
SCIENCE CHINA
Mathematics

∙ ARTICLES ∙ January 2010 Vol. 53 No. 1: 1–10

doi: 10.1007/s11425-010-0003-0

math.scichina.com www.springerlink.com

Existence of global solutions to isentropic gas
dynamics equations with a source term

LU YunGuang1,2,∗, PENG YueJun3 & KLINGENBERG Christian4

1Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2Department of Mathematics, National University of Colombia, Bogota, Colombia;
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Abstract In this paper we prove existence of isentropic gas dynamic equations with a source term (1.2). To

this end we construct a sequence of regular hyperbolic systems (1.1) to approximate the inhomogeneous system

of isentropic gas dynamics (1.2). First, for each fixed approximation parameter " and very general condition on

# ($), we establish the existence of entropy solutions for the Cauchy problem (1.1) with bounded initial date

(1.4). Second, letting % = &("), we obtain a complete proof of the '−1

loc
compactness of weak entropy pairs of

system (1.2) in the form (($, *) = $'($, *) given in Chen-LeFloch (2003). Finally, for the conditions of # ($)

given in Chen-LeFloch (2003), applied to the results in Theorems 1 and 2, we obtain the global existence of

entropy solutions for the Cauchy problem (1.2) with bounded initial date (1.4).
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1 Introduction

In this paper, we construct a sequence of regular hyperbolic systems

{

!! + (−2"#+ !#)" = 0,

(!#)! + (!#2 − "#2 + %1(!, "))" + &(')! + (!#∣#∣ = 0,
(1.1)

to approximate the inhomogeneous system of isentropic gas dynamics in Eulerian coordinates

{

!! + (!#)" = 0,

(!#)! + (!#2 + % (!))" + &(')!+ (!#∣#∣ = 0,
(1.2)

∗Corresponding author
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where ! is the density of gas, # is the velocity, % = % (!) means the pressure. The function &(')

corresponds physically to the slope of the topography and (!∣#∣ to a friction term and " > 0 in (1.1)

denotes a regular perturbation constant and the perturbation pressure

%1(!, ") =

∫ #

2$

+− 2"
+

% ′(+),+. (1.3)

The global existence of -∞ entropy solutions for inhomogeneous system (1.2) with the polytropic gas,

% (!) = ,!% , where . > 1 and , is an arbitrary positive constant, and arbitrarily large -∞ initial data

was established in [1].

In this paper, we study more general pressure % (!). First, for fixed " > 0, we establish the existence

of entropy solutions for the Cauchy problem (1.1) with bounded measurable initial data

(!(', 0), #(', 0)) = (!0('), #0(')), !0(') ⩾ 2". (1.4)

Theorem 1. -/+ ∣&(')∣ ⩽ 0 , and let ( be a nonnegative constant. Let the initial data (!0('), #0('))

be bounded measurable and !0(') ⩾ 2", % (!) ∈ 12(0,∞), % ′(!) > 0,

2% ′(!) + !% ′′(!) > 0 &2 ! > 0 (1.5)

and
∫

∞

&1

√

% ′(!)

!
,! =∞,

∫ &1

0

√

% ′(!)

!
,! < ∞, ∀(1 > 0. (1.6)

Then the Cauchy problem (1.1), (1.4) has a global bounded entropy solution (!(', +), #(', +)) satisfying

2" ⩽ !(', +) ⩽ 0(+), ∣#(', +)∣ ⩽ 0(+),

where 0(+) > 0 is bounded for any finite time +.

Second, with the help of the perturbation parameter ", 4 = 5("), we obtain a simple proof of the 6−1

compactness in the following theorem.

Theorem 2. Let all conditions about % (!) in Theorem 1 be satisfied and the limit

lim
#→0

(% ′(!))
3

2

!% ′′(!)
= /, (1.7)

where / ⩾ 0 is a constant. If the weak entropy-entropy flux pair (7(!, #), 8(!, #)) of system (1.2) is in the

form 7(!, #) = !6(!, #) and 6'(!, #), 6''(!, #), 6'''(!, #) are continuous on 0 ⩽ ! ⩽ 0(+), ∣#∣ ⩽ 0(+),

9ℎ/;/ 0(+) is a positive bounded function given in (2.11), +ℎ/<

7!(!
$,)(', +), #$,)(', +)) + 8"(!

$,)(', +), #$,)(', +)) (1.8)

is compact in 6−1
loc (= × =+) &2 4 = 5(*

′(2$)
2$ ) &<, " tends to zero, with respect to the viscosity solutions

(!$,)(', +), #$,)(', +)) of the Cauchy problem (2.6) &<, (1.4).

Theorem 3. Let all conditions about % (!) in Theorems 1 and 2 be satisfied. Assume that there exist

an exponent . ∈ (1,∞), and a smooth function >(!), and some real ?1 > 1 such that

% (!) = @!%
(

1 + !++1>(!)
)

, (1.9)

9ℎ/;/ ? = %−1
2 , @ = (%−1)2

4% , >(!) &<, !3% ′′′(!) are bounded as ! tends to zero. Then there exist global

entropy solutions to the Cauchy problem (1.2) &<, (1.4).
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Note 1. In Theorem 1, we do not need the condition &′(') ⩾ 0 given in [1].

Note 2. In Theorem 2, the weak entropy in the form 7(!, #) = !6(!, #) was constructed in [1], however

the compactness in 6−1 space is not proved.

General discussion of this paper: We use the compensated compactness method in this paper.

When applying this theory to the equations of isentropic gas dynamics this involves three steps. In the

first step, we construct a family of approximate solutions of this system of equations. In this paper this

is done by adding viscosity to the gas dynamic equations. When proving existence of these viscosity

solutions, the main difficulty is to prove an a-priory lower bound of the solutions !) ⩾ ((+, 4) > 0. In

this paper we use a perturbation by " in the flux of the conservation of mass equation to overcome

this difficulty. Secondly, we need to prove the 6−1
loc compactness for the weak entropy-entropy flux pair.

For polytropic gas = >(!) = (!% , . > 1, this compactness is proven by Di Perna, Lions and others by

controlling the weak entropy-enropy flux pair by a convex weak entropy (2.18). For general pressure

>(!) this compactness has been open up to now. In this paper using the perturbation " and choosing

4 going to zero faster than ", we give a simple proof of this compactness. In the third step, we use the

weak entropy-entropy flux pairs to prove that the Young measure is a Dirac measure. Here, for pressure

equations given in (1.9) we use the result in [1].

2 Proof of Theorem 1

In this section, we prove Theorem 1.

By simple calculations, two eigenvalues of system (1.1) are

A1 =
B

!
−

!− 2"
!

√

% ′(!), A2 =
B

!
+

!− 2"
!

√

% ′(!), (2.1)

with corresponding right eigenvectors

;1 = (1, #−
√

% ′(!)), , ;2 = (1, #+
√

% ′(!)), , (2.2)

and Riemann invariants

C(#, D) = −
B

!
+

∫ #

2$

√

% ′(2)

2
,2, 9(#, D) =

B

!
+

∫ #

2$

√

% ′(2)

2
,2, (2.3)

where B = !#. Moreover

∇A1 ⋅ ;1 = −
4"

!2
√

% ′(!)−
!− 2"

2!2
√

% ′(!)
(2% ′(!) + !% ′′(!)), (2.4)

and

∇A2 ⋅ ;2 =
4"

!2
√

% ′(!) +
!− 2"

2!2
√

% ′(!)
(2% ′(!) + !% ′′(!)). (2.5)

Considering the Cauchy problem for the related parabolic system

⎧

⎨

⎩

!! + ((!− 2")#)" = 4!"",

(!#)! + (!#2 − "#2 + %1(!, "))" + &(')!+ (!#∣#∣ = 4(!#)"",
(2.6)

with the initial data (1.4), we multiply (2.6) by (9#, 9-) and (C#, C-) respectively to obtain
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9!+A29" + &(') +
(∣#∣
2
(9 − C)

= 49"" +
24

!
!"9" −

4

2!2
√

% ′(!)
(2% ′ + !% ′′)!2", (2.7)

and

C! + A1C" − &(') +
(∣#∣
2
(C − 9)

= 4C"" +
24

!
!"C" −

4

2!2
√

% ′(!)
(2% ′ + !% ′′)!2".

(2.8)

Then the assumptions on % (!) yield

9! + A29" + &(') +
(∣#∣
2
(9 − C) ⩽ 49"" +

24

!
!"9", (2.9)

C! + A1C" − &(') +
(∣#∣
2
(C − 9) ⩽ 4C"" +

24

!
!"C". (2.10)

Making a transformation

9 = E +0+, C = F +0+, (2.11)

where 0 is the bound of &('), from (2.9) and (2.10) we have

⎧







⎨







⎩

E! + A2E" +
(∣#∣
2
(E − F )⩽ 4E"",

F! + A1F" +
(∣#∣
2
(F −E)⩽ 4F"",

(2.12)

with

E ∣!=0 = 9∣!=0 ⩽ 01, F ∣!=0 = C̄∣!=0 ⩽ 01. (2.13)

Thus the maximum principle (See Lemma 2.4 in [14]) applied to (2.11), (2.12) gives the estimates

9(!),$,B),$) ⩽ 01 + +0, C(!),$,B),$) ⩽ 01 + +0 . Moreover, using the first equation in (2.6), we

get !),$ ⩾ 2". Thus we obtain the estimates

2" ⩽ !),$(', +) ⩽ 0(+), ∣#),$(', +)∣ ⩽ 0(+), (2.14)

for a suitable positive function0(+), being independent of 4, ", since
∫

∞

&1

√
* ′(#)

# ,! =∞ and
∫ &1
0

√
* ′(#)

# ,!

< ∞ for any constant (1 > 0.

Thus for fixed " > 0, it follows from (2.1) that system (1.1) is strictly hyperbolic in the domain

{(', +) : ! > 2"}, while it is nonstrictly hyperbolic in the domain {(', +) : ! = 2"}, since A1 = A2 when

! = 2". However, from (2.4) and (2.5), both characteristic fields of system (1.1) are genuinely nonlinear

in the range ! ⩾ 2".

For smooth solutions, the homogeneous part of system (1.1) is equivalent to the following system
⎧







⎨







⎩

!! + (−2"#+ !#)" = 0,

#! +

(

1

2
#2 +

∫ #

2$

(+− 2")% ′(+)

+2
,+

)

"

= 0,

(2.15)

and particularly, both systems have the same entropy-entropy flux pairs. Thus any entropy-entropy flux

pair (7(!,B), 8(!,B)) of system (1.1) satisfies the additional system

8# = #7# +
(!− 2")% ′(!)

!2
7', 8' = (!− 2")7# + #7'. (2.16)
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Eliminating the 8 from (2.16), we have

7## =
% ′(!)

!2
7''. (2.17)

Therefore, systems (1.1) and (1.2) have the same entropies.

It is easy to check that system (1.1) has a convex entropy

7★ =
!#2

2
+

∫ #

2$

(!− +)% ′(+)

+
,+ (2.18)

with corresponding entropy flux

8★ =
!#3

2
−

"#3

3
+ #(!− 2")

∫ #

2$

% ′(+)

+
,+. (2.19)

We multiply (2.6) by (7★#, 7
★
-) to obtain the boundedness of

4(!",B") ⋅ ∇27★(!,B) ⋅ (!",B")
, (2.20)

in -1loc(=×=+). Then it follows that

4
% ′(!)

!
!2" + 4

1

!

[

B

!
!" −B"

]2

= 4
% ′(!)

!
!2" + 4!#2" (2.21)

is bounded in -1loc(= ×=+).

Since ! ⩾ 2", we get the boundedness of

4!2", 4#2" in -1loc(=×=+) (2.22)

for any fixed " > 0.

Thus for smooth entropy-entropy flux pairs (7/(", !, #), 8/(", !, #)), G = 1, 2, of system (1.1), the following

measure equations or the communicate relations are satisfied

⟨H$(",!), 71(")82(")− 72(")81(")⟩

= ⟨H$(",!), 71(")⟩⟨H
$
(",!), 82(")⟩ − ⟨H$(",!), 72(")⟩⟨H

$
(",!), 81(")⟩, (2.23)

where H$(",!) is the family of positive probability measures with respect to the viscosity solutions (!
),$, #),$)

of the Cauchy problem (2.6) and (1.4).

For applying to the framework given by DiPerna in [3] to prove that Young measures are Dirac ones,

we construct four families of entropy-entropy flux pairs of Lax’s type in the following special form:

710 = /01
(

&1(!) +
I1(!, @)

@

)

, 810 = 710

(

A2 +
(1(!, @)

@
+

,1(!, @)

@2

)

; (2.24)

72
−0 = /−01

(

&2(!) +
I2(!, @)

@

)

, 82
−0 = 72

−0

(

A2 +
(2(!, @)

@
+

,2(!, @)

@2

)

; (2.25)

720 = /02
(

&3(!) +
I3(!, @)

@

)

, 820 = 720

(

A1 +
(3(!, @)

@
+

,3(!, @)

@2

)

; (2.26)

71
−0 = /−02

(

&4(!) +
I4(!, @)

@

)

, 81
−0 = 71

−0

(

A1 +
(4(!, @)

@
+

,4(!, @)

@2

)

, (2.27)

where 9, C are the Riemann invariants of system (1.1) given by (2.3). Notice that all the unknown

functions &/, I/ (G = 1, 2, 3, 4) are only of a single variable !. This special simple construction yields an

ordinary differential equation of second order with a singular coefficient 1/@ before the term of the second
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order derivative. Then the following necessary estimates for functions &/(!), I/(!, @) are obtained by the

use of the singular perturbation theory of ordinary differential equations:

0 < &/(!) ⩽ 0, ∣I/(!, @)∣ ⩽ 0, (2.28)

0 < (/(!) ⩽ 0, ( or −0 ⩽ (/(!) < 0), ∣,/(!, @)∣ ⩽ 0, (2.29)

uniformly for 2" ⩽ ! ⩽ 01, where G = 1, 2, 3, 4 and 0 is a positive constant independent of @.

In fact, substituting entropies 710 = /01(&1(!) + I1(!, @)/@) into (2.17), we obtain that

@[2K(!)&′1 + K ′(!)&1] + &′′1 + 2K(!)I
′

1 + K ′(!)I1 +
I′′1
@
= 0, (2.30)

where K(!) =
√

* ′(#)

# . Let

2K(!)&′1 + K ′(!)&1 = 0 (2.31)

and

&′′1 + 2K(!)I
′

1 + K ′(!)I1 +
I′′1
@
= 0. (2.32)

Then

&1 = K(!)−
1

2 > 0 ! ⩾ 2". (2.33)

The existence of I1(!, @) and its uniform bound ∣I1(!, @)∣ ⩽ 0 on 2" ⩽ ! ⩽ 01 with respect to @ can be

obtained by the following lemma (cf. [7]) (also see Lemma 10.2.1 in [14]):

Lemma 4. -/+ F (') ∈ 12[0, ℎ] be the solution of the equation

L (', F, F ′) = 0,

and functions K(', M, C, A), L (', M, C) be continuous on the regions 0 ⩽ ' ⩽ ℎ, ∣M−F (')∣ ⩽ N('), ∣C−F ′(')∣ ⩽
B(') for some positive functions N('),B(') &<, A0 > A > 0. In addition,

∣K(', M, C, A)− L (', M, C)∣ ⩽ 4,

∣L (', M2, C)− L (', M1, C)∣ ⩽ 0 ∣M2 − M1∣,

L (', M, C2)− L (', M, C1)

C2 − C1
⩾ -

for some positive constants 4,0 &<, -.

If M(') = M(', A) is a solution of the following ordinary differential equation of second order:

AM′′ + K(', M, M′, A) = 0,

with M(0) = F (0) and M′(0) being arbitrary, then for sufficiently small A > 0, 4 > 0 and % = ∣M′(0)−F ′(0)∣,
M(') exists for all 0 ⩽ ' ⩽ ℎ and satisfies

∣M(', A) − F (')∣ <
[

4

0
+ A

(

%

-
+

O

0

)]

exp

(

0'

-

)

,

where O = max 0⩽"⩽ℎ ∣F (')∣.
Furthermore, we can use Lemma 4 again to obtain the bound of I′1 with respect to @ if we differentiate

Equation (2.32) with respect to !.

By the second equation in (2.16), an entropy flux 810 corresponding to 710 is provided by

810 = A27
1
0 + /01

(

(!− 2")&′1 − &1
@

+
(!− 2")I′1 − I1

@2

)

, (2.34)
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where

(!− 2")&′1 − &1 = −
(!% ′′ + 2% ′)(!− 2") + 8"% ′

4!% ′′K(!)
1

2

< 0, (2.35)

and (!− 2")I′1 − I1 both are bounded uniformly on ! ∈ [2",01].

In a similar way, we can obtain another entropy-entropy flux pair of Lax type as follows:

⎧







⎨







⎩

72
−0 = /−01

(

&2(!) +
I2(!, @)

@

)

,

82
−0 = A272−0 + /−01

(

&2 − (!− 2")&′2
@

+
I2 − (!− 2")I′2

@2

)

,

(2.36)

where &2(!) = &1(!) and I2(!, @) satisfies

&′′1 − 2K(!)I′2 − K ′(!)I2 +
I′′2
@
= 0; (2.37)

⎧







⎨







⎩

720 = /02
(

&3(!) +
I3(!, @)

@

)

,

820 = A1720 + /02
(

(!− 2")&′3 − &3
@

+
(!− 2")I′3 − I3

@2

)

,

(2.38)

where &3(!) = &1(!) and I3(!, @) satisfies

&′′1 − 2K(!)I′3 − K ′(!)I3 +
I′′3
@
= 0; (2.39)

⎧







⎨







⎩

71
−0 = /−02

(

&4(!) +
I4(!, @)

@

)

,

81
−0 = A171−0 + /−02

(

&4 − (!− 2")&′4
@

+
I4 − (!− 2")I′4

@2

)

,

(2.40)

where &4(!) = &1(!) and I4(!, @) satisfies

&′′1 + 2K(!)I
′

4 + K ′(!)I4 +
I′′4
@
= 0. (2.41)

Using the argument in Lemma 4 in Equation (2.41), we can get the existence of I4 and the uniform

bounded estimates of I4, I′4 with respect to @. If making an independent transformation !1 = !−01 to

Equations (2.37) and (2.39), where01 is the upper bound of !, we also obtain the existence of I2, I3 and

the uniform bounded estimates of I2, I3, I′2 and I′3 by Lemma 4 again.

Then the estimates in (2.28)–(2.29) are obtained, and hence Theorem 1 is proved when we use these

entropy-entropy flux pairs in (2.24)–(2.27) together with the theory of compensated compactness coupled

with DiPerna’s framework (cf. [3]).

3 Proofs of Theorem 2 and Theorem 3

In this section, we prove Theorems 2 and 3.

First of all, we recall the proof of Theorem 2 for the case of polytropic gas and the homogeneous

system, in which any weak entropy can be represented by the following explicit formula:

70(!, #) = !

∫ 1

0
[P(1 − P)]4Q(#+ !+ − 2!+P),P, (3.1)
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where ? = %−1
2 , A = 3−%

2(%−1) and Q is a smooth function. Multiplying (70#, 80#) to the following parabolic

system
⎧





⎨





⎩

!! +B" = 4!"",

B! +

(

B2

!
+ !%

)

"

= 4B"",
(3.2)

we have

70! + 80" = 470"" − 4(!)",B
)
") ⋅ ∇270(!),B)) ⋅ (!)",B)

")
, , (3.3)

where 80 is the entropy flux corresponding to 70. Then using the strictly convex entropy

7& =
B2

2!
+

1

. − 1
!% , (3.4)

we first obtain the boundedness of

4(!)",B
)
") ⋅ ∇270(!),B)) ⋅ (!)",B)

")
, (3.5)

in -1loc(=×=+) since the hessian of 70 is controlled by the hessian of 7& with the help of the explicit formula

(3.1), and hence the compactness in R−1,5
loc (= × =+), for some S ∈ (1, 2), by the Sobolev embedding

theorems. Second, in the case of 1 < . < 2, since 7& is strictly convex and 70#, 70- are uniformly bounded,

we can prove that 470""(!),B)) is compact in 6−1
loc (=×=+). Noticing that the left-hand side in (3.3) is

uniformly bounded in R−1,∞(=×=+) with respect to 4, we get the proof of Theorem 2 by using Murat’s

theorem (cf. [18]) for the case of 1 < . < 2.

However, for the case of . > 2, the entropy 7& is not strictly convex and hence the compactness of

470""(!),B)) in 6−1
loc (= × =+) is not obvious. To overcome this technical difficulty, the authors in [11]

used the periodic viscosity solutions in the space variable ' to obtain an auxiliary estimate (see (I.53) in

[11]):
∫ ,

0
,+

∫ 6

0
,'42(!)")

2 → 0 as 4 → 0. (3.6)

In this section, with the help of the approximation parameter ", the compactness of 470""(!),B)) in

6−1
loc (=×=+) can be easily obtained.

Now, we prove Theorem 2 for the inhomogeneous system with more general pressure % (!).

We rewrite system (2.6) by the following equivalent system

⎧





⎨





⎩

!! + ((!− 2")#)" = 4!"",

#! +

(

1

2
#2 +

∫ #

2$

(+− 2")% ′(+)

+2
,+

)

"

+ &(') + (#∣#∣ = 4#"" +
2)
#
!"#".

(3.7)

Let (7(!, #), 8(!, #)), (7(!, #), 81(!, #, ")) be the entropy-entropy flux pairs of systems (1.1), (1.2) respec-

tively since they have the same entropy equation (2.14), but different entropy fluxes.

Multiplying system (3.7) by (7#, 7'), we have

7(!),B))!+8(!
),B))" + (&(') + (#)∣#)∣)7'

=47(!),B))"" − (81(!),B), ")− 8(!),B)))" +
24

!)
7'!"#"

− 4(7##!
2
" + 27#'!"#" + 7''#

2
"). (3.8)

By entropy equation (2.14), we have
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7# =

∫ #

0

% ′(P)

P2
7''(P, #),P + Q(#)

=

∫ #

0

% ′(P)

P
6''(P, #),P + Q(#), (3.9)

since 7(!, #) = !6(!, #), where Q(#) is an arbitrary smooth function. Furthermore by integrating (3.9),

we get

7 =

∫ #

0

∫ !

0

% ′(P)

P
6''(P, #),P,+ + Q(#)! (3.10)

since 7(0, #) = 0. Then

7' =

∫ #

0

∫ !

0

% ′(P)

P
6'''(P, #),P,+ + Q′(#)!, (3.11)

7#' =

∫ #

0

% ′(P)

P
6'''(P, #),P + Q′(#). (3.12)

Substituting (3.11), (3.12) into (3.8) and using entropy equation (2.14), we get the following equality

7(!),B))! + 8(!),B))" = T1 + T2 + T3, (3.13)

where

T1 = 47(!),B))"" − (81(!),B), ")− 8(!),B)))", (3.14)

T2 = −4

(

% ′(!))

!)
6''(!

), #))!2" + !)6''#
2
"

)

− !)6'(&(') + (#)∣#)∣), (3.15)

T3 = −24

(

∫ #!

0

% ′(P)

P
6'''(P, #

)),P −
1

!)

∫ #!

0

∫ !

0

% ′(P)

P
6'''(P, #

)),P,+

)

!"#". (3.16)

For any U ∈ 110 (= ×=+) with V = suppU,

∣

∣

∣

∣

∫

∞

0

∫

∞

−∞

47(!),B))""U,',+∣

⩽4∣ (7#!)" +6'!
)#)

")U"∣,',+

⩽0

[

(
∫ ∫

7

4
% ′(!))

!)
(!)")

2 4!)

% ′(!))
,',+

)
1

2

+

(
∫ ∫

7

42(!))2(#)
")
2,',+

)
1

2

]

(
∫ ∫

7

(U")
2,',+

)
1

2

→ 0. (3.17)

since 4 = 5
(* ′(2$)

2$

)

or )#!

* ′(#!) → 0 as 4, " → 0. Since 81(!),B), ")− 8(!),B)) tends to zero as " tends to

zero, we get the compactness of T1 in 6−1
loc (=×=+). Using (2.19) and (2.11), we know that T2 is bounded

in -1loc(=×=+), and hence compact in R−1,5
loc (=×=+), for some S ∈ (1, 2), by the Sobolev embedding

theorems. Using the Vol’pert theorem and the limit given in (1.7), we have the following estimates

⎧







⎨







⎩

∣

∣

∣

∣

∫ #

0

% ′(P)

P
6'''(P, #),P

∣

∣

∣

∣

⩽ 0

∣

∣

∣

∣

∫ #

0

% ′(P)

P
,P

∣

∣

∣

∣

⩽ 01

√

% ′(!),

∣

∣

∣

∣

∫ #

0

∫ !

0

% ′(P)

P
6'''(P, #),P,+

∣

∣

∣

∣

⩽ 0

∣

∣

∣

∣

∫ #

0

∫ !

0

% ′(P)

P
,P,+

∣

∣

∣

∣

⩽ 01!
√

% ′(!).

(3.18)

Using these estimates together with (2.19), we get the boundedness of T3 in -1loc(=×=+) and hence the

compactness in R−1,5
loc (= ×=+), for some S ∈ (1, 2), by the Sobolev embedding theorems.
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Therefore the right-hand side of (3.13) is compact in R−1,5
loc (= × =+) for some S ∈ (1, 2), but the

left-hand side is bounded in R−1,∞(=×=+). This implies the compactness of 7(!),B))!+ 8(!),B))" in

6−1
loc (=×=+) and hence the proof of Theorem 2 by the Murat theorem (cf. [18]).

Proof of Theorem 3. In [1], under the assumptions of Theorem 2 on the pressure function % (!) and

the compactness of 7(!),B))! + 8(!),B))" in 6−1
loc (=×=+), the authors have established a compactness

framework for the viscosity solutions (!),B)). Based on this framework and the result given in Theorem

2, we can easily prove Theorem 3.
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