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Abstract We consider degenerate convection-diffusion equations in both one space dimen-

sion and several space dimensions. In the first part of this article, we are concerned with the

decay rate of solutions of one dimension convection diffusion equation. On the other hand, in

the second part of this article, we are concerned with a decay rate of derivatives of solution

of convection diffusion equation in several space dimensions.
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1 Introduction

In this article, we consider degenerate convection diffusion equation in both one and several

space dimensions. First part of this article is concerned with the decay rate of solutions to the

general degenerate reaction diffusion convection equation






ut + F (u, x, t)x + H(u, x, t) = G(u, t)xx, (x, t) ∈ R × (0, T ),

u(x, 0) = u0(x), x ∈ R.
(1.1)

The basic assumption on the diffusion function G(u, t) is that it is nonlinear, depends explicitly

on t, and non-decreasing in u, that is, g(u, t) = Gu(u, t) ≥ 0, and thus (1.1) is a strongly
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degenerate parabolic equation. Regarding the flux function, F is a nonlinear flux function

which depends on u, x, and t. H is the given source term which can also depends on x and

t explicitly. The equation (1.1) appears in several applications in which u stands for a non-

negative quantity. The scalar conservation law ut + F (u)x = 0 is a special example of this

type of problems. Other examples occur in several applications, for instance in porous media

flow [1] (a special type of diffusion, that is, G(u) = um appears to model a non-stationary

flow of a compressible Newtonian fluid in a porous medium under polytropic conditions) and

in sedimentation processes [2].

If G ≡ 0, H ≡ 0 and the flux function F only depends on u, then the equation (1.1)

becomes the classical conservation laws of the form






ut + F (u)x = 0,

u(x, 0) = u0(x).
(1.2)

The asymptotic form of the solution of (1.2) for large time is well known in the literature due

to Oleinik [3]. In fact, there are two distinctly different cases: the case where the initial data

u0 is periodic and the case where the initial data u0 has compact support. In the periodic case

u tends to the mean value of u0 (over one period), at a rate t−1, uniformly in x. On the other

hand, if u0 has a compact support, then u tends uniformly to zero at a rate t−1/2, and tends,

in L1 norm, to a particular function called an N -wave, again at a rate t−1/2.

On the other hand, if the diffusion function is of porous media type, that is, G(u) = um

with F ≡ 0 and H ≡ 0, then equation (1.1) becomes the degenerate diffusion equation of the

form






ut = (um)xx,

u(x, 0) = u0(x).
(1.3)

In [4], the authors shown that the decay rate of the solution of (1.3) is given by

‖u(t)‖L∞ ≤ C∞t−1/(m+1),

where C∞ is a constant depending on m and the L1 mass of the initial profile u0.

If the diffusion is linear, that is, G = u, H ≡ 0 and the flux function F takes a special form

uq, then equation (1.1) becomes the classical convection diffusion equation of the form






ut + (uq)x = uxx,

u(x, 0) = u0(x).
(1.4)

Large time behavior of solutions of (1.4) is well developed in literature [4–6]. The results

obtained in the above mentioned articles may be summarized as follows: There is a critical

exponent q = 2 such that if u0 ∈ L1(R) is nonnegative with M = ‖u0‖L1 , one has the following:

• If q > 2, the profile in L1(R) of the solution of (1.4) with initial data u0 is the unique

solution to the purely diffusive equation

ut = uxx, (x, t) ∈ R × (0,∞),

with initial data Mδ, where δ denotes the Dirac mass centered in zero. In addition, there exists

a constant K∞ depending on q and M such that, for t > 0,

‖u(t)‖L∞ ≤ K∞t−1/2.
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• If q = 2, then equation (1.4) has a unique nonnegative solution with initial data Mδ,

which gives the profile in L1(R) of the solution to (1.4) with initial data u0. In addition, there

exists a constant K∞ such that, for t > 0,

‖u(t)‖L∞ ≤ K∞t−1/2.

• If 1 < q < 2, the profile in L1(R) of the solution to (1.4) with initial data u0 is the unique

nonnegative entropy solution to the conservation law

ut + (uq)x = 0, (x, t) ∈ R × (0,∞),

with initial data Mδ (uniqueness and existence of such solution is proved in [7]). In addition,

there exists a constant K∞ depending on q and M such that, for t > 0,

‖u(t)‖L∞ ≤ K∞t−1/q.

If the diffusion is non-linear, that is, G = um, H ≡ 0 and the flux function F takes a special

form uq, then the equation (1.1) becomes the classical convection diffusion equation of the form






ut + (uq)x = (um)xx,

u(x, 0) = u0(x).
(1.5)

Large time behavior of solutions of (1.5) is well developed in literature [8]. In fact, they proved

the following results:

• If q > m + 1, then there exists a constant K∞ depending on q and M such that, for

t > 0,

‖u(t)‖L∞ ≤ K∞t−1/(m+1).

• If q ∈ (1, m + 1), then there exists a constant K∞ depending on q and M such that, for

t > 0,

‖u(t)‖L∞ ≤ K∞t−1/q.

It is well known that degenerate parabolic equations do not possess a classical solution.

The solution u in general fails to be smooth at the interface between a parabolic region and a

region of parabolic degeneracy. Fortunately, if the diffusion function has only one degenerate

point, such as the porous media type degeneracy, then the following estimate is known to be

optimal

∣

∣(um−1)x

∣

∣ ≤ M,

for the solutions of the Cauchy problem (1.3) with initial data in the one dimentional space [9].

Because it is well known that in general we can not expect the Cauchy problem (1.1) to

have a classical solution, we introduce the following standard definition of weak solution for

(1.1).

Definition 1.1 A function u(x, t) defined on RT = R×[0, T ] will be called a weak solution

of the Cauchy problem (1.1) if

(a) u is bounded, continuous in RT .

(b) G(u) has a bounded generalized derivative with respect to x in RT .
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(c) u satisfies the following identity
∫∫

RT

−uφt + (G(u, x, t)x − F (u, x, t)) φx + H(u, x, t)φdxdt =

∫

R

φ(x, 0)u0(x)dx

for all φ ∈ C1
0 (RT ) which vanish for large |x| and t = T .

Next, we shall introduce the function space Cα in order to state the existing results about

the regularity of the solutions of (1.1).

Definition 1.2 For any two points Q1 = (x1, t1) and Q2 = (x2, t2) ∈ RT , define a distance

function as

d(Q1, Q2) = |x1 − x2| + |t1 − t2|1/2
.

Then, we say that u(x, t) ∈ C(q)(RT ) for q = 0, α, 1 + α, 2 + α if |u|q is finite and also u(x) ∈
C(q)(R) if |u|q is finite with t1 = t2, where

|u|0 = sup
RT

|u(x, t)| ,

|u|α = |u|0 + sup
Q1,Q2∈RT

|u(Q1) − u(Q2)|
d(Q1, Q2)

, 0 < α ≤ 1,

|u|1+α = |u|0 + |ux|α , |u|2+α = |u|1+α + |ux|1+α + |ut|α .

The regularity of solutions of (1.1) has been studied by Lu et al [10, 11], in the case where

F and H are only functions of u. They proved the following theorem:

Theorem 1.3 Let u0(x) ∈ C2+α for α ∈ (0, 1), where |u0(x)|2+α may depend on ε. Let

H(u, x, t) = 0, g(u) ∈ C2. Then, for any fixed ε > 0, there exists a unique smooth solution for

the Cauchy problem (2.11) and (2.12) (with F and H only depends on u) in RT , which satisfies

|uε|2+α ≤ M(ε).

Moreover, if |uε
0|1 ≤ M , then

|G(uε) + εuε|1 ≤ M.

In this article, we present the L∞ decay rate of solutions of (1.1), using a technique which

relies on the splitting of flux function (see Section 2). The analysis depends on the Lax-Oleinik

type estimate, which is well known in the context of the conservation laws (1.2) [12]

ux ≤ f2(u)

tα
.

Once we have the above type estimate, we can use the following Lemma to obtain decay rate

of u. For a proof of the Lemma, see [8].

Lemma 1.4 Consider a non-negative function u ∈ L1(R) ∩ C(R) such that

(um)x ≤ M

(1 + t)α
,

for some positive constants M and α. Then, the decay rate of u is given by

0 ≤ u(x, t) ≤ m

m + 1
M1/(m+1)(1 + t)−α/(m+1), for all x and t.
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The second part of the article deals with degenerate convection diffusion equation in several

space dimensions, which is of the form

ut = ∆um +
N

∑

i=1

fi(u)xi − S(u), (1.6)

with the initial data

u(x, 0) = u0(x1, x2, · · · , xN ) ≥ 0, (1.7)

where N denotes the space dimension. The equation (1.6) arises in several applications in

which u stands for a nonnegative quantity. For example, if fi ≡ S ≡ 0, then the equation (1.6)

becomes the degenerate diffusion equation of the form






ut = ∆um,

u(x, 0) = u0(x).
(1.8)

In fact, this equation models the non-stationary flow of a compressible Newtonian fluid in a

porous medium under polytropic conditions. If the flow is not polytropic, (1.3) is replaced by

the more general equation of Newtonian filtration






ut = ∆G(u),

u(x, 0) = u0(x),
(1.9)

where G(u) is a nondecreasing smooth function. If the medium has also heat sources, then (1.9)

is replaced by an equation of the form






ut = ∆G(u) − S(u),

u(x, 0) = u0(x).
(1.10)

The regularity of solutions of convection diffusion equations is well known in one space

dimension as we mentioned earlier. However, the regularity property of solutions for the Cauchy

problem in the multidimensional space is completely different.

For example, consider the porous media equation (1.8) with bounded, continuous, and

nonnegative function u0(x1, x2, · · · , xN ), N ≥ 2 on the line t = 0. A numerical example

constructed by Graveleau shows that if there are holes in supp u0, then it is possible for ∇um−1

to blow up. The existence and uniqueness of Graveleau’s solution was proved later by Aronson

and Graveleau by a construction of radially symmetric solutions [1].

On the other hand, Caffareli, Vazquez, and Wolanski [13] showed that ∇um−1 is bounded

in R
N × (T,∞) for a suitable large time T . In some sense, this estimate is the best possible as

is shown by Graveleau’s solution. In [14], authors extended the above mentioned results in the

follwoing sense. They obtain a Hölder solution with explicit Hölder exponent for the Cauchy

problem (1.6) and (1.7).

In this article, our aim is to provide a decay rate of solutions of the general convection

diffusion equation in multi-dimension. To be more precise, in this article we prove the decay

rate of derivatives of solutions of (1.6) with the initial condition (1.7).

The rest of the article is organized as follows: In Section 2, we consider the most general

degenerate convection diffusion equation in one space dimension. We first first prove the decay

rate of derivative of solutions of such equations and then using a standard argument, we obtain
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the decay rate of solutions of degenerate convection diffusion equations. In Section 3, we move

on to multi-dimensional convection diffusion equations and obtain decay rate of derivatives of

solutions of those equations. We use maximum principle to obtain such decay rates.

2 Decay Rate in one Space Dimension

In this section, we are interested to find the decay rate of solutions of most general degen-

erate convection diffusion equation of the form






ut + F (u, x, t)x + H(u, x, t) = G(u, t)xx, (x, t) ∈ R × (0, T ),

u(x, 0) = u0(x), x ∈ R.
(2.1)

Note that because the nonlinear diffusion G(u, t) can be degenerate, we cannot expect, in

general, smooth solutions of (2.1). Consequently, we are not entitled to calculate derivatives

of u and G(u). To overcome this difficulty, we first regularize equation (2.1) by adding small

diffusion and then find the estimates independent of ε which in turn help us to estimate the

decay rate of solutions of (2.1).

To begin with, we first consider the following equation






ut + (uq)x + cun = (um)xx, (x, t) ∈ R × (0, T ),

u(x, 0) = u0(x), x ∈ R,
(2.2)

where c ≥ 0 is a real number and u0 ≥ 0. We have the following theorem.

Theorem 2.1 Let u be a solution of Cauchy problem (2.2) with a non-negative function

u0 ∈ L1(R). Then, there exist a constant K depending on m such that ‖u‖∞ ≤ K(1+t)−1/(1+m)

for any 1 < q ≤ 1 + m.

Proof STEP-I. In order to perform our estimates, we need to approximate our solution

u by uniformly positive and bounded solutions. Therefore, we ask that u0 ∈ C∞(R) and

0 < ε < u0(x) ≤ N . Once the estimates hold for uε, it will hold for u by a simple approximation

and limit process. To be more precise, we first consider the following regularized equation,






uε
t + ((uε)q)x + c(uε)n = ((uε)m)xx, (x, t) ∈ R × (0, T ),

uε(x, 0) = uε
0(x), x ∈ R,

(2.3)

where

uε
0(x) = u0 ∗ Jε =

∫

R

u0(x − y)Jε(y)dy,

where Jε is a standard mollifier and ε is a positive constant. We consider a smooth and bounded

initial data uε
0 satisfying

0 < ε ≤ uε
0(x), x ∈ R.

Classical results then ensure the existence of a unique classical solution uε to (2.3) satisfying

0 < c0(ε, t) ≤ uε(x, t) ≤ ‖uε
0‖∞ , (x, t) ∈ R × [0, T ),

where the lower bound c0(ε, t) could tend to zero as ε goes to zero or t goes to infinity.
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Next, we introduce the following change of variables

vε = (1 + t)αuε.

Then, multiplying equation (2.3) by (1 + t)α, we have

vε
t − α

vε

(1 + t)
+

(

(vε)q

(1 + t)(q−1)α

)

x

+ c
(vε)n

(1 + t)α(n−1)
=

(

m(vε)m−1

(1 + t)(m−1)α
vε

x

)

x

,

which is of the form

vε
t + F (vε, t)x + H(vε, t) = (g(vε, t)vε

x)x, (2.4)

where

F (vε, t) =
(vε)q

(1 + t)(q−1)α
, H(vε, t) = c

(vε)n

(1 + t)α(n−1)
− α

vε

(1 + t)

g(vε, t) =
(vε)m−1

(1 + t)(m−1)α
.

STEP-II. Next, we prove the following Lemma:

Lemma 2.2 The solutions of the Cauchy problem (2.4) with

F (v, t) = F1(v, t) + F2(v, t),

f2(v, t) =
F2(v, t)

g(v, t)
,

satisfies

vx ≤ f2(v, t),

provided the initial data also satisfy the same estimate and

(f2)vH − f2Hv − (f2)t − (F1)vv(f2)
2 ≤ 0, (2.5)

where for simplicity the superscript ε in v is omitted.

Proof We can rewrite equation (2.4) as

vt + F1(v, t)x + H(v, t) = (g(v, t)(vx − f2(v, t)))x . (2.6)

To achieve the desired estimate, we need the following substitution:

w = vx − f2(v, t).

Then, it is easy to see that

wt = vxt − (f2)vvt − (f2)t.

Note that equation (2.6) can be rewritten as:

vt + F1(v, t)x + H(v, t) = (g(v, t)w)x . (2.7)

Using (2.7), we can rewrite the equation satisfied by w as

wt = − (F1)vvv2
x − (F1)vvxx − Hvvx + (g(v, t)w)xx − (f2)t

− (f2)v (−(F1)vvx − H(v, t) + (g(v, t)w)x)

= − (F1)vv(w + f2)
2 − (F1)v(w + (f2)vvx) + (g(v, t)w)xx

− (f2)t − Hv(w + f2) − (f2)v (−(F1)vvx − H(v, t) + (g(v, t)w)x)
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= (g(v, t)w)xx − Hvf2 + H(v, t)(f2)v − (f2)t − (F1)vv(f2)
2 − a(x, t)wx − b(x, t)w

≤− a(x, t)wx − b(x, t)w + g(v, t)wxx,

where we have used the conditions (2.5) and a(x, t), b(x, t) are given by

a(x, t) = −(F1)vvw − 2(F1)vvf2 − (F1)v − Hv + g(v)xx − (f2)vg(v)x,

b(x, t) = 2g(v)x − (f2)vg(v).

Thus, conditions (2.5) gives the following inequality

wt + a(x, t)wx + b(x, t)w ≤ g(v, t)wxx, (2.8)

where a, b are functions of v, vx and vxx. Therefore, the maximum principle [15] applied to (2.8)

give the estimate w ≤ 0 provided w0 ≤ 0. Hence, we proved that vε
x ≤ f2(v

ε, t). �

STEP-III. Now, we check if conditions (2.5) are true for equation (2.3). Let F2 = M, F1 =

F − M for a suitable large constan M . It is easy to calculate

−(f2)t = −α(m − 1)
M

um−1

1

(1 + t)
,

(f2)vH = α(m − 1)
M

um−1

1

(1 + t)
− cM(m − 1)un−m,

−Hvf2 =
α

(1 + t)

M

um−1
− cnMun−m,

−(F1)vv(f2)
2 = −q(q − 1)M2uq−2m 1

(1 + t)α
.

Then, we have

(f2)vH − f2Hv − (f2)t − (F1)vv(f2)
2

= − uq−2m M2q(q − 1)

(1 + t)α
+

αM

(1 + t)um−1
− c(n + m − 1)Mun−m ≤ 0

for a suitable large M because α ≤ 1, 1 < q ≤ 1 + m, and c ≥ 0. Therefore, we obtain

((uε)m)x ≤ M

(1 + t)α
,

which in turn implies

uε(x, t) ≤ M1/(m+1)(1 + t)−α/(m+1)

for any α ≤ 1. Hence, we conclude that

uε(x, t) ≤ K(1 + t)−1/(1+m)

if we choose α = 1.

At this point, we use the fact that

u(x, t) = lim
ε→0

uε(x, t)

exists for any (x, t) ∈ R × [0, T ) and conclude

u(x, t) ≤ K(1 + t)−1/(1+m).

�
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We can generalize the above result to more general diffusion functions (that is, it might

have finite number of degenerate points). Let us consider the following equation

ut + F (u)x = G(u)xx,

u(x, 0) = u0(x).
(2.9)

Theorem 2.3 Let u be a solution of Cauchy problem (2.9) with a non-negative function

u0 ∈ L1(R). Then, there exist a constant K such that ‖u‖∞ ≤ K(1 + t)−1/2, provided the flux

function F is strictly convex.

Proof As a strategy, we first regularize equation (2.9). In what follows, we consider the

equation

ut + F (u)x = ((g(u) + ε)ux)x , (2.10)

where G′(u) = g(u). We prove this theorem as before by using the change of variable v =

(1 + t)αu. Then, from (2.10) we see that v satisfies the following equation

vt − α
v

(1 + t)
+ ((1 + t)αF (u))x = ((g(u) + ε)ux)x .

We are going to use Lemma 2.2. So, in this case we have

F1 = (1 + t)αF (u), F2 = M, f2(v, t) =
M

g(u) + ε

v = (1 + t)αu, H(v, t) = −α
v

(1 + t)
.

Then, we calculate

−(f2)t = − αM

(g(u) + ε)2
ug′(u)

1

(1 + t)
, −(F1)vv(f2)

2 = −F ′′(u)
1

(1 + t)α

M2

(g(u) + ε)2

−Hvf2 =
α

(1 + t)

M

g(u) + ε
, (f2)vH = αM

g′(u)

(g(u) + ε)2
u

(1 + t)
.

In what follows, after a simple computation, we have to show that

−F ′′(u)
1

(1 + t)α

M

(g(u) + ε)2
+

1

(1 + t)

α

g(u) + ε

is negative. In fact, this is true provided that α ≤ 1 and F ′′(u) ≥ C > 0 and M is large enough.

Then, we have

((1 + t)αu)x ≤ M

g(u) + ε
,

which in turn implies

(G(u) + εu)x ≤ M

(1 + t)α
,

that is, in the limit we have

|G(u)| ≤ K

(1 + t)1/2

for a suitable constant K. �

Now, we are in a position to state the results corresponding to (2.1). In what follows, we

first consider the viscous equation corresponding to (2.1), given by

ut + F (u, x, t)x + H(u, x, t) = ((g(u, t) + ε)ux)x , (2.11)
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together with the initial data

u(x, 0) = uε
0(x) = u0 ∗ Jε =

∫

R

u0(x − y)Jε(y)dy, (2.12)

where Jε is a standard mollifier and ε is a positive constant. Throughout this article, we assume

that u0 ∈ W 1,∞. Then, we have

uε
0(x) ∈ C∞, |uε(x)| ≤ M,

∣

∣uε
0,x(x)

∣

∣ ≤ M

∣

∣

∣

∣

diuε
0(x)

dxi

∣

∣

∣

∣

≤ M(ε), i = 1, 2, · · · ,

where the positive constant M is independent of ε and M(ε) depends on ε.

The local existence of solutions of the Cauchy problem (2.11), (2.12) is standard if uε
0 ∈

C2+α because equation (2.11) is strictly parabolic for any fixed ε > 0. See [15–18] for more

details.

We only state and prove the following Lemma, which gives the decay rate of derivative of

solutions. To obtain decay rate of solution itself, we can use the argument before. For the

simplicity, we omit the superscript ε in u.

Lemma 2.4 Let u be a solution of






ut + F (u, x, t)x + H(u, x, t) = ((g(u, t) + ε)ux)x , (x, t) ∈ R × (0, T ),

u(x, 0) = u0(x), x ∈ R.
(2.13)

Moreover, if

F (u, x, t) = F1(u, x, t) + F2(u, x, t),

f2(u, x, t) =
F2(u, x, t)

g(u, t) + ε

where
(F1)uu ≥ 0, (F1)xuf2 ≥ 0, (F1)xx ≥ 0, (f2)t ≥ 0,

Hx ≥ 0, Huf2 − (f2)uH ≥ 0, (f2)u(F1)x − (F1)u(f2)x ≤ 0.
(2.14)

then, we obtain

ux ≤ f2(u, x, t), (2.15)

provided the initial data also satisfy the same estimate.

Proof As we know that

F (u, x, t) = F1(u, x, t) + F2(u, x, t),

and

f2(u, x, t) =
F2(u, x, t)

g(u, t) + ε
,

then equation (2.13) becomes

ut + F1(u, x, t)x + H(u, x, t) = ((g(u, t) + ε)v)x , (2.16)

where v is given by

v(u, x, t) = ux − f2(u, x, t).
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Next, it is easy to see that

vt = uxt − (f2)uut − (f2)t,

which implies

vt = −(F1)uuu2
x − 2(F1)xuux − (F1)xx − (F1)uuxx + ((g(u) + ε)v)xx − (f2)t

−Huux − Hx − (f2)u (−(F1)uux − (F1)x − H(u, x, t) + ((g(u) + ε)v)x)

= −(F1)uu

(

(f2)
2 + v2 + 2vf2

)

− 2(F1)xu(v + f2) − (F1)xx

−(F1)u (vx + (f2)uux + (f2)x) − Hu(v + f2) − Hx + ((g(u) + ε)v)xx

+(f2)u(F1)uux + (f2)u(F1)x + (f2)uH − (f2)u ((g(u) + ε)v)x − (f2)t

= ((g(u) + ε)v)xx − (F1)uu(f2)
2 − 2(F1)xuf2 − (F1)xx − (F1)u(f2)x

−Huf2 − Hx + (f2)u(F1)x + (f2)uH − (f2)t − a(x, t)vx − b(x, t)v

≤ −a(x, t)vx − b(x, t)v + (g(u) + ε)vxx, (2.17)

where we have used the set of conditions (2.14) and a(x, t), b(x, t) are given by

a(x, t) = (F1)u + (g(u) + ε)(f2)u + 2(g(u) + ε)x,

b(x, t) = (F1)uuv + 2(F1)uuf2 + 2(F1)xu + Hu + (f2)u(g(u) + ε)x + (g(u) + ε)xx.

Thus, the conditions (2.14) and (2.17) give the following inequality

vt + a(x, t)vx + b(x, t)v ≤ (g(u, t) + ε)vxx, (2.18)

where a, b are functions of u, ux and uxx. Therefore, the maximum principle [15] applied to

(2.18) give the estimate v ≤ 0 provided v0 ≤ 0. Consequently, the estimate (2.15) is proved. �

3 Decay Estimate for Cauchy Problem in Multi-Dimensional Space

With Porous Media Type Degenerate Diffusion

In this section, we study the decay rate of solutions to the following degenerate parabolic

equation in the N -dimensional space

ut = ∆um +

N
∑

i=1

fi(u)xi − S(u), (3.1)

with the initial data

u(x, 0) = u0(x1, x2, · · · , xN ) ≥ 0. (3.2)

Theorem 3.1 There exists a weak solution u of the Cauchy problem (3.1), (3.2) which

satisfies the following decay rates:

CASE-I Let S = 0 and for each i let fi = 0.

• If 1 < m < 1 + 1√
N

, then (up)xi(x, t) ≤ M
(1+t)α/2 for every i, t > 0, and α ∈ (0, 1) is any

constant. Also, p is given by

p ≥ m − 1

2
−

√

1 − N(m − 1)2

2
.

CASE-II Assume that for two positive constants C1 and C2, we have

fi = ul, |S′(u)| ≥ C1 > 0, C2 ≤
∣

∣

∣

∣

S(u)

u

∣

∣

∣

∣

= |u|l−m
.
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• If 1 < m < 1 + 1√
N

, then (up)xi(x, t) ≤ M
(1+t)α/2 for every i, t > 0, and α ≥ 1 is any

constant. Also, p is given by

p ≥ m − 1

2
−

√

1 − N(m − 1)2

2
.

Proof To prove the above theorem, one can add a small positive constant ε to the initial

data and consider the problem in uniformly parabolic region uε ≥ ε. After obtaining all the

necessary bound on uε, which will be independent of ε, one can pass to the limit in order to

conclude that those results are indeed true for u. This is quite a standard procedure and we

will omit these steps. Here, we only give the proof of the uniform estimates.

To begin with, let us make the following transformation

v = un.

Then, it follows that

(um)xx = (um−nv)xx = um−nvxx + 2(um−n)xvx + v(um−n)xx

= um−nvxx + 2(m − n)um−n−1uxvx + v((m − n)um−n−1ux)x

= um−nvxx +
2(m − n)

n
um−2nv2

x +
m − n

n
v(um−2nvx)x

= um−nvxx +
2(m − n)

n
um−2nv2

x +
m − n

n
um−2nvvxx

+
(m − n)(m − 2n)

n
vvxum−2n−1ux

=
m

n
um−nvxx +

m(m − n)

n2
um−2nv2

x, (3.3)

and consequently,

∆(um) =
m

n
um−n∆v +

m(m − n)

n2
um−2n

∑

i

v2
xi

. (3.4)

As our aim is to first get an estimate of derivative of u, so we will make the following transfor-

mation

w =
1

2

N
∑

i=1

v2
xi

.

Then, it follows from (3.3) and (3.4) that

vt = nun−1∆(um) +
∑

i

f ′
i(u)vxi − nun−1S(u)

= mv(m−1)/n∆v +
2m(m − n)

n
v(m−n−1)/nw +

∑

i

f ′
i(u)vxi − nun−1S(u). (3.5)

In order to calculate the diffusion term more neatly, we let h(v) = mv(m−1)/n. Then, it can be

shown that (we are not going to specify the range of i and j to avoid clumsy notations)

(h(v)∆v)xivxi = (h(v)(∆v)vxi )xi − h(v)(∆v)vxixi

=
∑

j 6=i

(h(v)vxjxj vxi)xi +

(

h(v)(
v2

xi

2
)xi

)

xi

− h(v)(∆v)vxixi

=
∑

j 6=i

(

vxjxj (h(v)vxi)xi + h(v)vxi(vxi)xjxj

)
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+h(v)(
v2

xi

2
)xixi + (

v2
xi

2
)xih

′(v)vxi − h(v)(∆v)vxixi

=
∑

j 6=i

(

vxjxj h
′(v)v2

xi
+ h(v)vxjxj vxixi + h(v)

(

(
v2

xi

2
)xjxj − v2

xixj

))

+h(v)(
v2

xi

2
)xixi + (

v2
xi

2
)xih

′(v)vxi − h(v)(∆v)vxixi

=
∑

i,j

(

h′(v)v2
xi

vxixj + h(v)(
v2

xi

2
)xjxj − h(v)v2

xixj

)

. (3.6)

To obtain a equation for w, we need to calculate the following,

(vxi)tvxi = (h(v)∆v)xivxi +
2m(m − n)

n

(

v(m−n−1)/nw
)

xi

vxi

+

(

∑

j

f ′
j(u)vxj

)

xi

vxi − (nun−1S(u))xivxi

= (h(v)∆v)xivxi +
2m(m − n)

n
v(m−n−1)/nvxiwxi

+
2m(m− n)(m − n − 1)

n2
v(m−2n−1)/nwv2

xi
+

∑

i,j

f ′
j(u)(

v2
xi

2
)xj

+
∑

i,j

f ′′
j (u)

nun−1
v2

xi
vxj −

(

(n − 1)
S(u)

u
vxi + S′(u)vxi

)

vxi . (3.7)

So, finally combining (3.4)–(3.7), we conclude that w satisfies the following equation

wt = 2h′(v)(∆v)w + h(v)∆w −
∑

i,j

h(v)v2
xixj

+
2m(m − n)

n
v(m−n−1)/n

∑

i

vxiwxi +
4m(m − n)(m − n − 1)

n2
v(m−2n−1)/nw2

+
∑

j

f ′
j(u)wxj +

∑

j

f ′′
j (u)

nun−1
vxj w − 2(n − 1)

S(u)

u
w − 2S′(u)w. (3.8)

To achieve our goal, we need another transformation, mainly the following,

θ =

(

w − 1

(1 + t)α

)

.

We can see that θ satisfies the following equation

θt +

(

1

(1 + t)α

)

t

= 2h′(v)(∆v)θ + h(v)∆θ −
N

∑

i,j=1

h(v)v2
xixj

+
2m(m − n)

n
v(m−n−1)/n

∑

i

vxiθxi

+
4m(m − n)(m − n − 1)

n2
v(m−2n−1)/nθ2 +

∑

j

f ′
j(u)θxj

+
∑

j

2f ′′
j (u)

nun−1
vxj w − 2(n − 1)

S(u)

u
w − 2S′(u)w

+2h′(v)(∆v)
1

(1 + t)α
+

4m(m − n)(m − n − 1)

n2
v(m−2n−1)/n 1

(1 + t)2α
. (3.9)
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We are going to use the following maximum principle: If a function v satisfies

vt + a(x, t)vx + b(x, t)v ≤ εvxx,

where a, b are arbitrary functions of x, t. Then, the maximum principle gives the estimate

v(x, t) ≤ 0, provided v0(x) ≤ 0. Note that, in our setup, to apply maximum principle, one need

not to bother about the terms which contains θ, θxi etc. Consequently, we are going to look at

the terms which are independent of θ.

CASE I At this point, let us assume that S = 0 and fi = 0. In what follows, first we

claim that

2h′(v)(∆v)
1

(1 + t)α
−

∑

i,j

h(v)v2
xixj

+
4m(m − n)(m − n − 1)

n2
v(m−2n−1)/n 1

(1 + t)2α

≤− cv(m−2n−1)/n 1

(1 + t)2α
,

where c is a suitable positive constant and 1 < m < 1 + 1√
N

. The proof of the claim is a simple

computation of the above terms. To begin with, let P = ∆v. Then, it is easy to see that

N
∑

i,j=1

h(v)v2
xixj

≥ h(v)

N
∑

i=1

v2
xixj

≥ h(v)

N

( N
∑

i=1

vxixj

)2

=
h(v)

N
P 2. (3.10)

Because

2h′(v)(∆v)
1

(1 + t)α
−

∑

i,j

h(v)v2
xixj

+
4m(m − n)(m − n − 1)

n2
v(m−2n−1)/n 1

(1 + t)2α

≤2h′(v)P
1

(1 + t)α
− h(v)

N
P 2 − 4m(m − n)(m − n − 1)

n2
v(m−2n−1)/n 1

(1 + t)2α

= − cmv(m−2n−1)/n 1

(1 + t)2α
− mv(m−2n−1)/n

(

1

N
v2P 2 − 2(m − 1)

n
vP

1

(1 + t)α

+

(

4m(m − n)(m − n − 1)

n2
− c

)

1

(1 + t)2α

)

,

for a suitably chosen small positive constant c, we now choose n ∈ (m− 1, m) and assume that

1

N

4(m − n)(n − (m − 1))

n2
>

(m − 1)2

n2
,

that is,
(

m − n − 1

2

)2

− 1

4
+

(m − 1)2N

4
≤ 0.

The above inequality implies

m − 1 +
√

1 − (m − 1)2N

2
< n < m − 1 −

√

1 − (m − 1)2N

2
.

Using the above informations, equation (3.9) becomes

θt +

(

1

(1 + t)α

)

t

≤ 2h′(v)(∆v)θ + h(v)∆θ − cmv(m−2n−1)/n 1

(1 + t)2α

+
2m(m− n)

n
v(m−n−1)/n

∑

i

vxiθxi +
4m(m − n)(m − n − 1)

n2
v(m−2n−1)/nθ2. (3.11)
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Keeping in mind that n ∈ (m − 1, m), we see that v(m−2n−1)/n is bounded. If we choose

0 < α ≤ 1, then we see that the following estimate is true for large t,

−cv(m−2n−1)/n 1

(1 + t)2α
+

α

(1 + t)α+1
≤ 0

CASE II As before, first we claim that

2h′(v)(∆v)
1

(1 + t)α
−

∑

i,j

h(v)v2
xixj

+
4m(m − n)(m − n − 1)

n2
v(m−2n−1)/n 1

(1 + t)2α
≤ 0,

where c is a suitable positive constant and 1 < m < 1 + 1√
N

. The proof of the claim is a simple

computation of the above terms as before. To begin with, let P = ∆v. Then, it is easy to see

that
N

∑

i,j=1

h(v)v2
xixj

≥ h(v)

N
∑

i=1

v2
xixj

≥ h(v)

N

( N
∑

i=1

vxixj

)2

=
h(v)

N
P 2. (3.12)

Because

2h′(v)(∆v)
1

(1 + t)α
−

∑

i,j

h(v)v2
xixj

+
4m(m − n)(m − n − 1)

n2
v(m−2n−1)/n 1

(1 + t)2α

≤2h′(v)P
1

(1 + t)α
− h(v)

N
P 2 − 4m(m − n)(m − n − 1)

n2
v(m−2n−1)/n 1

(1 + t)2α
,

we now choose n ∈ (m − 1, m) and assume that

1

N

4(m − n)(n − (m − 1))

n2
>

(m − 1)2

n2
,

that is,
(

m − n − 1

2

)2

− 1

4
+

(m − 1)2N

4
≤ 0.

The above inequality implies

m − 1 +
√

1 − (m − 1)2N

2
< n < m − 1 −

√

1 − (m − 1)2N

2

Using the above informations, equation (3.9) becomes

θt +

(

1

(1 + t)α

)

t

≤ 2h′(v)(∆v)θ + h(v)∆θ +
2m(m − n)

n
v(m−n−1)/n

∑

i

vxiθxi

+
4m(m − n)(m − n − 1)

n2
v(m−2n−1)/nθ2 +

∑

j

f ′
j(u)θxj

+
∑

j

2f ′′
j (u)

nun−1
vxj w − 2(n − 1)

S(u)

u
w − 2S′(u)w. (3.13)

Next, we assume that fi(u) = ul. Then, it is easy to see that

∑

j

2f ′′
j (u)

nun−1
vxj w ≤ 2

√
N

n
max

∣

∣

∣

∣

uf ′′
j (u)

un

∣

∣

∣

∣

1√
N

∑

j

vxj w

≤ 2l(l − 1)
√

N

m − 1
ul−mw3/2

= dul−m(θ +
1

tα
)3/2.
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Now, we have

(θ +
1

(1 + t)α
)3/2 = θ(θ +

1

(1 + t)α
)1/2 +

1

(1 + t)α
(θ +

1

(1 + t)α
)1/2

= θ(θ +
1

(1 + t)α
)1/2 +

(

(θ +
1

(1 + t)α
)1/2 − (

1

(1 + t)α
)1/2

)

1

tα

+(
1

(1 + t)α
)3/2

and
(

(θ +
1

(1 + t)α
)1/2 − (

1

(1 + t)α
)1/2

)

1

(1 + t)α

=





θ
(

(θ + 1
(1+t)α )1/2 + ( 1

(1+t)α )1/2
)





1

(1 + t)α
.

It is not hard to see that

M(θ, t) =





1
(1+t)α

(

(θ + 1
(1+t)α )1/2 + ( 1

(1+t)α )1/2
)





is a bounded quantity. We further claim that under certain condition and α ≥ 1,

−2(n − 1)
S(u)

u

1

tα
+ dul−m(

1

tα
)3/2 ≤ 0,

−2S′(u)
1

tα
+

α

tα+1
≤ 0.

Again, it is not difficult to check that under the following conditions, the above is true.

|S′(u)| ≥ C1 > 0,

0 < C2 ≤
∣

∣

∣

∣

S(u)

u

∣

∣

∣

∣

= dul−m.

Hence, using the maximum principle, we have, for each i,

((up)xi)
2 ≤ M

(1 + t)α
, that is, (up)xi ≤

M

(1 + t)α/2
.

�

Theorem 3.2 There exists a weak solution u of the Cauchy problem (3.1), (3.2) which

satisfies the following decay rates:

CASE-I Let S = 0 and for each i, let fi = 0.

• If 1 < m < 1 + 1√
N−1

, then (uq)xi(x, t) ≤ M
(1+t)α/2

for every i and any t > 0, where

q ≥ m − 1

2
−

√

2 − 2(m − 1)2(N − 1)

4
.

CASE-II Assume that for two positive constants C1 and C2, we have

fi = ul, |S′(u)| ≥ C1 > 0, C2 ≤
∣

∣

∣

∣

S(u)

u

∣

∣

∣

∣

= |u|l−m
.

• If 1 < m < 1 + 1√
N−1

, then (uq)xi(x, t) ≤ M
(1+t)α/2 for every i, t > 0, and α ≥ 1 is any

constant. Also, q is given by

q ≥ m − 1

2
−

√

2 − 2(m − 1)2(N − 1)

4
.
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Proof In order to improve the previous result, we need to introduce another variable

which we will make precise in the proof below. To start with, we first recall that w satisfies the

following equation

wt = 2h′(v)(∆v)w + h(v)∆w −
∑

i,j

h(v)v2
xixj

+
2m(m − n)

n
v(m−n−1)/n

∑

i

vxiwxi +
4m(m − n)(m − n − 1)

n2
v(m−2n−1)/nw2

+
∑

j

f ′
j(u)wxj +

∑

j

f ′′
j (u)

nun−1
vxj w − 2(n − 1)

S(u)

u
w − 2S′(u)w. (3.14)

For any constant s, it follows from (3.5) that

(vs)t = smv((m−1)/n)+s−1∆v +
2ms(m − n)

n
v((m−n−1)/n)−1(vsw)

+
N

∑

i=1

f ′
i(u)(vs)xi − nsuns−1S(u) (3.15)

Next, we will introduce a new variable z given by

z = vsw.

Then, it follows from (3.14) and (3.15) that

zt =

(

s +
2(m − 1)

n

)

mv((m−1)/n)−1z∆v

+

(

4m(m − n)(m − n − 1)

n2
+

2ms(m − n)

n

)

v((m−2n−1)/n)−sz2

−
N

∑

i,j=1

mv((m−1)/n)+sv2
xixj

+

N
∑

i=1

f ′
i(u)zxi +

N
∑

j=1

2

n
f ′′

j (u)u1−nvxj z

+mv((m−1)/n)+s∆(v−sz) +
2ms(m − n)

n
v((m−n−1)/n)+s

N
∑

i=1

vxi(v
−sz)xi

−2(n − 1)
S(u)

u
wvs − 2S′(u)wvs − nsuns−1S(u)w. (3.16)

To proceed further, we need to calculate the following

∆(v−sw) =

N
∑

j=1

(v−sz)xjxj =

N
∑

j=1

(

(v−s)xjxjz + 2(v−s)xj zxj + v−szxjxj

)

=

N
∑

j=1

(

(−sv−s−1vxjxj + s(s + 1)v−s−2v2
xj

)z + 2(v−s)xj zxj + v−szxjxj

)

=
(

−sv−s−1∆v + 2s(s + 1)v−s−2w
)

z +

N
∑

j=1

(

−2sv−s−1vxj zxj + v−szxjxj

)

, (3.17)

also

N
∑

i=1

vxi(v
−sz)xi =

N
∑

i=1

(

−sv−s−1v2
xi

z + v−svxizxi

)
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= −2sv−s−1wz +

N
∑

i=1

v−svxizxi . (3.18)

Using (3.17) and (3.18) in equation (3.16), we obtain

zt =
2m(m − 1)

n
v(m−n−1)/nz∆v −

N
∑

i,j=1

mv((m−1)/n+s)v2
xjxj

+

(

2ms(s + 1) +
4m(m − n)(m − n − 1)

n2
− 2ms(m − n)

n

)

v((m−2n−1)/n)−sz2

+
N

∑

i=1

(

f ′
i(u) + 2m

(

m − n

n
− s

)

v(m−n−1)/nvxi

)

zxi + mv(m−1)/n∆z

+

N
∑

i=1

2

n
f ′′

i (u)u1−nvxiz − 2(n − 1)
S(u)

u
z − 2S′(u)z − ns

S(u)

u
z

≤ 2m(m − 1)

n
v(m−n−1)/nzP − m

N
v((m−1)/n+s)P 2

+

(

2ms(s + 1) +
4m(m − n)(m − n − 1)

n2
− 2ms(m − n)

n

)

v((m−2n−1)/n)−sz2

+

N
∑

i=1

(

f ′
i(u) + 2m

(

m − n

n
− s

)

v(m−n−1)/nvxi

)

zxi + mv(m−1)/n∆z

+

N
∑

i=1

2

n
f ′′

i (u)u1−nvxiz − 2(n − 1)
S(u)

u
z − 2S′(u)z − ns

S(u)

u
z, (3.19)

where we have also used the estimate (3.10).

CASE I At this point, let us assume that S = 0 and fi = 0. In what follows, first we

claim that

2m(m − 1)

n
v(m−n−1)/nzP − m

N
v((m−1)/n+s)P 2

+

(

2ms(s + 1) +
4m(m − n)(m − n − 1)

n2
− 2ms(m − n)

n

)

v((m−2n−1)/n)−sz2

≤ − cv((m−2n−1)/n)−sz2,

where c is a suitable positive constant and 1 < m < 1 + 1√
N−1

. The proof of the claim is a

simple computation of the above terms. We can rewrite

2m(m − 1)

n
v(m−n−1)/nzP − m

N
v((m−1)/n+s)P 2

+

(

2ms(s + 1) +
4m(m − n)(m − n − 1)

n2
− 2ms(m − n)

n

)

v((m−2n−1)/n)−sz2

=
2m(m − 1)

n
v(m−n−1)/nzP − m

N
v((m−1)/n+s)P 2 − cv((m−2n−1)/n)−sz2

+

(

(2ms(s + 1) +
4m(m − n)(m − n − 1)

n2
− 2ms(m − n)

n
) − c

)

v((m−2n−1)/n)−sz2.

Next, we assume that

2

N

(

s(m − n)

n
− s(s + 1) − 2(m − n)(m − n − 1)

n2

)

>
(m − 1)2

n2
,
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that is,

2n2s2 + 2n(2n− m)s + 4(m − n)(m − n − 1) + (m − 1)2N < 0.

Now, we see that the left hand side of the above inequality is a parabola in the s variable, so

we conclude

(2n − m)2 − 8(m − n)(m − n − 1) − 2(m − 1)2N > 0.

Next, we set l = m − n, then the above inequality after some calculation reads

4l2 − 4(2 − m)l + 2(m − 1)2N − m2 < 0.

Then,

(2 − m)2 − 2(2 − m)N + m2 > 0,

which implies

(m − 1)2(N − 1) < 1.

If we only consider the case m > 1, then

1 < m < 1 +
1√

N − 1
,

which essentially implies

3m − 2 −
√

2 − 2(m − 1)2(N − 1)

2
< n <

3m− 2 +
√

2 − 2(m − 1)2(N − 1)

2
.

For simplicity, we choose n = (3m − 2)/2. Then, it follows that

(ns)2 + 2(m − 1)(ns) − m(1 − m

2
) +

N(m − 1)2

2
< 0.

Which implies

−2(m − 1) −
√

2 − 2(m − 1)2(N − 1)

2

<ns <
−2(m− 1) +

√

2 − 2(m − 1)2(N − 1)

2
.

So, finally if n = (3m− 2)/2 and ns satisfies the above inequality, we conclude from (3.19)that

zt ≤ mv(m−1)/n∆z +

N
∑

i=1

(

f ′
i(u) + 2m

(

m − n

n
− s

)

v(m−n−1)/nvxi

)

zxi

−cv((m−2n−1)/n)−sz2, (3.20)

for a suitable positive constant c depending only on m and s. Let us now make another change

of variable

θ = z − 1

(1 + t)α
.

Then, we see from (3.20) that θ satisfies the following equation,

θt + (
1

(1 + t)α
)t ≤ −cv((m−2n−1)/n)−s 1

(1 + t)2α
+ −cv((m−2n−1)/n)−sθ2

+

N
∑

i=1

(

f ′
i(u) + 2m

(

m − n

n
− s

)

v(m−n−1)/nvxi

)

θxi . (3.21)



300 ACTA MATHEMATICA SCIENTIA Vol.35 Ser.B

Keeping in mind that n ∈ (m − 1, m), we see that v(m−2n−1)/n is bounded. If we choose

0 < α ≤ 1, then we see that the following estimate is true for large t

−cv(m−2n−1)/n 1

(1 + t)2α
+

α

(1 + t)α+1
≤ 0.

Then, we can apply maximum principle on (3.21) to conclude the proof as before.

CASE II As before, first we claim that

2m(m − 1)

n
v(m−n−1)/nzP − m

N
v((m−1)/n+s)P 2

+

(

2ms(s + 1) +
4m(m − n)(m − n − 1)

n2
− 2ms(m − n)

n

)

v((m−2n−1)/n)−sz2

≤ 0,

where 1 < m < 1 + 1√
N−1

. The proof of the claim is a simple computation of the above terms.

It is easy to see that if we assume that

2

N

(

s(m − n)

n
− s(s + 1) − 2(m − n)(m − n − 1)

n2

)

>
(m − 1)2

n2
,

then the claim is true. Note the above condition implies that ns should satisfy

(ns)2 + 2(m − 1)(ns) − m(1 − m

2
) +

N(m − 1)2

2
< 0.

Which implies

−2(m − 1) −
√

2 − 2(m − 1)2(N − 1)

2

<ns <
−2(m− 1) +

√

2 − 2(m − 1)2(N − 1)

2
.

Finally, from (3.19), we have

zt ≤ mv(m−1)/n∆z +

N
∑

i=1

(

f ′
i(u) + 2m

(

m − n

n
− s

)

v(m−n−1)/nvxi

)

zxi

+
N

∑

i=1

2

n
f ′′

i (u)u1−nvxiz − 2(n − 1)
S(u)

u
z − 2S′(u)z − ns

S(u)

u
z. (3.22)

Let us now make another change of variable

θ = z − 1

(1 + t)α
.

Then, we see from (3.22) that θ satisfies the following equation,

θt + (
1

(1 + t)α
)t ≤ mv(m−1)/n∆θ +

N
∑

i=1

2

n
f ′′

i (u)u1−nvxi(θ +
1

(1 + t)α
)

+

N
∑

i=1

(

f ′
i(u) + 2m

(

m − n

n
− s

)

v(m−n−1)/nvxi

)

θxi

−2(n− 1)
S(u)

u
(θ +

1

(1 + t)α
) − 2S′(u)(θ +

1

(1 + t)α
)

−ns
S(u)

u
(θ +

1

(1 + t)α
). (3.23)
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Next, we assume that fi(u) = ul. Then, it is easy to see that

∑

j

2f ′′
j (u)

nun−1
vxj z ≤ 2

√
N

n
max

∣

∣

∣

∣

uf ′′
j (u)

un

∣

∣

∣

∣

1√
N

∑

j

vxj z

≤ 2l(l − 1)
√

N

m − 1
ul−mz3/2

= dul−m(θ +
1

tα
)3/2

Now, we have

(θ +
1

(1 + t)α
)3/2 = θ(θ +

1

(1 + t)α
)1/2 +

1

(1 + t)α
(θ +

1

(1 + t)α
)1/2

= θ(θ +
1

(1 + t)α
)1/2 +

(

(θ +
1

(1 + t)α
)1/2 − (

1

(1 + t)α
)1/2

)

1

tα

+ (
1

(1 + t)α
)3/2,

and
(

(θ +
1

(1 + t)α
)1/2 − (

1

(1 + t)α
)1/2

)

1

(1 + t)α

=





θ
(

(θ + 1
(1+t)α )1/2 + ( 1

(1+t)α )1/2
)





1

(1 + t)α
.

It is not hard to see that

M(θ, t) =





1
(1+t)α

(

(θ + 1
(1+t)α )1/2 + ( 1

(1+t)α )1/2
)





is a bounded quantity. We further claim that under certain condition and α ≥ 1,

− (2(n − 1) + ns)
S(u)

u

1

tα
+ dul−m(

1

tα
)3/2 ≤ 0,

−2S′(u)
1

tα
+

α

tα+1
≤ 0.

Again, it is not difficult to check that under the following conditions, the above is true.

|S′(u)| ≥ C1 > 0,

0 < C2 ≤
∣

∣

∣

∣

S(u)

u

∣

∣

∣

∣

= dul−m.

Hence, using the maximum principle, we have, for each i,

((uq)xi)
2 ≤ M

(1 + t)α
, that is, (uq)xi ≤

M

(1 + t)α/2
,

where q is given by

q ≥ m − 1

2
−

√

2 − 2(N − 1)(m − 1)2

4
.

Hence, we conclude the proof. �



302 ACTA MATHEMATICA SCIENTIA Vol.35 Ser.B

References

[1] Aronson D G. The Porous Medium Equation//Lecture notes in Mathematics. Berlin/New York: Springer-

Verlag, 1985, 1224

[2] Bustos M C, Concha F, Bürger R, Tory E M. Sedimentation and thickening, volume 8 of Mathematical

Modelling: Theory and Applications. Kluwer Academic Publishers, Dordrecht, 1999. Phenomenological

foundation and mathematical theory

[3] Oleinik O A, Kalashnikov A S, Chzou Yui-lin. The Cauchy problem and boundary problems for equations

of the type of unsteady filtration. Izv Ahad Nauk SSR Ser Math, 1958, 22: 667–704

[4] Escobedo M, Zuazua E. Large time behaviour for convection-diffusion equations in R
n. J Funct Anal, 1991,

100: 119–161

[5] Escobedo M, Vazquez J L, Zuazua E. Asymptotic behaviour and source type solutions for a diffusion-

convection equation. Arch Rational Mech Anal, 1993, 124: 43–65

[6] Laurencot P H. Large time behaviour for diffusion equations with fast convection. Annali di Matematica

pura ed applicata, 1998, 175: 233–251

[7] Liu T P, Pierre M. Source solutions and asymptotic behaviour in conservation laws. J Differ Equas, 1984,

51: 419–441

[8] Laurencot P H, Simondon F. Large time behaviour for porous medium equations with convection. Proc

Royal Soc Edinburgh, 1998, 128A: 315–336

[9] Aronson D G. Regularity properties of flows through porous media. SIAM J Appl Math, 1969, 17: 461–467
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