
Fast, Accurate, and Scalable Numerical
Wave Propagation: Enhancement by

Deep Learning

A DISSERTATION PRESENTED BY

Luis Kaiser

TO THE INSTITUTE OF MATHEMATICS

Julius-Maximilians-Universität Würzburg

FOR THE DEGREE OF

Master of Science
IN THE SUBJECT OF MATHEMATICS

January 2024

The Thesis Committee for Luis Kaiser certifies that

this is the approved version of the following dissertation:

Fast, Accurate, and Scalable Numerical Wave Propagation:

Enhancement by Deep Learning

Committee:

Prof. Dr. Christian Klingenberg

Prof. Dr. Yen-Hsi Richard Tsai

Thesis advisors: Prof. Christian Klingenberg & Prof. Yen-Hsi Richard Tsai

Fast, Accurate, and Scalable Numerical Wave Propagation:
Enhancement by Deep Learning

Summary

In a variety of scientific and engineering domains, ranging from seismic modeling to

medical imaging, the need for precise and e�cient solutions for high-frequency wave

propagation holds great significance. However, traditional numerical solvers face a trade-

o� between accuracy and computational e�ciency, often failing to capture non-negligible

fine-scale dynamics without incurring significant computational costs.

Recent advances in wave modeling use su�ciently accurate fine solver outputs to train

neural networks that enhance the accuracy of a computationally e�cient but inaccurate

coarse solver. While most existing methods are limited to smooth wave speeds or do

not preserve physical properties, enhancing fast numerical solvers can o�er stable wave

propagation across diverse media with multiscale speeds. A stable and su�ciently accurate

enhanced solver allows the use of Parareal, a parallel-in-time algorithm to further reduce

the wall-clock computation time for numerical simulations, and provide a mechanism to

refine scientific machine learning solutions.

In this thesis, we build upon the work of Nguyen and Tsai [1] and present a novel unified

system that integrates a numerical solver with deep learning components into an end-

to-end framework. In the proposed setting, we investigate advancements to the neural

network architecture, improve the sampling strategy for the wave solution manifold to

include time-dependent dynamics, and employ the Parareal scheme and regularization

methods within this novel setup. Our results show that the cohesive structure significantly

improves performance without sacrificing speed, and demonstrate the importance of

temporal dynamics for accurate wave propagation.

iii

Schnelle, Akkurate und Skalierbare Numerische
Wellenausbreitung: Erweiterung durch Deep Learning

Zusammenfassung

In Bereichen wie Seismik und medizinischer Bildgebung ist die präzise und schnelle

Berechnung von hochfrequenten Wellen essentiell. Jedoch stoßen konventionelle numerische

Ansätze schnell an Grenzen: Bei feingranularen Dynamiken erzeugen sie oft nicht zu

vernachlässigende instabile Resultate oder hohe Rechenlast.

Neueste Wellenmodellierungsmethoden nutzen daher ausreichend genaue numerische

Algorithmen zum Training neuronaler Netze, um die Genauigkeit von rechene�zienten

grobmaschigen Verfahren zu erhöhen. Während die meisten konventionallen Ansätze

entweder glatte Wellengeschwindigkeiten voraussetzen oder physikalische Eigenschaften

missachten, können optimierte schnelle Löser stabilere Wellenausbreitungen in multiskali-

gen Medien bieten. Ein stabiler und ausreichend genauer verbesserter Löser ermöglicht

den Einsatz von Parareal, ein parallel-in-time Algorithmus, um die Berechnungszeit

von numerischen Simulationen weiter zu reduziert. Dies bietet ein Mechanismus zur

Verfeinerung von scientific machine learning Lösungen.

In dieser Masterarbeit bauen wir auf die Arbeit von Nguyen und Tsai [1] auf und stellen ein

end-to-end System vor, das einen numerischen Löser mit deep learning Komponenten in

eine vereinheitlichte Struktur integriert. Im vorgestellten Setup optimieren wir die Netzw-

erkarchitektur, verbessern das Stichprobenverfahren der Wellenlösungs-Mannigfaltigkeit,

um zeitabhängige Dynamiken zu berücksichtigen, und setzen das Parareal-Verfahren

und Regularisierungsmethoden in dieser neuen Konfiguration ein. Unsere Ergebnisse

zeigen eine signifikante Leistungssteigerung ohne Geschwindigkeitsverlust durch den

ganzheitliche Ansatz, und unterstreichen die Bedeutung von zeitabhängigen Merkmalen

für eine zuverlässige Wellenberechnung.

iv

Acknowledgments

Throughout the writing of this thesis, as well as the entire duration of my studies, I have

received a great deal of support and assistance.

I would like to express my deepest appreciation to Prof. Dr. Christian Klingenberg (The

University of Wuerzburg) for his excellent guidance and expertise throughout the course

of my master’s thesis.

I am extremely grateful to Professor Prof. Dr. Yen-Hsi Richard Tsai (The University of

Texas at Austin) for providing his great mentorship, welcoming me into his research group

and enabling me to conduct research at The University of Texas at Austin.

Lastly, I would like to thank the research groups of both my advisors for interesting ideas

and discussion, as well as providing me with valuable feedback on my thesis. I also thank

Texas Advanced Computing Center (TACC) for the computing resources.

v

Contents

1 Introduction 1

2 Related Work 4

3 Theory 6
3.1 The Wave Equation . 6

3.1.1 Wave Representation . 6
3.1.2 Boundary Conditions . 8
3.1.3 Approximation of Wave Propagators 10
3.1.4 The Enhanced Propagators . 11
3.1.5 Traditional Numerical Schemes for the Coarse Solver (G�t) and

Fine Solver (F�t) . 12
3.2 Introduction to Deep Learning . 15

3.2.1 Supervised Learning of Wave Propagators 16
3.2.2 Feed-Forward Neural Networks . 16
3.2.3 Training . 18
3.2.4 (Weighted) Multi-Step Training . 20
3.2.5 Regularization Methods . 23
3.2.6 Approximation Theory . 24
3.2.7 Convolutional Neural Networks . 25
3.2.8 Architecture Enhancements . 28

3.3 Parareal Algorithm . 29

4 Evaluation Setup 31
4.1 Dataset and Methodology . 32

4.1.1 Dataset Split . 33
4.1.2 Velocity Profiles . 33

4.2 Experiments . 35
4.2.1 Experiment 1: Architecture Preselection 35

vi

4.2.2 Experiment 2: Multi-Step Training 35
4.2.3 Experiment 3: Weighted Multi-Step Training 35
4.2.4 Experiment 4: Time Reduction and Performance 35
4.2.5 Experiment 5: Enlarge Dataset . 36
4.2.6 Experiment 6: Parareal Optimization 36

4.3 Model Variants . 37
4.3.1 End-to-end Models . 37
4.3.2 Benchmarks . 39
4.3.3 Training Specifications . 40

4.4 Hyperparameter Search . 40
4.5 Metrics . 41

5 Discussion 43
5.1 Comparison of the Variants . 43

5.1.1 Evaluation of the End-to-end Structure 44
5.1.2 (Weighted) Multi-Step Training . 45
5.1.3 Upsampling Architecture . 46
5.1.4 Optimal Numerical Settings . 48
5.1.5 Further Modifications . 48

5.2 Training and Impact of Hyperparameters 50

6 Conclusion 53

References 61

Acronyms 62

Appendix 63

vii

1 Introduction

Wave propagation in media with complex materials and environments is a pivotal problem
in fields such as hydrocarbon exploration, medical imaging, and non-destructive testing.
For instance, when searching natural gas, such calculations form the forward part of a
numerical method for solving the inverse problem of geophysical inversion. By accurately
propagating acoustic waves and analyzing the reflections and transmissions generated by
media discontinuities, it becomes possible to characterize underground formations. Given
the numerical approach and extensive data requirements involved in most algorithms,
frequent solving of the forward problem is required. Consequently, an e�cient wave
propagator is indispensable to make solving the inverse problem practical.

We consider a second-order linear wave equation,

utt = c
2(x) �u, x œ [≠1, 1]2, 0 Æ t < T,

u(x, 0) = u0(x),

ut(x, 0) = p0(x),

(1.1)

with respect to the space variable x and time t. c(x) œ R2 is the piecewise smooth wave
speed in the 2D space. We impose either absorbing or periodic boundary conditions at
the domain boundary. Numerically propagating waves in complex, non-uniform media
with high accuracy is a challenging task. Traditional numerical computations often
demand a fine spatial and temporal representation to accurately capture the propagation
of high-frequency waves, handle erratic variations in the wave speed, and guarantee
stability. However, this increased computational cost can present severe challenges for
use in large-scale computations.

Recent advances in deep learning suggest that the techniques may be promising to improve
the e�ciency of wave propagation simulations. These techniques involve the training of
neural networks to complement traditional numerical solvers, resulting in a reduction
of wall-clock time, an increase in solution precision, and enhanced robustness against
outliers.

1

Problem. While some approaches yield remarkable results using deep learning techniques
for wave simulation, the focus of these studies primarily lies in the design of neural networks
and datasets for a specific task [1, 2, 3]. However, generalized conclusions are limited
because practical systems oftentimes demand preceding analysis for complex, discontinuous
media or a detailed tuning of inputs [2, 4]. Similarly, well-established numerical solvers [5,
6] are avoided to prioritize speed; as a result, the predictions deviate from the physics
described by the wave equation, and even small outliers may cause instability. Especially
when wave propagation needs to be simulated over an extended period, these methods
can diverge since they are trained on shorter time horizons and lack stabilization.

Objective. Combining a numerical solver with neural network components to solve the
wave equation e�ciently and accurately across a variety of wave speed profiles is a central
point of our research. We take a first step by expanding the method of Nguyen and Tsai [1]
and build an end-to-end model that enhances a computationally cheap numerical solver
through deep learning. By considering the entire process from input to output, the unified
system can learn complex relationships between individual components, eliminating the
need for manual pre-processing of input data or intermediate steps.

Approach and Contribution. An e�cient numerical solver G�tu © G�t[u, c] is used to
propagate a wave u(x, t) = (u, ˆtu) for a time step t + �t on a medium described by the
wave speed c(x). This method is computationally cheap since the wave advancements are
computed on a coarse grid; however, it is consistently less accurate than an expensive fine
solver F�tu © F�t[u, c]. Consequently, the solutions may exhibit numerical dispersion
errors and missing high-fidelity details as a consequence of under-resolving the media and
the wave fields.

We use a restriction operator R which transforms functions from a fine grid to a coarse
grid. Additionally, for mapping coarse grid functions to a fine grid, a prolongation (e.g.
interpolation) operator I is used. We can now define the e�cient low-fidelity propagator
��t := IG�tR. ��t takes a wave field u defined on the fine grid, propagates it on a
coarser grid, and returns the resulting wave field on the fine grid. As we mentioned
above, ��t under-resolves the wave field on the fine grid in heterogeneous wave media.
Therefore, we deploy a more elaborate technique to augment the accuracy of coarse solver
(G�t), as presented in [1, 7, 8]. We construct di�erent variants that integrate either
one or two neural network components with G�t end-to-end, which can be expressed as
��t[u, c, ◊] © �◊

�t œ {�◊,0
�t := I

◊
G�tR

0
, �◊1,◊2

�t := I
◊1G�tR

◊2}. The superscript 0 indicates
interpolation, and ◊ indicates a neural network.

In a supervised learning framework, we aim to reduce the discrepancy between G�t and

2

the ground truth wave field, while the outputs from the fine solver (F�t) provide the
training labels:

un+1 := u(x, t + �t) = F�tun ¥ �◊
�tun. (1.2)

The models are parameterized by the family of initial wave fields Fu0 and the family of
wave speeds Fc. Therefore, the wave solution manifold is defined as

M := {u(x, t; u0) | u(x, t; u0) solves Eq. (1.1) for c œ Fc, u0 œ Fu0}. (1.3)

Thus, ’u0 œ M, it holds that u(x, t; u0) œ M.

Our key contributions include:

(i) Enhancements to the wave propagation setup from [1] by integrating neural networks
and numerical simulations across diverse media conditions into a cohesive structure
for optimized component interplay. This includes refinements to both the training
algorithm and data generation techniques, as well as a systematic evaluation process.

(ii) The stability of the model, including both the numerical scheme and the deep
learning inference, is improved through a refined sampling of the wave solution
manifold M, thereby approximating temporal propagation features.

(iii) Absorbing boundaries are added to simulate waves that exit the domain without
reflecting back. This is realistic for certain types of problems, including seismic
analysis or acoustics.

(iv) In a large-scale analysis (¥ 6,552 GPU hours), we investigate the e�cacy of the
end-to-end structure, modifications to the deep learning architecture, loss function
enhancements to capture time-dependent features, Parareal [9], and regularization
methods, adapted for the end-to-end framework. We further provide insights gained
about hyperparameters and training using fANOVA [10], and systematically assess
numerical configurations.

This thesis is structured as follows: First, we provide an overview of the di�erent areas of
numerical wave propagation aided by deep learning and a review of its significant scientific
publications is given in Chapter 2. Section 3.1 contains an introduction to the wave
equation and a numerical approximation scheme. The supervised learning framework
of training the wave propagator, and deep learning theory is explained in Section 3.2.
Chapter 4 describes the experiment datasets and the architecture of the models. We
discuss the results of the evaluation in Chapter 5. Lastly, a conclusion and thoughts on
future work are given in Chapter 6.

3

2 Related Work

Gradient-based techniques for solving Partial Di�erential Equations (PDEs) have been
an active area of research. Recent work by Rassini et al. [6] focuses on the application
of Physics-Informed Neural Networks (PINNs) on the entire simulation of forward and
inverse problems. PINN have physical constraints within the loss function, usually in
the form of PDEs. Thus, errors caused by fully deep learning architectures are avoided,
and regressors can extrapolate accurately beyond the training data boundaries. However,
the results in [11] suggest that the loss landscape of PINN architectures are often ill-
conditioned due to a limited expressiveness. Moreover, in the context of the 2D wave
equation, PINN models frequently require refinements for any change in the medium [2,
3]. Particularly for inverse problems where details about the medium are unknown, the
lack of adaptability is inadequate for general application.

[7, 8] aim to find alternative ways to integrate physical understanding into the model’s
setup. In their work, Convolutional Neural Networks (CNNs) enhance low-fidelity numer-
ical solutions, particularly fluid dynamic simulations, and the Helmholtz equation, in a
data-driven manner. The basic idea is to intersperse classical numerical iterations with
neural network corrections trained by a fine grid solver. [1] adopted their setup for the 2D
acoustic wave propagation problem. They employed a CNN resembling an autoencoder
architecture, augmented with skip connections, to advance waves in challenging media.

These studies serve as a proof-of-concept and successfully establish stable wave propagation
simulators. More specifically, the presented CNN-based mechanisms conserve the total
energy of the system (i.e., symplectic) and are una�ected by the direction of time (i.e.,
time-reversible). Yet the authors have not explored the robustness against outliers, the
e�ect of various model components on the accuracy, or absorbing boundary conditions in
greater depth. Factors like optimal numerical configurations, such as the grid resolution,
and deep learning specifics, such as the type of neural network architecture or the training
algorithm, also remain unexplored. Consequently, no reliable conclusions can be made
about their speed advantages or stability. In addition, the numerical method is not
embedded in the neural network. Taking advantage of correlations between system
components can lead to further accuracy improvements.

4

Many studies, including [12, 13], demonstrate the benefits of Parareal, a parallel-in-
time algorithm for solving time-dependent PDEs, to correct a coarse solver through a
sophisticated wave propagator. The setup presented by Nguyen and Tsai [1, 14] deploys
this scheme to add back missing high-frequency components during online computation
through a ‘self-improving’ looping mechanism. Our deep learning setup follows their
design: Parareal iterations are used to iteratively refine the computed time series of
wave fields. Therefore, we aim to introduce more samples beyond the training set than
other approaches [7, 8]. While existing models achieve good results using finite-di�erence
time-domain modeling, their dataset is limited to single time-step wave advancements.
Furthermore, this motivates the study of an end-to-end system that utilizes the Parareal
scheme, which iteratively alters the computed temporal dynamics.

Beyond related work. Following the philosophy of PINNs, our model incorporates
physical domain knowledge to propagate waves end-to-end. However, to overcome the
limitations of PINNs, we have adapted the modular framework of [1] by fusing a symplectic,
time-reversible numerical solver along with CNNs. This single cohesive system allows us
to refine the traditional supervised learning process: The model is applied to its previous
solution and learns from a sequence of wave advancements.

At this time, few if any models deploy a deep learning method to solve the 2D wave
equation with absorbing boundary conditions. Thus, we can achieve significant reduction
in computation time relative to existing methods due to parallel computation and the
fast and precise processing of neural networks.

The wave propagation algorithms under discussion are applied to di�erent learning
problems and test environments, which di�er significantly in scale and nature. Such
variability undermines reliable conclusions about their performance. A comparative study
of the e�cacy of di�erent architectures, training algorithms, and optimization techniques,
such as Parareal, was missing. This thesis bridges that gap and approaches the challenge
of increasing e�ciency without compromising on accuracy.

5

3 Theory

The purpose of this chapter is to review initial-boundary value problems for the 2D
wave equation and introduce the core concepts of our proposed end-to-end model. In
particular, we will explain numerical approximations for the wave equation, study the
utilized building blocks of our neural networks, training refinements and the Parareal
scheme.

3.1 The Wave Equation

The wave equation is a second-order linear Partial Di�erential Equation (PDE) that
describes movements of an acoustic, electromagnetic, or seismic waves. In this simple
model, waves mainly advance in the direction of their oscillations. The evolution of wave
displacement u as a function of space x œ [≠1, 1]2 and time 0 Æ t < T takes the form

utt = c(x)2 �u, x œ [≠1, 1]2, 0 Æ t < T. (3.1)

In the following, � is the Laplacian for the spatial dimensions x1 and x2, i.e., �u :=
ˆu2

ˆx2
1

+ ˆu2

ˆx2
2
. c(x) œ R2 defines the speed of wave propagation and is determined by the

medium. Two initial conditions u(x, 0) = u0(x) and ut(x, 0) = p0(x) are usually required
for an initial value problem to have a unique solution, as the equation is of second order
with respect to time.

3.1.1 Wave Representation

Energy Semi-Norm. Given the linearity of the system, the energy semi-norm can be
used to compare wave fields:

E[u] := 1
2

⁄

[≠1,1]2
|Òu|

2 + c
≠2

|ut|
2

dx. (3.2)

With respect to this semi-norm, the wave equation is well-posed and wave propagation is
stable concerning fluctuations in the wave field [15]. Figure 3.1 illustrates an exemplary

6

Figure 3.1: Wave propagation of acoustic waves in a medium in energy semi-norm. A numerical
algorithm is deployed to solve the wave equation. The left image shows rock strata. Di�erent
colors represent di�erent velocities; the brighter the pixels, the faster the waves propagate. The
right image shows how waves propagate in this medium in two dimensions, while colors represent
intensity measured in decibels. The waves are initialized by a Gaussian pulse (see Eq. (4.1)) and
changed to the energy semi-norm representation (see Eq. (3.2)).

signal (right image) propagated through a medium (left image).

We propose that numerical dispersion errors can be reduced through convolutions of the
wave energy components (Òu, c

≠1
ut) of the given wave field u := (u, ut). The mapping of

physical components into their corresponding energy components is defined as

� : (u, ut) ‘æ (Òu, c
≠1

ut), (3.3)

with �† as the pseudo-inverse (cf. Section 1.3 in [1]). In [16, 17, 18], the authors
demonstrate that utilizing the energy form for seismic imaging methods can enhance
results compared to standard optimization measures. Furthermore, the use of energy
components has been shown to improve convergence when training neural networks (see
e.g. [1]). The mathematical methodology is explained in Appendix 1 in [1]. Chapter 4
provides a schema visualizing the wave argument transitions.

Discretized Energy Semi-Norm. The discretized energy semi-norm on the spatial
grid hZ2

fl [≠1, 1]2, with h = 1/(n + 1) for n œ N, is given by

Eh[u] = ÎuÎEh
:=

ÿ

xi,jœhZ2fl[≠1,1]2
(ÎÒhu(xi,j)Î2

2 + |c
≠1(xi,j)ˆtu(xi,j)|2)h2

. (3.4)

We calculate the discrete derivatives, Òhu(xi,j) and ˆtu(xi,j), at interior points using
second-order central di�erencing and employ first-order one-sided di�erences at the
boundary. Appendix C provides a description of central di�erence approximation.

7

3.1.2 Boundary Conditions

In numerical simulations, boundary conditions are imposed to define the behavior of the
solution at the boundaries of the computational domain. Figure 3.2 illustrates two types
of boundary conditions for the acoustic wave equation that are relevant in this thesis.

Periodic Boundary Condition

The periodic boundary condition enforces standard periodicity and is deployed in all
implementations of [1]. In the 2D case, the solution repeats itself periodically in both
directions with the same velocity,

u((≠1, k), t) = u((1, k), t)

and u((k, ≠1), t) = u((k, 1), t), ’k œ [≠1, 1), 0 Æ t < T.

(3.5)

While this boundary condition makes computation simpler, it does not accurately represent
the physical world. However, since waves travel at finite speed, periodic boundary
conditions will not a�ect the propagation of waves in the interior of the domain before
they reach the boundary.

Absorbing Boundary Conditions

Absorbing boundary conditions are designed to simulate an infinite computational domain
by absorbing outgoing waves at the boundaries. While a perfectly matched layer [19] is
an absorbing region and significantly reduces reflections more than comparable methods,
we chose absorbing boundary conditions for simplicity. In 1977, Engquist and Majda [20]
presented one way of enforcing absorbing boundary conditions for the 2D wave equation:

For simplicity, let c(x) = 1 and we only consider the half-space xi Ø 0 ’i œ {1, 2}. We
impose absorbing boundary conditions at points x1 = 0 for solutions of the wave equation
u = ˆu2

ˆt2 ≠
ˆu2

ˆx2
1

≠
ˆu2

ˆx2
2
. Waves advancing to the left, i.e., towards x1 = 0, take the form

u(x1, x2, t) = e
i(

Ô
›2≠Ê2x1+›t+Êx2) (3.6)

assuming that ›
2

≠ w
2

> 0, where › > 0 stands for frequency, and Ê/t = sin ◊ with ◊

representing the angle of incidence of the wave upon the boundary x1 = 0.

8

Figure 3.2: Di�erence in energy semi-norm when using di�erent boundary conditions. We can
see that for the same initial condition and medium, periodic boundaries (left image) re-introduce
waves that hit the boundary on the opposite side, while absorbing boundaries (right image) do
not further propagate these waves (see red rectangles). A crop of the medium in Figure 3.1 and
the same numerical algorithm are used to solve the wave equation. Note that numerical wave field
integrations with absorbing boundary conditions will cause small but significant reflections at the
boundary (see orange rectangles). This can be observed on the right side of the right image and is
caused by inaccuracies in the algorithm.

For constant (Ê, ›),

(d

dx1
≠ i

Ò
›2 ≠ Ê2) u

x1=0

= 0 (3.7)

is the first-order boundary condition that annihilates left-moving waves. Summing the
displacements, we get

u(x1, x2, t) =
⁄ ⁄

Ô
›2≠Ê2>0

e
i(

Ô
›2≠Ê2x1+›t+Êx2) ‚u(0, ›, Ê) d› dÊ, (3.8)

which is a more general wave package advancing to the left, where ‚u represents the Fourier
transform (cf. Section A) in (t, x2). In the physical space, the above corresponds to

(d

dx1
≠

Û
ˆ2

ˆt2 ≠
ˆ2

ˆx2
2
) u

x1=0

= 0. (3.9)

Under Fourier transform, it follows

i› ¡
ˆ

ˆt
and iÊ ¡

ˆ

ˆx2
(3.10)

for the theoretical non-local boundary condition seen above. By writing i

›2 ≠ Ê2 in the
form i›

1 ≠ (Ê2/›2), substituting x = Ê/›, multiplying by powers of i› and applying

9

Eq. (3.10), we can approximate
Ô

1 + x using the second Taylor expansion (cf. Section B)
for x = 0:

ux1t ≠ utt + 1
2ux2x2

x1=0

= 0. (3.11)

It is shown that a higher-order Taylor expansion leads to an ill-posed problem, which is
why Engquist and Majda apply the Padé approximation [21]:

Ô
1 + x = 1 + x

2 + x/2 + O(|x|
3). (3.12)

This leads to the third-order boundary condition that produces a zero reflection coe�cient

ux1tt ≠ uttt ≠
1
4ux1x2x2 + 3

4utx2x2

x1=0

= 0. (3.13)

Nevertheless, when the incident wave arriving at the boundary is not orthogonal to
the boundary, then these absorbing boundary conditions do not completely eliminate
reflection. Experiments in [20] show that for waves with a 45¶ angle of incidence, Eq. (3.11)
reflects approximately 3% of the amplitude of the incident wave, while Eq. (3.13) causes
reflections of 0.5%. Higher-order boundary conditions produce less reflection but make
the computations significantly more expensive.

3.1.3 Approximation of Wave Propagators

Following the setup of Section 1.1 and 1.3 in [1], we describe an e�cient, time-reversible
G�tı and an accurate F�tı to numerically advance 2D waves through a medium c(x) œ R2.
G�tı operates on a coarser grid than F�tı and is therefore computationally cheaper,
but less accurate. They both propagate the given wave field u © u(x, t) © (u, ut) from
t to t + �t

ı, while G�tı uses fewer steps than F�tı . The choice of grid spacing, time
step, and discretization method directly impacts the solver’s convergence, accuracy, and
computational e�ciency.

To define the solvers, we need to discretize the spatial and temporal domains. Let Qhu

denote a numerical approximation of �u, i.e.,

ˆttu(x, t) ¥ c
2(x)Qhu(x, t). (3.14)

The approximation (u, ut)t ¥ (ut, c
2
Qhu) can be solved by a time integrator. With the

spatial (�x, ”x) and temporal spacing (�t, ”t) on uniform Cartesian grids, we denote

10

• G�tı := (SQh
�x,�t)M with �t

ı = M�t, which operates on the lower resolution grid,
�xZ2

◊ �tZ+. Qh is characterized using a central di�erencing scheme of second
order for computing partial derivatives.

• F�tı := (SQh
”x,”t)m with �t

ı = m”t, which operates on the higher resolution grid,
”xZ2

◊ ”tZ+. Qh is either a central di�erencing technique of second order or a
spectral method to approximate �u. We assume that F�tı is su�ciently accurate
for the wave speed.

These two propagators take u(x, t), with x defined on di�erent Cartesian grids, and return
an approximation of u(x, t + �t

ı) on the respective Cartesian grids. As the two solvers
operate on di�erent Cartesian grids with ”x < �x and ”t < �t, we define extension using
the restriction operator R, which transforms functions from a fine grid ”xZ2

◊ ”tZ+ to a
coarse grid �xZ2

◊ ”tZ+, while the prolongation operator I maps the inverse relation.

3.1.4 The Enhanced Propagators

Solutions of the wave propagators are either used to train the end-to-end model, or are
integrated with deep learning components to o�er stable wave propagation across diverse
media with multiscale speeds. The enhanced model variants consist of:

(a) bilinear interpolations denoted as R
0 and I

0. Note that I
0
R

0u ”= u, which is part of
the error to be corrected with a more sophisticated approach. Appendix Section D
contains a description of the bilinear interpolation algorithm.

(b) neural network components denoted as R
◊

© �†
R

◊
�tı� and I

◊
© �†

I
◊

�tı�, while
the lower index indicates that the neural networks are trained on the step size
�t

ı (cf. Chapter 2 in [1]). For improved neural network inference, we use the
transition operator � (cf. Eq. (3.3)) to transform physical wave fields (u, ut) to
energy component representations (Òu, c

≠2
ut). Section 3.2 serves as an overview of

the deep learning methods used for the components above.

By reorganizing Eq. (1.2), we obtain the functions that the deep learning components
seek to approximate:

�◊,0
�tı [u, c] := I

◊
G�tıR

0[u, c] ¥ F�tıu

�◊1,◊2
�tı [u, c] := I

◊1G�tıR
◊2 [u, c] ¥ F�tıu.

(3.15)

In other words, I
◊ corrects the wave field computed by G�tı . For �◊1,◊2

�tı , the trainable
parameters ◊1 and ◊2 are optimized together.

11

The model’s performance depends on how the PDE is discretized, what numerical pa-
rameters are used, what numerical algorithm is applied for G�tı and F�tı , and how we
sample from the wave solution manifold M (cf. Eq. (1.3)). In the next section, we will
explain the utilized numerical methods in our setup.

3.1.5 Traditional Numerical Schemes for the Coarse Solver (G�t) and
Fine Solver (F�t)

Through discretizing both the spatial and time interval of the PDE, we can approximate
the positions and velocities of particles at successive discrete points at finite number
of steps. This transforms the PDE into a system of linear equations, which can then
be solved numerically using di�erence equations. Since our problem involves complex
manifolds and irregular shapes, this method allows for the subdivision of these domains
into smaller and simpler parts, making it easier to solve the PDEs in these regions.

Velocity Verlet in Time and Central Di�erence in Space (G�t)

One robust and popular algorithm for molecular dynamics simulations is attributed to
Verlet [22]. To simplify the notation, we define the velocity ˆũ

ˆt = ṽ and the acceleration
ˆṽ
ˆt = ã of the wave ũ. Many finite-di�erence time-domain integration algorithms can be
understood by expanding ũn+1 := ũ(tn + �t) in a Taylor series up to the second order:

ũn+1 = ũn + ṽn�t + �t
2

2 ãn. (3.16)

Next, we define the velocity at the next time step by the central di�erence formula as

ṽn+1 = ũn+2 ≠ ũn

2�t
. (3.17)

Applying the above equations twice, we obtain

ṽn+1 = ṽn + ãn+1 + ãn

2�t
. (3.18)

Combining Eq. (3.18) and Eq. (3.16), we derive the fundamental velocity Verlet scheme
implemented to numerically solve the wave equation. In our context, the velocity form of
the Verlet time integrator can then be written as

ũ(x, t + �t) = ũ(x, t) + �t ṽ(x, t) + �t⁄c
2(x) Q�xũ(x, t)

ṽ(x, t + �t) = ṽ(x, t) + ⁄[Q�xũ(x, t) + Q�xũ(x, t + �t)],
(3.19)

12

with ⁄ = �t
2�x2 , while ṽ approximates ũt. While this scheme is computationally e�cient,

symplectic, and time-reversible, it is less accurate than other, more expensive approaches.
The total accumulated error has an order of magnitude of O((�t)2) + O((�x)2). To
achieve a specific level of accuracy with small numerical dispersion errros, the velocity
Verlet method may require a much smaller step size.

RK4 Pseudo-Spectral Method (F�t)

To apply the pseudo-spectral method for spatial discretization, we use a Runge-Kutta
method as an iterative scheme that showed good result in related work [1]. The Runge-
Kutta method was first developed in 1900 by Carl Runge and Wilhelm Kutta [23, 24].
The scheme used in this thesis is as follows: While higher-order Runge-Kutta methods
can provide better solutions, the Runge-Kutta of forth-order method (RK4) method is
primarily used in F�t to trade-o� accuracy, computational complexity, and convergence.
By denoting the velocity as ũt := ṽ, RK4 is defined using the following iterative formula:

k
ũ
1 = ṽn

k
ṽ
1 = c

2(x) �”xũn

k
ũ
2 = ṽn + ”x

2 k
ṽ
1

k
ṽ
2 = c

2(x) �”x(ũn + ”x

2 k
ũ
1)

k
ũ
3 = ṽn + ”x

2 k
ṽ
2

k
ṽ
3 = c

2(x) �”x(ũn + ”x

2 k
ũ
2)

k
ũ
4 = ṽn + k

ṽ
3

k
ṽ
4 = c

2(x) �”x(ũn + k
ũ
3)

(3.20)

and
ũn+1 = ũn + 1

6(kũ
1 + 2k

ũ
2 + 2k

ũ
3 + k

ũ
4) ”t

ṽn+1 = ṽn + 1
6(kṽ

1 + 2k
ṽ
2 + 2k

ṽ
3 + k

ṽ
4) ”t

(3.21)

We e�ciently evaluate the second-order spatial derivatives �”x via the Fourier pseudo-
spectral method:

(i) We first compute the 2D Fourier transform of the displacement function ũ, which

13

converts the function from its spatial domain representation to its frequency domain
equivalent. This transformation is accomplished using the Fast Fourier Transform
(FFT) algorithm, as described in Appendix A. The advantage of this conversion is
that di�erentiation can be performed more e�ciently in the frequency domain.

(ii) We then multiply the result by the square of the wavenumber. A wavenumber k

represents the spatial frequency of the function in the x1 and x2 directions; it is
given by k = 2fi

n · ”x , where n denotes the number of grid points in the domain. This
operation computes the second-order spatial derivatives, as di�erentiation in the
frequency domain corresponds to multiplication by the wavenumber.

(iii) Lastly, we compute the inverse 2D Fourier transform to obtain the second-order
spatial derivatives in the physical domain.

This scheme is only suitable for PDEs with periodic boundary conditions. To overcome
this issue, we first apply F�t to a larger domain and then crop the image to simulate
an infinite computational domain. Since solutions of F�t are only used for creating the
training data, increasing the domain size does not a�ect speed. Second, computations are
not symplectic, which means that the energy is not conserved over long time intervals.
Consequently, in problems where long-term energy conservation is crucial, the velocity
Verlet method may be a more suitable choice.

Stability Conditions

Numerically simulating waves, especially on discontinuous media with a high rate of
change, presents a challenging task. The convergence and results of both wave propagation
schemes depend on the composition of spatial and temporal parameters. The parameters
from G�t serve to illustrate the condition, but the same principle applies to F�t. Choosing
overly large parameters leads to the accumulation of errors and can cause rapid oscillations
in the simulation.

A necessary condition for convergence is that the parameters are selected according to
the stability criterion outlined by Courant, Friedrichs, and Lewy (CFL) [25]: The domain
of dependence of the PDE must lie within the domain of dependence of the numerical
method. This is because correct solutions cannot be computed if the information that
determines the solution is not accessible.

For explicit schemes addressing hyperbolic problems, the CFL condition constrains the
time step c�t not to exceed one spatial step �x. This condition requires a numerical
scheme to be aligned with the wave speed; the easiest way to ensure adherence to the

14

c�t c�t

�x �x

n

n + 1

i ≠ 1 i i + 1

time

space

Figure 3.3: Physical interpretation of the CFL condition for the 1D wave equation. The orange
region represents the true solution to the continuous 1D PDE, while the orange lines are defined by
�x/�t = c and �x/�t = ≠c. The blue region shows the domain of dependence of the numerical
method, e.g., the velocity Verlet algorithm from Eq. (3.19). Since the set of points that influence
the solution x(i, n + 1) includes all the physical information from the previous time step, the
parameters fulfill the CFL condition.

CFL condition is to universally use the fastest wave speed and the smallest time step. In
other words, the numerical wave speed �x/�t must be at least as fast as the physical
wave speed c. This ansatz is expressed using the Courant number C:

c�t

�x
= C Æ Cmax = 1. (3.22)

Note that the CFL criterion is necessary, but not su�cient. Other methodologies, such
as the Von Neumann analysis [26], may yield a more comprehensive understanding of
stability in the explicit scheme. Figure 3.3 visualizes the domains of dependence in one
dimension.

3.2 Introduction to Deep Learning

Among various machine learning paradigms, neural networks are especially contributing to
the state-of-the-art for predicting wave propagation as emphasized in [27, 28, 29]. Neural
networks consist of interconnected layers of artificial neurons, which are computational
units that can learn to approximate complex functions and relationships from training data.
The central relationship we aim to establish is between the input features (un, (ut)n, c(x))

15

and the target output (un+1, (ut)n+1). Note that our setup is inspired by Section 1.1
in [1], but diverges in employing a di�erent training algorithm and dataset, as detailed in
Chapter 4. Most of the formulas below are taken from [30, 31, 32, 33].

3.2.1 Supervised Learning of Wave Propagators

The paradigm in machine learning, where the model learns a relationship between inputs
and labeled output targets, is called supervised learning. In this framework, a dataset
composed of pairs of inputs and corresponding outputs is used to guide the learning
process. The primary objective of supervised learning is to construct a model that can
generalize and make accurate predictions for unseen data, leveraging patterns inherent in
the training data.

In the context of this thesis, one data point corresponds to an object x = (Òun, c
≠2(un)t, c) œ

R(h◊w◊4) with h (height) and w (width) representing the dimensions of the image. The
label for this wave propagation problem corresponding to an object x is then given
by y = (Òun+1, c

≠2(un+1)t) œ R(h◊w◊3). Given a set of N paired training points
D = {(xi, yi)}N

i=1, we attempt to learn a function f̃ : R(h◊w◊4)
æ R(h◊w◊3) that meets

the objective prescribed in Eq. (1.2) for unseen test data. Consequently, this can be seen
as approximating an unknown function f : x ‘æ y with the objective f̃(x) ¥ y = f(x), i.e.,
learn nontrivial alignments between x and y, while (x, y) belong to a certain distribution.
In Subsection 4.3.1, we present di�erent variants of f̃ in our setup, also denoted as �◊

�tı .
This model consists of one or two neural networks, denoted by ◊. The following section
serves as an introduction to feed-forward networks, usually referred to as ‘vanilla’ neural
networks.

3.2.2 Feed-Forward Neural Networks

Feed-forward neural networks are a type of artificial neural network architecture that
consists of multiple layers of neurons organized as seen in Figure 3.4. In mathematical
terms, layers are structured as an ordered arrangement of alternating linear and nonlinear
operations, with each operation being characterized by a set of adjustable, learnable
parameters. We flatten the multi-dimensional input variable x to a vector x̃ to obtain the
first hidden layer A

(1),
A

(1) = ‡(W (0)
x̃ + B

(0)). (3.23)

16

... ...
...

...

...

input layer
x

hidden layers
A

(1)
A

(2)
A

(3)
output layer

y

Figure 3.4: Sample feed-forward neural network architecture. Neurons are represented by circles
and each neuron in the previous layer is fully pairwise connected with all neurons in the adjacent
layer. I.e., it is called a fully connected network. Neurons within a single layer share no connections.
This drawing is a modification of [34].

The utilized parameters are:

Weights. w
(i)
j œ W

(i) represents a single weight at position j of the weight matrix W
(i)

in the i-th layer. For example, W
(0) are the weights from the input layer to the first

hidden layer. We chose to randomly initialize the weights according to the Kaiming
Uniform Initialization [35]

w ≥ U(≠
Ò

(1/n),
Ò

(1/n)), (3.24)

where n is the number of input units in the layer and U is the uniform distribution. This
choice is motivated by the findings in [36]: To avoid that the magnitudes of input signals
are reduced or increase exponentially, the weights are initialized in a way that the variance
of the outputs from each neuron remains the same throughout the network layers during
the forward pass.

Biases. To help the neural network better fit the data, the bias B is an additional
parameter that is added to each layer to shift the output by a scalar. The biases B

(i)

are initialized either as zero (for the last layer) or according to Eq. (3.24) (for all other
layers).

17

Activation. The activation function ‡ is applied to the sum of weighted inputs and
biases. This plays a critical role in the ability of neural networks to learn complex, non-
linear decision boundaries. The activation function predominantly used in our setup is the
Rectified Linear Unit (ReLU) function ‡(x) = max(0, x); it sets all negative input values
to zero, while positive input values remain unchanged. We chose the ReLU activation
function for all of our layers due to its simplicity, computational e�ciency, and success
in related work [37]. Note that, unlike other layers in regression tasks, the output layer
neurons most commonly do not have an activation function to enable negative values.

Finally, we characterize the trainable weights and biases ◊ of the learning function f◊

related to the network components I
◊ and R

◊, as

◊ := {W
(0)

, B
(0)

, . . . , W
(N≠1)

, B
(N≠1)

}. (3.25)

where N is the number of hidden layers in the neural network. Training aims to adjust the
parameters ◊ iteratively using an optimization algorithm in such a way that the output
becomes increasingly accurate.

3.2.3 Training

Loss Function

Mathematically, the learning process involves minimizing a loss function l, which measures
the di�erence between the predicted outputs f◊(xi) and the true outputs yi for all the
examples in the training dataset D:

min
◊œRm◊n

L(f◊; D) =
ÿ

i

l(f◊(xi), yi), ’i œ {1, . . . , |D|}. (3.26)

Here, l(yi, f◊(xi)) represents the loss incurred for a single input-output pair (xi, yi). The
intention is to find the function f◊ that minimizes the overall loss L(f◊; D).

The choice of loss function depends on the problem domain and the desired properties of
the trained system. We chose the L2 loss, which is one of the most common loss functions
used in supervised learning. It is defined as:

min
◊œRm◊n

L(f◊; D) =
ÿ

i

(f◊(xi) ≠ yi)2
, ’i œ {1, . . . , |D|}. (3.27)

Due to the squared term, the L2 loss is more sensitive to outliers than other loss functions.
This means that the performance will be strongly influenced by large errors. The loss

18

function is convex with the premise that ◊
ı := arg min◊ L(◊; {(xi, yi)}N

i=1), which means
that it has a unique global minimum. This property simplifies optimization, as gradient-
based methods can be applied to find the optimal solution without getting trapped in
local minima. Subsection 3.2.4 details the refinement of the standard L2 loss function
(Eq. (3.27)).

Gradient-based Optimization

The parameters ◊ are optimized by calculating the gradient of the loss function Ò◊L. This
gradient is then used to minimize the loss function by adjusting the model’s parameters
in the direction of the negative gradient of the loss function. A popular choice for training
neural networks is to feed data in batches, allowing parallel computations and averaging
of the gradients. For each epoch, one shu�es the data and divides the training set into
smaller subsets (also called ‘mini-batches’) with a batch size m, each containing m data
samples. For each mini-batch, the gradient of the loss function J(◊) are computed with
respect to the parameters for the mini-batch:

ÒJ(◊) = 1
m

mÿ

i=1
Ò◊L(◊; (xi, yi)) (3.28)

According to the learning rate –, each iteration of gradient descent updates can be written
as

◊
t+1 = ◊

t
≠ –ÒJ(◊) (3.29)

where t denotes the iteration in gradient descent [38]. A common variation of the mini-
batch gradient descent optimization algorithm is Adam [39] which is predominant in
various domains [40].

ˆL
ˆ◊ is computed by automatic di�erentiation and ‘backpropagation’. In detail, the fine-
tuning is done for each weight ˆw

(k)
ij and bias, simplified to ˆw

(k)
0i , which is connecting

neuron i in layer (k ≠ 1) to neuron j in layer k. By applying the chain rule and using the
activation of a neuron a

k
i :=

q
j w

k
ijai≠1, we define

ˆL

ˆwk
ij

= ˆL

ˆak
j

ˆa
k
j

ˆwk
ij

. (3.30)

The impact of the weight on the activation is denoted as the output o
k≠1
i of node i in the

19

y
(k≠1)
i

y
(k)
1

...

y
(k)
m(k)

”
(k)
1

”
(k)
m(k)

Figure 3.5: Backpropagation of errors. Here, the red arrows show the backpropagation graph. ”
i
k

represents errors that are propagated back from layer (k) to layer (k ≠ 1). m
(k) corresponds to

the amount of nodes y
k
i in layer (k). This illustration is an adaptation of [42].

previous layer k ≠ 1,

”
k
j = ˆL

ˆak
j

,
ˆa

k
j

ˆwk
ij

= ˆ

ˆwk
ij

(
ÿ

r

w
k
rjo

k≠1
r) = o

k≠1
i . (3.31)

Thus, the partial derivative of the loss function can be written as

ˆL

ˆwk
ij

= ”
k
j o

k≠1
i . (3.32)

As depicted in Figure 3.5, we then iteratively compute the gradient of the loss function
and move backward from the output layer to the input layer through the computation
graph. It is important to note that computations of the error term ”

k
j depend on the

chosen activation and loss function. For more detailed information, please refer to the
work by Hecht-Nielsen [41].

We adjust the parameters ◊ by iterating over all training points in D multiple times. An
epoch refers to a complete pass through the entire dataset. For each epoch, the data
points are usually shu�ed and grouped to create mini-batches. This sampling strategy,
known as mini-batch gradient descent, has shown good results [40] because it leverages
parallelism in modern hardware and reduces the variance of the gradient.

3.2.4 (Weighted) Multi-Step Training

During evaluation, the end-to-end model �◊
�t is applied multiple times to advance waves

over the duration �t. It is natural to leverage time-dependent features also during training.
This is why we introduce a multi-step training strategy, in which the algorithm is applied
to itself iteratively to learn time-dependent dynamics inherent in the data. The novel

20

technique modifies Eq. (1.2) and changes the wave solution manifold M (cf. Eq. (1.3)).
For k time steps, we can denote:

un+k := u(tn + k�t) = (F�t)kun ¥ (�◊
�t)kun. (3.33)

Similar to the mini-batch approach in Subsection 3.2.3, we then randomly join these
sequences to form batches. The losses for the samples within the batch are summed
across the batch to form a single loss value. By computing the gradient with respect
to consecutive losses, the gradient flows through the entire computation graph across
multiple time steps. This encourages the system to learn longer-term dependencies and
capture more complex temporal patterns. The enhanced dataset is denoted as D

m.

A schematic of the multi-step data generation process can be seen in Figure 3.6. For
each initial condition u0, F�t is applied N times with solutions denoted as un, ’n œ U1 :=
{0, . . . , N}. In a random order, the end-to-end model �◊

�t œ {�◊,0
�t , �◊1,◊2

�t } is applied
to every un for a random amount of steps k œ U2 := {1, . . . , N ≠ n}. Formally, the
optimization problem can therefore be described as:

min
◊œRm◊n

L
m(�◊

�t; D
m) = min

◊œRm◊n

1
|Dm|

ÿ

u0

ÿ

n≥U1\{N}

ÿ

k≥U2
n<kÆN≠n

Î(�◊
�t)kun ≠ (F�t)kunÎ

2
Eh

.

(3.34)
We draw both n and k from the uniform random distributions U1 and U2, respectively.

Weighted Approach

Building upon the multi-step training strategy, we explore alternative sampling strategies
for the variables n and k. The central idea is to stabilize training and accelerate convergence
by weighting individual losses: For optimal results, the training horizon must be su�ciently
long such that propagation sequences encompass an adequate number of patterns. At the
same time, wave trajectories during training should exhibit a certain degree of similarity
to allow for more e�cient pattern recognition. However, in the model’s initial, untrained
phase, feature variations can be extreme, leading to imprecise gradient estimations.
Therefore, rather than drawing k œ U2 from a uniform distribution, we select values
for k according to a truncated normal distribution. This process is motivated by other
studies [43, 44] that similarly weight the loss function to achieve training improvements.

Let X be a random variable following a normal distribution with mean µ and standard
deviation ‡,

X s N(µ, ‡
2), (3.35)

21

network use

time

u0

y1 x1
1

y2 x1
2 x2

2

y3 x1
3 x2

3 x3
3

y4 x1
4 x2

4 x3
4 x4

4

y5 x1
5 x2

5 x3
5 x4

5 x5
5

F�t

F�t

F�t

F�t

F�t

�◊
�t

�◊
�t

�◊
�t

�◊
�t

�◊
�t

outputs (�◊
�t)

labels (F�t)
iteration �t

Figure 3.6: Multi-step loss function with labels (on the left in blue) and end-to-end model solutions
(on the right in red) as used in experiment 2. The subscript of x and y indicates the elapsed
propagation time �t · n, while the superscript denotes the number of times the solvers have been
applied. Note that we show only five iterations for simplicity. Our strategy randomly samples
points of the red point cloud, and computes the loss of sequences with their respective blue labels,
i.e.,

q
kÎx

k
n ≠ ynÎ. This figure di�ers from Figure 4 in [1] in that the model is applied to its

preceding solution for several time steps.

where X is restricted to the sample space between a and b, represented as ≠Œ < a < X <

b < Œ. The truncated normal distribution, denoted as TN(µ, ‡, a, b), has the following
probability density function:

f(x) = 1
‡

Ô
2fi

e
≠ (x≠µ)2

2‡2

F (b≠µ
‡) ≠ F (a≠µ

‡)
(3.36)

where F is the cumulative distribution function of the standard normal distribution. After
every third epoch, the mean µ is increased by one to account for longer sequences.

In the earlier epochs, the end-to-end model �◊
�t is applied for fewer steps. Consequently,

we prioritize learning simpler and short-term patterns in the initial stages of training,
while progressively capturing more complex and long-term dependencies as the training
progresses through later epochs. In the later epochs, the end-to-end model �◊

�t is applied
for a greater number of steps; by focusing on minimizing the impact of errors in the early
stages, the system becomes more robust and capable of maintaining its performance even

22

when confronted with challenging media. We refer to this dataset as D
w,m.

3.2.5 Regularization Methods

Overfitting occurs when a machine learning model becomes too closely adapted to the
training data, resulting in reduced performance and poor generalization to new, unseen
data. This issue often arises when the model is overly complex, or the training data is
not su�ciently diverse to capture the underlying data distribution. We use the following
methods for better generalization:

Dropout. During training, individual neurons are randomly removed from the hidden
layer of the neural network [45]. That is, their contributions to the output layer’s activation
are temporarily nullified and the remaining weights are rescaled to maintain a consistent
input scale for the subsequent layer. This forces the network to rely on a diverse set of
neurons for making predictions.

Batch Normalization. In 2015, Io�e and Szegedy [46] introduced Batch Normalization.
The input to each layer is normalized separately for each feature map (or channel
in Subsection 3.2.7) to ensure a consistent mean (usually 0) and variance (usually 1)
throughout the training process. Stabilizing input distributions allows faster convergence,
and better generalization due to more accurate gradients and a lower sensitivity to learning
rates.

Data Augmentation. To artificially increase the size and diversity of a training dataset,
a common technique is to create new samples through various transformations of the
original data [47]. This is particularly important when the dataset is rather small compared
to the model’s complexity. In this thesis, we chose to randomly flip the data horizontally
and vertically with data being generated in real-time to reduce memory usage, increasing
our dataset by four.

Adding noise to the input images is another possible data augmentation method, because
it is frequently necessary to assess the networks e�cacy on data points beyond the training
distribution, for example due to special media. [48] o�ers further insights.

Weight Decay. By adding a term to the loss function that is proportional to the
sum of the squared weights (also known as L2 regularization), weight decay penalizes
large weights during backpropagation. The added term encourages the model to learn
smaller weights, resulting in a more robust algorithm that can better generalize to new
data. The standard Adam optimizer handles weight decay by incorporating it into the

23

adaptive learning rate calculation, which can sometimes cause issues with convergence
and generalization. In contrast, AdamW [49] separates the weight decay and the learning
rate update, applying weight decay directly to the weights. For this reason, the AdamW
optimizer is used for training each variant.

3.2.6 Approximation Theory

A key concern in modern research is to study how complex functions can be closely
represented by simpler terms. One popular approach is deep learning, which refers to the
process of approximating an unknown target function by utilizing historical observations.
To better understand the power and limitations of neural networks, we describe the
conceptual approximation capabilities of several architectures.

The most notable benchmark is the Universal Approximation Theory, introduced by
A. Barron [50, 51]: A feed-forward neural network (cf. Subsection 3.2.2) with a single
hidden layer and a bounded non-linear activation can mimic any function with any desired
non-zero amount of error, assuming su�cient hidden units and computing resources.
Similarly, Yarotsky’s work investigates the theoretical basis of deep neural networks
and their capacity to approximate diverse function classes [52]. Yarotsky also gives
perspectives on the complexity analysis related to the activation function and the network
size. E.g., he establishes lower and upper error bounds for deep ReLU networks in a
Sobolev space [53] and characterizes deeper networks to be a more accurate approximator
than shallow networks.

In [54, 55], Zhou et al. underscore the potential of neural networks across various applica-
tions. In particular, they provide mathematical estimates for the approximation error
required for the learning theory. Besides, a theoretical correlation between the regularity
(smoothness) of the kernel1 and the logarithmic rate of convergence is established. This
gives insight into the design of kernels to make the learning algorithm converge faster. [56]
expands the generalization ability of deep learning methods to CNNs (cf. Subsection 3.2.7),
given that the depth is large enough and computer runtime is not restricted. Compared
to vanilla feed-forward networks, when dealing with large dimensional data, deep CNNs
also show e�ciency benefits due to convolutional operators. Based on these findings, it
comes naturally to integrate CNNs in our setup.

1A kernel enables the application of linear classifiers to solve problems with non-linear characteristics.
This is achieved by transforming non-linear data into a higher-dimensional space.

24

3.2.7 Convolutional Neural Networks

Unlike feed-forward network architectures, CNNs use shared weights and local connections
to exploit the 2D structure of input data. Thus, the network can learn spatially invariant
features more e�ciently, which is crucial for handling variations in wave forms and
propagation paths. The architecture significantly reduces the number of parameters,
leading to a more streamlined training process and faster network performance.

In CNNs, the primary building block is the convolution layer, which applies a series of
filters to the input data. Mathematically, convolution is a linear and continuous operation
for K, f : Rd

æ F that is defined as:

K ú f(x) :=
⁄

K(x ≠ ·)f(·)d·. (3.37)

We assume that the Lebesgue integral exists for almost every x œ Rd.

In 2D convolutional layers, the continuous convolution operation is replaced by a discrete
counterpart, which is defined for an input matrix A with dimensions (I1, J1) and a kernel
K with dimensions (I2, J2) as:

C(m, n) =
ÿ

i<I1

ÿ

j<J1

A(i, j) ú K(m ≠ i, n ≠ j), (3.38)

while 0 Æ i < I1 + I2 ≠ 1 and 0 Æ j < J1 + J2 ≠ 1. The resulting output is known as a
feature map C, which captures the local patterns found in the input data. The kernel K

is a 2D matrix that transforms the input by sliding across the input matrix A, performing
element-wise multiplication and summation, as illustrated in Figure 3.7. The weights
kij œ K from the discretized convolution corresponds to the trainable parameters of
a CNN.

One major advantage is that the operation is shift-invariant, which means that the behavior
remains unchanged when its input is shifted. In image processing, shift-invariance implies
that a network can identify input features, regardless of their position within the image.
Unlike other methods that are limited to a specific resolution after initialization, CNNs
can therefore e�ciently process inputs with varying resolution and dimensionality.

Furthermore, three factors significantly impact the success of training:

Kernel Size. In Figure 3.7, the size of the kernel is three, and is generally referred to
as the kernel size; larger kernel sizes result in more weights to optimize. Nonetheless,
because the weights are shared across all positions, the total number of parameters is

25

◊1 ◊0 ◊1

◊0 ◊1 ◊0

◊1 ◊0 ◊1

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

Q

cccccccccccca

R

ddddddddddddb

ú

1 0 1
0 1 0
1 0 1

Q

cca

R

ddb =

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

Q

ccccccca

R

dddddddb

A K A ú K

Figure 3.7: A visual representation of a convolutional layer. The kernel is placed over an element
of the input image, which is then replaced by a weighted sum of itself and nearby pixels. The
figure is derived from [34].

significantly lower than in other network architectures.

Padding. To handle specific boundary conditions and control the spatial resolution of
the feature maps, padding adds extra pixels around the feature map before performing
convolution. The most common strategy is to pad the input with rows and columns of
zeros to maintain the spatial dimensions, while not influencing the values at the boundary
and being computationally e�cient. There are other padding methods, such as same-value
padding, that are not discussed in this study.

Receptive Field. The region in the input image that a�ects a single neuron is defined
as the receptive field. Having larger receptive fields allows the network to capture more
hierarchical patterns in the input data, i.e., learn higher-order features as the input
information is more widely spread across the image. This depends on the structure, kernel
sizes, and depth of the network, which is explained in the next section. To ensure that
the CNN can accurately approximate the solution operator of the wave equation, the
product of the convolutional kernel width and the number of convolutional layers should
be large enough to cover the entire domain of dependence. This ensures that the CNN
can capture all relevant information and dependencies in the input data.

Structure of a CNN

Similar to feed-forward neural network architectures, CNNs consist of layers of intercon-
nected neurons and activation functions, which perform computations on input data and
propagate the results through the network. The formula for a convolutional operation
transitioning from the (k-1)-th layer to the k-th layer at a single local region, combined

26

with the ReLU activation, can be expressed as

a
k
j = max(0,

ÿ

c

K
(k≠1)
j ú a

k≠1
c + B

(k≠1)), (3.39)

where c and j correspond to the channel’s number.

Convolutional layers process components of the input locally instead of flattening the
input. These components, also called channels, refer to the specific feature map within
the input data. In our case, the channels contain all relevant information about the
three energy components of the wave and the medium. Therefore, an input contains four
channels x œ R(h◊w◊x◊4), while an output contains three channels y œ R(h◊w◊x◊3). A
filter is convolved with each channel resulting in multiple feature maps that represent
patterns at di�erent locations in the input.

The feature maps are then combined, either through summation or stacking to form the
output of the convolutional layer. The method of combining output maps is dependent on
how the channels are grouped. Each group of channels is processed independently using a
distinct set of convolutional filters. By varying the number of filters, one can control the
number of trainable parameters and, thus, the approximation properties of the model.

Resizing Layers

Another common strategy to increase the amount of parameters is to reduce the resolution
and increase the channel size. This increases the receptive field, which helps the CNN to
learn more contextual information and hierarchical features from the input data. The
way to change the resolution of an image is by introducing other types of layers between
convolutional layers:

Pooling. The two most common types are max pooling and average pooling. In max
pooling, a window of a specified size is moved across the feature map, and the maximum
value within the window is selected. In average pooling, the average value within the
window is used instead.

Striding. By changing the number of pixels by which the kernel is moved across the
feature map during convolution, striding can modify the spatial dimensions of the output.
For example, a stride of one means the filter moves one pixel at a time, resulting in a
densely computed feature map that retains most of the spatial information from the
input. A stride of two or larger causes the filter to skip pixels, leading to reduced spatial
dimensions. Most modern CNNs are built using striding instead of pooling [57]; striding

27

is applied directly to the convolutional layer to summarize the input region deploying a
trainable set of weights, whereas pooling simply selects or averages values.

Transposed Convolution. It reverses the standard convolution process by sliding the
input over the kernel and performing element-wise multiplication and summation (also
called deconvolution). The dimensions of the output can then be adjusted through striding
and padding of the layer.

Interpolation. Another approach is to decouple the up- or downsampling process from
the convolution operation. The image is first resized using an interpolation technique
such as bilinear interpolation (cf. Appendix D), and then passed through a convolutional
layer for feature computation.

3.2.8 Architecture Enhancements

Residual Networks

A common problem during backpropagation is that gradients can vanish or explode as they
go backward through the graph. This leads to slow or oscillating updates to the weights
in earlier layers, making the learning process di�cult or impossible to complete. To
address this issue, Kaiming He et al. [58] add ‘skip connections’ to the computation graph.
They allow the network to learn residual functions, which are the di�erences between the
desired output and the input. This design enables easier learning of identity mappings,
preserving the information from earlier layers and making it easier for gradients to bypass
less important layers. As a result, ResNets, short for Residual Networks, can be trained
to much greater depths compared to traditional deep networks, without experiencing
performance degradation.

We adopt the notation in Veit et al. [59] to present ResNets mathematically: Let yl≠1 be
the input of the l-th residual module, where fl is a sequence of the neural network layer.
Thus, we can recursively define

yl © fl(yl≠1) + yl≠1. (3.40)

JNet Networks

We chose to focus on the ‘JNet’ architecture presented in Chapter 2 of [1], which, in
turn, is inspired by the fully-convolutional UNets that were originally introduced by Long
et al. [60]. However, JNets increase the overall resolution rather than simply restoring

28

appendix:bilinear_interpolation

it. This shift in resolution more closely resembles the letter ‘J’. It primarily consists
of convolutional ResNet blocks that form an autoencoder structure. In the encoding
phase, the resolution is reduced using striding layers while the channel size is increased
to extract the features from the image. Subsequently, a decoding phase elevates the
resolution beyond its original scale using bilinear interpolation in between convolutions,
while simultaneously decreasing the channel size. Mathematically, this setup is equivalent
to the component I

◊ from Eq. (3.15).

3.3 Parareal Algorithm

The Parareal algorithm, an iterative scheme that allows time parallelization for computa-
tional time-dependent problems, was first introduced by Lion et al. in 2001 [9]. Identical
to Chapter 4 in [1], our implemented scheme iteratively refines the solution using the
di�erence between the fine solver (F�t) and the coarse solver (G�t) for each subinterval �t.
In particular, missing high-frequency components can be corrected due to the transition
to a lower grid resolution R, as well as errors caused by a simpler numerical algorithm.

Parareal iterations are typically unstable for problems without dissipation, and in the
case of a too inaccurate G�t. Therefore, a more elaborate model, denoted by �◊

�t, is
required for convergence. As demonstrated in related studies [61, 62, 63], the convergence
in various contexts is influenced by the product of ÎF�t ≠ �◊

�tÎ and 1≠(�◊
�t)N

1≠�◊
�t

. This
depends on the magnitude of Î�◊

�tÎ and the size of the iterative system, N .

To derive the algorithm presented in Algorithm 1, we rearrange Eq. (1.2) for the time
stepping of F�t into

un+1 := F�tun = F�t(IR)un + [F�tun ≠ F�t(IR)un]. (3.41)

Formally, we replace F�t(IR)un by a computationally cheaper strategy in the fixed-point
iteration. In our case, we aim to develop an e�cient deep learning model for �◊

�t, trained
by appropriately generated examples, to enhances a low-fidelity solver, G�tı , end-to-end:

uk+1
n+1 := �◊

�tu
k+1
n + [F�tu

k
n ≠ �◊

�tu
k
n], k = 0, . . . , K ≠ 1 (3.42)

u0
n+1 := �◊

�tu
0
n, n = 0, . . . , N ≠ 1. (3.43)

We observe that the computationally expensive F�tu
k
n on the right-hand side of Eq. (3.42)

(also see line 7 and 8 in Algorithm 1) can be performed in parallel. Thus, for each iteration

29

Algorithm 1 Parareal Pseudo Algorithm

1: Sample initial condition and media (u0, c).
2: Initialize uk

n and uparareal
n for 0 Æ n Æ N , 0 Æ k Æ K.

3: Set uk
0 = u0 ’k.

4: for n = 0 to N ≠ 1
5: Compute initial guess u0

n+1 = �◊
�tu

0
n.

6: for k = 0 to K ≠ 1
7: for n = 0 to N ≠ 1 [in parallel]
8: Compute Parareal term uparareal

n+1 = F�tu
k
n ≠ �◊

�tu
k
n.

9: for n = 0 to N ≠ 1
10: Compute corrected solution uk+1

n+1 = �◊
�tu

k+1
n + uparareal

n+1 .

11: return uk
n

in k, the computations for F�tu
k
n can be distributed to N di�erent processors, which

significantly speeds up the computation. We focus on the balance between e�ciency and
accuracy of the individual components I and R. Therefore, a key goal is to investigate
the deep learning components, I

◊ and R
◊, to enhance the stability and convergence of

Parareal.

30

4 Evaluation Setup

The focus of this thesis is to empirically compare di�erent variants that best simulate 2D
wave propagation. For this reason, our experiments are structured to maintain simplicity
in the setup and keep comparisons fair. The goal is to have a robust system that corrects
errors caused by the low-fidelity solver using machine learning components. By keeping
the error small enough, the parallel-in-time integration methods like Parareal can be
applied to e�ciently enhance the solution. Without a stable model �◊

�t, it is not possible
to significantly reduce the computational time as the error will accumulate over time and
cause the numerical algorithm to diverge.

The key error sources are the reduced grid size and the inferior accuracy of the low-fidelity
G�t running on it. This causes wave field computation by G�t to lag behind and loose
high-frequency components. For this reason, we study di�erent model configurations in
order to make reliable design choices even in the presence of strongly oscillating media.
The central factors that a�ect the trade-o� between computation time and accuracy we
choose to tune are:

(i) by how much we scale down the spatial resolution of the input wave field (spatial
grid spacing),

(ii) the step size of the solvers (temporal grid spacing),

(iii) the model setup, including the deep learning architecture.

A simple model with bi-linear interpolation (E2E Vanilla (E2E-V)) for each component
of Eq. (1.2) is used as a baseline. Each variant changes the baseline by exactly one aspect
(see Table 4.1). This allows us to isolate the e�ect of each modification on the performance
of the architecture. To draw in-depth conclusions from the evaluation, an initial analysis
(experiment 1) serves to select the most promising architecture for a detailed evaluation.
This way our conclusions will exhibit reduced dependency on the selected search space,
thus yielding results that are representative of ‘reasonable’ tuning e�orts. The selected
variants are then trained using di�erent strategies to form a more robust and faster
learning algorithm (experiments 2–5). They are also evaluated on di�erent media to
account for a reliable generic application (cf. Subsection 4.1.2). As a second reference,

31

the deep learning setup by Nguyen and Tsai [1] (Not E2E 3-level JNet (NE2E-JNet3)) is
adjusted to our holistic setting. Thus, the e�ects of combining individual components
into an end-to-end system can be identified.

For fair comparisons, the configuration of the individual variants must be similar, since
di�erent variants require di�erent settings. Therefore, settings such as learning rate or
batch size are uniquely determined for each variant. These configurations are set before
training, control the learning process, and are called hyperparameters. For simplicity,
this work is limited to a grid search. Here, all possible combinations for each variant are
manually evaluated from a set of candidates and the best-performing hyperparameter
combination is selected. A detailed explanation of the performance metrics can be found
in Section 4.5.

4.1 Dataset and Methodology

For optimal results, the training horizon must be long enough to contain su�cient wave
propagation patterns. Yet the number of iterations must remain small to maintain
cross-media similarities. In particular, the dataset should not contain wave fields that
significantly di�er from the majority of the data caused by dispersion errors. Similar to
Nguyen and Tsai (cf. Chapter 2 in [1]), we therefore chose to generate the dataset in the
following way:

1. In line with Section 2.2 in [1], an initial wave field u0 = (u0, ˆtu0) œ Fu0 is sampled
from a Gaussian pulse,

u0(x1, x2) = (u0, p0) = (e≠ (x+·)2
‡2 , 0), (4.1)

with x œ [≠1, 1]2 and 1
‡2 ≥ N (250, 10). · œ [≠0.5, 0.5]2 for i œ {1, 2} represents the

displacement of the Gaussian pulse’s center from its original position (0, 0).

2. Every u0 œ Fu0 is then propagated eight time steps �t
ı = 0.06 (sec) by F�tı . We

define the solutions of the su�ciently accurate high-fidelity solver F�tı advancing
the wave un as the ground truth value of the wave at un+1.

The wave trajectories un+1 = F�tıun provide the input and output data for the supervised
learning algorithm, which aims to learn the solution map �◊

�t : X ‘æ Y :

X := {(Òun, c
≠2(un)t, c)}

Y := {(Òun+1, c
≠2(un+1)t)},

(4.2)

32

where D = {(x, y)} with x œ X and y œ Y , and un œ M. Each trajectory is paired with
a velocity profile, i.e., (u0, c). For all experiments, we also adopt the fine grid settings of
the spatial resolution (”x = 2

128) and temporal resolution (”t = 1
1280).

4.1.1 Dataset Split

The dataset is then split into three parts: a training set, a validation set for optimizing the
hyperparameters, and a test set for the final evaluation. During testing, data points are
sampled from D, and the algorithms are applied for a single time step �t

ı, as demonstrated
in Eq. (1.2). During validation and testing, the variants are iteratively applied to an
initial condition sampled from D for eight steps. Di�erent sets of hyperparameters are
used to train on the training set and evaluate on the validation set. The best-performing
variant is then re-trained on the training and validation set and tested on the test set. It
is important to note that the weights ◊ are not changed during testing. To ensure equal
conditions, the training set is limited to 40,000 data points; the validation and test set
are limited to 5,000 data points.

4.1.2 Velocity Profiles

Analogous to [1, 64], di�erent synthetic geological structures are used to better understand
the adaptability and robustness of our end-to-end model in a wide variety of scenarios.
Therefore, we chose media with challenging and realistic conditions based on a real-world
geophysical dataset as seen in Figure 4.1:

Marmousi profile. One commonly used synthetic benchmark profile is based on a
real-world geophysical dataset from a North Sea oil field [65] and was first introduced
in 1991 by the Institut Français du Pétrole (IFP). It has gained widespread adoption in
geophysics, especially in the areas of seismic imaging and inversion. The medium can
be characterized by its complex structure, including steeply dipping layers, faulting, and
substantial lateral and vertical velocity variations.

BP profile. The British Petroleum (BP) released a well-established geophysical dataset
in 2004, which includes synthetic media that mimic geological features found in the Gulf of
Mexico, Caspian Sea, North Sea, and Trinidad [66]. These features represent salt bodies,
sedimentary layers, and faulting, resulting in highly oscillating media with non-trivial
variations.

For training, we employ a method similar to the one described in Section 2.2 of Nguyen’s

33

Figure 4.1: Velocity profiles. Randomly chosen subregions of the Marmousi (top) or BP (bottom)
profile are shown in red squares. Velocity profiles on the right are used for testing. Brighter colors
indicate higher velocity (see color bar at the top right corner). This figure is inspired by Figure 3
in [1].

2023 work [1]. Specifically, we use randomly chosen subregions of the Marmousi and BP
profiles that are mapped onto the spatial grid hZ2

fl [≠1, 1]2. For testing, four manually
modified velocity profiles are added to our testbed to examine unique behavior, such as
rapid variations in velocity both laterally and vertically:

• Diagonal Ray: c(x1, x2) = 3 ≠ 1.5 [|x1 + x2| > 0.3]

• Three Layers: c(x1, x2) = 2.5 ≠ 0.7 [|x1 + x2| > ≠0.4] ú 2 [|x1 + x2| > ≠0.6]

• Wave Guide: c(x1, x2) = 3 ≠ 0.9 cos(fix1)

• Cracked Marmousi: c(x1, x2) = cMarmousi or 0.25 [if x1 and x2 in specific range]

Here, we draw samples from the Marmousi and BP profiles with a probability of 30% each,
while the other velocity profiles are sampled with a probability of 10% each, respectively.
It is important to mention that when using absorbing boundary conditions, these velocity
profiles must be resized, as the pseudo-spectral method is only designed for periodic
boundary conditions.

34

4.2 Experiments

4.2.1 Experiment 1: Architecture Preselection

The average training time of each variant, including hyperparameter tuning, is approxi-
mately 73 CPU core hours. Due to resource constraints, we therefore limit our study to
one end-to-end variant. Based on this preliminary analysis, we selected the most promis-
ing approach from four state-of-the-art deep learning architectures for the upsampling
component, along with two approaches for the downsampling component. Within the
supervised learning framework, the models (see Section 4.3) are trained on dataset D and
the most promising combination is selected based on their performance.

4.2.2 Experiment 2: Multi-Step Training

We train the baselines and the chosen end-to-end variant from experiment 1 on D
m,

described in Subsection 3.2.4, using an equal number of training points as in D. The test
set is consistent with D to enable comparison with other experiments.

4.2.3 Experiment 3: Weighted Multi-Step Training

The training and evaluation setup follow experiment 2, while the models are trained on
D

w,m, also described in Subsection 3.2.4.

4.2.4 Experiment 4: Time Reduction and Performance

A central objective of this thesis is to identify the optimal set of parameters that balance
speed and sophistication. Related studies lack systematic empirical results of their grid
spacing configurations. By finding the most suitable combination of parameters, we can
improve e�ciency without compromising on accuracy. Hence, we conduct a comprehensive
grid search using dataset D to optimize the temporal and spatial grid size parameters of
�◊

�t. In order to make some more interesting comparisons, we have also evaluated the
most e�cient model according to the previous experiments.

We have tried to select reasonable parameter ranges and satisfy the CFL condition;
selecting parameters beyond this range introduces large dispersion errors in the wave field
that accumulate over time. In this experiment, we perform nine grid searches (one for
each grid spacing combination):

35

• �x s {2≠6
, 2≠5

, 2≠4
}: A smaller step size causes the algorithm to be more precise

as details can be represented more accurately. This is particularly important
when approximating phenomena with localized variations, sharp gradients, or
discontinuities. However, this significantly increases the overall computational time
on the wall-clock. A larger spatial step size can cause numerical dispersion errors or
make the training algorithm unstable (especially for �x >

c
�t C with the Courant

number C (cf. Eq. (3.22))).

• �t s {2≠10
, 2≠9

, 2≠8
}: The second-order accuracy of the velocity Verlet algorithm

can degrade if the time step is too large relative to the underlying dynamics of the
system. Other than fulfilling the CFL condition, taking smaller time steps prevents
energy fluctuations or drifts in the system’s total energy.

4.2.5 Experiment 5: Enlarge Dataset

On the one hand, a larger dataset size helps to prevent overfitting and may improve
performance. However, on the other hand, beyond a certain point, adding more data
points might not significantly enhance accuracy. The increased computational costs and
time spent processing the extra data may not yield a proportionate improvement. In
this section, we aim to investigate the impact of dataset size on the end-to-end model’s
accuracy and training convergence. By employing random horizontal and vertical flipping
with a 50% probability, we artificially augment the dataset by a factor of four, creating
the augmented dataset D

4.

We adhere to the same setup as in previous experiments for consistency. For fair
comparisons, we additionally evaluate the model trained on the original dataset D with
an increased number of training epochs. Hence, the total number of training instances
(epochs ◊ dataset size) remains equal for both the original and augmented dataset. This
analysis o�ers insights into the optimal dataset size.

4.2.6 Experiment 6: Parareal Optimization

To the best of our knowledge, there has been a gap in the systematic analysis of time-
e�cient optimization strategies for end-to-end wave propagators. Among numerous
optimization strategies, the parallel-in-time method Parareal has shown good results in
related studies [1, 14]. Consequently, we explore improvements to our variants using the
Parareal scheme on two datasets:

36

A. Fine-tuning. One tactic is to develop a training algorithm by integrating the pre-
trained end-to-end variants with the Parareal scheme. The novel Parareal refinement
dataset is denoted as D

p
refine; it is composed as follows: To ensure fair comparisons with

other experiments, the training dataset must encompass the same amount of data points
as D, i.e., ÎD

p
refineÎ = 40,000. This is why the variants are first trained on a random subset

containing half of the original dataset D. Next, we randomly select another subset that
constitutes an eighth of D. For each data point within this chosen subset, �◊

�tı is applied
according to the Parareal scheme in Eq. (3.42) and Eq. (3.43) with K = 4. The losses
from all Parareal iterations for each batch are summed to reduce errors across iterations.
The batch size is divided by four to account for the same amount of data points in the
computation of the loss.

B. Comprehensive Training. Rather than employing a pre-trained model, models are
solely trained through Parareal iterations. The new dataset is denoted as D

p
train, while

also ÎD
p
trainÎ = 40,000. In this case, we apply the same Parareal training procedure as

above, starting with a random sample that constitutes a quarter of the original dataset D.

4.3 Model Variants

The evaluation encompasses four end-to-end (E2E) variants and two benchmark models.
Table 4.1 summarizes all models with their respective formula and dataset. G�tı ’s
parameters for all models were set to �x = 2/64 and �t = 1/600, and training datasets
are consistent across all experiments.

4.3.1 End-to-end Models

Bilinear interpolation with a factor of two serves as the downsampling component, while
a JNet-based method is employed for upsampling. This allows us to isolate the e�ect of
architectural changes on performance. We explore four JNet-based architectures that
were chosen due to their recent success in related super-resolution studies [67, 68, 69]. It
is important to note that the model configurations such as the optimizer and dropout
rate were adopted from the original papers. This guarantees that we are assessing the
models under the optimal conditions defined by their respective authors. For the decoder
phase, a bilinear interpolation layer followed by regular convolutional layers is added to

37

Table 4.1: A summary of all model variants with their respective formula and training dataset.

name formula dataset
E2E-V �0,0

�tı := I
0
G�tıR

0 -
NE2E-JNet3 I

◊
�tı(G�tıR

0) D

E2E-JNet3 �◊,0
�tı := I

◊
�tıG�tıR

0
D

E2E-CNN-UNet3 �◊1,◊2
�tı := I

◊1
�tıG�tıR

◊2
�tı D

E2E-JNet3 �◊,0
�tı := I

◊
�tıG�tıR

0
D

4

E2E-JNet3 �◊,0
�tı := I

◊
�tıG�tıR

0
D

m

E2E-JNet3 �◊,0
�tı := I

◊
�tıG�tıR

0
D

w,m

E2E-JNet3 �◊,0
�tı := I

◊
�tıG�tıR

0
D

p
refine

E2E-JNet3 �◊,0
�tı := I

◊
�tıG�tıR

0
D

p
train

E2E-JNet5 �◊,0
�tı := I

◊
�tıG�tıR

0
D

E2E-Tira �◊,0
�tı := I

◊
�tıG�tıR

0
D

E2E-Trans �◊,0
�tı := I

◊
�tıG�tıR

0
D

achieve the JNet structure1.

3-level and 5-level JNet employs a fully-convolutional network with skip connections.
We investigate two di�erent sizes: The E2E 3-level JNet (E2E-JNet3) comprises three
ResNet blocks, while the E2E 5-level JNet (E2E-JNet5) consists of five ResNet blocks in
the encoding and decoding phase. A major benefit is that this model structure has fewer
parameters than others with similar performance on popular datasets [71, 72]; thus, it
can be trained from few images and has lower computational requirements. A schematic
of the E2E-JNet3 can be seen in Figure 4.4.

Tiramisu JNet (E2E-Tira) [73] features dense blocks in addition to the ResNet
structure. Each layer of a dense block receives the feature maps of all preceding layers as
an input. These connections are achieved through the concatenation of feature maps along
the channel dimension. This design encourages feature reuse, mitigates the vanishing-
gradient problem, and allows for training deeper networks.

Transformer JNet (E2E-Trans) [74] combines the advantages of U-Net and Trans-
former layers. Transformers are a type of neural network component that were introduced
by [75] in 2017 to process sequential data by capturing long-range dependencies. They

1This method has an advantage over transposed convolution because of checkerboard artifacts [70].
It addresses a common issue where reconstructed feature maps exhibit patterns of repeating squares or
grid-like structures. To further increase the resolution, this process can be repeated or the interpolation
factor can be modified.

38

input R
0 coarse solver encoder decoder + enhancement output

3x128x1284x128x128

convolution block striding block
bilinear downsampling bilinear upsampling
skip connection 3x3 convolutional layer

4

G�tı

8

8 16 16
16 32 32

32 16 16

16 8 8

8 8 3

Figure 4.4: Detailed schematic of the end-to-end 3-level JNet (E2E-JNet3). The architecture of
the neural network, which includes the encoder, decoder, and enhancement components, is adapted
from Figure 1 in [73]. Each convolutional block (blue) encompasses a 3x3 convolutional layer
(groups = 3, padding = 1), followed by a batch normalization and a ReLU activation function. To
reduce the resolution, the 3rd and 6th convolutional block (red) employs a stride of two. Bilinear
interpolation with a factor of two is used for downsampling in R

0 and upsampling in the decoder
part. The last block only contains the 3x3 convolutional layer. Connectivity within the network is
depicted by arrows, with the dashed arrow specifically indicating a single application of G�tı .

utilize a self-attention mechanism to weigh the relevance of di�erent parts of an input
sequence. This design allows the end-to-end model to capture both local and global
contextual information e�ciently, making it suitable for wave propagation tasks.

E2E CNN 3-level UNet (E2E-CNN-UNet3) employs a more sophisticated tech-
nique for the downsampling component, as opposed to using bilinear interpolation.
Resembling [7], a stack of convolutional layers and a striding layer are used. The upsam-
pling component consists of a 3-level JNet block, enabling comparisons with both the
benchmark and the end-to-end configurations. A major issue in our general model setup
involves the potential loss of high-frequency components during the encoding phase of
the JNet structure. To address this issue, we added a skip connection in R

◊1 before the
striding layer and connected it to the second last convolutional layer in I

◊2 . Therefore,
detailed features can skip the coarse grid representation and missing information may be
recovered.

4.3.2 Benchmarks

The benchmark models are evaluated on the same datasets as the variants, while

39

E2E-V demonstrates the performance of G�tı without using deep learning. Bilinear
interpolation is employed for both the upsampling and downsampling components, which
are end-to-end integrated with G�tı .

NE2E-JNet3 is taken from Nguyen and Tsai’s work [1]. This model does not solve the
wave equation end-to-end. In contrast, results of G�tı are used to separately train the
E2E-JNet3 upsampling component, while the training labels are provided by the dataset
D. This setup is not suitable for any form of multi-step training, i.e., experiment 2 and 3
are excluded. We further modified the solver to have absorbing boundary conditions to
maintain comparable results.

4.3.3 Training Specifications

The variants share the following common setup: Networks employing the ReLU activation
function are used for numerical solutions to the 2D wave equation. For better comparability,
the variants are further standardized in some aspects: The learning rate decays by an
exponential factor denoted as gamma = 0.97 after every epoch, i.e., lrn+1 = lrn ú gamman,
where n is the number of epochs. The purpose of learning rate decay is to find a good
balance between fast convergence at the beginning of training and fine-tuning towards
the end, as described for example in [76]. The initial weights for all networks were drawn
from a Kaiming uniform distribution. Training stopped after twenty epochs, or if there
was no improvement on the validation set for more than five epochs. This method is
called early stopping and reduces the risk of overfitting (cf. [38]). The adjustment of other
hyperparameters is done separately for each variant and is described in the next section.

4.4 Hyperparameter Search

While there are other methods to search for good hyperparameters more precisely [77],
a grid search has some advantages for this evaluation setting: it is easy to implement,
covers the search space well, and provides an initial estimate of the optimal combination
in an e�cient way. We limit our fine-tuning e�orts to the hyperparameters below, since
optimizing the dropout rate, loss function, or optimizer, as well as adding a learning rate
scheduler [78], did not yield notable improvements.

A total of 30 grid searches are performed for three runs (18 for experiment 4; six for
experiment 1; two for experiment 5 and 6; one for experiment 2 and 3):

40

• Learning Rate s {10≠3
, 10≠4

}: Setting the hyperparameter – of Eq. (3.29) is crucial
for convergence and accuracy. On the one hand, a smaller learning rate leads to
slower convergence but may achieve better accuracy with the risk of getting stuck
in suboptimal local optima. On the other hand, a larger learning rate may speed
up convergence but risk overstepping the optimal solution.

• Weight Decay s {10≠2
, 10≠3

}: A smaller weight decay value reduces the penalty
on large weights, which leads to a more flexible model that could potentially
cause a reduced generalization performance on unseen data. Conversely, a larger
weight decay value enforces stronger regularization, promoting model sparsity and
reducing overfitting. However, this may result in underfitting the training data if
the constraint is overly strict.

• Batch Size s {26
, 28

}: A common strategy is to set the largest batch size that
fits within the GPU memory constraints. However, [79] suggests that large batch
sizes may lead to convergence to sharp minima, therefore reducing generalization
capabilities. Smaller batch sizes, on the other hand, can enhance generalization
and memory e�ciency but may slow down training. Conversely, larger batch sizes
can expedite training through GPU parallelization while potentially sacrificing
generalization.

4.5 Metrics

Quantitative analysis is conducted by examining the energy components, while visual
representations show the wave fields in the energy semi-norm (Eq. (3.2)). For a wave field
w and a reference solution v in energy components, the quantitative evaluation metrics
used in each experiment are:

• Energy Mean Squared Error (MSE):

energy MSE (w, v) = 1
n

ÿ
(E”x[w] ≠ E”x[v])2 (4.3)

The MSE is a metric that quantifies the average squared di�erence between predicted
and actual wavefield values. The index ”x refers to the grid spacing in the discretized
energy semi-norm, while n denotes the number of pixels in E”x[w] and E”x[v].

• Relative Energy Mean Squared Error (cf. Chapter 3 in [1]):

relative energy MSE (w, v) = 1
n

ÿ
E”x[w ≠ v]

E”x[v]

....
2

(4.4)

41

Relative errors provide a fair comparison by taking into account the di�erences in
the magnitudes of the true values. This ensures that the comparison focuses on the
relative performance of the methods, rather than being influenced by the scales of
the true values.

• Average Computation Time:
The average runtime (measured in seconds) and training time (measured in hours)
of a model are critical indicators of its e�ciency and practical applicability in real-
world scenarios. Note that variations in hardware specifications and programming
languages may lead to di�erent outcomes. Individual details are elaborated upon
in Chapter 5. The goal of this study is not to provide state-of-the-art results, but
rather to conduct a fair comparison of di�erent wave propagators. Therefore, these
numbers are only meant as a vague guideline for the reader.

To compare the results on the validation set, each experiment utilizes the energy MSE
with the fine solver’s solution as the reference. To emulate a practical scenario, the model
consecutively processes its prior solution over eight time intervals, starting from the
initial condition, i.e.,

q8
k=1 MSE ((�◊

�tı)ku, F
k
�tıu). It should be noted that calculations

from G�tı are integrated into the NE2E-JNet3 calculations to produce comparable test
outcomes.

42

5 Discussion

Each of the total 90 runs required an average of 72.8 GPU core hours on one NVIDIA
A100 Tensor Core GPU1 to complete, while the E2E-JNet3 was trained almost 41% faster
and the E2E-Tira three times slower than the average. This sums up to a total runtime
on a single GPU of just over 6,552 hours.

The best trial on the test set was achieved by E2E-Tira with an energy MSE of 0.0109,
which is well below the 0.0462 from the previously published model, NE2E-JNet3, by
Nguyen and Tsai [1]. Our most e�cient variant is E2E-JNet3 trained on D

w,m with an
energy MSE of 0.0169, which is close to the results of more extensive models such as the
E2E-Tira and E2E-Trans, but is more than five times faster. Our best result for the fully
convolutional model, E2E-CNN-UNet3, is 0.0539, which is above the average 0.0250 for
the standard E2E-JNet3. The best Parareal-based result is 0.0322 on the test set for the
E2E-JNet3 which was fine-tuned using D

p
refine.

This chapter presents the results based on the experimental setup of Chapter 4. It provides
the analysis of di�erent variants, including performance improvements through the end-
to-end structure (5.1.1), multi-step loss strategies (5.1.2), deep learning architectures
(5.1.3), numerical solver configurations (5.1.4), and the impact of other modifications
such as adding data augmentation, changing the downsampling component, and applying
Parareal (5.1.5). Additionally, we o�er an analysis on hyperparameters and training
procedures, as detailed in Section 5.2. Welch’s t-test with a significance level of p = 0.05
was used to examine the interrelationships of some characteristics and hyperparameters.

5.1 Comparison of the Variants

A summary of the grid search results of the 12 investigated variants is shown in Figure 5.1.
The results represent the distribution of 30 validation set performances (excluding experi-
ment 4) over the whole search space. Any conclusions drawn from them are therefore
specific to our choice of search ranges. To make fair comparisons, the training time

140 GB of Ram and 1410 MHz of GPU Clock Speed

43

NE2
E-
JN

et
3

JN
et
3

CN
N-J

Net
3

JN
et
3
(D

4)

JN
et
3
(D

m)

JN
et
3
(D

w
,m

)

JN
et
3
(D

p
tr

ai
n
)

JN
et
3
(D

p
re

f
)

JN
et
6

Ti
ra

Tr
an

s
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

en
er

gy
M

S
E

on
th

e
va

lid
at

io
n

se
t

0

25

50

75

100

125

150

175

av
er

ag
e

tr
ai

ni
ng

ti
m

e
p
er

tr
ia

l
in

ho
ur

s

Figure 5.1: Total performance of all hyperparameter search trials for the wave propagation variants
on the validation set. The boxes represent the range between the 25th and 75th percentile of
values, while the whiskers indicate 1.5 times the interquartile range. The blue line illustrates the
result of the E2E-V implementation and serves as a baseline. The red dot shows the mean and
the black line marks the median of the data. The grey histograms in the background present the
average training time of the respective variant in hours on a single GPU. The variant names are
abbreviated for reasons of brevity.

estimate for NE2E-JNet3 includes the coarse solver’s computations for each data point.

5.1.1 Evaluation of the End-to-end Structure

The first important observation based on Figure 5.1 is that integrating NE2E-JNet3 into
a single, end-to-end system (i.e., E2E-JNet3), improved the average accuracy on the
validation set by more than 46%. This e�ect is even more significant2 on the test set as

2Exemplary significance test: The energy MSEs of 10 runs on the test set of the NE2E-JNet3
and E2E-JNet3 are taken. We conclude that the mean results di�er significantly with a p-value of ca.
p ¥ 0.000012.

44

we can observe a reduction in the energy MSE by ca. 53%. Apart from the E2E-JNet3
(Dp

train), which seems to have an unstable training progress, the ability to include the loss
of both the coarse solver and the downsampling layer appears to be critical for the wave
propagation task. In fact, having separated parts also caused a higher standard deviation
and outliers skewed towards higher values, since the mean is well above the median for
the NE2E-JNet3 compared to the E2E-JNet3.

Another related but unsurprising observation is a significant decrease in training time.
This is because the time needed to advance a wave for one time step �t

ı is reduced by
ca. 3% over the fragmented architecture given our parameter setup in Section 4.1. We
assume that a single model instance is usually faster in most programming languages as
the mathematical operations are optimized inside a machine learning framework. Since
all modern applications depend on some form of framework, it is beneficial to integrate
these modifications into the architecture to minimize computational e�ort.

5.1.2 (Weighted) Multi-Step Training

Introducing a multi-step training loss significantly enhanced the benefits of an end-to-end
architecture even further (cf. E2E-JNet3 (Dw,m) in Figure 5.1). Now, the computation
graph can dynamically expand based on the number of wave advancements defined
during training. Since computing the loss sequentially does not increase the number
of parameters, only a marginal increase in training time was observed due to a more
expensive backpropagation.

Figure 5.2 depicts how the average relative energy MSE increased over time for di�erent
variants on the test set. All end-to-end models had a much lower relative energy MSE
increase particularly for the first three time steps. Hence, we conclude that connecting
wave states to incorporate temporal propagation dynamics in the training data appears
to be especially important for the early stages of wave advancements.

However, randomly sampling the number of time steps taken per run can in principle
cause high performance fluctuations on the validation set when the model is only partially
trained. Therefore, if the model takes many sequential steps in the early stages of training,
the errors will accumulate rapidly and the gradients will be inaccurate. By taking fewer
steps through sampling from a normal distribution that is being shifted along the x-axis
(cf. Subsection 3.2.4), we avoid this problem by reducing the solution space. As training
progresses, the wave propagation task becomes increasingly complex since the model’s
inputs are highly dependent on previous iterations. In this stage, a stable and accurate

45

0 1 2 3 4 5 6 7
time steps (in units of �t�)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

re
la

ti
ve

en
er

gy
M

S
E

�1
03

NE2E-JNet3

E2E-JNet3

E2E-JNet3 (Dm)

E2E-JNet3 (Dw,m)

Figure 5.2: Comparing the NE2E-JNet3 model and three end-to-end JNet variants that di�er
in their training algorithms. Initial conditions and velocity profiles are sampled from D and the
relative energy MSE results of 10 runs are averaged. As expected, all models show a bounded
growth as the waves vanish due to absorbing boundary conditions.

neural network can then guarantee that the training signals remain in the wave solution
manifold M (cf. Eq. (1.3)). We hypothesize that these behaviors will generalize to similar
supervised learning problems related to PDEs, providing an e�cient enhancement to the
training algorithm.

5.1.3 Upsampling Architecture

An overview of the time complexity and test set performances of each upsampling
architecture can be found in Table 5.1. We have tried to choose reasonable parameters
that include the best solver settings and are still big enough to allow for an e�cient
computation.

As expected, the larger networks, namely the Tiramisu and Transformer JNet models,
performed slightly better compared to the 3-level JNet architecture. Intensifying the
dimensionality reduction of the model allows a more nuanced representation of features
within the deeper structure of the network. However, for the ResNet architecture (E2E-
JNet5), more weights did not lead to performance improvements on the test set despite
the much higher computation expenses (more than 3.7 times compared to E2E-JNet3).
Although the architecture demonstrated lower error rates on the validation set, it did

46

Table 5.1: Time Complexity and average test energy MSE of all upsampling variants using a
batch size of 64. An initial condition was advanced eight times with �t

ı = 0.06 and the mean
of ten runs was taken. For the fine solver, we chose ”x = 2/128, ”t = 1/1280, while the coarse
solver’s parameters for all models were set to �x = 2/64 and �t = 1/600. Our results are specific
to implementations in PyTorch and three NVIDIA A100 Tensor Core GPUs as described above.
[80] provides more detailed information on the environment setup.

variant number of parameters GPU time (sec) test energy MSE

F�tı - 57.96749 -
E2E-V - 2.40421 0.07437

NE2E-JNet3 [1] 40,008 2.97328 0.05370
E2E-JNet3 40,008 2.88331 0.02496
E2E-JNet5 640,776 10.84893 0.02379
E2E-Tira 123,427 13.57449 0.01274

E2E-Trans 936,816 15.67633 0.01743

not generalize as well as other expensive models on unseen velocity profiles. For example,
the Transformer JNet implementation, which has an even greater number of trainable
parameters than the E2E-JNet5, also showed superior generalization capabilities as
evidenced by a more than 26% reduction in energy MSE on the test set. Consequently, we
theorize that the design of the ResNet may be insu�cient for capturing more advanced
patterns like high-fidelity wave components, potentially leading to a plateaued loss or
overfitting.

Highly-connected layers with an optimized feature propagation and gradient flow (E2E-
Tira) significantly improved the performance and even yielded the best overall results on
both the validation and test sets. In contrast, the ability to weigh the importance of input
features when making approximations (E2E-Trans) appears to be less critical for wave
propagation. The argument against using these variants is that they increase the number
of parameters, thereby increasing the time complexity by a factor of ca. 4.7 for E2E-Tira,
and ca. 5.4 for E2E-Trans, compared to the E2E-JNet3. Given that E2E-JNet3 (Dw,m)
had only a slightly worse average energy MSE on the test set (0.01784), we generally
advise against using the expensive models in our setup due to a very high computational
complexity.

47

5.1.4 Optimal Numerical Settings

For a batch size of 64, E2E-JNet3 was more than 20 times faster than the F�tı , and
increased the accuracy by approximately 66% compared to E2E-V, the model that does
not contain a neural network (cf. Table 5.1). In Figure 5.3, we can see that choosing
appropriate coarse solver parameters was crucial for the performance, and, in most cases,
suboptimal settings cannot be corrected by a neural network. The heat map serves as an
initial structured analysis. To comprehensively evaluate the interplay between variables,
we require more samples and a finer set of numerical settings.

Spatial setting. Nevertheless, given our observations so far, numerical spatial grid
spacing (�x) is the most important parameter for both models. A related observation is
that there is a sweet-spot for the grid spacing at the center of the chosen candidates. In this
region, performance was optimal, and the standard deviation was minimal. Consequently,
while searching for a good spatial value, a detailed parameter tuning might be worthwhile
to perform as the most computationally expensive option did not yield the lowest energy
MSE.

Temporal setting. A small (but statistically insignificant) average performance im-
provement was observed for taking smaller time steps (�t) given that the spatial grid
spacing is set correctly. To be precise, the best overall performance in experiment 4
was achieved by E2E-JNet3 (Dw,m) using the smallest time step setting (”t = 2≠10). It
is obvious that applying the Verlet time integrator more frequently can better capture
abrupt changes in the wave speed, which might be smoothed over with larger steps.
Similarly, the authors of [1] conclude that their enhanced solver o�ers greater accuracy
with a smaller �t

ı. Hence, we recommend to prioritize finer time stepping for both �t
ı

and �t even if it compromises speed. Nonetheless, it is important to mention that very
short time increments can introduce numerical dispersion errors as seen in the rightmost
columns of each heatmap in Figure 5.3.

5.1.5 Further Modifications

Data Augmentation. One unexpected result of this study is that data augmentation
(see experiment 5) a�ected the test performance and training time negatively in a significant
way. Randomly flipping the input image (E2E-JNet3 (D4)) appears to be hurtful for a
stable training progress; training E2E-JNet3 for a longer period slightly improved the
mean performance on the validation set, but led to very similar results on the test set.

48

2�10 2�9 2�8

time steps (�t)

2�
4

2�
5

2�
6

nu
m

er
ic

al
gr

id
sp

ac
in

g
(�

x
)

0.054
(0.019)

0.055
(0.018)

0.053
(0.02)

0.025
(0.005)

0.026
(0.007)

0.024
(0.006)

0.065
(0.016)

0.067
(0.016)

0.079
(0.001)

E2E-JNet3

2�10 2�9 2�8

time steps (�t)
2�

4
2�

5
2�

6

0.039
(0.004)

0.045
(0.005)

0.046
(0.008)

0.014
(0.001)

0.018
(0.001)

0.021
(0.002)

0.048
(0.012)

0.057
(0.015)

0.077
(0.002)

E2E-JNet3 (Dw,m)

0.02

0.03

0.04

0.05

0.06

0.07

Figure 5.3: Total energy MSE performance for all combinations of coarse solver settings on the
validation set (see experiment 4). The rows and columns of these matrices represent the di�erent
grid spacing and time-stepping parameters, respectively. The color encodes the performance as
measured by the energy MSE, while low (blue) is better than high (red). Values in brackets
indicate the standard deviation between the hyperparameter trials and, thus, the reliability of the
accuracy. A hyperparameter search was done for each parameter combination, concluding to 72
trials in total for each variant.

Fully Convolutional Downsampling. Introducing a more sophisticated downsampling
component with a skip connection from R

◊1 to I
◊2 led to a significantly lower accuracy.

Altering the input too much before applying G�tı caused strong oscillations on the
validation set. We hypothesize that the gradients of the downsampling component were
not accurate enough to ensure a stable learning process. Given that this variant also
slightly increased the computational cost, we generally advise against using it in our
setup.

Parareal. Contrary to the findings in [1], the Parareal scheme in our setup did not enhance
the training features when evaluated on D. While a significant average performance
improvement was observed for the refined Parareal model (Dp

refine) compared to the
fragmented baseline (NE2E-JNet3), decomposing and solving time intervals concurrently
through Parareal had a negative e�ect when using our end-to-end structure.

However, applying E2E-JNet3 (Dp
refine) within the Parareal scheme showed better results

than E2E-JNet3 (D) with Parareal. Figure 5.4 indicates that the accuracy was especially
improved after a few time steps. As this training method further improved the stability

49

Figure 5.4: Energy MSE comparison between E2E-JNet3 (D) and E2E-JNet3 (Dp
refine), averaged

over 10 runs, while the initial condition and the wave speed profile were sampled from D. The
color encodes the performance as measured by the MSE, while low (blue) is better than high (red).
The evaluation uses the same algorithm as described in Section 3.3. Furthermore, we limited the
number of Parareal iterations to four to remain consistent with experiment 6.

of Parareal iterations without sacrificing speed, it appears to be an e�cient enhancement
to our wave propagator.

5.2 Training and Impact of Hyperparameters

Due to early stopping, high fluctuations in the training duration of di�erent runs of the
same variant were observed. In some cases, the algorithm terminated after less than
10 iterations, while it sometimes iterated the full 20 epochs with the same parameter
combination. However, the trials for one variant had a very similar accuracy, which
suggests that the models are robust against di�erent weight initializations and initial
conditions. Similarly, the same hyperparameter combination repeatedly showed superior
performance across nearly all trials for each variant, underlining the importance of a
hyperparameter analysis.

50

To analyze the impact of hyperparameters in detail, Hutter et al.’s functional Analysis of
Variance (fANOVA) method aims to evaluate their e�ects by e�ciently handling dimension
marginalization using regression trees [10]. This process enables the prediction of marginal
error for a singular hyperparameter by averaging the others. To calculate the average
performance for any isolated slice of the hyperparameter space, a regression tree is trained
and its predictions along the relevant dimensions are aggregated. Specifically, a random
regression forest3 of 100 trees is utilized, and the mean performance is assessed. The
resulting marginals are employed to break down the variance into additive components
via the fANOVA technique [81] to assess the overall significance and interactions of the
hyperparameters.

Learning Rate. As expected, understanding how to properly configure the learning rate
is the most important setting to achieving optimal accuracy. The top half of Figure 5.5
indicates that speeding up convergence through a higher learning rate resulted in a
significantly better performance for all variants, while reducing training time. A related
but surprising observation is that a larger learning rate did not increase the variance,
which can be explained by the smooth loss landscape of ResNets (cf. [82]).

The results in the bottom half of Figure 5.5 show that the learning rate significantly
outweighs other hyperparameters in terms of their importance, consistently accounting
for over one-third of the variance. It also highlights that the variance attributed to the
learning rate is much bigger than the variance due to interactions between the learning
rate and weight decay (a component of the ‘higher order’ share). They both control the
training progress, but the results suggest that tuning the learning rate without considering
‘higher-order’ e�ects might be su�cient for good results.

Batch Size. Especially for the E2E-JNet3 model, batching the data into smaller
parts, and, therefore updating the weights more frequently, significantly increased the
performance. We hypothesize that a low batch size, similar to a larger learning rate,
allows stable training as the gradient estimates do not seem to be noisy despite fewer
samples. However, we find that quadrupling the batch size decreased the training time by
more than 15% on average due to parallelization. Hence, we conclude that there is little
practical value in setting the batch size optimally. For accelerated convergence, it might
be worthwhile to only fine-tune the learning rate, while maximizing the batch size within
the constraints of the available GPU memory.

3A random forest is a machine learning model that generates a collection of decision trees and uses
their combined predictions for the final output. It introduces randomness in both selecting samples for
training individual trees and also choosing features for splitting nodes.

51

10�4 10�3 26 28 10�3 10�2

learning rate batch size weight decay

0.02

0.03

0.04

0.05

0.06

0.07

0.08

en
er

gy
M

S
E

on
th

e
va

lid
at

io
n

se
t

NE2E-JNet3

lower value

higher value

10�4 10�3 26 28 10�3 10�2

learning rate batch size weight decay

0.02

0.03

0.04

0.05

0.06

0.07

0.08
E2E-JNet3

10�4 10�3 26 28 10�3 10�2

learning rate batch size weight decay

0.02

0.03

0.04

0.05

0.06

0.07

0.08
E2E-JNet3 (Dw,m)

58%

13%

17%

10%
34%

27%

16%

22%

56%

9%
9%

37%

learning rate batch size weight decay higher order

Figure 5.5: Energy MSE results of all hyperparameter search trials for di�erent values of learning
rate, batch size, and weight decay (columns inside a graph) and importance measured by variance
using the fANOVA framework for three variants (pie charts). A dot in the scatterplot (top
half) indicates a single result on the validation set grouped by hyperparameters, while lower
hyperparameter values are shown in blue, and higher values in orange. The pie charts (bottom
half) show which fraction of the variance of the test set performance can be attributed to each of
the hyperparameters. The proportion of variance resulting from interactions between multiple
parameters is labeled as ‘higher order’.

Weight decay. Surprisingly, weight decay only slightly a�ected performance and variance.
This may be the result of an adjusted learning rate and suggests that tuning weight
decay does not o�er substantial benefits when training ResNets with AdamW for wave
simulations.

Interaction of Hyperparameters. Another important observation based on Figure 5.5
is that within an end-to-end system, higher-order interactions become more important.
Expanding the computation graph through adding a multi-step loss function (E2E-
JNet3 (Dw,m)) increased the importance of these interactions even further. Hence, this
tendency shows the growing relevance of hyperparameter-tuning for more connected wave
propagators.

52

6 Conclusion

In this thesis, we presented a deep learning model that improves the method proposed by
Nguyen and Tsai [1], o�ering fast, accurate and scalable solutions to the 2D wave equation
across complex, multiscale media. We also reported the results of a large-scale study
on di�erent variants that investigate the e�cacy of these improvements, and provided
insights into parameter settings.

We concluded that the lightweight end-to-end 3-level JNet (E2E-JNet3) performed rea-
sonably well given its low computation cost. In particular, all end-to-end variants without
training modifications outperformed the modular framework of Nguyen and Tsai [1]. The
method was further enhanced by introducing a weighted, multi-step training scheme
(Dw,m) to learn time-dependent wave dynamics. Incorporating these modifications into
the training dataset is advantageous, as they do not add complexity to the model or
substantially extend the training duration.

None of the investigated other modifications significantly improved performance. Surpris-
ingly, augmenting the data, or training an additional neural network for the downsampling
component led to a significantly lower accuracy. We speculated that both adaptations
challenge stable gradient computations, making these variants less suitable for our setup.
Contrary to previous research, our application of the Parareal scheme negatively a�ected
the end-to-end structure when evaluated on sequential time steps. However, evaluat-
ing the Parareal-based model with Parareal iterations showed significant performance
improvements over E2E-JNet3.

As expected, certain expensive upsampling architectures, such as intensify the intercon-
nections between feature and gradient flows (Tiramisu JNet), significantly increased the
accuracy. The Tiramisu variant is more attractive for extensive wave simulation than the
ability to weigh the importance of input features (Transformer JNet) because it has a
lower number of parameters. However, both models demand a high computational cost
and are mostly impractical in modern engineering workflows.

The analysis of numerical parameter interaction revealed a clear structure. As the most
resource-intensive choice did not consistently result in the lowest accuracy, thorough

53

fine-tuning is essential. This implies that relying solely on neural networks may not su�ce
to rectify suboptimal settings. The same applies to adjusting the learning rate, which
is the most crucial hyperparameter, while the batch size and weight decay were found
to be unimportant in our setting. Surprisingly though, adjusting all hyperparameters
was increasingly crucial for our advanced end-to-end models with larger backpropagation
graphs due to higher-order interactions.

Developing stable neural network-based wave models is challenging due to their undefined
complexities. Our study intends to bridge expert intuition with data, guiding the selection
of architectures, training methods and fine-tuning parameters for these systems. In future
work, we aim to investigate more advanced modifications of the unified, end-to-end wave
propagator. One possibility is to enhance the Parareal algorithm with multi-step training,
a strategy that has demonstrated e�cacy in our current analysis and may stabilize the
iterative refinements in our end-to-end setup further. Moreover, deploying a pre-trained
deep learning restriction component may reduce the strongly oscillating loss in early
stages of training. Further reduction in resolution will also provide valuable insights into
the speed benefits of the end-to-end approach.

54

References

[1] Nguyen, H. and Tsai, R. ‘Numerical Wave Propagation Aided by Deep Learning’.
In: Journal of Computational Physics vol. 475(1) (2023).

[2] Moseley, B., Markham, A., and Nissen-Meyer, T. ‘Solving the Wave Equation with
Physics-Informed Deep Learning’. ArXiv eprint at abs/2006.11894. (2020).

[3] Ovadia, O., Kahana, A., Turkel, E., and Dekel, S. ‘Beyond the Courant-Friedrichs-
Lewy Condition: Numerical Methods for the Wave Problem using Deep Learning’.
In: Journal of Computational Physics vol. 442(1) (2021).

[4] Siahkoohi, A., Louboutin, M., and Herrmann, F. J. ‘Neural Network Augmented
Wave-equation Simulation’. ArXiv eprint at abs/1910.00925. (2019).

[5] Meng, X., Li, Z., Zhang, D., and Karniadakis, G. E. ‘PPINN: Parareal Physics-
Informed Neural Network for Time-Dependent PDEs’. In: Computer Methods in

Applied Mechanics and Engineering vol. 370(1) (2020).

[6] Raissi, M., Perdikaris, P., and Karniadakis, G.E. ‘Physics-Informed Neural Networks:
A Deep Learning Framework for Solving Forward and Inverse Problems Involving
Nonlinear Partial Di�erential Equations’. In: Journal of Computational Physics vol.
378(1) (2019), pp. 686–707.

[7] Rizzuti, G., Siahkoohi, A., and Herrmann, F. J. ‘Learned Iterative Solvers for the
Helmholtz Equation’. In: 81st EAGE Conference and Exhibition 2019. Vol. 2019
(1). European Association of Geoscientists and Engineers, (2019), pp. 1–5.

[8] Kochkov, D., Smith, J., Alieva, A., Wang, Q., Brenner, M., and Hoyer, S. ‘Ma-
chine Learning–Accelerated Computational Fluid Dynamics’. In: Proceedings of the

National Academy of Sciences vol. 118(21) (2021), pp. 89–97.

[9] Lions, J.-L., Maday, Y., and Turinici, G. ‘A “Parareal” in Time Discretization of
Pde’s’. In: Comptes Rendus de l’Académie des Sciences. Série I. Mathématique vol.
332(7) (2001), pp. 34–76.

[10] Hutter, F., Hoos, H., and Leyton-Brown, K. ‘An E�cient Approach for Assessing
Hyperparameter Importance’. In: Proceedings of the 31st International Conference

on Machine Learning. Vol. 32 (1). Proceedings of Machine Learning Research.
PMLR, (2014), pp. 754–762.

55

[11] Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and Mahoney, M. W. ‘Charac-
terizing Possible Failure Modes in Physics-Informed Neural Networks’. In: Advances

in Neural Information Processing Systems vol. 34(1) (2021).

[12] Ibrahim, A. Q., Götschel, S., and Ruprecht, D. ‘Parareal with a Physics-Informed
Neural Network as Coarse Propagator’. In: Euro-Par 2023: Parallel Processing.
Springer Nature Switzerland, (2023), pp. 649–663. isbn: 978-3-031-39698-4.

[13] Nguyen, H. ‘Parallel-in-time Methods for Wave Propagation in Heterogeneous
Media’. PhD Thesis. The University of Texas at Austin, (2020).

[14] Nguyen, H. and Tsai, R. ‘A Stable Parareal-Like Method for the Second Order
Wave Equation’. In: Journal of Computational Physics vol. 405(1) (2020).

[15] Evans, L. C. Partial Di�erential Equations. 1st ed. Vol. 19, Graduate Studies in
Mathematics. American Mathematical Society, (1998). isbn: 0821807722.

[16] Rocha, D. and Sava, P. ‘Elastic Least-Squares Reverse Time Migration Using the
Energy Norm’. In: Geophysics vol. 83(3) (2018), pp. 5MJ–Z13.

[17] Rocha, D., Sava, P., Shragge, J., and Witten, B. ‘3D passive Wavefield Imaging
using the Energy Norm’. In: Geophysics vol. 84(2) (2019), pp. 1MA–Z11.

[18] Rocha, D., Tanushev, N., and Sava, P. ‘Acoustic Wavefield Imaging using the Energy
Norm’. In: Geophysics vol. 81(4) (2016), pp. 1JA–Z38.

[19] Berenger, J.-P. ‘A perfectly matched layer for the absorption of electromagnetic
waves’. In: Journal of Computational Physics vol. 114(2) (1994), pp. 185–200.

[20] Engquist, B. and Majda, A. ‘Absorbing Boundary Conditions for Numerical Sim-
ulation of Waves’. In: Proceedings of the National Academy of Sciences vol. 74(5)
(1977), pp. 1765–1766.

[21] Higdon, R. L. ‘Absorbing Boundary Conditions for Di�erence Approximations to the
Multi-Dimensional Wave Equation’. In: Mathematics of Computation vol. 47(176)
(1986), pp. 437–459.

[22] Verlet, L. ‘Computer "Experiments" on Classical Fluids. I. Thermodynamical Prop-
erties of Lennard-Jones Molecules’. In: Physical Review Journals Archive vol. 159(1)
(1967), pp. 98–103.

[23] Runge, C. ‘Ueber die Numerische Aufloesung von Di�erentialgleichungen’. In: Math-

ematische Annalen vol. 46(1) (1895), pp. 167–178.

[24] Kutta, W. ‘Beitrag zur Naeherungsweisen Integration Totaler Di�erentialgleichun-
gen’. In: Zeitschrift für Mathematik und Physik vol. 46(1) (1901), pp. 435–453.

56

[25] Courant, R., Friedrichs, K., and Lewy, H. ‘Über die Partiellen Di�erenzengleichungen
der Mathematischen Physik’. In: Mathematische Annalen vol. 100(1) (1928), pp.
32–74.

[26] Isaacson, E. and Keller, H. B. Analysis of Numerical Methods. Revised Edition.
Dover Publications, (1994). isbn: 978-0486680293.

[27] Fotiadis, S., Pignatelli, E., Valencia, M. L., Cantwell, C., Storkey, A., and Bharath,
A. A. ‘Comparing Recurrent and Convolutional Neural Networks for Predicting
Wave Propagation’. ArXiv eprint at abs/2002.08981. (2020).

[28] Sorteberg, W. E., Garasto, S., Pouplin, A. S., Cantwell, C. D., and Bharath, A. A.
‘Approximating the Solution to Wave Propagation using Deep Neural Networks’.
ArXiv eprint at abs/1812.01609. (2018).

[29] Deoa, I. K. and Jaimanb, R. ‘Predicting Waves in Fluids with Deep Neural Network’.
In: Physics of Fluids vol. 34(6) (2022), pp. 67–108.

[30] Raghu, M. and Schmidt, E. ‘A Survey of Deep Learning for Scientific Discovery’.
ArXiv eprint at abs/2003.11755. (2020).

[31] O’Shea, K. and Nash, R. ‘An Introduction to Convolutional Neural Networks’.
ArXiv eprint at abs/1511.08458. (2015).

[32] Alzubaidi, L., Zhang, J., and Humaidi, A. J. ‘Review of Deep Learning: Concepts,
CNN Architectures, Challenges, Applications, Future Directions’. In: Journal of

Big Data vol. 8(1) (2021), pp. 1–74.

[33] Tsai, R. ‘Mathematics in Deep Learning’. Lecture Series at The University of Texas
at Austin, Fall 2021, Department of Mathematics. (2021).

[34] Neutelings, I. ‘Neural Network Latex Drawings’. https://tikz.net/neural_networks/.
(2020).

[35] He, K., Zhang, X., Ren, S., and Sun, J. ‘Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification’. In: 2015 IEEE International

Conference on Computer Vision (ICCV). IEEE Computer Society, (2015), pp. 1026–
1034.

[36] Hanin, B. and Rolnick, D. ‘How to Start Training: The E�ect of Initialization and
Architecture’. In: NIPS’18: Proceedings or the 32nd International Conference on

Neural Information Processing Systems (2018), pp. 569–579.

[37] Sharma, S., Sharma, S., and Athaiya, A. ‘Activation Functions in Neural Networks’.
In: International Journal of Engineering Applied Sciences and Technology vol. 4(12)
(2020), pp. 310–316.

57

[38] Krähenbühl, P. ‘Neural Networks’. Lecture Series at The University of Texas at
Austin, Fall 2021, Department of Computer Science; http://www.philkr.net/. (2021).

[39] Kingma, D. P. and Ba, J. ‘Adam: A Method for Stochastic Optimization’. In: 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings. ArXiv eprint at abs/1412.6980.
(2014).

[40] Ruder, S. ‘An Overview of Gradient Descent Optimization Algorithms’. ArXiv
eprint at abs/1609.04747. (2016).

[41] Hecht-Nielsen, R. In: Neural Networks for Perception. Academic Press, (1992).
Chap. III.3 - Theory of the Backpropagation Neural Network, pp. 65–93. isbn:
978-0-12-741252-8.

[42] Strutz, D. ‘Illustrating (Convolutional) Neural Networks in LaTeX with TikZ’.
https://davidstutz.de/illustrating-convolutional-neural-networks-in-latex-with-tikz/.
(2020).

[43] Sellami, A. and Hwang, H. ‘A Robust Deep Convolutional Neural Network with
Batch-Weighted Loss for Heartbeat Classification’. In: Expert Systems with Applica-

tions vol. 122(1) (2019), pp. 75–84.

[44] Phan, H., Krawczyk-Becker, M., Gerkmann, T., and Mertins, A. ‘DNN and CNN
with weighted and Multi-task Loss Function for Audio Event Detection’. ArXiv
eprint at abs/1708.03211. (2017).

[45] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
‘Dropout: A Simple Way to Prevent Neural Networks from Overfitting’. In: Journal

of Machine Learning Research vol. 15(56) (2014), pp. 1929–1958.

[46] Io�e, S. and Szegedy, C. ‘Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift’. In: International Conference on Machine

Learning. ArXiv eprint at abs/1502.03167. (2015).

[47] Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., and Shen, F. ‘Image Data
Augmentation for Deep Learning: A Survey’. ArXiv eprint at abs/2204.08610. 2022.

[48] He, J. and Ward R. Tsai R. ‘Deep Residual Learning for Image Recognition’. In:
Research in the Mathematical Sciences vol. 10(1) (2023), p. 13.

[49] Loshchilov, I. and Hutter, F. ‘Fixing Weight Decay Regularization in Adam’. ICLR
2018 Conference Submission, ArXiv eprint at abs/1711.05101. (2018).

[50] Barron, A. R. ‘Approximation and Estimation Bounds for Artificial Neural Networks’.
In: Machine Learning vol. 14(1) (1994), pp. 115–133.

58

[51] Barron, A. R. ‘Neural Net Approximation’. In: Proceedings 7th Yale Workshop on

Adaptive and Learning Systems. Center for Systems Science, (1992), pp. 69–72.

[52] Yarotsky, D. ‘Error Bounds for Approximations with Deep ReLU Networks’. In:
Neural Networks vol. 94(1) (2017), pp. 103–114.

[53] Adams, R. and Fournier, J. Sobolev Spaces. 2nd ed. Academic Press, (2003). isbn:
9780120441433.

[54] Cucker, F. and Zhou, D.-X. ‘Learning Theory: An Approximation Theory View-
point’. In: 24th ed. Part of Cambridge Monographs on Applied and Computational
Mathematics. Cambridge University Press, 2007, pp. 1–4. isbn: 978-0521865593.

[55] Smale, S. and Zhou, D.-X. ‘Estimating the Approximation Error in Learning Theory’.
In: Analysis and Applications vol. 1(1) (2003), pp. 1–25.

[56] Zhou, D.-X. ‘Universality of Deep Convolutional Neural Networks’. In: Applied and

Computational Harmonic Analysis vol. 48(2) (2018), pp. 787–794.

[57] Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. ‘Striving for
Simplicity: The All Convolutional Net’. 3rd International Conference on Learning
Representations (ICLR), ArXiv eprint at abs/1412.6806. (2015).

[58] He, K., Zhang, X., Ren, S., and Sun, J. ‘Deep Residual Learning for Image Recog-
nition’. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). ArXiv eprint at abs/1512.03385. (2015), pp. 770–778.

[59] Veit, A., Wilber, M., and Belongie, S. ‘Residual Networks Behave Like Ensembles of
Relatively Shallow Networks’. In: Proceedings of the 30th International Conference

on Neural Information Processing Systems. ArXiv eprint at abs/1605.06431. (2016),
pp. 550–558.

[60] Long, J., Shelhamer, E., and Darrell, T. ‘Fully Convolutional Networks for Seman-
tic Segmentation’. In: 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Proceedings. (2015), pp. 3431–3440.

[61] Ariel, G., Nguyen, H., and Tsai, R. ‘◊ ≠ Parareal Schemes’. ArXiv eprint at
abs/1704.06882. (2018).

[62] Bal, G. ‘On the Convergence and the Stability of the Parareal Algorithm to Solve
Partial Di�erential Equations’. In: Domain Decomposition Methods in Science and

Engineering. Vol. 40. 1. Springer, Berlin, Heidelberg, (2005), pp. 425–432.

[63] Gander, M. and Vandewalle, S. ‘Analysis of the Parareal Time-Parallel Time-
Integration Method’. In: SIAM J. Scientific Computing vol. 29(2) (2007), pp.
556–578.

59

[64] Sun, H. and Demanet, L. In: SEG Technical Program Expanded Abstracts 2018,

Proceedings. Society of Exploration Geophysicists, (2018). Chap. Low-Frequency
Extrapolation with Deep Learning, pp. 2011–2015.

[65] Brougois, A., Bourget, M., Lailly, P., Poulet, M., Ricarte, P., and Versteeg, R.
‘Marmousi, model and data’. In: Conference: EAEG Workshop - Practical Aspects

of Seismic Data Inversion. (1990).

[66] Billette, F. and Brandsberg-Dahl, S. ‘The 2004 BP Velocity Benchmark’. In: Euro-

pean Association of Geoscientists Engineers. 67th EAGE Conference Exhibition,
(2005).

[67] Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.-H., and Liao, Q. ‘Deep Learning
for Single Image Super-Resolution: A Brief Review’. In: IEEE Transactions on

Multimedia vol. 21(12) (2019), pp. 3106–3121.

[68] Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., and Zeng, T. ‘Transformer for Single
Image Super-Resolution’. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops. IEEE Computer Society, (2022),
pp. 456–465.

[69] Galliani, S., Lanaras, C., Marmanis, D., Baltsavias, E., and Schindler, K. ‘Learned
Spectral Super-Resolution’. ArXiv eprint at abs/1703.09470. (2017).

[70] Odena, A., Dumoulin, V., and Olah, C. ‘Deconvolution and Checkerboard Artifacts’.
In: Distill vol. 1(10) (2016), pp. e3.

[71] He, K., Zhang, X., Ren, S., and Sun, J. ‘Deep Residual Learning for Image Recog-
nition’. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Proceedings (2015), pp. 770–778.

[72] He, K., Zhang, X., Ren, S., and Sun, J. ‘Identity Mappings in Deep Residual
Networks’. In: Computer Vision – ECCV 2016, Proceedings. Springer International
Publishing, (2016), pp. 630–645.

[73] Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., and Bengio, Y. ‘The One Hundred
Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation’. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW). IEEE Computer Society, Proceedings, (2017), pp. 1175–1183.

[74] Petit, O., Thome, N., Rambour, C., and Soler, L. ‘U-Net Transformer: Self and
Cross Attention for Medical Image Segmentation’. In: Machine Learning in Medical

Imaging. Springer International Publishing, (2021), pp. 267–276. isbn: 978-3-030-
87589-3.

60

[75] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. ‘Attention Is All You Need’. In: Proceedings of the

31st International Conference on Neural Information Processing Systems vol. 30(1)
(2017), 6000–6010.

[76] You, K., Long M., Jordan M. I., and Wang J. ‘Learning Stages: Phenomenon, Root
Cause, Mechanism Hypothesis, and Implications’. ArXiv eprint at abs/1908.01878.
(2019).

[77] Lautenschlager, F., Becker, M., Kobs, K., Steininger, M., Davidson, P., Krause, A.,
and Hotho, A. ‘OpenLUR: O�-the-shelf air pollution modeling with open features
and machine learning’. In: Atmospheric Environment vol. 233(1) (2020).

[78] Lewkowycz, A. ‘How to Decay your Learning Rate’. ArXiv eprint at abs/2103.12682,
Under review as a conference paper to ICLR 2022. (2021).

[79] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. ‘On
Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima’.
In: 5th International Conference on Learning Representations (ICLR) (2017). ArXiv
eprint at abs/1609.04836.

[80] Kaiser, L. ‘GitHub Repository with Code’.
github.com/utkaiser/masterthesis_notebooks. (2023).

[81] Hooker, G. ‘Generalized Functional ANOVA Diagnostics for High-Dimensional
Functions of Dependent Variables’. In: Journal of Computational and Graphical

Statistics vol. 16(3) (2007), pp. 709–732.

[82] Li, H., Xu, Z., Taylor, G., and Goldstein, T. ‘Visualizing the Loss Landscape
of Neural Nets’. In: Proceedings of the 32nd International Conference on Neu-

ral Information Processing Systems. NIPS’18. Curran Associates Inc., (2018), pp.
6391–6401.

[83] Quarteroni, A., Sacco, R., and Saleri, F. Numerical Mathematics (Texts in Applied

Mathematics 37). 2nd ed. Springer, (2006). isbn: 978-3540346586.

[84] Nussbaumer, H. J. ‘The Fast Fourier Transform’. In: Fast Fourier Transform and

Convolution Algorithms. Springer Berlin Heidelberg, (982), pp. 0–111. isbn: 978-
3642818974.

[85] William, H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical

Recipes in C: The Art of Scientific Computing. 3rd ed. Cambridge University Press,
(1992). isbn: 0521880688.

61

Acronyms

F�tı fine solver. 3, 10, 11, 12, 13, 14, 21, 29, 32, 47, 48

G�tı coarse solver. 2, 10, 11, 12, 14, 29, 31, 37, 40, 42, 49

CFL Courant, Friedrichs, and Lewy. 14, 15, 35, 36

CNN Convolutional Neural Network. 4, 5, 24, 25, 26, 27

DFT Discrete Fourier Transform. 63, 64

E2E-Trans Transformer JNet. 38, 43, 47

E2E-Tira Tiramisu JNet. 38, 43, 47

E2E-JNet5 E2E 5-level JNet. 38, 46, 47

E2E-CNN-UNet3 E2E CNN 3-level UNet. 38, 39, 43

E2E-JNet3 E2E 3-level JNet. 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53

E2E-V E2E Vanilla. 31, 38, 40, 44, 47, 48

fANOVA functional Analysis of Variance. 51, 52

MSE Mean Squared Error. 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52

NE2E-JNet3 Not E2E 3-level JNet. 32, 38, 40, 42, 43, 44, 45, 46, 47, 49

PDE Partial Di�erential Equation. 4, 5, 6, 12, 14, 15, 46

PINN Physics-Informed Neural Network. 4, 5

RK4 Runge-Kutta of forth-order method. 13

62

Appendix

The exact implementations, e.g., the specifications of both solvers and how we handled
boundaries numerically, can be found in a GitHub repository [80]. The following equations
are taken from [83].

A Fourier Transform and Fast Fourier Transform

The Fourier Transform and the Fast Fourier Transform are mathematical techniques used
to transform a signal between the time or spatial domain and frequency domain. For a
continuous signal in the time domain, x(t), the Fourier Transform is expressed as:

X (f) =
⁄ Œ

≠Œ
x(t)ej2fift

dt. (6.1)

In this definition, X (f) represents the signal’s frequency domain counterpart, while f

denotes frequency, and j is the imaginary unit. The inverse process, i.e. transforming a
frequency domain signal back to its time domain form, is given by:

x(t) =
⁄ Œ

≠Œ
X (f)ej2fift

df. (6.2)

The Fast Fourier Transform is a highly e�cient method for calculating the Discrete Fourier
Transform (DFT) and its reverse. For a discrete signal in the time domain x[n], where
n = 0, 1, . . . , N ≠ 1, the DFT is defined as:

X [k] =
N≠1ÿ

n=0
x[n]ej2fi kn

N . (6.3)

Here, X [k] denotes the signal’s representation in the frequency domain, while k is indicative
of discrete frequency intervals, and N is the total number of samples. The Fast Fourier
Transform reduces the computational complexity of DFT from O(N2) to O(N log(N)),
making it practical for a wide range of applications. It does this primarily through a
divide-and-conquer approach known as the Cooley-Tukey algorithm, which recursively

63

decomposes the DFT into smaller components. For detailed information, refer to [84].

B Taylor Approximation

A Taylor series approximates a function to a certain degree though a series of derivatives
at a specific point. For a function f(x) and a point a, the Taylor series up to the n-th
term is given by:

f(x) ¥ f(a) + f
Õ(a)(x ≠ a) + f

ÕÕ(a)
2! (x ≠ a)2 + · · · + f

n(a)
n! (x ≠ a)n

. (6.4)

The accuracy of this approximation increases with the number of terms used.

C Central Di�erencing

Central di�erencing is a numerical method used to approximate partial derivatives. For
the 2D case, the central di�erence of a function u at a point (xi,j) := (xi, xj) = (ih, jh)
with a small interval h is given by:

Òhu(xi,j) = (u(xi+1,j) ≠ u(xi≠1,j)
2h

,
u(xi,j+1) ≠ u(xi,j≠1)

2h
). (6.5)

This method calculates the gradient of u at (xi,j) by averaging the di�erences in both
directions, providing a more precise approximation for multi-dimensional functions than
one-sided di�erencing methods.

D Bilinear Interpolation

To estimate the value of a function at a point (x, y) within a rectangular grid, we use
bilinear interpolation based on [85]. It is widely used in image scaling as it provides smooth
transitions between data points while being computationally e�cient. However, for our
purposes, it is not optimal because we aim to approximate functions with high curvature
or rapid changes, whereas bilinear interpolation assumes linear variation between data
points.

Mathematically, we perform linear interpolation first in one direction (e.g., horizontally)
and then in the other direction (e.g., vertically). Assume we have a rectangular grid with
points (x1, y1), (x1, y2), (x2, y1), and (x2, y2), and their corresponding function values f11,

64

f12, f21, and f22. We can now perform two linear interpolations along the x-axis

f(x, y1) = x2 ≠ x

x2 ≠ x1
f11 + x ≠ x1

x2 ≠ x1
f21,

f(x, y2) = x2 ≠ x

x2 ≠ x1
f12 + x ≠ x1

x2 ≠ x1
f22,

(6.6)

and continue by interpolating in the y-direction

f(x, y) = y2 ≠ y

y2 ≠ y1
f(x, y1) + y ≠ y1

y2 ≠ y1
f(x, y2). (6.7)

E Pseudocode

This section serves as an introduction on how to use the code base in [80]. The mathematics
behind complex algorithms, such as the numerical solvers, are explained in Chapter 3.
Please refer to [80] for specific implementations in Python. Here, we explain how to use
these solvers to propagate a wave (Subsection E.1), generate training data (Subsection E.2),
and train the end-to-end models (Subsection E.3). In Algorithm 1, we show how to apply
the Parareal scheme.

E.1 Application of the Numerical Solvers

from utils_use_numerical_solver import get_velocity_model, pseudo_spectral_tensor,
velocity_verlet_tensor, init_pulse_gaussian, WaveEnergyField_tensor

import matplotlib.pyplot as plt
import torch

def visualize_numerical_solver_periodic(
vel_data_path = "data/crop_test.npz",
method = "pseudo-spectral",
dx = 2./128.,
dt = 1/600.,
dt_star = .06

):
’’’
Parameters

vel_data_path : (string) path to velocity profile crops
method : (string) "pseudo-spectral" or "velocity-verlet"
dx : (float) spatial step size numerical solver

65

dt : (float) temporal step size numerical solver
dt_star : (float) time interval the solver is applied once

Returns

(void) visualizes 8 advancements of timestep dt_star
with periodic boundary conditions
’’’

vel = torch.from_numpy(get_velocity_model(vel_data_path))

computing initial condition using gaussian pulse
u, ut = init_pulse_gaussian(width=7000, padding=128, x_1=0, x_2=0)
u, ut = torch.from_numpy(u), torch.from_numpy(ut)

for s in range(8):
run one iteration of the RK4 pseudo-spectral

/ velocity Verlet method for time dt_star and increments dx, dt
if method == "pseudo-spectral":

u, ut = pseudo_spectral_tensor(u, ut, vel, dx, dt, dt_star)
else: # method == "velocity_verlet"

u, ut = velocity_verlet_tensor(u, ut, vel, dx, dt, dt_star)

change representation to energy semi-norm
w = WaveEnergyField_tensor(u, ut, vel, dx)

visualize results
plt.imshow(w)
plt.title(f"wave field for iteration {s}")
plt.show()

E.2 Generate Training Data

Generate Velocity Crops

from utils_generating_data import generate_velocity_profile_crop
from skimage.filters import gaussian
from scipy.io import loadmat

def generate_velocity_crops(
resolution = 128,
output_dir = ’data/crop_test.npz’,

66

num_crops = 1,
):

’’’
Parameters

resolution : (int) target resolution of crop
output_dir : (string) output file path, format is ".npz"
num_crops : (int) number of crops per image

Returns

(void) saves the velocity crops in an .npz-file
’’’

load images
data_mat = loadmat(’data/marm1nonsmooth.mat’) # Marmousi velocity image
modified_marm = gaussian(data_mat[’marm1larg’],4) # smoothing the image
data_bp = loadmat(’data/bp2004.mat’) # BP velocity image
smoothing the image and different order of magnitude
modified_bp = gaussian(data_bp[’V’],4)/1000

randomly crop and save images at "output_dir"
generate_velocity_profile_crop(

v_images = [modified_marm,modified_bp],
m = resolution,
output_path = output_dir,
num_times = num_crops

)

Create Training Dataset

from matplotlib import pyplot as plt
import numpy as np
import torch
from utils_generating_data import crop_center, initial_condition_gaussian,

one_iteration_pseudo_spectral_tensor
from wave_component_function import WaveSol_from_EnergyComponent_tensor,

WaveEnergyComponentField_end_to_end, WaveEnergyField

def generate_data_end_to_end(
input_path = "data/crop_test.npz",
output_path = "data/datagen_test.npz",

67

boundary_condition = "periodic",
n_snaps = 10,
res = 128,
n_it = 10,
f_delta_x = 2. / 128.

):
’’’
Parameters

input_path : (string) velocity profile data path
output_path: (string) generated wave field data path
boundary_condition : (string) either "periodic" or "absorbing"
n_snaps : (int) amount of snapshots / dt_star steps to take
res : (int) resolution of wave field output
n_it : (int) amount of different wave propagation series
f_delta_x : (float) grid time stepping of fine solver

Returns

(void) saves generated wave propagation iterations in file
’’’

load velocity model created in function above ‘generate_velocity_crops()‘
velocities = np.load(input_path)[’wavespeedlist’]

set up tensors to store wave energy components and velocity profile
goal: save tensor for each iteration and snapshot
Ux, Uy, Utc = np.zeros([n_it, n_snaps + 1, res, res]), \

np.zeros([n_it, n_snaps + 1, res, res]), \
np.zeros([n_it, n_snaps + 1, res, res])

V = np.zeros([n_it, n_snaps+1, res, res])

data generation
for it in range(n_it):

sample velocity instance
if it >= len(velocities): vel = velocities[0]
else: vel = velocities[it]

computing initial condition using gaussian pulse u_energy[b] relates to
the partial derivatives, while b denotes the batch size (used later)
u_energy = initial_condition_gaussian(

torch.from_numpy(vel),
mode="energy_comp",

68

res_padded=res, # needed to account for absorbing boundaries
)

create and save velocity crop
crop center of the image if absorbing boundaries
vel_crop = crop_center(vel, res, 2)
save velocity image (n_snaps + 1) times in V
V[it] = np.repeat(vel[np.newaxis, :, :], n_snaps + 1, axis=0)

integrate dt_star (step size) for n_snaps times
for s in range(n_snaps+1):

change energy components to wave field representation
u_elapse, ut_elapse = WaveSol_from_EnergyComponent_tensor(

u_energy[:,0], u_energy[:,1], u_energy[:,2],
torch.from_numpy(vel),
f_delta_x,
torch.sum(torch.sum(torch.sum(u_energy[:,0])))

)

if boundary_condition == "absorbing":
crop and save current snapshot in tensors
u_elapse_crop = crop_center(u_elapse.squeeze(), res, 2)
ut_elapse_crop = crop_center(ut_elapse.squeeze(), res, 2)
Ux[it, s], Uy[it, s], Utc[it, s] = \

WaveEnergyComponentField_end_to_end(u_elapse_crop, \
ut_elapse_crop, vel_crop, f_delta_x)

else: # boundary_condition == "periodic"
save current snapshot in tensors
Ux[it, s], Uy[it, s], Utc[it, s] = \

u_energy[0,0], u_energy[0,1], u_energy[0,2]

itegration step (done for all iterations but for the last one)
if s < n_snaps + 1:

apply the fine solver
u_energy = one_iteration_pseudo_spectral_tensor(torch.cat([u_energy, \

torch.from_numpy(vel).unsqueeze(dim=0).unsqueeze(dim=0)], dim=1))

save tensors in file, accessible through key-value queries (dictionary)
np.savez(output_path, vel=V, Ux=Ux, Uy=Uy, Utc=Utc)

69

E.3 Train End-to-End Model

import torch
from utils_training_model import save_model, get_params,

fetch_data_end_to_end, Model_end_to_end
import random
import numpy as np

def train_model(
model_name = "test",
lr = .001,
batch_size = 1,
n_epochs = 10,
downsampling_model = "Interpolation",
upsampling_model = "UNet3",
data_paths = "data/datagen_test.npz",
val_paths = "data/datagen_test2.npz"

):
’’’
Parameters

model_name : (string) name of model

used as name for output-file containing model parameters
lr : (float) learning rate of model
batch_size : (int) batch size
n_epochs : (int) amount of epochs model is trained
downsampling_model : (string) name of downsampling model
upsampling_model : (string) name of upsampling model
res_scaler : (int) scale the model downsamples the input
model_res : (int) resolution of model
data_paths : (string) training data path
val_paths : (string) validation data path

Returns

(void) trained model parameters in a ".pt"-file
’’’

model setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
param_dict = get_params() # contains all model specifications
model = Model_end_to_end(param_dict, \

downsampling_model, upsampling_model).double()

70

model = torch.nn.DataParallel(model).to(device) # multi-GPU use

data setup
train_loader, val_loader, _ = fetch_data_end_to_end(\

[data_paths], batch_size, [val_paths])

deep learning setup (optimizer and loss function)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
loss_f = torch.nn.MSELoss()

for epoch in range(n_epochs):

training
model.train() # allow modification of weights, track gradients
train_loss_list = [] # list to store loss values of training

for i, data in enumerate(train_loader):
loss_list = [] # tmp for backpropagating multiple losses
n_snaps = data[0].shape[1] # number of snapshots
data = data[0].to(device) # use GPUs if available

choose n_snaps start indices randomly
for input_idx in random.choices(range(n_snaps - 2), k=n_snaps):

detach because if not, computation graph too far back
input_tensor = data[:, input_idx].detach()

one-step loss function (this loop is used to show that we can
use something else for "input_idx+2" to get a multi-step loss
for label_idx in range(input_idx + 1, input_idx + 2):

output = model(input_tensor) # apply end-to-end model
loss_list.append(loss_f(output, data[:, label_idx, :3]))
save current result to use for next iteration if multi-step-loss
input_tensor = torch.cat((output, \

input_tensor[:, 3].unsqueeze(dim=1)), dim=1)

optimizer stepping
optimizer.zero_grad()
sum(loss_list).backward()
optimizer.step()
save loss to later print out
train_loss_list.append(\

np.array([l.cpu().detach().numpy() for l in loss_list]).mean())

71

validation
model.eval() # disallow modification of weights
with torch.no_grad(): # do not track gradients

val_loss_list = [] # initialize list to save losses

for i, data in enumerate(val_loader):
n_snaps = data[0].shape[1] # number of snapshots
data = data[0].to(device) # use GPUs if available
input_tensor = data[:, 0]
vel = input_tensor[:, 3].unsqueeze(dim=1)

advance a wave field for (n_snaps - 1) time steps
for label_idx in range(1, n_snaps):

label = data[:, label_idx, :3]
output = model(input_tensor) # apply end-to-end model
get and save loss (this could be optimized by using a metric)
val_loss_list.append(loss_f(output, label).item())
save current result to use for next iteration if multi-step-loss
input_tensor = torch.cat((output, vel), dim=1)

print(f’epoch %d, train loss: %.5f, test loss: %.5f’
%(epoch + 1, np.array(train_loss_list).mean(),

np.array(val_loss_list).mean()))

save_model(model, model_name, "results/") # save model parameters as a ".pt"-file

72

Declaration of Authorship

I hereby confirm that my thesis entitled ‘Fast, Accurate, and Scalable Numerical Wave Propagation:
Enhancement by Deep Learning’ is the result of my own work. I did not receive any help or support
from commercial consultants. All sources and / or materials applied are listed and specified in
the thesis. Furthermore, I confirm that this thesis has not yet been submitted as part of another
examination process neither in identical nor in similar form.

Wuerzburg, 12.01.2024
Luis Kaiser

73

	Introduction
	Related Work
	Theory
	Evaluation Setup
	Discussion
	Conclusion
	References
	Acronyms
	Appendix

