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ON THE VALIDITY OF CHAPMAN–ENSKOG EXPANSIONS
FOR SHOCK WAVES WITH SMALL STRENGTH

Nabil Bedjaoui, Christian Klingenberg and Philippe G. LeFloch

Abstract: We justify a Chapman–Enskog expansion for discontinuous solutions

of hyperbolic conservation laws containing shock waves with small strength. Precisely,

we establish pointwise uniform estimates for the difference between the traveling waves

of a relaxation model and the traveling waves of the corresponding diffusive equations

determined by a Chapman–Enskog expansion procedure to first- or second-order.

1 – Introduction

We consider scalar conservation laws of the form

∂tu+ ∂xf(u) = 0 , u = u(x, t) ∈ R, t > 0 ,(1.1)

where the flux-function f : R → R is a given, smooth mapping. It is well-known
that initially smooth solutions of (1.1) develop singularities in finite time and

that weak solutions satisfying (1.1) in the sense of distributions together with a

suitable entropy condition must be sought. For instance, when the initial data

have bounded variation, the Cauchy problem for (1.1) admits a unique entropy

solution in the class of bounded functions with bounded variation. (See, for

instance, [8].) In the present paper, we are primarily interested in shock waves

of (1.1), i.e. step-functions propagating at constant speed.
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Entropy solutions of (1.1) can be obtained as limits of diffusion or relaxation

models. For instance, under the sub-characteristic condition [9]

sup |f ′(u)| < a ,(1.2)

and when the relaxation parameter ε > 0 tends to zero it is not difficult to check

that solutions of

∂tuε + ∂xvε = 0 ,

∂tvε + a
2 ∂xuε =

1

ε

(
f(uε)− vε

)
,

(1.3)

converge toward entropy solutions of (1.1). More precisely, the first component

u := limε→0 u
ε is an entropy solution of (1.1) and f(u) := limε→0 v

ε is the corre-

sponding flux. See, for instance, Natalini [11] and the references therein for a

review and references.

The Chapman–Enskog approach [2] allows one to approximate (to “first-

order”) the relaxation model (1.3) by a diffusion equation ((1.4) below). More

generally, it provides a natural connection between the kinetic description of

gas dynamics and the macroscopic description of continuum mechanics. The

Chapman–Enskog expansion and its variants have received a lot of attention, from

many different perspectives. For recent works on relaxation models like (1.3),

Chapman–Enskog expansions, and related matters we refer to Liu [9], Caflisch

and Liu [1], Szepessy [13], Natalini [11], Mascia and Natalini [10], Slemrod [12],

Jin and Slemrod [6], Klingenberg and al. [7], and the many references therein.

Our goal in this paper is to initiate the investigation of the validity of the

Chapman–Enskog expansion for discontinuous solutions containing shock waves.

This expansion is described in the literature for solutions which are sufficiently

smooth, and it is not a priori clear that such a formal procedure could still be

valid for discontinuous solutions. This issue does not seem to have received the

attention it deserves, however. Note first that, by the second equation in (1.3),

we formally have

vε = f(uε)− ε
(
∂tvε + a

2 ∂xuε
)

= f(uε)− ε
(
∂tf(uε) + a

2 ∂xuε
)
+O(ε2)

= f(uε)− ε
(
−f ′(uε) ∂xf(uε) + a

2 ∂xuε
)
+O(ε2) ,

as long as second-order derivatives of the solution remain uniformly bounded in ε.

Keeping first-order terms only, we arrive at the diffusion equation

∂tuε + ∂xf(uε) = ε ∂x
(
(a2 − f ′(uε)

2) ∂xuε
)
.(1.4)
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This expansion can be continued at higher-order to provide, for smooth solutions

of (1.3), an approximation with higher accuracy. When solutions of (1.3) cease

to be smooth and the gradient ∂xuε becomes large, the terms collected in O(ε
2)

above are clearly no longer negligible in a neighborhood of jumps. The validity of

the first-order approximation (1.4), as well as higher-order expansions in powers

of ε, becomes questionable.

The present paper is motivated by earlier results by Goodman and Majda [3]

(validity of the equivalent equation associated with a difference scheme), Hou and

LeFloch [5] (difference schemes in nonconservative form), and Hayes and LeFloch

[4] (diffusive-dispersive schemes to compute nonclassical entropy solutions).

In these three papers, the validity of an asymptotic method is investigated for

discontinuous solutions, by restricting attention to shock waves with sufficiently

small strength. This is the point of view we will adopt and, in the present pa-

per, we provide a rigorous justification of the validity of the Chapman–Enskog

expansion for solutions containing shocks with small strength.

Specifically, restricting attention to traveling wave solutions of the relaxation

model (1.3), the first-order approximation (1.4), and the associated second-order

approximation (see Section 2 below), we establish several pointwise, uniform

estimates which show that the first- and the second-order approximations ap-

proach closely the shock wave solutions of (1.3) with sufficiently small strength.

See Theorem 3.2 (for Burgers equation), Theorem 4.2 (general conservation laws),

and Theorem 5.1 (generalization to second-order approximation). In the last sec-

tion of the paper, we discuss whether our results are expected to generalize to

higher-order approximations.

2 – Formal Chapman–Enskog expansions

2.1. Expanding vε only

In this section we will discuss two variants to derive a formal Chapman–

Enskog expansion for (1.3), at any order. We begin by plugging the expansion

v =
∑∞

k=0 ε
k vk into (1.3) while keeping u fixed. We obtain

∂tu +
∞∑

k=0

εk ∂xvk = 0 ,

∞∑

k=0

εk ∂tvk + a2 ∂xu =
f(u)

ε
−

∞∑

k=0

εk−1 vk .
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The second identity above yields

f(u) = v0 ,

∂tv0 + a
2 ∂xu = −v1 ,

∂tvk = −vk+1 , k ≥ 1 ,

which determines v0 = f(u) and, for k ≥ 1, vk = (−1)
k ∂k−1t (∂tf(u) + a

2 ∂xu),

while the function u is found to satisfy

∂tu+ ∂xf(u) = −∂x

∞∑

k=1

(−ε)k ∂k−1t

(
∂tf(u) + a

2 ∂xu
)
.(2.1)

For instance, to first order we find

∂tu+ ∂xf(u) = ε ∂x
(
∂tf(u) + a

2 ∂xu
)
,(2.2)

and to second order

∂tu+ ∂xf(u) = ε ∂x
(
∂tf(u) + a

2 ∂xu
)
− ε2 ∂xt

(
∂tf(u) + a

2 ∂xu
)
.(2.3)

The corresponding traveling wave equation satisfied by solutions of the form

u(x, t) = u(ξ) , ξ := (x− λ t)/ε

read

− λu′ + f(u)′ =
∞∑

k=1

λk−1
(
(−λ f ′(u) + a2)u′

)(k)
.(2.4)

To first order the traveling wave equation is

− λu′ + f(u)′ =
(
(−λ f ′(u) + a2)u′

)′
(2.5)

and to second order

− λu′ + f(u)′ =
(
(−λ f ′(u) + a2)u′

)′
+ λ

(
(−λ f ′(u) + a2)u′

)′′
.(2.6)

2.2 – Expanding both uε and vε

One can also expand both uε and vε, as follows:

uε = u0 + ε u1 + ... = u0 +
∞∑

k=1

εk uk ,

vε = v0 + ε v1 + ... = v0 +
∞∑

k=1

εk vk .
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The solution at kth-order is defined by

ũk := u0 + ε u1 + ...+ ε
k uk .(2.7)

We also set

ṽk := v0 + ε v1 + ...+ ε
k vk .(2.8)

To first order, one can write (1.3) as

∂tu0 + ε ∂tu1 + ∂xv0 + ε ∂xv1 +O(ε
2) = 0 ,

∂tv0 + ε ∂tv1 + a
2 (∂xu0 + ε ∂xu1) +O(ε

2)

=
1

ε

(
f(u0) + ε f

′(u0)u1 − v0 − ε v1
)
+O(ε) ,

which yields the following equations:

f(u0)− v0 = 0 ,

∂tu0 + ∂xv0 = 0 ,

∂tu1 + ∂xv1 = 0 ,

∂tv0 + a
2 ∂xu0 = f ′(u0)u1 − v1 .

Thus

∂tu0 + ∂xf(u0) = 0 ,

∂tu1 + ∂x
(
f ′(u0)u1 − ∂tv0 − a

2 ∂xu0
)
= 0 .

Therefore, the first-order, Chapman–Enskog expansion leads us to

∂tũ1 + ∂xf(ũ1) = ∂t(u0 + ε u1) + ∂x
(
f(u0) + ε f

′(u0)u1
)

= ε (∂xtv0 + a
2∂xxu0)(2.9)

= ε (a2∂xxu0 − ∂ttu0) .

Using that ∂tu0 = −∂xf(u0) we get

∂tũ1 + ∂xf(ũ1) = ε ∂x
(
(−f ′(u0)

2 + a2) ∂xu0
)
+O(ε2) .

Neglecting the terms in O(ε2) we may consider that ũ1 = u0 + ε u1 is a solution

of

∂tũ1 + ∂xf(ũ1) = ε ∂x
(
(−f ′(ũ1)

2 + a2) ∂xũ1
)
.(2.10)
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By a similar, but more tedious calculation we can also derive the diffusive

equation at second-order. Using (2.7) and (2.9), we have

∂tũ2 + ∂xf(ũ2) = ∂tũ1 + ε
2 ∂tu2 + ∂x

(
f(ũ1) + ε

2 f ′(ũ1)u2
)

= ε
(
a2∂xxu0 − ∂ttu0

)
+ ε2

(
∂tu2 + ∂x(f

′(ũ1)u2)
)
.

But, the second order expansion in (1.3) gives

∂tu2 + ∂xv2 = 0 ,

∂tv1 + a
2 ∂xu1 = f ′(ũ1)u2 − v2 ,

and we get

∂tũ2 + ∂xf(ũ2) = ε
(
a2 ∂xxu0 − ∂ttu0

)
+ ε2 ∂x

(
f ′(ũ1)u2 − v2)

)

= ε
(
a2 ∂xxu0 − ∂ttu0

)
+ ε2 ∂x

(
∂tv1 + a

2 ∂xu1
)

= ε
(
a2 ∂xxu0 − ∂ttu0

)
+ ε2

(
−∂ttu1 + a

2 ∂xxu1
)
.

Finally, since ũ1 = u0 + ε u1 we conclude that, to second order,

∂tũ2 + ∂xf(ũ2) = ε
(
a2∂xxũ1 − ∂ttũ1

)
.(2.11)

In exactly the same manner we have, for n ≥ 1,

∂tũn + ∂xf(ũn) = ε
(
a2 ∂xxũn−1 − ∂ttũn−1

)
,

so that

∂tũn + ∂xf(ũn) = ε
(
a2∂xxũn − ∂ttũn

)
+O(εn+1) .(2.12)

In general, the nth-order equation is obtained by replacing ∂ttũn−1 by derivatives

with respect to x to obtain an equation of the form

∂tũn + ∂xf(ũn) =
n∑

k=1

εkHk(ũn, ∂xũn, ..., ∂
k+1
x ũn) .(2.13)

We will refer to this expansion as the Chapman–Enskog expansion to nth order.

So let us for instance derive in this fashion the second order equation satisfied

by ũ2. We have first

∂ttũ1 = ∂t(∂tũ1)

= ∂t

(
−∂xf(ũ1) + ε ∂x

(
(a2 − f ′(ũ1)

2) ∂xũ1
))

(2.14)

= −∂x
(
f ′(ũ1) ∂tũ1

)
+ ε ∂xt

(
(a2 − f ′(ũ1)) ∂xũ1

)
.
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Then setting

g′1(u) = a2 − f ′(u)2 and g′2(u) = (a
2 − f ′(u)2) f ′(u) = g′1(u) f

′(u) ,

we get

∂ttũ1 = −∂x

(
f ′(ũ1)

(
−f ′(ũ1) ∂xũ1 + ε ∂xxg1(ũ1)

))
+ ε ∂xxtg1(ũ1) +O(ε

2)

= ∂x
(
f ′(ũ1)

2 ∂xũ1
)
− ε ∂x

(
f ′(ũ1) ∂xxg1(ũ1)

)
+ ε ∂xx

(
g′1(ũ1) ∂tũ1

)
+O(ε2)

= ∂x
(
f ′(ũ1)

2 ∂xũ1
)
− ε ∂x

(
f ′(ũ1) ∂xxg1(ũ1)

)

+ ε ∂xx
(
g′1(ũ1) (−f

′(ũ1) ∂xũ1)
)
+O(ε2)

= ∂x
(
f ′(ũ1)

2 ∂xũ1
)
− ε ∂x

(
f ′(ũ1) ∂xxg1(ũ1)

)
− ε ∂xxxg2(ũ1) +O(ε

2) .

Finally, since ũ1= ũ2 +O(ε
2), from (2.11) we obtain

∂tũ2 + ∂xf(ũ2) = ε ∂xxg1(ũ2) + ε
2 ∂x

(
f ′(ũ2) ∂xxg1(ũ2) + ∂xxg2(ũ2)

)
.(2.15)

Setting u = ũ2, we can rewrite the last equation in the form

ut + f(u)x = ε
(
(a2 − f ′(u)2)ux

)

x

+ ε2
(
f ′(u)

(
(a2 − f ′(u)2)ux

)

x

)

x

(2.16)

+ ε2
(
(a2 − f ′(u)2) f ′(u)ux

)

xx
.

For later reference we record here the traveling wave equation associated with

(2.16)

− λu′ + f(u)′ =
(
(a2 − f ′(u)2)u′

)′

+

(
f ′(u)

(
(a2 − f ′(u)2)u′

)′)′
(2.17)

+
(
(a2 − f ′(u)2) f ′(u)u′

)′′
.

We arrive at the main issue in this paper: Does the solution ũn of (2.13)

converge to some limit u when n → ∞ and, if so, does this limit satisfy the

equation

∂tu+ ∂xf(u) = ε(a2 ∂xxu− ∂ttu) .

In other word, is this limit u a solution of the relaxation model (1.3) ?
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To make such a claim rigorous one would need to specify in which topology the

limit is taken. As we are interested in the regime where shocks are present the

convergence in the sense of distributions should be used. We will not address

this problem at this level of general solutions, but will investigate the important

situation of traveling wave solutions, at least as far as first- and second-order

approximations are concerned.

3 – Burgers equation: validity of the first-order equations

We begin, in this section, with the simplest flux function f(u) = u2/2. Modulo

some rescaling x → x− λt/ε, the traveling wave solutions u = u(x), v = v(x) of

(1.3) are given by

−λu′ + v′ = 0 ,

−λ v′ + a2 u′ =
u2

2
− v ,

(3.1)

where λ represents the wave speed. Searching for solutions connecting left-hand

states u− and v− := f(u−) to right-hand states u+ and v+ := f(u+) (so both at

equilibrium), we see that

λ (u+ − u−) = v+ − v− ,

so that the component u is a solution of the single first-order equation

(a2 − λ2)u′ =
1

2
(u− u−) (u− u+) .

The shock speed is also given by λ = (u+ + u−)/2. Finally, an easy calculation

based on (3.1) yields the following explicit formula for the solution, say u = u∗(x)

of (3.1) connecting u− to u+. It exists if and only if u− > u+ and then

u∗(x) := u− −
(u− − u+)

1 + exp
(
− u−−u+

2(a2−λ2)
x
) .(3.2)

It will be useful to introduce the following one-parameter family of functions

ϕµ(x) := u− −
(u− − u+)

1 + exp
(
−x(u−−u+)

2(a2−µ)

) , µ ∈ R\{a2} ,(3.3)

in which µ is a parameter, not necessarily related to the speed λ. Clearly, we

have

u∗= ϕλ2 .
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Note that we have for all µ < a2, and x ∈ R,

u+ < ϕµ(x) < u− .

The following estimate in terms of the strength δ := (u−−u+) is easily derived

from (3.3):

Lemma 3.1. Given a > 0 and 0 < h < a2 there exist constants c, C > 0

such that for all µ1, µ2 ∈ (−a
2 + h, a2 − h) and for all x ∈ R we have

|ϕµ1
(x)− ϕµ2

(x)| ≤ C δ2 |x| |µ1 − µ2| e
−c |x| δ .(3.4)

Proof: We can write

|ϕµ1
(x)− ϕµ2

(x)| = δ

∣∣∣∣∣∣
1

1 + exp
(
−x(u−−u+)

2(a2−µ2)

) −
1

1 + exp
(
−x(u−−u+)

2(a2−µ1)

)

∣∣∣∣∣∣

≤
|x|

2
δ2
∣∣∣∣
1

a2−µ2
−

1

a2−µ1

∣∣∣∣ sup
x,k

exp
(
− x δ
2(a2−k)

)

(
1 + exp

(
− x δ
2(a2−k)

))2 .

(3.5)

Here, the super bound is taken for |k| < a2 − h and x ∈ R.
Then observe that for y > 0 we have

exp
(
− y
2(a2−k)

)

(
1 + exp

(
− y
2(a2−k)

))2 ≤ exp
(
−

y

2(a2 − k)

)

≤ exp

(
−

y

2(a2 + (a2 − h))

)
,

while for y < 0 we have

exp
(
− y
2(a2−k)

)

(
1 + exp

(
− y
2(a2−k)

))2 ≤
1

1 + exp
(
− y
2(a2−k)

)

≤ exp

(
y

2(a2 − k)

)

≤ exp

(
y

2(a2 + (a2 − h))

)
.

This establishes the desired estimate.
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We are now in position to study the traveling waves of the first-order equations

obtained by either the approaches in Subsections 2.1 and 2.2:

−λu′ +

(
u2

2

)′
=
(
(a2 − λ u)u′

)′

and

−λu′ +

(
u2

2

)′
=
(
(a2 − u2)u′

)′
,

respectively. Note that they only differ by the diffusion coefficients in the right-

hand sides. After integration, calling V1 andW1 the corresponding traveling wave

solutions, we get

(a2 − λV1)V
′
1 =

1

2
(V1 − u−) (V1 − u+)(3.6)

and

(a2 −W 2
1 )W

′
1 =

1

2
(W1 − u−) (W1 − u+) ,(3.7)

respectively. For uniqueness, since the traveling waves are invariant by transla-

tion, we assume in addition that for example

u∗(0) = V1(0) =W1(0) =
u− + u+
2

.(3.8)

To compare the first-order diffusive traveling wavesW1 and V1 with the relax-

ation traveling wave u∗, we rely on monotonicity arguments. It is clear that the

traveling waves are monotone, with V ′1 ,W
′
1 < 0 and u− > V1(x) ,W1(x) > u+,

so that setting

Γ− = min
[u+,u−]

u2 − b δ , Γ+ = max
[u+,u−]

u2 + b δ ,

where b > 0 is a sufficiently small constant such that Γ+< a2, we find

(a2 − Γ−)W
′
1 <

1

2
(W1 − u−) (W1 − u+) ,

(3.9)

(a2 − Γ+)W
′
1 >

1

2
(W1 − u−) (W1 − u+) .

Therefore, setting

ũ =W1 − ϕΓ− ,

after some calculation we find

2 (a2 − Γ−) ũ
′ − ũ2 + ũ δ

1− exp
(
− xδ
2(a2−Γ−)

)

1 + exp
(
− xδ
2(a2−Γ−)

) < 0 .(3.10)
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We have ũ(±∞) = 0. As x → ±∞ the last coefficient in (3.10) approaches ±1

and the function ũ satisfies

c ũ′ ± ũ δ +H.O.T. < 0 .

So, ũ decreases exponentially at infinity while keeping a constant sign, and we

deduce that ũ(x) 6= 0 for |x| ≥M , for some sufficiently large M .

Now, if ũ vanishes at some point x0 then, thanks to the inequality (3.10), we

deduce that ũ′(x0) < 0. This implies that there is at most one point, and thus

exactly one point where ũ vanishes, which is by (3.8) x0 = 0. Therefore, we have

sgn(x) ũ(x) < 0.

A similar analysis applies to the function W1 − ϕΓ+
and we obtain

sgn(x)ϕΓ+
(x) < sgn(x)W1(x) < sgn(x)ϕΓ−(x) , x ∈ R .(3.11)

Concerning the function V1, by defining

λ− := min
[u+,u−]

u , λ+ := max
[u+,u−]

u ,

and

Λ− := min(λλ−, λ λ+) − b δ , Λ+ := max(λλ−, λ λ+) + b δ ,

where b > 0 is a sufficiently small constant such that Λ+< a2, we obtain in the

same manner as above

sgn(x)ϕΛ+
(x) < sgn(x)V1(x) < sgn(x)ϕΛ−(x) , x ∈ R .(3.12)

Note that, for the same reasons, the function u=u∗ satisfies also (3.11) and (3.12).

Finally, since |Γ+− Γ−|, |Λ+−Λ−| ≤ C δ, we can combine (3.11) and (3.12) with

Lemma 3.1 and conclude:

Theorem 3.2. Given two reals a > M > 0, there are constants c, C > 0 so

that the following property holds for all u−, u+ ∈ [−M,M ]. The uniform distance

between the traveling wave of the relaxation model and the ones of the first-order

diffusive equations derived in Section 2 is of cubic order, in the sense that

|V1(x)− u∗(x)|, |W1(x)− u∗(x)| ≤ C δ3 |x| e−c δ|x| , x ∈ R .(3.13)

Note that the estimate is cubic on any compact set but is solely quadratic in

the uniform norm on the real line:

‖V1 − u∗‖L∞(R), ‖W1 − u∗‖L∞(R) ≤ C ′ δ2 .(3.14)
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4 – Validity of the first-order expansions

We extend the result in Section 3 to general, strictly convex flux-functions.

It is well-known that a traveling wave connecting u− to u+ must satisfy the

condition u− > u+ which we assume from now on.

Set

P (u) = f(u)− f(u−)− λ (u− u−) ,(4.1)

and denote by u∗ the solution of the relaxation equation and by V1 and W1 the

first-order traveling waves corresponding to equation (2.2) (i.e., (2.5)) and to

(2.10) respectively. We have

(a2 − λ2)u′∗ = P (u∗) ,

(a2 − λ f ′(V1))V
′
1 = P (V1) ,(4.2)

(a2 − f ′(W1)
2)W ′

1 = P (W1) ,

together with the boundary conditions

lim
±∞

u∗(x) = lim
±∞

V1(x) = lim
±∞

W1(x) = u± .

The existence of solutions to these first-order O.D.E.’s can easily be checked,

for instance using the following implicit formula:

Fk(u(x))− Fk(u(0)) = x , x ∈ R, k = 0, 1, 2 ,

where

F ′0(u) :=
(a2 − λ2)

f(u)− f(u−)− λ (u− u−)
, u ∈ R ,

F ′1(u) :=
(a2 − λ f ′(u))

f(u)− f(u−)− λ (u− u−)
, u ∈ R ,(4.3)

F ′2(u) :=
(a2 − f ′(u)2)

f(u)− f(u−)− λ (u− u−)
, u ∈ R .

To ensure uniqueness, we can impose, for example,

u∗(0) = V1(0) =W1(0) =
u− + u+
2

.(4.4)
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Now, as was done for Burgers’ equation, let us define auxilliary functions ϕµ
as the solutions of

(a2 − µ)ϕ′µ = P (ϕµ) ,(4.5)

with the same boundary conditions as above. For µ < a2 we immediately have

u+ < ϕµ(x) < u− , x ∈ R .

Setting δ := (u− − u+) we get:

Lemma 4.1. Suppose that f is a strictly convex flux-function and u− > u+.

Given a > 0 and 0 < h < a2 there exist constants c, C > 0 such that, for all

µ1, µ2 ∈ (−a
2 + h, a2 − h) and for all x ∈ R,

|ϕµ1
(x)− ϕµ2

(x)| ≤ C δ2 |x| |µ1 − µ2| e
−c |x| δ .(4.6)

Proof: Let ψ be the solution of

ψ′ = P (ψ) = f(ψ)− f(u−)− λ(ψ − u−) .

We clearly have

ϕµ(x) = ψ

(
x

a2 − µ

)
.

Now, we can write

|ϕµ1
(x)− ϕµ2

(x)| =

∣∣∣∣ψ
(

x

a2 − µ1

)
− ψ

(
x

a2 − µ2

)∣∣∣∣

=

∣∣∣∣xψ
′(k(x)x)

(
1

a2 − µ1
−

1

a2 − µ2

)∣∣∣∣

≤ C |µ1 − µ2| |x| |P (ψ(k(x)x))| .

Here, k(x) is some real number lying in the interval
(

1
a2−µ1

, 1
a2−µ2

)
.

On the other hand we have

|P (ψ(x))| ≤ C δ |ψ(x)− u−| ≤ C δ2 .

This implies that

|ϕµ1
(x)− ϕµ2

(x)| ≤ C |µ1 − µ2| δ
2 |x| .(4.7)
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The behavior at ±∞ is described by

ψ(x) ∼ k+ e
(f ′(u+)−λ)x , x→ +∞

and

ψ(x) ∼ k− e
(f ′(u−)−λ)x , x→ −∞ .

Since the coefficient k(x) is bounded away from 0 and f ′(u+) − λ = c+ δ and

f ′(u−) − λ = c− δ with c+ < 0 and c− > 0 (bounded away from zero since f is

strictly convex), this completes the proof.

Consider now the functions u∗, V1 and W1 the solutions of (4.2). Then, we

have:

Theorem 4.2. Let f be a strictly convex flux-function, M > 0 and a > 0

such that (1.2) holds in [−M,M ]. Then there exist constants c, C > 0 so that

the following inequality holds for all u−, u+ ∈ [−M,M ] with u− > u+: for all

x ∈ R

|V1(x)− u∗(x)|, |W1(x)− u∗(x)| ≤ C δ3 |x| e−c δ|x| .(4.8)

The proof relies on the following lemma:

Lemma 4.3. Suppose that f is a strictly convex flux-function and u− > u+.

Assume that z+ and z− are the solutions of

z′+ = R+(z+) , z′− = R−(z−) , z+(0) = z−(0) ,

where R+ = R+(u) and R− = R−(u) are any smooth functions satisfying

R+(u) < R−(u) < 0 for all u ∈ (u+, u−) .(4.9)

Then, the two corresponding curve solutions cross at x = 0 only, and

z+ > z− for x < 0 ,
(4.10)

z+ < z− for x > 0 .

Proof: If there is x0 such that z+(x0) = z−(x0) then thanks to (4.9),

z′+(x0) < z′−(x0) .
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This implies that there cannot be more than one intersection point. So, (0, z+(0))

is the only interaction point of the two trajectories, and (4.10) follows as well.

Proof of Theorem 4.2: Setting

λ− = min
[u+,u−]

f ′(u) , λ+ = max
[u+,u−]

f ′(u)

and

Λ− = min(λλ−, λ λ+)− b δ , Λ+ = max(λλ−, λ λ+) + b δ ,

where, b > 0 is a sufficiently small constant such that Λ+< a2, we have

Λ− < λf ′(u) < Λ+ and Λ− < λ2 < Λ+ ,

and thus

0 < a2 − Λ+ < a2 − λ f ′(u) , a2 − λ2 < a2 − Λ− .(4.11)

Applying Lemma 4.3 we deduce that

ϕΛ− < u∗, V1, < ϕΛ+
x < 0 ,

ϕΛ+
< u∗, V1, < ϕΛ− x > 0 .

Now, concerning the third equation in (4.2), we set

Γ− = min
[u+,u−]

f ′(u)2 − b δ and Γ+ = max
[u+,u−]

f ′(u)2 + b δ ,

where b > 0 is sufficiently small such that Γ+< a2. We obtain

0 < a2 − Γ+ < a2 − f ′(u)2 , a2 − λ2 < a2 − Γ−(4.12)

and, by Lemma 4.3,

ϕΓ− < u∗, W1, < ϕΓ+
x < 0 ,

ϕΓ+
< u∗, W1, < ϕΓ− x > 0 .

Finally, since |Λ+−Λ−|, |Γ+−Γ−| ≤ C δ, by applying Lemma 4.1, we obtain

(4.8). This completes the proof of Theorem 4.2.
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5 – Validity of a second-order expansion

Our next objective is to extend the estimate in Theorem 4.2 to the second-

order equation obtained in Subsection 2.1.

We consider the equation (2.6) after integrating it once. The traveling wave

connects u− to u+, with u− > u+, and is given by

P (u) := (−λ f ′(u) + a2)u′ + λ
(
(−λ f ′(u) + a2)u′

)′
.(5.1)

Defining first- and second- order ODE operators:

Q1u = (a
2 − λf ′(u))u′

and

Q2u = (a
2 − λf ′(u))u′ + λ

(
(a2 − λf ′(u))u′

)′
= Q1u+ λ(Q1u)

′ .

The solution u = V2 of (2.6) under consideration satisfies

Q2V2 = P (V2) .(5.2)

Theorem 5.1. Let f : R → R be a strictly convex flux-function and M > 0.

Then there exist constants C, c, c0 > 0 so that the following property holds.

For any u−, u+ ∈ [−M,M ] with u− > u+ and 0 < δ = u− − u+ < c0, there

exists a traveling wave V2 = V2(y) of (5.2) connecting u− to u+. Moreover, this

traveling wave approaches the relaxation traveling wave u∗ to fourth-order in the

shock strength, precisely:

|V2(x)− u∗(x)| ≤ C δ4 |x| e−c |x| δ , x ∈ R .(5.3)

The estimate is only cubic in the uniform norm on the whole real line:

‖V2 − u∗‖L∞(R) ≤ C ′ δ3 .(5.4)

Proof: Setting

dµ =
λ

a2 − µ
and γλ = dλ2 =

λ

a2 − λ2
,

then u∗= ϕλ2 satisfies

Q1u∗ = P (u∗)
(
1 + γλ(λ− f

′(u∗))
)
= P (u∗)

(
1− γλP

′(u∗)
)
,
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and a simple calculation gives

Q2u∗ = P (u∗)

(
1−γ2λ(f

′′(u∗)P (u∗)+(f
′(u∗)−λ)

2
))
= P (u∗)

(
1−γ2λ(P P

′)′(u∗)
)
.

In the same manner, the function ϕµ, that is the solution of (4.5) satisfies the

following equation

Q1ϕµ = P (ϕµ)
(
1 + cµ + dµ(λ− f

′(ϕµ))
)
= P (ϕµ)

(
1 + cµ − dµP

′(ϕµ)
)
,

where

cµ :=
µ− λ2

a2 − µ
,

and

Q2ϕµ = P (ϕµ)

(
1+cµ

(
1+dµ(f

′(ϕµ)−λ)
)
−d2µ

(
f ′′(ϕµ)P (ϕµ)+(f

′(ϕµ)−λ)
2
))

or, equivalently,

Q2ϕµ = P (ϕµ)
(
1 + cµ(1 + dµP

′(ϕµ))− d
2
µ((PP

′)′(ϕµ))
)
.

Now, since |f ′(ϕµ)− λ| ≤ C0 δ and |f
′′(ϕµ)P (ϕµ) + (f

′(ϕµ)− λ)
2| ≤ C0δ

2,

then for sufficiently small δ there exists a positive constant C such that the

following property holds: by choosing µ+ and µ− in the form

µ+ = λ2(1 + Cδ2) , µ− = λ2(1− Cδ2) ,

we obtain

Q2ϕµ+ = P (ϕµ+) (1 +K+(ϕµ+)), where K+(ϕµ+) > 0

and

Q2ϕµ− = P (ϕµ−) (1 +K−(ϕµ−)), where K−(ϕµ−) < 0 .

Consider the corresponding functions ϕµ+ and ϕµ− and let us use phase plane

argument. The corresponding curves

C+ : ϕµ+ 7→ (ϕµ+ , wµ+= Q1ϕµ+) ,
(5.5)

C− : ϕµ− 7→ (ϕµ− , wµ−= Q1ϕµ−)

satisfy

λ l(ϕµ+)wµ+

dwµ+

du
+ wµ+ = P (ϕµ+) (1 +K+(ϕµ+))(5.6)
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and

λ l(ϕµ−)wµ−
dwµ−
du

+ wµ− = P (ϕµ−) (1 +K−(ϕµ−)) ,(5.7)

where

l(u) :=
1

a2 − λ f ′(u)
.

We claim that the curve C+ is “below” the curve C−.

This is true locally near the points (u−, 0) and (u+, 0), as it clear by comparing

the tangents to the curves at these points (using (4.5)). Note that if λ = 0 we

have u = u∗. We then distinguish between two cases:

Case 1: If λ > 0, suppose that the two curves issuing from (u−, 0), meet

for the “first” time at some point (u0, w0) with u+< u0 < u−. Then, combining

(5.6) and (5.7) at this point we get

λ l(u0)w0

(
dwµ+

du
(u0)−

dwµ−
du

(u0)

)
= P (u0) (K+(u0)−K−(u0)) .

This leads to a contradiction, since

w0 < 0 ,
dwµ+

du
(u0) ≤

dwµ−
du

(u0) and P (u0) (K+(u0)−K−(u0)) < 0 .

Consider now the equation (5.2) and let us study in the phase plane the trajec-

tory issuing from (u−, 0) at −∞. Comparing the eigenvalues we obtain that the

tangent at this point lies between those of the reference curves C+ and C−.

In the same manner as before, we obtain that this curve cannot meet C+, nor

C−, and necessarily converges to (u+, 0) as y → +∞.

Case 2: If λ < 0, we follow the same analysis by considering the trajectory

of (2.5) arriving at (u+, 0) and the “last” intersection point.

In both cases, we obtain the existence (and uniqueness) of the solution of (5.2),

denoted by u = V2, and also that its trajectory called C is between C+ and C−.

Note that since our equations are autonomous, by choosing u(0) = ϕµ+(0) =

ϕµ−(0) = (u− + u+)/2, we have

ϕµ+< u < ϕµ− , x > 0(5.8)

and

ϕµ−< u < ϕµ+ , x < 0 .(5.9)
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Indeed, from the phase plane analysis, if for some x0 ∈ R, u(x0) = ϕµ+(x0) then

necessarily w(x0) > wµ+(x0) and then u
′(x0) > ϕ′µ+

(x0). This means that the

curves x 7→ u(x) = V2(x) and x 7→ ϕµ+(x) have only one intersection point, that

is (0, u(0)), that satisfies in addition u′(0) > ϕ′µ+
(0). We obtain in same manner

that the two curves x 7→ u(x) and x 7→ ϕµ−(x) have only one intersection point,

that is (0, u(0)), that satisfies in addition u′(0) < ϕ′µ−(0).

Now, using the inequalities (5.8) and (5.9) that are also satisfied by u∗= ϕλ2

(since µ−< λ2 < µ+), we can write

|u∗(x)− u(x)| ≤ |ϕµ+(x)− ϕµ−(x)|

≤ |µ+ − µ−| δ
2 |x| e−c|x| δ

≤ C δ4 |x| e−c|x| δ ,

which completes the proof of Theorem 5.1.

6 – Conclusions

For the general expansion derived in Subsection 2.2 we now establish an iden-

tity which connects the relaxation equation with its Chapman–Enskog expansion

at any order of accuracy. By defining the ODE operator

Qnu :=
n∑

k=1

λk−1
(
(−λ f ′(u) + a2)u′

)(k−1)
,(6.1)

we have:

Theorem 6.1. The traveling wave u∗ of the relaxation model satisfies

Qnu∗ = P (u∗) (1− γ
n
λ Rn(u∗)) ,

where γλ := λ/(a2 − λ2), and the remainders Rn are defined by induction:

R1 := P ′ , Rn+1 := (P Rn)
′ for n ≥ 1 .

Proof: Note that the ODE operators Qn satisfy

Qn+1u = Q1u+ λ(Qnu)
′ .

Now, assume that

Qnu∗ = P (u∗) (1− γ
n
λ Rn(u∗)) ,
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then

Qn+1u∗ = P (u∗)
(
1− γλ P

′(u∗)
)
+ λ

(
P ′(1− γnλ Rn(u∗))− P (u∗) γ

n
λ R

′
n(u∗)

)
u′∗ .

But since u′∗=
P (u∗)
a2−λ2 it follows that

Qn+1u∗ = P (u∗)
(
1− γn+1λ (P Rn)

′ (u∗)
)
= P (u∗)

(
1− γn+1λ Rn+1(u∗)

)
,

which completes the proof.

Theorem 6.1 provides some indication that, by taking into account more and

more terms in the Chapman–Enskog expansion, the approximating traveling wave

should approach the traveling wave equation of the relaxation equation (1.3). For

n large but fixed it is conceivable that, denoting Vn the solution of Qnu = P (u),

‖Vn − u∗‖L∞(R) ≤ Cn δ
n+1 .(6.2)

However, one may not be able to let n→∞ while keeping δ fixed. In fact,

numerical experiments (with Burgers flux) have revealed that the remainders

satisfy only

‖Rn(u∗)‖L∞ ≤ C ′n δ
n ,

where the constants C ′n grow exponentially and cannot be compensated by the

factor γnλ . One can also easily check, directly from the definitions, that

‖Rn(u∗)‖L∞ ≤ Cδn n! .

In conclusion, although we successfully established uniform error estimates

for first- and second-order models, it is an open problem whether such estimates

should still be valid for higher-order approximations. Theorem 6.1 indicates that

the convergence might hold but, probably, in a weaker topology.
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