2.w0(x) ≤ M , z0(x) ≥ 0 (or w0(x) ≤ 0, z0(x) ≥ −M ); ρ0(x) ≥ 0.
3.p(ρ) = ργ , 1 < γ < 5

3.
Then the Cauchy problem (1.1) with bounded initial data(ρ, ρu)|t=0 =

(
ρ0(x), ρ0(x)

u0(x)
)

(whereρ0(x) ≥ 0) has a global weak solution.

Remark 3.: Assumption 2 in Theorem 2 without brackets refers to supersonic flow,
with brackets to subsonic flow.

Theorem 3 (Existence of Solutions to (1.3)).Let
1.|a(x)| ≤ M , a′(x) ≥ 0 , and let c be a nonnegative constant.
2.w0(x) ≤ M , z0(x) ≥ −M , ρ0(x) ≥ 0.

3.p(ρ) =
ργ

γ
, 1 < γ ≤ 5

3.

Then the Cauchy problem (1.3) with bounded initial data(ρ, ρu)|t=0 =
(
ρ0(x), ρ0(x)

u0(x)
)

(whereρ0(x) ≥ 0) has a global weak solution.

Remark 4.All the existence Theorems 1, 2, 3 above include the vacuum caseρ = 0.

2. Proof of Theorem 1

We rewrite system (1.2) in the form:

ρt + (ρu)x = −a′(x)
a(x)

ρu

ut +

(
u

2

2
+

∫ ρ

0
sg2(s)ds

)
x

= 0

 (2.1)

with g given in assumption 3 of Theorem 1. First smoothinga(x) by a mollifier, we get
aδ(x) ∈ C∞(R) , c ≤ aδ(x) ≤ M , 0 ≤ δ(aδ(x))′ ≤ M ( or −M ≤ δ(aδ(x))′ ≤ 0) by
assumption 1 in Theorem 1, andaδ(x) → a(x), a.e. in any compact set of R asδ → 0.
Adding viscosity terms to the right-hand side of the system (2.1) yields the following
parabolic system:

ρε
t + (ρεuε)x = − (aδ(x))′

aδ(x)
ρεuε + ερε

xx

uε
t + ((uε)2

2 + f (ρε))x = εuε
xx

 (2.2)
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with the initial data
(ρε, uε)t=0 = (ρ0(x), u0(x)), (2.3)

wheref (ρ) =
∫ ρ

0 sg2(s)ds .

Lemma 1. If the conditions in Theorem 1 are satisfied and the solutions(ρε, uε) of
the Cauchy problem (2.2) , (2.3) exist inR × [0, T ], then(ρε, uε) satisfy the following
estimates:

w(ρε, uε) ≤ M , z(ρε, uε) ≥ 0 , ρε ≥ 0 (2.4)

or

w(ρε, uε) ≤ 0 , z(ρε, uε) ≥ −M , ρε ≥ 0, (2.5)

where w and z are the Riemann invariants.

Proof. If (aδ)′(x) ≥ 0, we have from (2.2),

wt +
(
uε +

√
p′(ρε)

)
wx = εwxx − εg′(ρε)(ρε)x

2 − (aδ)′

aδ
uε

√
p′(ρε)

≤ εwxx − (aδ)′

aδ

√
p′(ρε)z − (aδ)′

aδ

√
p′(ρε)

∫ ρε

0
g(s)ds,

zt +
(
uε −

√
p′(ρε)

)
zx = εzxx + εg′(ρε)(ρε)x

2 +
(aδ)′

aδ
uε

√
p′(ρε)

≥ εzxx +
(aδ)′

aδ

√
p′(ρε)z +

(aδ)′

aδ

√
p′(ρε)

∫ ρε

0
g(s)ds

≥ εzxx +
(aδ)′

aδ

√
p′(ρε)z. (2.6)

So the second equation in (2.6) and the maximum principle [18] give the estimate
z ≥ 0 first and then we have from the first equation in (2.6) that

wt +
(
uε +

√
p′(ρε)

)
wx ≤ εwxx, (2.7)

so applying the maximum principle again to (2.7), we obtainw ≤ M . ρε ≥ 0 is trivial
by the first equation in (2.2). �

Similarily we can get the estimates (2.5) if(aδ)′(x) ≤ 0, thus ending the proof of
Lemma 1.

Using the general contraction mapping principle and the estimate (2.4) or (2.5) we have

Lemma 2. If the conditions in Theorem 1 are satisfied, then for any fixedε > 0, the
Cauchy problem (2.2), (2.3) has a unique global solution(ρε, uε), satisfying

0 ≤
∫ ρε

0

√
p′(s)sds ≤ uε ≤ M

or

−M ≤ uε ≤ −
∫ ρε

0

√
p′(s)sds ≤ 0.
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Remark 5.Dropping the zeroth order term from the right hand side of (2.1) yields the
system of conservation laws

ρt + (ρu)x = 0

ut +

(
u2 +

∫ ρ

0
sg2(s)ds

)
x

= 0

 . (2.8)

Noticing the system (2.8) has a strictly convex entropy

η =
1
2
u2 +

∫ ρ

0

∫ y

0
g2(s)dsdy,

we deduce that√
ε∂xρε ,

√
ε∂xuε are uniformly bounded inL2

loc(R × R+).

From Remark 5 and the boundedness of (ρε, uε), we have

Lemma 3. For anyC2 entropy-entropy flux pair(η(ρ, u), q(ρ, u)) of the system (2.8)
η(ρε, uε)t + q(ρε, uε)x is compact inH−1

loc(R × R+)
with respect to the vicosity solutions(ρε, uε) of the Cauchy problem (2.2), (2.3).

Lemma 3 guarantees the commutativity relation for the representing measure to be
true. We are going to construct the entropy-entropy flux pairs of Lax type and give their
desired estimates by using the theory of singular perturbations of ordinary differential
Eqs. [19].

We recall that a pair (η, q) of real-valued maps is an entropy-entropy flux pair of
(2.8) if all smooth solutions of (2.8) satisfy(

uηρ + f ′(ρ)ηu, ρηρ + uηu

)
= (qρ, qu) . (2.9)

Eliminating theq from (2.9), we have

ηρρ =
f ′(ρ)

ρ
ηuu . (2.10)

We choose special Lax entropies

η1
k = ekw(u,ρ)

(
α(ρ) +

β(ρ, k)
k

)
,

(herek ∈ N andw is defined in (1.4)) andα andβ are to be determined below. Now
substituteη1

k into (2.10),

k[2g(ρ)α′ + g′(ρ)α] + α′′ + sg(ρ)β′ + g′(ρ)β +
β′′

k
= 0.

Since this should hold fork ∈ N , we have

2g(ρ)α′ + g′(ρ)α = 0, (2.11)

α′′ + 2g(ρ)β′ + g′(ρ)β +
β′′

k
= 0, (2.12)

then
α = g− 1

2 .

The existence ofb and the uniformly bounded estimates ofβ andβ′ w.r.t. k can be
obtained by (2.11), (2.12) and the following Lemma [21], also referred to in [9], p. 114.
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Lemma 4. LetY (x) ∈ C2[0, h] be solutions of the equation

F (x, Y, Y ′) = 0,

and let functionsf (x, y, ζ, λ), F (x, Y, Y ′) be continuous on the regions0 ≤ x ≤ h,
|y − Y (x)| ≤ l(x), |ζ − Y ′(x)| ≤ m(x) for some positive functionsl(x) andm(x) and
λo > λ > 0. In addition

|f (x, y, ζ, λ) − F (x, y, ζ)| ≤ ε

|F (x, y2, ζ) − F (x, y1, ζ)| ≤ M |y2 − y1|,
F (x, y, ζ2) − F (x, y, ζ1)

ζ2 − ζ1
≥ L

for some positive constantsε , M , L. If y = y(x, λ) is a solution of the following ordinary
differential equation of second order:

λy′′ + f (x, y, y′, λ) = 0

with y(0) = Y (0) andy′(0) being arbitrary, then for sufficiently smallλ > 0, ε > 0 and
P = |y′(0) − Y ′(0)|, y(x) exists for all0 ≤ x ≤ h and satisfies

|y(x, λ) − Y (x)| <
[ ε

M
+ λ(

P

L
+

N

M
)
]
e

Mx
L ,

whereN = max|Y ′′(x)| for 0 ≤ x ≤ h.

Using (2.9), we have

qρ = f ′(ρ)ηu + ηρ,

qu = ρηρ + uρu.

Then a progressing wave of the system (2.9) is provided by

η1
k = ekw(α(ρ) +

β(ρ, k)
k

),

q1
k = (u +

√
p′(ρ))η1

k + ekw
(ρα′ − α

k
+

ρβ′ − β

k2

)
.

In a similar way we can obtain the other entropy-entropy pairs of Lax type as follows:

η2
−k = e−kw(α(ρ) +

β1(ρ, k)
k

),

q2
−k = (u +

√
p′(ρ))η2

−k + e−kw
(α − ρα′

k
+

β1 − ρβ′
1

k2

)
,

η3
k = ekz(α(ρ) +

β2(ρ, k)
k

),

q3
k = (u −

√
p′(ρ))η3

k + ekz
(ρα′ − α

k
+

ρβ′
2 − β2

k2

)
,

η4
−k = e−kz(α(ρ) +

β3(ρ, k)
k

),

q4
−k = (u −

√
p′(ρ))η4

−k + e−kz
(α − ρα′

k
+

β3 − ρβ′
3

k2

)
,



Existence of Solutions to Hperbolic Conservation Laws with a Source 333

whereβi (i=1,2,3) satisfy respectively

α′′ − 2g(ρ)β′
1 − g(ρ)β1 +

β′′
1

k
= 0, (2.13)

α′′ − 2g(ρ)β′
2 − g(ρ)β2 +

β′′
2

k
= 0, (2.14)

α′′ + 2g(ρ)β′
3 + g(ρ)β3 +

β′′
3

k
= 0. (2.15)

Using Lemma 4, we can get from (2.15) the existence ofβ3 and its uniformly bounded
estimate w.r.t.k. Differentiating (2.15) with respect toρ, we can obtain the uniformly
bounded estimate ofβ′

3 w.r.t. k. By making the transformationρ1 = ρ − M in the
Eqs. (2.14) and (2.13), where M is the upper bound ofρ, we also obtain existence ofβ1,
β2, β′

1 andβ′
2 by using Lemma 4.

By Assumption 3 of Theorem 1,

α − ρα′ = g− 1
2 +

1
2
ρg− 3

2 g′ > 0.

Thus system (1.2) is genuinely nonlinear. Thus we end the proof just as in Sect. 4 of [17],
where the framework of Diperna [3] gets applied to a non-strictly hyperbolic system.

3. Proof of Theorem 2

In this section, we give a proof of Theorem 2. Following the framework given by Diperna
[4] and Chen [1], the only work we need to do is to obtain the existence of the viscosity
solutions and related estimates for the Cauchy problem

ρt + (ρu)x = ερxx − h(x, t)ρu

(ρu)t +
(
ρu2 + ργ

γ

)
x

= ε(ρu)xx − h(x, t)ρu2

 (3.1)

with the initial data(
ρ(x, 0), ρ(x, 0)u(x, 0)

)
=

(
ρδ

0(x), ρδ
0(x)uδ

0(x)
)
, (3.2)

where(
ρδ

0(x), uδ
0(x)

)
=

((
(ρ0(x)

γ−1
2 + δ

γ−1
2 ) ∗ Gδ

) 2
γ−1

,
(
u0(x) + f (δ)

) ∗ Gδ
)

(3.3)

with f (δ) a function ofδ given in (3.6) or (3.7) andf (δ) → 0 asδ → 0. HereGδ is a
mollifier. Then (

ρδ
0(x), uδ

0(x)
) ∈ C∞ × C∞,

and

ρδ
0(x) ≥ δ , ρδ

0(x) + |uδ
0(x)| ≤ M

δ|uδ
0,x(x)| ≤ M

|ρδ
0,x(x)| ≤ M (δ) , |uδ

0,x| ≤ M (δ)

|ρδ
0,xx(x)| ≤ M (δ) , |uδ

0,xx| ≤ M (δ)


, (3.4)
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whereM denotes a positive constant,M (δ) a positive constant depending onδ. The
relation betweenε andδ is given in (3.12).

Whenh(x, t) ≥ 0 , we assumez0(x) ≥ 0 as Assumption 2 in Theorem 2, then

zδ
0 = uδ

0(x) −
∫ ρδ

0 (x)

0

√
p′(s)
s

ds = uδ
0(x) − 2

γ − 1

(
ρδ

0(x)
) γ−1

2

= u0(x) ∗ Gδ + f (δ) − 2
γ − 1

(
ρ0(x)

γ−1
2 ∗ Gδ

) − 2
γ − 1

δ
γ−1

2 (3.5)

= z0(x) ∗ Gδ + f (δ) − 2
γ − 1

δ
γ−1

2 ≥ 0,

if we let

f (δ) =
2

γ − 1
δ

γ−1
2 . (3.6)

Whenh(x, t) ≤ 0, we assumew0(x) ≤ 0, then

wδ
0 = w0(x) ∗ Gδ + f (δ) +

2
γ − 1

2δ
γ−1

2 ≤ 0,

if we let

f (δ) = − 2
γ − 1

δ
γ−1

2 . (3.7)

Lemma 5 (Local Existence of (3.1) , (3.2)).Let the initial data (3.2) satisfy the condi-
tions (3.3), (3.4), then for any fixedε andδ, there exists a smooth solution for the Cauchy
problem (3.1), (3.2) in someRs = R × [0, s], which satisfies

ρ(x, t) ≥ δ

2
, ρ(x, t) + |u(x, t)| ≤ 2M (3.8)

|ρx|, |ρxx|, |ux|, |uxx| ≤ 2M (ε, δ).

The proof of the lemma can be obtained by applying the general contraction mapping
to an integral representation of (3.1). The global existence is based on the local existence
and an aprioriL∞ estimate of (ρ, u) and a lower bound estimate ofρ by using the
maximum principle (Lemma 7). These estimates are carefully given in [20].

Lemma 6. Let p(ρ) =
ργ

γ
, γ > 1 . If h(x, t) ≥ 0, z0(x) ≥ 0 and w0(x) ≤ M , (or

h(x, t) ≤ 0, z0 ≥ −M , w0 ≤ 0), thenz(ρ, m) ≥ 0 andw(ρ, m) ≤ M (m = ρu) ( or
z ≥ −M , w ≤ 0).

Proof. Multiplying (wρ, wm) and (zρ, zm) respectively to the system (3.1), wherew, z
are given by (1.4), we have

wt + λ2wx (3.9)

= εwxx +
2ε

ρ
ρxwx − ε(γ + 1)

2
ρ

γ−5
2 ρ2

x − h(x, t)ρu
( − m

ρ2
+ ρ

γ−3
2

) − h(x, t)ρu2 1
ρ

≤ εwxx +
2ε

ρ
ρxwx − h(x, t)ρ

γ−1
2 z

and
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zt + λ1zx

= εzxx +
2ε

ρ
ρxzx +

ε(γ + 1)
2

ρ
γ−5

2 ρ2
x − h(x, t)ρu

( − m

ρ2
− ρ

γ−3
2

) − h(x, t)ρu2 1
ρ

≥ εzxx +
2ε

ρ
ρxzx + h(x, t)ρ

γ−1
2 z, (3.10)

whereλ2 = u+
√

p′(ρ) , λ1 = u−√
p′(ρ) are two eigenvalues of the systems (1.1), (1.2),

(1.3).
Sincezδ

0(x) ≥ 0 from (3.5), we havez ≥ 0 by applying the maximum principle to
(3.10). So we have from (3.9),

wt + λ2wx ≤ εwxx +
2ε

ρ
ρxwx,

and thusw ≤ M . We can similarily get the estimatesz ≥ −M , w ≤ 0 if h(x, t) ≤ 0.
Lemma 6 is proven. �

Lemma 6 gives us the uniform boundedness of (ρ, u),

0 ≤ 2
γ − 1

ρ
γ−1

2 ≤ u ≤ M or − M ≤ u ≤ − 2
γ − 1

ρ
γ−1

2 . (3.11)

To get the global existence of (3.1), we still need a lower, positive bound ofρ. We follow
the method given in [20] to prove it.

Lemma 7. Let the conditions in Lemma 6 be satisfied. Letp(ρ) = ργ

γ , 1 < γ ≤ 5
3. Let

|h(x, t)| ≤ α

1 + t
, whereα <

2 − γ

2(γ − 1)M̄
, hereM̄ denotes the bound of u(x,t). Letε and

δ be related as

2Mε = δγ , (3.12)

whereM is the bound of|δuδ
o,x| given in (3.4), then

ux ≤ ργ−1

2ε
, ρ ≥ ε

1
γ−1 (1 + t)−

1
γ−1 , 1 < γ ≤ 5

3
. (3.13)

Proof. Substituting the first equation in (3.1) into the second, we get

ut + uux + ργ−2ρx = εuxx + 2ε(lnρ)xux.

Differentiating this with respect tox, we have

(ux)t + u2
x + uuxx + ργ−1(lnρ)xx + (γ − 1)ργ−2(lnρ)x =

εuxxx + 2ε(lnρ)xxux + 2ε(lnρ)xuxx. (3.14)

Let

v = ux − ργ−1

2ε
,

then
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vt +
(
u − 2ε(lnρ)x

)
vx +

(
v +

3 − γ

2ε
ργ−1 − 2ε(lnρ)xx

)
v + (3.15)

+
2 − γ

4ε2
ρ2(γ−1 +

(γ − 1)(2− γ)
2

ργ−3ρ2
x − γ − 1

2ε
(h(x, t))ργ−1u = εvxx,

resulting from (3.14) with the aid of the first equation in (3.1). Moreover

v|t=0 = uδ
0,x − (ρδ

0)
γ−1

2ε
≤ 0, (3.16)

sinceδ|uδ
0,x| ≤ M and the relation (3.12) betweenε andδ.

First, we have from the local solution (Lemma 5),ρ ≥ δ

2
and the boundedness of

h(x, t),

2 − γ

4ε2
ρ2(γ−1) − γ − 1

2ε
h(x, t)ργ−1u ≥ ργ−1

2ε

(2 − γ

2ε
(
δ

2
)
γ−1

− (γ − 1)αM
)

≥ ργ−1

2ε

(
(
2 − γ

2ε
)
(2Mε)

1
γ

2γ−1
− (γ − 1)αM

)
≥ 0 (3.17)

whenε is sufficiently small andγ ∈ (1, 5
3). Thus we have from (3.15),

vt +
(
u − 2ε(lnρ)x

)
vx +

(
v +

3 − γ

2ε
ργ−1 − 2ε(lnρ)xx

)
v ≤ εvxx. (3.18)

Applying the maximum principle to (3.16), (3.18) we havev ≤ 0 and soux ≤ ργ−1

2ε
.

Using the first equation in (2.2), we get

ρt + ρux + ρxu + h(x, t)ρu = ερxx.

Then

ρt +
ργ

2ε
+ ρxu + αM̄ (1 + t)−1ρ ≥ ερxx.

Let
χ = ρ1−γ ,

then

χt +
1 − γ

2ε
+ χxu + (1− γ)αM̄ (1 + t)−1χ ≤ εχxx.

Let
Υ = χ(1 + t)α(1−γ)M̄ ,

then

Υt +
1 − γ

2ε
(1 + t)α(1−γ)M̄ + Υxu ≤ εΥxx.

Let

� = Υ +
1 − γ

2ε(1 − α(γ − 1)M̄ )
(1 + t)1−α(γ−1)M̄ ,

then
�t + u�x ≤ ε�xx.
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Thus

� ≤ sup �0(x) = sup Υ (0, x) +
1 − γ

2ε(1 − α(γ − 1)M̄ )

= δ1−γ +
1 − γ

2ε(1 − α(γ − 1)M̄ )
= (2Mε)

1−γ
γ +

1 − γ

2ε(1 − α(γ − 1)M̄ )

=
1
ε

(
(2M )

1−γ
γ ε

1
γ − γ − 1

2(1− α(γ − 1)M̄ )

)
≤ 0,

if 1 − α(γ − 1)M̄ >
γ

2
(for 1 < γ ≤ 5

3) andε is small enough. Therefore

Υ ≤ γ − 1

2ε(1 − α(γ − 1)M̄ )
(1 + t)1−α(γ−1)M̄ ≤ 1

ε
(1 + t)1−α(γ−1)M̄ .

Then

χ ≤ 1 + t

ε
,

and so
ρ ≥ ε

1
γ−1 (1 + t)−

1
γ−1 .

Noticing from above

2 − γ

2ε
ργ−1 − (γ − 1)h(x, t)u

≥ 2 − γ

2ε

ε

(1 + t)
− (γ − 1)α(1 + t)−1M̄

≥ 0,

if 1−α(γ−1)M̄ > γ
2 . So (3.17) is still true. Therefore we obtain the proof of Lemma 7.

�

Lemma 6 and Lemma 7 give us the following existence lemma

Lemma 8 (Global Existence of 3.1, 3.2).If the conditions in Theorem 2 are satisfied,
then for any fixedε and δ related as in (3.12), there exists a smooth solution for the
Cauchy problem (3.1), (3.2) inRT = R × [0.T ] (T is an arbitrary positive constant)
which satisfies the estimates (3.11) and (3.13).

Now using the framework given in [1] and [4] ends the proof of Theorem 2.

4. Proof of Theorem 3

In this section, we consider the extended river flow equation (1.3) and give a proof of
Theorem 3. Adding the artificial viscosity to (1.3) we have

ρt + (ρu)x = ερxx

(ρu)t + (ρu2 + p(ρ))x + a(x)ρ + cρu|u| = ε(ρu)xx

 . (4.1)
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We are going to study the Cauchy problem (4.1) with the initial data(
ρ(x, 0), ρ(x, 0)u(x, 0)

)
=

(
ρδ

0(x), ρδ
0(x)uδ

0(x)
)
, (4.2)

where (
ρδ

0(x), uδ
0(x)

)
=

(
ρ0(x) + δ, u0(x) ∗ Gδ

)
andGδ is a mollifier. Then (

ρδ
0(x), uδ

0(x)
) ∈ C∞ × C∞

and
δ ≤ ρδ

0(x) ≤ M (4.3)

for some positiveM from Assumptions 1 and 2 in Theorem 3. In addition

δ|uδ
0,x(x)| ≤ M

|ρδ
0,x(x)| ≤ M (δ) , |uδ

0,x| ≤ M (δ)

|ρδ
0,xx(x)| ≤ M (δ) , |uδ

0,xx| ≤ M (δ)


(4.4)

for a suitable positive constantM (δ) depending onδ. The relation betweenε andδ is
given by (3.12). As stated in the beginning of Sect. 2, we only need to obtain the existence
of viscous solutions and related estimates for the Cauchy problem (4.1) , (4.2). Similar
to Lemma 5 in Sect. 3, we have

Lemma 9 (Local Existence of (4.1) , (4.2)).Let the initial data (4.2) satisfy the condi-
tions (4.3), (4.4), then for any fixedε andδ, there exists a smooth solution for the Cauchy
problem (4.1) , (4.2) in someRs = R × [0, s], which satisfies

ρ(x, t) ≥ δ
2 , ρ(x, t) + |u(x, t)| ≤ 3M

|ρx|, |ρxx|, |ux|, |uxx| ≤ 2M (ε, δ)

 . (4.5)

Lemma 10 (A Priori Upper Bound Estimate). Letp(ρ) = ργ

γ , γ > 1 . If |a(x)| ≤ M

, c ≥ 0, w0(x) ≤ M1, z̄0(x) ≤ M1 (z̄ = −z), then

w(x, t) ≤ M1 + Mt , z̄(x, t) ≤ M1 + Mt (4.6)

Proof. Multiplying (wρ, wm) and (z̄ρ, z̄m) respectively to the system (4.1), wherew, z
(z̄ = −z) are given in (1.4), we have

wt + λ2wx + a(x) + c|u|
2 (w − z̄) = εwxx − (γ+1)ε

2 ρ
γ−5

2 ρ2
x

≤ εwxx

z̄t + λ1z̄x − a(x) + c|u|
2 (z̄ − w) = εz̄xx − (γ+1)ε

2 ρ
γ−5

2 ρ2
x

≤ εz̄xx


, (4.7)
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whereλ1 andλ2 are the eigenvalues of system (1.3) just like in (3.10).
Making a transformation

w = X − Mt , z̄ = Y − Mt,

whereM is the bound ofa(x), we have from (4.7),

Xt + λ2Xx + c|u|
2 (X − Y ) ≤ εXxx

Yt + λ1Yx + c|u|
2 (Y − X) ≤ εYxx

 (4.8)

with
X|t=0 = w|t=0 ≤ M1 , Y |t=0 = z̄|t=0 ≤ M1. (4.9)

Thus the Lemma 2.4 in [18] applied to (4.8), (4.9) gives the proof of Lemma 10.�

Lemma 10 gives us the upper bound of (ρ, u) :

0 ≤ ρ ≤ M (T ) , |u| ≤ M (T ). (4.10)

Lemma 11 (A Priori Lower Bound Estimate). Let the conditions in Lemma 10 be sat-
isfied. Letγ ∈ (1, 5

3], a′(x) ≥ 0 . Then

ux ≤ ργ−1

2ε
, ρ ≥ ( ε

c1 + c2t

) 1
γ−1

(4.11)

for the positive constantc1, c2 being independent ofε, δ.

Proof. We need only to prove the first part of (4.11), the second inequality follows from
the proof of Lemma 7 directly (or see [20]).

Substituting the first equation in (4.1) into the second and lettingv = ux − ργ−1

2ε , we
have

vt +
(
u − 2ε(lnρ)x

)
vx +

(
v +

3 − γ

2ε
ργ−1 − 2ε(lnρ)xx

)
v ≤ εvxx.

The proof ends by following the proof in Lemma 7. �

Lemma 10 and Lemma 11 give us the following existence lemma.

Lemma 12 (Global Existence of (4.1), (4.2)).If the conditions of Theorem 2 are sat-
isfied, then for any fixedε andδ related as in (3.12), there exists a smooth solution for
the Cauchy problem (4.1), (4.2) inRT = R× (0, T ] (T is an arbitrary positive constant)
which satisfies the estimates (4.10), (4.11).

Now we have set ourselves up to finish by using the framework as given in [4] or [1]
which ends the proof of Theorem 3.
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