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Abstract We present a well-balanced finite volume solver for the compressible Eu-
ler equations with gravity. The Riemann solver used in the finite volume method is
approximated by a so called relaxation Riemann solution. Besides the well-balanced
property, the scheme is also positivity preserving regarding the density and internal
energy. The scheme is able to capture not only isothermal and polytropic stationary
solutions of the hydrostatic equilibrium but also to preserve more general steady
states up to machine precision. The scheme is tested on numerical examples includ-
ing the preservation of arbitrary steady states and the evolution of small perturba-
tions of stationary solutions to demonstrate the properties of the designed scheme.

1 Introduction

When solving the two or three dimensional Euler equations with gravity via a fi-
nite volume discretization, we are faced with several challenges. Firstly we need
a discretization which works well at both low and high Mach numbers for the ho-
mogeneous system. Secondly we need a discretization which maintains hydrostatic
equilibria to machine precision. Finally, when combining these two methods, we
need to find a scheme that is numerically stable in more than one space dimension.
Solutions to the first challenge can be found in the literature, see e.g. in [1]. Solu-
tions to the second challenge can be found e.g. in [3, 4].
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We found experimentally, when combining these type of approaches, that typ-
ically instabilities arise when computing in more than one space dimensions. In
our numerical experiments, we found that one well-balanced method in particular
was more stable than others. In this contribution, we shall report on this method.
It is based on a relaxation approach leading to a positivity and entropy preserving
scheme which is therefore especially useful in applications. In addition it can be
extended to higher order of accuracy and to higher dimensions.

Consider the system of compressible Euler equations with gravity in one space
dimension given by the following set of equations

∂tρ +∂xρu = 0,

∂tρu+∂x(ρu2 + p) =−ρ∂xΦ,

∂tE +∂x(E + p)u =−ρu∂xΦ.

(1)

Here, ρ > 0 denotes the density, u the velocity, p the pressure and E = ρe+ 1
2 ρu2

the total energy, where e > 0 is the internal energy. The function Φ which is a
continuous function from R to R denotes the gravitational potential. The pressure
is described by a general pressure law which depends on the internal energy and
specific volume τ = 1

ρ
. We require for the solution w = (ρ,ρu,E) the density and

the internal energy to be positive. That means the state vector w must belong to the
set
{

w ∈ R3 | ρ > 0, e > 0
}

.
The paper is organised as follows. In Section 2, the relaxation method we use

is described. The approximate Riemann solver which is designed to have the well
balanced property is presented in Section 3. Section 4 is devoted to the associated
numerical scheme which is tested in Section 5 to verify the well-balancing property.

2 Relaxation

We consider the following relaxation model derived in [4] where a Suliciu-type
relaxation approach is used, see [2],

∂tρ +∂xρu = 0,

∂tρu+∂x(ρu2 +π) =−ρ∂xZ,

∂tE +∂x(E +π)u =−ρu∂xZ,

∂tρπ +∂x(ρπ +a2)u =
ρ

ε
(p(τ,e)−π),

∂tρZ +∂xρZu =
ρ

ε
(Φ−Z).

(2)

Here, the gravity Φ is approximated by a new variable Z, the pressure p by the new
variable π and a > 0 denotes the relaxation parameter.
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Since we also need the density and internal energy to be positive, we require the
state vector of the relaxation system W = (ρ,ρu,E,ρπ,ρZ) to belong to the set{

W ∈ R5 | ρ > 0, e > 0
}

.
For a given gravity function Φ, an equilibrium state for the relaxation model is

defined by
W eq = (ρ,ρu,E,ρ p(τ,e),ρΦ)T . (3)

The eigenvalues of the system are λ± = u± a
ρ

and λ u = u where the eigenvalue λ u

has multiplicity three. Following citeLeVeque2002 one finds the fields associated to
the eigenvalues are linearly degenerate and the Riemann invariants with respect to
λ± are

I±1 = u± a
ρ
, I±2 = π∓au, I±3 = e− π2

2a2 , I±4 = Z (4)

and with respect to λ u are
Iu
1 = u. (5)

In the following, let us consider a Riemann Problem as initial data with two
constant values separated by a discontinuity at x = 0

W0(x) =

{
WL x < 0
WR x > 0.

(6)

The solution, if it exists, consists of four constant states separated by contact dis-
continuities and has the following structure

WR

(x
t

;WL,WR

)
=


WL

x
t < λ−

W ∗L λ− < x
t < λ u

W ∗R λ u < x
t < λ+

WR λ+ < x
t

, (7)

where W ∗L ,W
∗
R denote the intermediate states. This leads to 10 unknowns in the Rie-

mann problem, five unknowns each for the intermediate states W ∗L,R but one obtains
only nine relations from the Riemann invariants (4) and (5), for the computations
see [9]. This leaves us with one degree of freedom to choose the 10th relation such
that the resulting scheme has the well-balanced property.

How to obtain this 10th relation will be described in the following section.

3 Well-balanced property

In the following, we will focus on steady states at rest, which are solutions of

u = 0,
∂x p =−ρ∂xΦ.

(8)
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Following [5], we write the hydrostatic solution as ρ̄ = ρcα(x), p̄ = pcβ (x), where
the constants pc,ρc are reference values at some location x = xc and α(x),β (x)
are non-dimensional functions. Since the density and the pressure are strictly posi-
tive, we require α,β > 0. These functions must satisfy the hydrostatic condition (8)
which leads to an expression for the derivative of the potential given by

∂xΦ(x) =− pc

ρc

∂xβ (x)
α(x)

. (9)

A well-balanced scheme must satisfy the discretized form of the hydrostatic
equation. Since the discretized flux derivative must exactly balance the discretized
source term a, we choose the following symmetrical discretization

πR−πL =
πc

2ρc
(βR−βL)

(
ρL

αL
+

ρR

αR

)
. (10)

Using this relation in addition to the relations gained from the Riemann invariants,
the intermediate states W ∗L,R can be determined, for details see [9]. Thus, the Rie-
mann problem of the Relaxation system completed by relation (10) has a unique
solution which is given by (7).

Using this Riemann solution one obtains an approximate Riemann solver for the
original system (1) by projecting the solution of the Relaxation system on its first
three components

weq
(x

t
;wL,wR

)
=W (ρ,ρu,E)

R

(x
t

;WL,WR

)
. (11)

The following result shows the well-balanced property of the approximative Rie-
mann solver.

Theorem 1. The approximate Riemann solver stated by (11) is well-balanced in the
sense that the initial condition on each cell i given by

ui = 0,
ρi

αi
= const.,

pi

βi
= const., (12)

is preserved.

Proof. For the proof, we refer the reader to [9]. ut

We want conclude this section by mentioning some additional properties of the
above defined Riemann solver, for detailed proof see [4].

• The approximative Riemann solver ensures the positivity of the density ρ and
the pressure p for a sufficiently large relaxation parameter a. That means start-
ing with data belonging to Ω :=

{
w = (ρ,ρu,E) ∈ R3, ρ > 0, e > 0

}
then the

solution weq( x
t ;wL,wR) also belongs to Ω .

• If one considers an entropy inequality ∂tρF(η) + ∂xF(η)u ≤ 0 for the Euler
equations with gravity where η(τ,e) denotes a specific entropy then the approx-
imative Riemann solver is consistent with the entropy inequality.
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4 Numerical scheme

In this section, we describe the numerical scheme associated with the approximative
Riemann solver developed above.

The computational domain is divided in N cells Ci = (xi−1/2,xi+1/2) with fixed
step-size ∆x. The time discretization on the interval [0,T ] is given by tn+1 = tn +
∆ t where ∆ t > 0 denotes the time step restricted by a CFL condition. Define the
approximative solution at time tn as wn(x, tn) = wn

i for x ∈
(
xi−1/2,xi+1/2

)
and the

updated state at time tn+1 as

wn+1
i =

1
∆x

∫
Ci

wn(x, tn +∆ t). (13)

Thereby wn(x, tn + t) is a sequence of the approximative Riemann solver (11) at
each interface xi+/2 given by

wn(x, tn + t) = weq(
x− xi+1/2

t
,wn

i ,w
n
i+1) (14)

for x ∈ (xi,xi+1) and t ∈ (0,∆ t).
Following the computations in [6, 7, 10], we obtain for the updated state

wn+1
i = wn

i −
∆ t
∆x

(Fi+1/2−Fi−1/2)+
∆ t
2
(Si−1/2 +Si+1/2). (15)

The approximated source term is given by

Si+1/2 =

(
0,

pc

ρc

(βi+1−βi)

∆x
1
2

(
ρi

αi
+

ρi+1

αi+1

)
,u∗i+1/2

πc

ρc

(βi+1−βi)

∆x
1
2

(
ρi

αi
+

ρi+1

αi+1

))
(16)

Defining sLR = pc
ρc

(βR−βL)
∆x

1
2

(
ρL
αL

+ ρR
αR

)
and using the formulas for the intermedi-

ate states, the numerical flux function reads

fi+1/2 =


(ρLuL,ρLu2

L +πL + sLR,(EL +πL)uL +u∗sLR)
T uL− a

ρL
> 0,

(ρ∗Lu∗,ρ∗Lu∗2 +π∗L + sLR,(E∗L +π∗L)u
∗+u∗sLR)

T uL− a
ρL

< 0 < u∗,

(ρ∗Ru∗,ρ∗Ru∗2 +π∗R− sLR,(E∗R +π∗R)u
∗−u∗sLR)

T u∗< 0 < uR− a
ρR
,

(ρRuR,ρRu2
R +πR− sLR,(ER +πR)uR−u∗sLR)

T uR− a
ρR

< 0.
(17)

5 Numerical results

In the following section two types of test cases are presented. First a well-balanced
test is performed, to verify that the initial condition, if satisfying the condition (8),
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is preserved on machine precision. The second test addresses the evolution of small
perturbations of a hydrostatic atmosphere.

Well-balanced tests

For the well-balanced tests, we consider stationary solutions for three different po-
tential functions Φ(x) = x, Φ(x) = 1

2 x2 and Φ(x) = sin(2πx) to demonstrate that the
scheme can deal with more complex gravitational fields.

For all examples, the computational domain is [0,1] and the initial velocity is
zero. All errors are given in the L1− norm and computations are performed in double
precision.

As a first example, we consider a isothermal hydrostatic atmosphere given by

ρ0(x) = exp(−Φ(x)), p0(x) = exp(−Φ(x)). (18)

In Table 1 the error in density, velocity and pressure with respect to the initial con-
dition are given. The calculations are performed on a grid with 100 and 1000 cells
respectively up to a final time Tf = 2.0. As can be seen from Table 1, the error is of
the order of machine precision and thus the hydrostatic atmosphere is preserved.

To show that the scheme can also preserve more general steady states, we con-
sider as a second test the stationary solution from [3]. For the quadratic potential
Φ(x) = 1

2 x2 a stationary solution is given by

ρ̄(x) = exp(−x), p̄(x) = (1+ x)exp(−x) (19)

which corresponds to a non-uniform temperature profile given by T (x)= 1+x. Thus
the steady state is not isothermal. The number of cells used for the calculations are
doubled for each calculation starting with 100 cells. The error in density, velocity
and pressure with respect to the initial condition are reported in Table 2. One can
see, that the initial steady state is preserved with machine precision.

Evolution of small perturbations

As a last example, taken from [8], the evolution of a small perturbation added to
an initial isothermal hydrostatic equilibrium is investigated. The initial condition on
the domain [0,1] is given by

Φ(x) = x,

ρ(x) = exp(−Φ(x)),

p(x) = exp(−Φ(x))+0.01exp(−100(x−0.5)2),

where the pressure is perturbed by a Gauß function centered in x = 0.5. The solution
is computed at time T = 0.2 with 100 cells and a reference solution using 30000
cells. In Figure 1, the pressure perturbation p(x)− p0(x) and the resulting velocity
perturbation are plotted in comparison with the initial perturbation.
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Table 1 Error in density, velocity and pressure for isothermal example using different potentials.

Φ(x) Cells density velocity pressure

x 100 1.88738E-017 3.67483E-017 2.05391E-017
1000 3.47499E-017 8.74191E-017 4.32431E-017

1
2 x2 100 3.94129E-016 3.19565E-016 6.11732E-016

1000 1.10456E-015 4.84117E-016 1.84618E-015

sin(2πx) 100 8.60422E-017 7.39687E-017 1.73749E-016
1000 1.07663E-015 5.38106E-015 1.11399E-015

Table 2 Error in density, velocity and pressure for a non-hydrostatic steady state.

Cells density velocity pressure

100 7.04991E-017 4.84102E-016 7.54951E-017
200 8.21565E-017 3.17104E-016 8.38218E-017
400 2.28983E-016 6.08430E-016 5.95357E-016
800 3.49997E-016 1.40357E-015 5.23331E-016
1600 6.12600E-016 1.22546E-015 5.05290E-016
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Fig. 1 Perturbation in pressure (left) and velocity (right).
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