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Abstract: Existence of solutions to three different systems of Egs. (1.1), (1.2) and (1.3)
coming from physically relevant models is shown, each needing a different proof which
are givenin Sects. 2, 3 and 4. The unifying theme is the presence of source terms and the
general method of proof is vanishing viscosity together with compensated compactness.
For system (1.2) entropy-entropy flux pairs of Lax type are constructed and estimates
from singular perturbation theory of ODEs are used. For (1.1) and (1.3) weak entropy-
entropy flux pairs are constructed following the compensated compactness framework
set up by Diperna [4].

1. Introduction

In this paper we consider the Cauchy problem for an extended model of isothermal flow
[15]:

pt + (pu)z + h(z,t)pu =0
; (1.1)

(pw)e + (pu? + p(p))s + h(z, )pu® =0
wherep is the densityu the velocity,p = p(p) is the pressure. For the special case

/
he.t) = 2
a\xr
area of a variable duct.

We also consider the related system

the functiona (which depends om only) represents the cross-sectional

(ap) + (apu)e =0

, , (1.2)
e [P, <o
0

S



328 C. Klingenberg, Y.-g. Lu

wherea = a(zx). Fora(z) = 1, system (1.2) was first derived by S. Earnshaw [5] for
isentropic flow (see also [22], p. 168).

!/
Systems (1.1) fok(z, t) = a (x)) and (1.2) are of interest because resonance occurs.
a\xr
This means there is a coincidence of wave speeds from different families of waves. To
see this, we may augment either system by the equation

atZO.

Thus one wave of the augmented system has zero wave 3peed. One of the
other waves may have coinciding wave speed in the transsonic regime:

M(@) =X with V- Ry |570.

(HereR,, is an eigenvector and = (&, &, 5i), thus we may have non-linear resonance.)
Finally, we consider an extended river flow equation [22]

« =0
pt + (pu) 1.3)

(pu)e + (pu® + p(p))z + ala)p + cpulu| =0

System (1.3) also appears in the paper [12], where the funetigrcorresponds phys-
ically to the slope of the topography ang|u| to a friction term.

T.P. Liu studied existence and qualitative behaviour of solutions for near constant
data to resonant systems of this type by using Glimm’s random choice method [15, 16].
In [7] Glimm, Marshall and Plohr solved (1.1) numerically by using the random choice
method. In [6] Embid, Goodman and Majda considered steady state solutions to varying
channel flow. Recently in [8], Isaacson and Temple solved the Riemann problem for
a general inhomogeneous system of this type. Our interest in studying this resonant
problem is motivated by their papers.

Remark 1.After announcing Theorem 1 and 2 at the Conference on Hyperbolic Prob-
lems in Stony Brook in 1994 (as set down in our preprint [10]), we learned that inde-
pendently Chen and Glimm had arrived at a theorem related to our Theorem 2, namely
a'(z)
a\xr
of proof involves approximating the solution with a Godunov scheme which incorpo-
rates the steady state solutions. In our proof of Theorem 2 the viscosity method is used.
Here the main difficulty was to find upper bound estimagegs«(¢) and positive lower
bound estimateg® > (¢, €) > 0O for this viscous approximation.

Our Theorems 1 and 3 are not touched in [2].

existence of solutions to (1.1) witk(x, t) =

(see their preprint [2]). Their method

Theorem 1 (Existence of Solutions to (1.2))Let

l.a(x) > ¢ > 0 are bounded and nondecreasing (or nonincreasingiRowherec is a
constant.

2. wo(z) < M, zo(z) > 0 (or wo(x) < 0, zo(x) > —M), where

w:u+/p#ds z:u—/pﬁds (1.4)
0 0
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are two Riemann invariants of the systems (1.1), (1.2), (1.3). Wevs(39 = w|s=o0,
z0(z) = 2i=o-

3.9(p) = —Vpp/(”) € C%0,00),g >d > 0,g > 0for p > 0, whered is a positive
constant.

Then the Cauchy problem (1.2) with bounded initial dgtau)|:=o0 = (po(x), uo(x)),
(po(z) > 0) has a global weak solution in the sense of distributions.

Remark 2.For the special choice g{p) = fp 2(p+6)3ds (y > 3,8 > 0) (see[17]),
assumption 3 in Theorem 1 is satisfied.

Theorem 2 (Existence of Solutions to (1.1))Let

1. h(x,t) be continuous, boundedmnx R*, hi(x,t) > 0 (or h(z,t) < 0) and|h(z,t)| <
a(1+t)~1, wherea is a positive constant depending on the bound of the initial data.
2wo(z) < M, 20(x) > 0 (or wo(z) <0, 20(x) > —M); po(z) > 0.

3p(p)=p7, 1<y <3

Then the Cauchy problem (1.1) with bounded initial dgsapu)|:=0 = (po(a:), po(z)
uo(x)) (wherepo(x) > 0) has a global weak solution.

Remark 3.: Assumption 2 in Theorem 2 without brackets refers to supersonic flow,
with brackets to subsonic flow.

Theorem 3 (Existence of Solutions to (1.3))Let
1.|a(z)| < M, d'(x) > 0, and let ¢ be a nonnegative constant.
2wo(z) < M, zo(x) > =M , po(z) > 0.
Y
3-p(p)=%,1<v§ 2.
Then the Cauchy problem (1.3) with bounded initial désapu)|:=0 = (po(x), po(x)
uo(x)) (wherepo(x) > 0) has a global weak solution.

Remark 4.All the existence Theorems 1, 2, 3 above include the vacuum/case

2. Proof of Theorem 1

We rewrite system (1.2) in the form:

pr+(pu): =-— Z((;)) pu

2 p
up + (u +/ sgz(s)ds> =0
2 0 T

with g given in assumption 3 of Theorem 1. First smoothiiig) by a mollifier, we get
a’(x) € C*(R),c < a’(x) < M,0< §(a’(x)) < M (or —M < §(a’(x))’ < 0) by
assumption 1 in Theorem 1, anéi(z) — a(x), a.e. in any compact set of R &s— 0.
Adding viscosity terms to the right-hand side of the system (2.1) yields the following
parabolic system:

2.1)

@@ oo
a’(x) w 2.2)

€)2
ue (CE A+ fNe = euen

Pt (Pu)e =—
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with the initial data
(p67 ue)tZO = (Po(x)» uo(w))v (23)

wheref(p) = [y sg?(s)ds .

Lemma 1. If the conditions in Theorem 1 are satisfied and the solutigrisu¢) of
the Cauchy problem (2.2) , (2.3) existihx [0, T], then(p¢, u¢) satisfy the following
estimates:

w(pSu) <M, 2(pu)=0 . p°=0 (2.4)
or
w(pe7ue) < 0 ) z(pe’us) > -M ) pe > 07 (25)

where w and z are the Riemann invariants.

Proof. If (a®)'(x) > 0, we have from (2.2),

wy + (u + /(%)) we

/ € € 2 (a’é)/ €
Wy — €9 (P)(P )" — ?U V' (p°)
5y Sy pe
cwne VTG = VT [ ot

ad

IN

!/ € ey 2 (aé)l €
€z + €9 (p)(P )" + T LV P'(p°)
5y Y €
> et O+ SN [ ateas

a a

(@) o
= A VP (p%)z. (2.6)

So the second equation in (2.6) and the maximum principle [18] give the estimate
z > 0 first and then we have from the first equation in (2.6) that

wy + (U +/P(p))wy < Wy, (2.7

so applying the maximum principle again to (2.7), we obtair M. p¢ > 0 is trivial
by the first equation in (2.2). O

2+ (U — /D' (0)) 20

Similarily we can get the estimates (2.5)df)' (x) < 0, thus ending the proof of
Lemma 1.

Using the general contraction mapping principle and the estimate (2.4) or (2.5) we have

Lemma 2. If the conditions in Theorem 1 are satisfied, then for any fixed 0, the
Cauchy problem (2.2), (2.3) has a unique global solufjen «€), satisfying

)
OS/ VD'(s)sds <ut < M
0
or

pe
M <ut< —/ \/p'(s)sds < 0.
0
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Remark 5.Dropping the zer8 order term from the right hand side of (2.1) yields the
system of conservation laws

prt(pu)s =0

P
ug + (uz +/ sgz(s)ds> =0
0 z

Noticing the system (2.8) has a strictly convex entropy

1 2 14 Y 2
n=su+ g-(s)dsdy,
2 0 JoO
we deduce that

V€D p© , /€D u are uniformly bounded ih? (R x RY).

loc

(2.8)

From Remark 5 and the boundednessf (<), we have

Lemma 3. For anyC? entropy-entropy flux pai¢;(p, u), ¢(p, 1)) of the system (2.8)
n(p¢, u)s + q(p°, uc), is compact inf, }(R x R*)

with respect to the vicosity solutiofs®, u.<) of the Cauchy problem (2.2), (2.3).

Lemma 3 guarantees the commutativity relation for the representing measure to be
true. We are going to construct the entropy-entropy flux pairs of Lax type and give their
desired estimates by using the theory of singular perturbations of ordinary differential
Egs. [19].

We recall that a pairrf, q) of real-valued maps is an entropy-entropy flux pair of
(2.8) if all smooth solutions of (2.8) satisfy

(unnp + ' (P)us p11p + unu) = (@ps qu) - (2.9)
Eliminating theq from (2.9), we have

f'(p)
77[)[) = P) Nuw . (210)
We choose special Lax entropies
wl(u /B K k:
771% = ek (u,p) (oz(p) + 7(/]1 ))’

(herek € N andw is defined in (1.4)) and and 3 are to be determined below. Now
substitutey} into (2.10),

1/

k[2g(p)a’ + g'(p)al + o +s9(p) B + g (p) 3 + % =0.

Since this should hold fdt € N, we have

29(p)a’ +g¢'(p)a =0, (2.11)
1/
o +29(p)B +g'(p)B + - =0 (2.12)
then )
a=g 2.

The existence ob and the uniformly bounded estimates @fand 5’ w.r.t. k can be
obtained by (2.11), (2.12) and the following Lemma [21], also referred to in [9], p. 114.
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Lemma 4. LetY(z) € C?[0, h] be solutions of the equation
F(z,Y,Y') =0,

and let functionsf(x, y, (, A), F(z,Y,Y’) be continuous on the regiols< z < h,
ly — Y(z)| <(z),|¢ - Y'(x)] < m(x)for some positive functiorigr) andm(z) and
Ao > A > 0. In addition

|f($,y7C,A)*F(I'7y,§)| S €
‘F(x7y27c)_F(z7y17<)| < M‘y2_y1|7
F(xay7<2)7F(:E7y7Cl) > I

G2—C

for some positive constants M, L. If y = y(x, A) is a solution of the following ordinary
differential equation of second order:

N+ fx,y,y' N =
with (0) = Y(0) andy’(0) being arbitrary, then for sufficiently small > 0, ¢ > 0 and
= |¢'(0) — Y(0)|, y(z) exists for all0 < = < h and satisfies

9N Y@ < [5G+ 17)

] JLIT

whereN = max|Y"(z)| for 0 < z < h.

Using (2.9), we have

qp = f/(p)nu + 7,
Gu = PNp F UPy.

Then a progressing wave of the system (2.9) is provided by

o= Foag)+ 100
i+ = (u+\/p'<p>)ni+e’““f("“k‘“+"5k2‘5 )

In a similar way we can obtain the other entropy-entropy pairs of Lax type as follows:

772—]9 - —kw( ( )+ ﬁl(pa k))
¢ = (u+ \/m)nik sk (2 _kpo‘ e ;2”51)7
Ro= Fag)+ 20N

B o= e (P
k
nik — 7’62( ( )+ﬁ3(p7 ))

gz —po Bz — pf
e = @@=Vt +e kp + 3k2p 2,
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whereg; (i=1,2,3) satisfy respectively

o —2g(p)B1 — g(p)Br + % =0, (2.13)
o~ 2065~ o2+ =0, (214)
o’ +29(p)35 + g(p)Bs + %3 = 0. (2.15)

Using Lemma 4, we can get from (2.15) the existencgsadnd its uniformly bounded
estimate w.r.tk. Differentiating (2.15) with respect to, we can obtain the uniformly
bounded estimate of; w.r.t. k. By making the transformatiops = p — M in the
Egs. (2.14) and (2.13), where M is the upper boung, @fe also obtain existence 0f,
B2, B and g} by using Lemma 4.

By Assumption 3 of Theorem 1,

1
a—pa =g+ épg‘gg’ > 0.

Thus system (1.2) is genuinely nonlinear. Thus we end the proof just as in Sect. 4 of [17],
where the framework of Diperna [3] gets applied to a non-strictly hyperbolic system.

3. Proof of Theorem 2

In this section, we give a proof of Theorem 2. Following the framework given by Diperna
[4] and Chen [1], the only work we need to do is to obtain the existence of the viscosity
solutions and related estimates for the Cauchy problem

Pt + (pu)m = €Pxx — h(xa t)pu

(3.1)
(pu)e + (pu? + £2) | = elpu)pr — h(z, t)pu’
with the initial data
(p(x,0), p(x, O)u(z, 0)) = (p§(x), p(a)ud(x)), (3.2)

where

(oB(@), ub(@)) = (@) T +077) G%) 7 (uo(a) + f(9)) + G7)  (33)

with £(8) a function ofs given in (3.6) or (3.7) angf(§) — 0 asé — 0. HereG? is a
mollifier. Then

(0(@), u(@)) € C> x €,
and

py(x) =06 . pR(@) +|ug(e) < M

5|u‘3I(JU)| <M
® : (3.4)

P @] <ME) , |uf,| < M)

108, @)| < ME@) , |uf,.| < M)
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where M denotes a positive constarit/(§) a positive constant depending onThe
relation betweer ands is given in (3.12).
Whenh(x,t) > 0, we assumeg(xz) > 0 as Assumption 2 in Theorem 2, then

p5(x) (s 2 Y-l
2= w@- [ e = - (W)
0 s Y-
- s 2 e 2 o
= ug(x) * G0+ f(0) = — = (po(e) T xG) — —=5T  (35)
v—1 v—1
= o) * O+ (0) — 07T 20,
v—-1
if we let
2 1
f0)= 7. (3.6)
v—1
Whenh(z,t) < 0, we assume(x) < 0, then
%=wwwwﬁ+ﬂ®+7igf%sa
if we let )
f6)=——"5677. 3.7)
v—1

Lemma 5 (Local Existence of (3.1) , (3.2))Let the initial data (3.2) satisfy the condi-
tions (3.3), (3.4), then for any fixedndJ, there exists a smooth solution for the Cauchy
problem (3.1), (3.2) in som&; = R x [0, s], which satisfies

pa)> 2 L plet)+ e ) < 21 (3.8)
|Pz|a |P:cx|a |ux|, |ux:c| < 2M(e, 0).

The proof of the lemma can be obtained by applying the general contraction mapping
to an integral representation of (3.1). The global existence is based on the local existence
and an aprioriL>° estimate of f,u) and a lower bound estimate pfby using the
maximum principle (Lemma 7). These estimates are carefully given in [20].

.

Lemma6. Letp(p) = 2, v > 1. 1f h(z,t) > 0, zo(z) > 0 andwo(z) < M, (or
Y

hz,t) < 0,20 > —M, wg < 0), thenz(p,m) > 0andw(p,m) < M (m = pu) (or

z>—M,w <0).

Proof. Multiplying (w,, ws,) and ¢, z,,) respectively to the system (3.1), whevez
are given by (1.4), we have

wi + Awy (3.9)
e(y+1)
2

2 . . 1
W+ = pre PR~ b Opu( = 50T — e,

IN

2 _
EWgy + jpwwm - h(l‘, t)prlZ
P

and
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2t + A2y

e(y+1) 15 m =3 1
Aj;*pZPi—Maﬂmd—;g—pz)—h@imf;

€Zpy T —Pr2y T
p
2 _
> ezgt Spzy + o, T 2, (3.10)
p

wherel; = u++/p'(p) , A1 = u— /p’(p) are two eigenvalues of the systems (1.1), (1.2),
(1.3).

Sincez(x) > 0 from (3.5), we have > 0 by applying the maximum principle to
(3.10). So we have from (3.9),

€
Wy + >\2wr S EWyxy + — P Wy,
p
and thusw < M. We can similarily get the estimates> —M , w < 0 if h(z,t) < 0.
Lemma 6 is proven. [

Lemma 6 gives us the uniform boundednesspof.f,
2 =1 2 =1
0<——p 7 <u<<M or —M<u<———p7. (3.12)
v—-1 -1

To get the global existence of (3.1), we still need a lower, positive boupdwé follow
the method given in [20] to prove it.

Lemma 7. Let the conditions in Lemma 6 be satisfied. hgf) = %, 1<y < % Let

« -
Mz, t)| < —,whereo < ————,
.0l < 1735 20y — )M
0 be related as

here)M denotes the bound of u(x,t). Leeind

2Me =67, (3.12)

where)/ is the bound ofsu; | given in (3.4), then

~y—1

5
p>eri(l4t)y 71, l<y< o . (3.13)

Uy < 3

— 26 )
Proof. Substituting the first equation in (3.1) into the second, we get
Up + Uty + P72y = €Uy + 26(Inp) s

Differentiating this with respect to, we have

(ug)y + U2 +ug, + p' " H(Inp),, + (v — D)7 *(Inp), =

€Uy + 26(INP) 1 Ua + 26(INp)  Ups. (3.14)
Let
Pt
U= e 2’

then
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v

v + (u — 26(lnp)x)vx + (U + 32;6/)7_1 — 2€(lnp)m)v + (3.15)

2—7 201, 0 —D2=1) 1-1 _
T A T A A (1G0T

4e 2
resulting from (3.14) with the aid of the first equation in (3.1). Moreover
sy7—1
o =ug, — P <0 (3.16)
’ €

sinced|uf | < M and the relation (3.12) betweernds.

First, we have from the local solution (Lemma b)> g and the boundedness of
Mz, 1),

2—7 34—y -1 Y1 prt 22—y 5770
=7 _rIr—- > hd (v —
22 P o h(z,t)p" u > o ( o (2) (v — DaM)
1
pt 2= (2Me)n
> 2¢ (( 2¢ ) 271 _(7_1)04M)
> 0 (3.17)

whene is sufficiently small and € (1, %). Thus we have from (3.15),

vy + (u - 26(lnp)x)vx + (v + 32_77/)7_1 — 2€(lnp)w)v < €Uy (3.18)
€

prt

Applying the maximum principle to (3.16), (3.18) we have< 0 and sou, <
Using the first equation in (2.2), we get

. .

prtpug + pgut h((II, t)pu = €Pzq-

Then
P’ Vi 1
pe + ? +pxu+on(l +t)_ P = €Prx-
€
Let
x=p"7
then
Xe+ T xat+ (L= 7)ad(1+1) X < exas.
€
Let VI
T = (1 +t)*GNM
then 1 _
T+ @+ M T <
€
Let 1 i
=T+ 7 (L+)tme0= M,
2¢(1 — a(y — 1)M)
then

Q +ul2; < €Qup.
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Thus
Q < s Qo(x) =sup 7(0,z)+ 1=
u -—
= sup o P AT S~ oy — D)
_ 11—+~ 1y 11—~
= T+ =(2Me) 7 +
2ot —0i) - M) S d e — i
1 1y 1 v—1
= —(2M) ™~ ev —
(@M)€ 2(1— oy — 1)M))
< o

if1— a(y — )M > % (for 1 < v < 2) ande is small enough. Therefore

T < v 1 (1 +t)l—a('y—l)]\z < }(1 +t)1—0£(’¥—1)]\/_[_
2¢(1—a(y - 1)M) €

Then
1+¢
x < ;
€

and so ) X
p=eri(l+t) 1.

Noticing from above

2,
S0 = (- Dhlestu
€
2—’}/ € 1.7
> — — 1Dao(l+ M
> S gy (0 Dot
)

ifl—a(y— 1)]\Zf > 7.50(3.17)is still true. Therefore we obtain the proof of Lemma 7.

Lemma 6 and Lemma 7 give us the following existence lemma

Lemma 8 (Global Existence of 3.1, 3.2)If the conditions in Theorem 2 are satisfied,
then for any fixed and ¢ related as in (3.12), there exists a smooth solution for the
Cauchy problem (3.1), (3.2) iRT = R x [0.T] (T is an arbitrary positive constant)
which satisfies the estimates (3.11) and (3.13).

Now using the framework given in [1] and [4] ends the proof of Theorem 2.

4. Proof of Theorem 3

In this section, we consider the extended river flow equation (1.3) and give a proof of
Theorem 3. Adding the atrtificial viscosity to (1.3) we have

prt(pu)e = €paa
' (4.1)

(pu): + (pu? + p(p))e + alz)p + cpulu| = e(pu),,
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We are going to study the Cauchy problem (4.1) with the initial data

(p(x,0), p(z, O)u(z, 0)) = (p§(x), p(a)ud(x)), (4.2)
where
(@), ud(x)) = (po(x) + 6, uo(x) * G°)

andG? is a mollifier. Then
(h3(@), ug(x)) € O x C

and
5 < phle) < M (4.3)

for some positivel/ from Assumptions 1 and 2 in Theorem 3. In addition

dlug . (z)] <M
@) <ME) ,  |uf,| < M(E) (4.4)
Bae(@) < ME) , |uf,,| < M)

for a suitable positive constait (6) depending ord. The relation betweeaand? is

given by (3.12). As stated in the beginning of Sect. 2, we only need to obtain the existence
of viscous solutions and related estimates for the Cauchy problem (4.1) , (4.2). Similar
to Lemma 5 in Sect. 3, we have

Lemma 9 (Local Existence of (4.1) , (4.2))Let the initial data (4.2) satisfy the condi-
tions (4.3), (4.4), then for any fixec&ndd, there exists a smooth solution for the Cauchy
problem (4.1) , (4.2) in somB; = R x [0, s], which satisfies

ple, ) > 5, pla,t)+|u(z,t)] <3M
(4.5)

|pz]s |paal, Uz, [uza| < 2M (€, 6)

Lemma 10 (A Priori Upper Bound Estimate). Letp(p) = % vy > 1.0 |a(x) < M
, ¢ >0, wo(z) < My, zo(x) < My (z = —=2), then

w(r,t) < My+ Mt ,  z(z,t) < M+ Mt (4.6)

Proof. Multiplying (w,, w,,) and ¢,,, z,) respectively to the system (4.1), whesrez
(z = —z) are given in (1.4), we have

e+ dgws + a(e) + Gllw = 2) = ewy, — OGP 2
< ew,,
, @
Gt Mz —a@)+ GE-w) =, - G T 2
< €2y
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where); and ), are the eigenvalues of system (1.3) just like in (3.10).
Making a transformation

w=X— Mt z=Y — Mt,

)

whereM is the bound ofi(z), we have from (4.7),

Xp+ 200X, + X —Y) <eXo,
(4.8)

Vit MY, + Gy - X) <ev,
with
Xl=o=wl=0 < My , Yls=0= z[t=0 < M. (4.9)
Thus the Lemma 2.4 in [18] applied to (4.8), (4.9) gives the proof of Lemma 101
Lemma 10 gives us the upper bound pf) :
0<p< M) , |ul < M(). (4.10)

Lemma 11 (A Priori Lower Bound Estimate). Letthe conditionsinLemma 10 be sat-
isfied. Lety € (1, 3], a/(z) > 0. Then

pt € i
2z < > .
Uy < e , p> (Cl " czt) (4.12)

for the positive constant;, ¢, being independent af 6.

Proof. We need only to prove the first part of (4.11), the second inequality follows from
the proof of Lemma 7 directly (or see [20]).

Substituting the first equation in (4.1) into the second and lettiag:, — % we
have

’Y

v + (u — Ze(lnp)z)vz + (v + 32;6;)“’71 — 26(lnp)m)v < €Uy

The proof ends by following the proofin Lemma 7. O
Lemma 10 and Lemma 11 give us the following existence lemma.

Lemma 12 (Global Existence of (4.1), (4.2))If the conditions of Theorem 2 are sat-
isfied, then for any fixedand related as in (3.12), there exists a smooth solution for
the Cauchy problem (4.1), (4.2) Ry = R x (0, T] (T is an arbitrary positive constant)
which satisfies the estimates (4.10), (4.11).

Now we have set ourselves up to finish by using the framework as given in [4] or [1]
which ends the proof of Theorem 3.
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