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Abstract

Within this thesis the goal is to apply Bayesian inference to the inverse problem coming
from chemotaxis of bacteria including a reaction term in order to reconstruct the tumbling
kernel from the organism population. Here, two mathematical models on different scales
- namely a kinetic and a macroscopic model - are considered and their convergence in the
asymptotic limit is shown. The work is organized as follows: in section 2 we will introduce
Bayesian inference by first linking it to the classical approach. Then, well-posedness in the
Bayesian setting will be discussed and the ideas behind selected numerical applications
will be presented. This will serve as the foundation for formulating the inverse problem
for chemotaxis. In section 3 the forward models on the kinetic and macroscopic level are
established and the convergence in the asymptotic limit of those two models is presented.
The results of current literature, where the drift-diffusion limit for the scaled chemotaxis
equation has already been carried out, are extended to the case where a reaction term
occurs in the equations. This will form the basis to connect the related inverse problems
in section 4 which can also be seen as an extension of the results in current literature to
the chemotaxis equation where a reaction term is added. Here, the inverse problems are
formulated and the relation between the two problems is investigated. The well-posedness
and convergence of the resulting posterior distributions in the asymptotic limit are shown,
which can be seen as an extension of the current results in literature. In section 5 the loss
of information in the asymptotic limit is investigated on the local and global level but
with the presented approaches in this work, the loss of information cannot be quantified.
A summary and an outlook on further research is given in section 6.



Zusammenfassung

Ziel dieser Arbeit ist es, das Kalkül der Bayessischen Statistik auf das Inverse Problem
von der Chemotaxis von Bakterien anzuwenden unter Berücksichtigung eines Reaktion-
terms, um die Zitterbewegung der Bakterien zu rekonstruieren. Hierbei werden zwei ma-
thematische Modelle auf verschiedenen Skalen - kinetisch und makroskopisch - betrachtet
und deren Konvergenz im asymptotischen Grenzfall untersucht. Die Thesis ist wie folgt
strukturiert: in Abschnitt 2 wird die Bayessche Statistik und ihre Anwendung auf in-
verse Probleme eingeführt. Dies wird getan, indem der probabilistische Ansatz zunächst
mit dem klassischen Ansatz für einfache Probleme verknüpft wird. Anschließend wird
erläutert, was es in der Bayesschen Statistik bedeutet, ein korrekt gestelltes Problem zu
sein und die Ideen hinter ausgewählten numerischen Verfahren werden dargestellt. Dies
wird den Grundstein für die Formulierung des inversen Problems für Chemotaxis bilden.
Abschnitt 3 befasst sich mit den Vorwärtsproblemen auf kinetischem und makroskopi-
schen Niveau der Chemotaxis und die asymptotische Äquivalenz der hierbei auftretenden
Gleichungen wird gezeigt. Die Resultate aus der Literatur, in welcher der Übergang zum
diffusiven System für Chemotaxis bereits gezeigt wurde, werden für den Fall eines auf-
tretenden Reaktionsterms erweitert. Auf Grundlage dessen, werden in Abschnitt 4 die
jeweiligen inversen Probleme formuliert und deren Beziehung zueinander untersucht. Die
Konvergenz im asymptotischen Grenzfall wird gezeigt und kann als Erweiterung der bis-
herigen Ergebnisse in der Literatur gesehen werden. In Abschnitt 5 wird dann der Infor-
mationsverlust während des Skalierungsprozesses näher betrachtet und ein erster Versuch
unternommen, diesen zu quantifizieren. Mit den in dieser Abreit vorgestellten Ansätzen
kann der Informationsverlust jedoch nicht quantifiziert werden. Abschließend gibt es eine
Zusammenfassung und einen Ausblick auf weitere (Nach-)Forschung in Abschnitt 6.
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1 Introduction

When describing nature, human behaviour or other kinds of real-life processes mathematically, some
sort of model is needed. A mathematical model always reduces reality in the way that assumptions
and simplifications need to be made in order to describe the system of interest. The resulting relations
are then translated into the mathematical language. A model consists of a set of equations, relating
an input to some output, namely the data. A more detailed introduction to mathematical modelling
can be found for instance in [35,44]. When trying to model complex systems, not every process can
be represented within the mathematical description since they are either not fully known yet or the
resulting equations become too complex to be dealt with. Quantitative climate models are a great
example for models of complex systems and how they may vary in complexity. Here, the ingoing
energy from the sun as well as the outgoing energy in form of electromagnetic waves are taken into
account to calculate a change in temperature as a result from occurring imbalances. Those kind of
models are named energy-balance-models and are described in [29]. For instance, the radiant heat
transfer equation is a very simple model of this process where the earth is approximated to be a
single point and one considers an average outgoing energy [29,42]. A more sophisticated approach is
the coupling of atmosphere-ocean-sea ice models, which takes many more processes into account [42].
While the second model will yield results that are way more accurate, the first one will have a much
shorter runtime, is easier to understand and may still show a trend for the change of temperature.
Hence, there is always a trade-off between the accuracy of a model and its computational cost.

The different arising models can be classified in various types. They may include linear or nonlinear
operators, be stationary or dynamic, discrete or continuous, deterministic or probabilistic or of many
other kinds. Also, they can either be used to predict the behaviour of a system or to deduce the
cause of an observed effect from a system. Models that are used with the intention of predicting an
outcome are titled forward models and consist of a model with fully known parameters (see Figure 1).

Input Data

Initial data for time 0
Model

Output Data
Measurements at time step t

Model

Parameter

Figure 1: Illustration of a forward model. The input data, the model and its parameters are known,
whereas we are interested in the output data.

An example of a forward model would be to predict the shadow cast by an object, while knowing
its shape and the position of the light source. The mathematical model then consists of the equations
that describe the propagation of light and the parameters put into the model would be the shape
of the object blocking the light and the position of the light source. For every forward model one
can formulate the inverse problem where one is interested in deducing the right parameters of a
model in order to be able to reproduce the observed outcome with it (see Figure 2). For the example
above, the inverse problem would be to reconstruct the shape of the object with the equations of
light propagation by knowing the position of the light source and the shape of the shadow. With this
rather simple example it already becomes clear, that even if the forward problem may have a unique
solution, this must not hold true for the related inverse problem.
Within each model lies uncertainty, either in the values of the parameter or the accuracy of the

6



Input Data

Initial data for time 0
Model

Output Data
Measurements at time step t

Model

Parameter

Albedo-Operator

Figure 2: Illustration of an inverse model. The initial data is known as well as the model and the out-
come, i.e. the measured data. One is interested in the parameters of the model such that the
model would yield the desired output. The Albedo-Operator maps the input data to the out-
put data.

model itself. Additionally, the measured data is equipped with uncertainty as well. Therefore, the
field of uncertainty quantification (UQ) is of importance, when dealing with inverse problems and
experiments.

”UQ studies all sources of error and uncertainty, including the following: systematic and
stochastic measurement error; ignorance; limitations of theoretical models; limitations
of numerical representations of those models; limitations of the accuracy and reliability
of computations, approximations, and algorithms; and human error. A more precise
definition is UQ is the end-to-end study of the reliability of scientific inferences.” [40]

While UQ does not answer the questions, whether or not a model is right, it gives information about
the consistency of a model. Hence, one can see it as a tool for model verification. Including the
mentioned uncertainties into the forward model means that one acknowledges that the parameters
are not fully known but are random variables. If the parameters that are put into the model are
random variables then this also applies to the output, this process is called forward propagation of
uncertainty. The same holds true for the inverse problem: the data one can measure will always have
some uncertainty, thus the to-be-reconstructed quantities of interest also are not known fully [37,
Chapter 1.1]. This type of uncertainty, which comes from the random nature of physical systems,
is often referred to as Aleatoric Uncertainty, from the Latin word alea meaning gamble or a die.
The uncertainty coming from the lack of knowledge about a system is commonly called Epistemic
Uncertainty, coming from the Greek word for knowledge [37]. The distinction between those two types
of uncertainty represents two different ways of looking at probability in a mathematical framework.
For example, if one rolls a few dice the outcome can said to be random and thus are of aleatoric
nature. On the other hand, one could argue that the outcome is only random because of the missing
knowledge about the initial condition of the system, such as the material and geometry of the dice,
the wind affecting the roll and so on, making the uncertainty epistemic [37]. The second way of
looking at this problem would nowadays be labelled as the Bayesian Perspective.
Thomas Bayes (* around 1701, †1761), a mathematician, philosopher and the namesake of Bayesian

probability, lived in England and is known to only have published two works during his lifetime, one
of philosophical and one of mathematical nature:
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• ”Divine Benevolence, or an Attempt to Prove That the Principal End of the Divine Providence
and Government is the Happiness of His Creatures”(1731)

• ”An Introduction to the Doctrine of Fluxions: and a Defence of the Mathematicians Against
the Objections of the Author of The Analyst” (published anonymously in 1736)

The second publication mainly focused on defending the logical foundation of Isaac Newtons calculus
against a bishop, George Berkeley who was also the author of

”
The Analyst“ and it is speculated

that Bayes was accepted as a
”
Fellow of the Royal Society“ because of this work [3]. Even though,

Thomas Bayes wrote down his solution to an inverse problem in
”
An Essay towards solving a Problem

in Doctrine of Chances“, which was presented to the Royal Society after his death [8], it was Pierre-
Simon LaPlace, who made Bayesian probability popular [3].
The Bayesian interpretation of probability focuses on the strength of beliefs and hypotheses. In

that sense, Bayes’ theorem gives a method to update probabilities based on prior knowledge and data.
This means, that the data is assumed to be fixed and rather the hypotheses (for example the values of
parameters of a model) are assumed to be distributed according to some probability distribution. In
contrast to that, there exists the frequentist view on probability, where one assumes a null hypothesis
to be true and the data to be random, meaning a data set is seen as one possibility out of many.
Then, it can be investigated how likely the data may appear given the true null hypothesis. If this
likelihood is very small, then the null hypothesis may be rejected. Thus, opposing to the Bayesian
framework where one takes data and a prior belief into account, the frequentist analysis only relies
on data. Still, the results can be manipulated by the choice of the acceptance-probability, by which
a hypothesis is accepted or rejected. Now, it could also be argued that one manipulates the result
in the Bayesian setting, by putting in certain prior believes in order to get the desired answer. Espe-
cially, when the outcome relies heavily on the prior, the choice of the prior, which not always comes
that easy, is important. This can be avoided by choosing an

”
uninformative“ prior or by having

multiple priors with different beliefs. But the prior knowledge may also come from other experi-
ments, history or intuition on how the solution may or may not look like, thus incorporating many
different kinds of information, which could not be done with the frequentist approach. Overall, both
approaches have strengths and may be useful for different kinds of problems. Nevertheless, it is al-
ways important to make clear how the used method works in order to not manipulate the results. [14]

Overview. Within this thesis the goal is to apply Bayesian inference to the inverse problem coming
from chemotaxis of bacteria including a reaction term in order to reconstruct the tumbling kernel
from the organism population. Here, two mathematical models on different scales - namely a kinetic
and a macroscopic model - are considered and their convergence in the asymptotic limit is shown.
The work is organized as follows: in section 2 we will introduce Bayesian inference by first linking
it to the classical approach. Then, well-posedness in the Bayesian setting will be discussed and the
ideas behind selected numerical applications will be explained. This will serve as the foundation for
formulating the inverse problem for chemotaxis. In section 3 the forward models on the kinetic and
macroscopic level are established and the asymptotic limit between those two models is presented.
The results of [10], where the drift-diffusion limit for the scaled chemotaxis equation is carried out,
are extended to the case where a reaction term occurs in the equations. This will form the basis to
connect the related inverse problems in section 4. Here, the inverse problems are formulated and the
relation between them is investigated. The well-posedness and convergence of the resulting posterior
distributions in the asymptotic limit are shown, which can be seen as an extension of the results
in [17]. In section 5 the loss of information in the asymptotic limit is investigated on the local and
global level. This can be viewed as an attempt to adapt the results in [28] to the non-stationary set-
ting. But the presented approaches do not suffice to quantify the loss of information for the inverse
chemotaxis problem in the diffusive limit. A summary and an outlook on further research is given in
section 6.
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2 Bayesian Inference

In this section, the concept behind Bayesian Inference will be explained. The Bayesian approach
to regularization of ill-posed problems will be outlined and its advantages and disadvantages are
described. Additionally, some algorithms will be discussed in order to give an idea on how to extract
information from Bayesian inversion numerically. We will mainly follow the elaborations in [36].

2.1 Linking the Bayesian and Classical Approach

When conducting an experiment the goal is to derive the input parameters of a model from the
measured data. Such inverse problems are in general ill-posed in the sense of Hadamard, meaning
the solution either lacks existence or uniqueness or does not depend continuously on the data. Math-
ematically, one can describe an experiment by a function relating an input to an output, as explained
for example in [37, Chapter 6.1]. For two Banach spaces U ,Y we define H ∶ U → Y to be the model
operator and call u ∈ U the input and y ∈ Y the data. Having an inverse problem then corresponds to
be interested in u for some given y and H. In reality, the measured data is disturbed by some noise
such as

y =H(u) + η
where η represents the uncertainty. If the problem is ill-posed, which is typical for inverse problems,
an ordinary approach would be to seek a least-square solution by solving

argmin
u∈U

∥y −H(u)∥2Y .

Finding the minimum is often difficult because there may not be a limit in U of the minimizing
sequence, it could have multiple minima or it depends sensitively on the data [36]. If the minimum
depends sensitively on the data, this means that it does not depend continuously on the data. In
this case, one can try to weaken the influence of the data by looking for a solution that does not fit
the data too closely. This can be done via regularizing the problem by seeking the minimizer û of

J(u) ..= 1

2
∥y −H(u)∥2Q−1 +

1

2
∥u − ū∥R−1

for a chosen self-adjoint operator Q, a point ū ∈ Rn and an operator R describing the structure of
the regularization, as shown in [36]. By the choice of Q, different components of the data can be
weighted. The choice of ū and R encodes the prior belief one has about the solution of the problem.
For example, if H is a linear function, R could be a positive-definite Tikhonov matrix. Tikhonov-
Regularization, also known as Ridge-Regression, is a common approach for solving ill-posed inverse
problems, as explained in e.g. [23]. In the case, where R is chosen as a scalar multiple of the
identity-matrix, the regularization is called L2-regularization [32]. Now, the minimizer û either lies
close to ū and is influenced more by the regularization term or it lies closer to the minimizer of the
quadratic cost function and is thus influenced more by the data y. Still, without further assumptions
about the model, the choice of regularization and weight operators as well as the point ū are rather
arbitrary [36, Chapter 2.2].
When introducing a statistical framework, those assumptions can be made more explicit. In

Bayesian statistics the data and quantities of interest are considered to be random variables and are
distributed according to some probability distribution The knowledge one has about the quantity of
interest before some evidence is taken into account, is represented by a probability distribution for all
values of the to-be-reconstructed parameter we believe are possible. It is called the prior distribution
and corresponds to the regularization term discussed before. For example, one could assume the
random variable to be normally distributed. Further, the data likelihood distribution encodes the
likelihood of measuring the data for some given input and model. Thus, it gives an estimation of
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how likely it would be to measure this data under the chosen model and input. Additionally, one
has a probability distribution, often referred to as the normalization constant which estimates the
likelihood of measuring the data without any given conditions. It is called a constant, since it does not
depend on the to-be-reconstructed parameter. Solving the inverse problem in the Bayesian setting
means to reconstruct the posterior distribution, which is the distribution of possible values for the
quantity of interest after taking additional information into account. It updates our beliefs about
the input based on the data, using Bayes theorem [36, Chapter 6].

Theorem 2.1 (Bayes’ rule) Let (Θ,F , µ) be a probability space, u, y ∈ F with µ(u), µ(y) > 0. Let
µ(u) be the prior distribution, µ(y) the normalization constant, µ(u ∣ y) the posterior distribution
and µ(y ∣ u) the likelihood. Then it holds that

µ(u ∣ y) = µ(y ∣ u)µ(u)
µ(y) .

In other words, the theorem states that the posterior distribution is proportional to the likelihood
of measuring the data y for given inputs u. Now, finding the minimizer of u ↦ 1

2∥H(u) − y∥
2
Q−1

corresponds to finding the maximum likelihood estimator of u given the data y. Additionally, the
Bayesian approach not only yields the most probable value but the distribution of all possible values
for u.

prior distribution

mode
l

experiment

likelihood
of data

data

Bayes’

Rule

posterior distribution

Figure 3: Illustration of Bayes Theorem. The prior distribution encodes the knowledge of the quantity
of interest before any evidence is taken into account. Here, a normal distribution is chosen.
From the experiment we then get the measurements and can calculate the probability of mea-
suring this set of data without any given conditions and we get the likelihood of the measured
data under the given model. With Bayes’ rule the posterior distribution can be calculated.

Example 2.2 Following [36, Chapter 2.2] the example of U ,Y being finite-dimensional spaces will be
introduced. Let u ∈Rp = U and y ∈Rq = Y. Further, we assume the noise η to be a random variable
with distribution ν and denote the prior by µ0. Recalling the equation

y =H(u) + η, (2.1)

the probability of y given u - the likelihood of the data for a given model - can then be described by
the distribution

µ(y ∣ u) ..= ν(y −H(u)). (2.2)

By Bayes’ rule it follows that the posterior distribution is proportional to the probability of y given
u

µ(u ∣ y)∝ ν(y −H(u))µ0 (2.3)

where the constant of proportionality depends only on the data y. We still refer to it as a constant,
since it does not depend on u. The posterior distribution will be denoted by µy in the sense that
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µy(u) = µ(u ∣ y). Then, the relation above can also be expressed by the Radon-Nikodym derivative
via

dµy

dµ0
(u)∝ ν(y −H(u)) (2.4)

as stated in [36, Theorem 6.2], which is a more abstract interpretation of Bayes’ Theorem. Since ν
is a density and thus a non-negative function, one can write without loss of information

dµy

dµ0
(u)∝ exp(−Φ(u; y)) (2.5)

for a potential Φ(u; y). With this formulation, the generalization to U ,Y being infinite dimensional
can be done in a natural way [36]. From now, we will denote a variable v that is normally distributed
with mean m and variance γ by v = N (m,γ). If the noise is Gaussian ν = N (0, γ) as well as the prior
distribution µ0 = N (ū,C), relation (2.3) yields

µy(u)∝ exp(−1
2
∣y −H(u)∣2γ −

1

2
∣u − ū∣2C) (2.6)

and the maximum a posteriori estimator, i.e. the estimator at which the posterior distribution has
its maximum, then corresponds to

argminu∈Rp(1
2
∣y −H(u)∣2γ +

1

2
∣u − ū∣2C), (2.7)

the solution of a weighted least square problem [36]. Here, the choice of C and ū encode the prior
information and thus it is known where they come from. The posterior distribution is in general not
Gaussian, except when the Operator H is linear. How to identify its mean and covariance is shown,
for example in [36, Theorem 6.20, Lemma 6.21].

Remark 2.3 In high dimensions it may become difficult to get information from a probability distri-
bution, thus one has to come up with different methods in order to obtain information. One idea is,
to look at the maximum a posteriori (MAP) estimator. At this point, the posterior distribution has
its maximum and thus its the value with the highest probability. Another approach from the field of
numerics is to use sampling methods, such has Markov chain Monte Carlo (MCMC) methods. The
idea behind those methods is to generate a set of points {ui}i∈I that are (approximately) distributed
according to µy(u), as discussed in subsection 2.3. Here, Bayes’ theorem is useful, since it provides
cases where the posterior function is known up to a constant, as illustrated in the example above in
(2.5).

Remark 2.4 (Influence of Prior Distribution on Uncertainty of the Solution) A natural question is,
if Bayesian inference yields the correct result, regardless of the prior, when exposed to enough sample
data. To investigate the influence of the prior distribution on our solution, we are interested in the
small observational noise limit. For example, in the case of a linear model where the posterior
distribution is Gaussian and its mean and covariance can be explicitly determined, one can look at
the underlying noise-free problem. If the problem is underdetermined, the mean of the posterior is
determined by the prior and thus there remains uncertainty, even if the observational noise disappears.
This implies, that the prior plays a huge role, even if we have small observational noise. Especially, the
uncertainty is dependent on the choice of prior. In the case of an overdetermined system, the posterior
distribution converges to a Dirac measure, meaning that the uncertainty disappears. In other words,
the prior plays no role in this limit. Examples of such problems can be found in [36, Example 2.1-2.2].
In reality, many of the inverse problems are underdetermined, meaning that the assumptions we put
into the model by choosing a prior are important. One advantage of the Bayesian approach is, that
those assumptions are at least made clear and precise. [36, Chapter 2.2-2.3].
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2.2 Bayesian Well-Posedness

This section will discuss the question of stability of distributions to perturbations. In order to use
Bayes’ Rule for an inverse problem, we need to ensure that the posterior distribution is well-defined,
the normalization constant is indeed bounded and that the distributions depend continuously on the
data. We allow the data to be in form of a function, the case of discrete data will be discussed later
on. In order to get the desired results, the potential Φ(u; y) introduced in Example 2.2 is assumed
to have the following properties [36, Assumptions 2.6]:

(A1) ∀ε > 0, r > 0 ∃M =M(ε, r) ∈R: ∀u ∈ U , y ∈ Y ∣ ∥y∥Y < r:

Φ(u; y) ≥M − ε∥u∥2U

(A2) ∀r > 0 ∃K =K(r) > 0: ∀u ∈ U , y ∈ Y ∣ ∥u∥U , ∥y∥Y < r:

Φ(u; y) ≤K

(A3) ∀r > 0 ∃L = L(r) > 0: ∀u1, u2 ∈ U , y ∈ Y ∣ ∥u1∥U , ∥u2∥U , ∥y∥Y < r:

∣Φ(u1; y) −Φ(u2; y)∣ ≤ L∥u1 − u2∥U

(A4) ∀ε > 0, r > 0 ∃C = C(ε, r) > 0: ∀u ∈ U , y1, y2 ∈ Y ∣ ∥y1∥Y , ∥y2∥Y < r:

∣Φ(u; y1) −Φ(u; y2)∣ ≤ exp(ε∥u∥2U +C)∥y1 − y2∥Y

The first assumption guarantees that the potential does not decay at −∞ too quickly, the second one
gives the boundedness on bounded sets and the third and fourth encode the Lipschitz-continuity in
both arguments.
From [36, Chapter 4.2] we cite the following two theorems.

Theorem 2.5 Let Φ satisfy our standard assumptions A1, A2 and A3. Let µ0 be a Gaussian probability
distribution on U . Then, for each y ∈ Y the measure µy is given by

dµy

dµ0
(u) = exp(−Φ(u; y))

Z(y)
Z(y) = ∫

U
exp(−Φ(u; y))dµ0(u)

and is a well-defined probability distribution on U .

For a Gaussian prior, assumptions A1-A3 yield a well-defined posterior distribution for each possible
instance of the observed data. To quantify the behaviour of the posterior distribution with respect
to changes in data, we introduce the Hellinger metric

dHell(µ1, µ2) ..=
1

2
∫
A

⎛
⎝

√
dµ1
dµ0
(u) −

√
dµ2
dµ0
(u)
⎞
⎠

2

dµ0(u). (2.8)

The metric is discussed in more detail in subsection 4.2.

Theorem 2.6 Let Φ satisfy assumptions A1, A2, A4 and suppose that µ0 is a Gaussian probability
distribution on U . Let µy be absolutely continuous with respect to µ0 with density given by Bayes’
rule for each y ∈ Y. Then there exists a constant C > 0 such that for all y, y′ ∈ Y

dHell(µy, µy
′) ≤ C∥y − y′∥Y .

This theorem establishes the stability of the posterior distribution with respect to the data under the
Hellinger metric.
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2.3 Numerical Applications

In this section, the main ideas behind different kind of algorithms will be introduced with which
information can be drawn from Bayes’ formula for the posterior distribution. The distribution can
be computed in a closed form only in rare cases, as discussed in the preceding sections. One ex-
ample of such a case is the inverse problem for the heat equation, where the prior is Gaussian and
the potential quadratic, leading to a Gaussian posterior distribution [36, Chapter 3.5]. Since the
posterior distribution can not be described that explicitly in general, approximations are required to
extract information from Bayes’ rule [36, Chapter 5.1]. One sampling algorithm, which enjoys a high
reputation among scientists, is the Markov chain Monte Carlo method. While this is a very powerful
tool, it is also costly to implement which is why variational and filtering methods will be discussed
as well.

2.3.1 Markov Chain Monte Carlo Algorithm

The key idea behind the class of Monte Carlo algorithms is to sample from the distribution one
wants to reconstruct. This distribution, in our case the posterior distribution, will be called target
distribution. Instead of deriving for instance the mean of a distribution from its equation, the
Monte Carlo approach is to draw a large number of samples of the distribution and calculate the
sample mean. This is especially useful if random samples are easy to draw and the equations are
difficult to deal with [41]. It remains to explain how the samples are generated and that is where
the Markov Chain comes in. The algorithm starts by guessing a value which may be appropriate
for the target distribution. The next sample will be proposed depending on the previous one by a
special process, for example by Metropolis Hasting methods, where the next sample is taken from
a normal distribution. The algorithm has the Markov property, since generating a new sample only
depends on the previous step and no step before that. The function of proposing the new sample is
also called the Markov transition kernel. The proposed value will then be accepted or neglected by
some probability which depends on the target distribution. Analytically, the posterior distribution is
often difficult to calculate due to the normalization constant in the denominator in Bayes’ rule. The
concept behind MCMC-algorithms is to look at relative probabilities during the process of accepting
a new sample, such that the normalization constant gets cancels out. For example, if uc would be
the current sample and up the proposed one, one can calculate the acceptance ratio at one position
via Bayes’ rule

µ(y∣up)µ(up)

µ(y)

µ(y∣uc)µ(uc)

µ(y)

= µ(y ∣ up)µ(up)
µ(y ∣ uc)µ(uc)

which equals the acceptance ratio for the non-normalized posterior distributions [43]. A more detailed
construction of the algorithm can be found in [36, Chapter 5.2].

2.3.2 Variational Methods

The goal of variational Bayes methods is to approximate the posterior distribution. Following [25],
the accuracy of the distribution is measured via the Kullback-Leibler divergence

dKL(µ1, µ2) ..= ∫
A
(log dµ1

dµ2
(u))dµ2(u) (2.9)

which will be discussed in more detail in subsection 4.2. Let ν be the approximate distribution and
µy the target distribution. Then it follows from Bayes’ rule that

dKL(ν,µy) = ∫
A
(log dν

dµy
(u))dµy(u)
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= ∫
A
(log dν(u)

d(µ(y ∣ u)µ(u)))dµ
y(u) + ∫

A
(log dµ(y))dµy(u)

= ∫
A
(log dν(u)

d(µ(y ∣ u)µ(u)))dµ
y(u) + log dµ(y)

or in other words

log dµ(y) = dKL(ν,µy) + V(ν).

Since the left hand side of this expression is constant, maximizing V(ν) means minimizing the
Kullback-Leibler divergence of the approximation and the posterior distribution, hence yielding a
better approximation [25]. Overall, neither the posterior distribution nor the normalization constant
needs to be calculated. Since now the goal is to find a function that maximizes an operator, namely
V, we are in the field of variational analysis leading to the name of this class of methods. In contrast
to the MCMC-methods, variational methods are faster but a little less accurate.

2.3.3 Filtering Methods

Similarly to the variational methods, the goal of the filtering methods is to approximate the posterior
distribution. This is done by sequentially updating a sequence of probability distributions in time.
This type of updating arises naturally in the sense that during an experiment one acquires more
and more data and thus wishes to be able to update the solution accordingly. Also, it is efficient to
use sequential updating since it reduces the dimension of the target distribution. When assuming
an underlying Markov structure, a correlated distribution at several time steps can be split up into
several, conditionally independent distributions at each time step [36, Chapter 5.1]. One key idea
is to break up the unknown parameter as well and deduce information about it sequentially and
conclude a recursive form of Bayes’ rule [36, Chapter 5.4].
Following [16, Chapter 3.3] we denote the vector of observations by y1∶n = {y1, . . . , yn}, the state of

the system at time tn by un and write Bayes’ rule as

µ(un ∣ y1∶n) =
µ(y1∶n ∣ un)µ(un)

µ(y1∶n)
.

Since it holds for the set of observations that µ(y1∶n) = µ(yn ∣ y1∶n−1)µ(y1∶n−1) [16, Equation (3.3)],
Bayes’ formula reduces to

µ(un ∣ y1∶n) =
µ(yn ∣ un)µ(un ∣ y1∶n−1)

µ(yn ∣ y1∶n−1)
where we also used the Markov property [16, Equation (3.19)-(3.23)]. In order to get the recursive
formula, one then applies the Chapman-Kolmogorov-equation, that links the prior distribution and
the previous posterior distribution

µ(un ∣ y1∶n−1) = ∫ µ(un ∣ un−1)µ(un−1 ∣ y1∶n−1)dun−1.

With this recursive process, the algorithm approximates the posterior distribution. Further explana-
tions about the processes can be found in [16,36]. Overall, the algorithm can update a new prediction
when more data becomes available, but it cannot update old predictions. Thus, the algorithm is pow-
erful, when interested in forecasts, but not when one wants to reanalyse the system, for example
when the goal is to improve the parameters of a model.
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3 Chemotaxis: Forward Models

The purpose of this chapter is to first introduce the phenomenon of chemotaxis and the common
mathematical forward models used to describe the motion of bacteria on the kinetic and macroscopic
level, introduced for example in [34]. The relation between the two arising models will be discussed
and some results from the current state of research will be outlined, especially the results from [10],
where the drift-diffusion limit for the scaled chemotaxis euqation is carried out. The second part of
this section deals with the extension of the results in [10] with a reaction term that encodes the birth
and death of bacteria, which is not always included in the commonly used models.

The phenomenon of bacterial movement as a response to a chemical attractant or repellent is called
chemotaxis. The mechanism, how the movement occurs, may differ between different species. Some
bacteria, like Myxobacteria, can pull themselves forward or push themselves back by extending a long
hair they have in front of them, called pilus. In contrast to that, other bacteria, such as E. Coli,
move by rotating their flagella that act like

”
propellers“, which they have several of at each cell. By

rotating the flagella counter-clockwise, the bacterium can move in a straight line, by rotating them
clockwise they start a tumbling motion which can result in a change of direction. This change of
direction is not deterministic but involves a random process [34]. The two types of movement are
illustrated in Figure 4.

Figure 4: An Illustration of bacterium E. Coli and its flagella on the left, and of Myxobacteria with its
pilus on the right [34, Figure 5.1].

3.1 Kinetic and Macroscopic Description

Mathematically speaking, there a three main models to describe chemotaxis, one is of macroscopic,
one of microscopic and one of kinetic nature. In this work, we focus on the macroscopic and kinetic
formulation. The most famous model on the macroscopic population level is the Keller-Segel system

∂tρ(t, x) −∇(D(t, x; c)∇ρ(t, x)) +∇(ρ(t, x)Γ(t, x; c)) = 0
∂tc(t, x) −Dc(t, x)∆c(t, x) = ϕ(c, ρ) (3.1)

with D(t, x; c) ∈ R3×3 being the diffusion matrix of the cells, Dc(t, x) ∈ R3 the diffusion matrix of
the chemoattractant and Γ(t, x; c) ∈ R3 the drift vector, which is introduced in [10, 34]. The first
equation traces the evolution of the bacteria density ρ(t, x) at time t > 0 and point x ∈ R3 when
a chemical stimulant is introduced. The second equation describes the diffusion of the chemical
stimulus described by the density function c ∶ (t, x) ↦ c(t, x). Both, the diffusion matrix and the
drift vector are determined by the density function c of the chemoattractant. The function ϕ(c, ρ)
describes the interaction between the chemoattractant and the bacteria, for example if the bacteria
produce the chemoattractant. During this work the concentration of the chemoattractant is assumed
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to be a known function and is neither consumed or produced by the bacteria, thus reducing the
Keller-Segel system to one equation

∂

∂t
ρ(t, x) −∇(D(t, x; c)∇ρ(t, x)) +∇(ρ(t, x)Γ(t, x; c)) = 0. (3.2)

The Keller-Segel system has been widely studied as outlined in [20,21]. We want to highlight some of
the properties because of which the mathematics of the system is interesting and refer to [34, Chapter
5] for a more detailed explanation.

Remark 3.1 (Properties of the Keller-Segel System) In dimension 1 there exist unique and global
smooth solutions to the system (3.1) and for small initial mass, it is well-posed globally in time. The
solution of the system remains non-negative and the total mass is conserved. For large initial mass
blow-up of the coupled system occurs if one does not consider a diffusion coefficient in the equation,
meaning that the solution does not remain bounded. For dimension 2 the situation can be made more
precise, since there one can calculate a critical mass under which no blow-up occurs. The blow-up
scenario can be prevented, for example by using a non-linear diffusion matrix [22] or nonlinear drift
vector [26]. A more detailed explanation can also be found in [34, Chapter 5.5.1].

While this model is macroscopic in nature, it overlooks the reaction of the individual bacteria to the
chemoattractant and is thus inaccurate in certain regimes. This leads us to the mesoscopic model, the
kinetic chemotaxis equation, which we will consider for bacteria that move by rotating their flagella.
As mentioned above, the movement of these bacteria consists of two parts: one where they run in a
straight line with some velocity v′ and one where they tumble and change directions from v′ to v as
shown in Figure 5.

Figure 5: Illustration of run and tumble motion for E. Coli [34, Figure 5.6].

The according model, introduced in [4, 10], is termed to be a run-and-tumble model of the form

∂tf(t, x, v) + v ⋅ ∇xf(t, x, v) = K(f ; c) (3.3)

where the function

K(f ; c) = ∫
V
K(t, x, v, v′; c)f(t, x, v′) −K(t, x, v′, v; c)f(t, x, v)dv′

encodes the tumbling motion. The function f(t, x, v) describes the density of bacteria at a point
x ∈R3 and time t > 0 with a certain velocity v ∈ V ⊂R3. For V it comes naturally to choose a sphere
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in R3, so we will choose the unit sphere V = S1. The density function f is solely a mathematical
entity, since it is difficult to be measured physically. By K(t, x, v, v′; c) the probability of bacteria
changing velocity from v′ to v is denoted and its shape is determined by the chemoattractants density
function. In order to simplify the notation, the abbreviations f ′ = f(t, x, v′) and K ′ =K(t, x, v′, v; c)
are introduced. With this, the right hand side of (3.3) looks like

K(f ; c) = ∫
V
(Kf ′ −K ′f)dv′.

We cite the following theorem about existence from [10, Theorem 1].

Theorem 3.2 (Boundedness and Existence) Consider the Sobolev-spaceW 1,∞(R3). Assume f0 ∈ L1
+∩

L∞(R3 ×V ) and that there exists C > 0 such that ∀x ∈R3, v, v′ ∈ V , t > 0 and c ∈W 1,∞(R3) it holds
that

0 ≤K(x, v, v′, t; c) ≤ C(1 + c(t, x + v) + c(t, x − v′)). (3.4)

Then there exists a global solution f ∈ L∞((0,∞);L1
+ ∩L∞(R3 × V )) of (3.3) (with ε = 1).

Remark 3.3 If the tumbling kernel depends on the gradient of c, then no global existence result is
available, even if we weaken the assumption in the theorem above to

0 ≤K(x, v, v′, t; c) ≤ C(1 + ∥c(t, ⋅ )β
L∞(R3)

∥)

with β ≥ 1. For β ≤ 1 a global existence result can be acquired. [10, Chapter 3]

Since we will assume that the chemoattractants concentration is a given function and is neither
consumed or produced by the bacteria, the dependence of D,Γ and K on c will be dropped in the
notation.

3.2 Introduction of Birth-Death-Term

Now, the two forward models will be extended by adding a birth-death-term. We assume the term on
the macroscopic level to be of the form b(ρ)ρ, that there exists a saturation density ρ∗ and that the
rate at which the bacteria reproduce is bounded. The saturation density correlates with the carrying
capacity which is the maximum population size. Overall, the birth-death-term will be described by
the Fisher-term [30]

R(ρ) = r(1 − ρ
c
)ρ = b(ρ)ρ

with r being the intrinsic growth rate and c the carrying capacity.

ρ
c

R(ρ)
max.

Figure 6: Illustration of the Fisher-term.

On the macroscopic level this results in the Keller-Segel-Fisher-equation

∂tρ −∇ ⋅ (D ⋅ ∇ρ) +∇(ρΓ) =R(ρ)

ρ(0, x) = ρ0(x) = ∫
V
f0(x, v)dv. (3.5)
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On the mesoscopic level we expect that the birth-death term is of the form b(ρ)f following [33] for
some function b(ρ). Thus, within the kinetic framework the Fisher-term reads

R(f) = r(1 − ∫V
fdv

c
)f = r(1 − ρ

c
)f

and results in

∂tf + v ⋅ ∇xf = K(f) +R(f)
f0(x, v) = f(0, x, v). (3.6)

The relation ∫V f(t, x, v)dv = ρ(t, x) will be made more clear in the next section.
In the following we will use that we have an upper bound for the norm of b(ρ), either it is bounded

by r, 1 or ∣1 − ρ∗
c ∣, where ρ

∗ denotes the saturation density. The bound will be denoted by b.

3.3 Drift-Diffusion Limit

In this section, the asymptotic relation between the mesoscopic and macroscopic models is examined.
The results of [10] and [17] will be extended to the case where we have an additional birth-death term.
The goal is to show that (3.5) and (3.6) are asymptotically equivalent in the long-time large-space
regime. By ε we denote a scaling parameter and get for a parabolic scaling the chemotaxis equation

ε2∂tfε(t, x, v) + εv ⋅ ∇xfε(t, x, v) =Kε(fε) + ε2Rε(fε)
..=∫

V
(Kε(t, x, v, v′)fε(t, x, v) −Kε(t, x, v′, v)fε(t, x, v))dv′

+ ε2r(1 − ρε(t, x)
c
)fε(t, x, v)

fε(0, x, v) =f0(x, v). (3.7)

The idea behind the parabolic scaling is to scale the time-processes with ε2 and the processes in space
with ε. The reproduction term is scaled by ε2 since it is a process in time. Formally, when ε→ 0 the
tumbling kernel dominates the equation and we expect that

fε → f∗ K∗(f∗) = 0

where here K∗ denotes the limiting operator for Kε. This means that the limiting solution lies almost
in the null space of the operator K∗ [17]. It is shown in [10, Chap. 2] that in absence of a birth-death
term the null space of K∗ can be assumed to be one dimensional.

Now we want to discuss this assumption a bit further and for this we assume to only have tumbling
kernels of the form

Kε =K0 + εK1 +O(ε2)
and will omit any terms of a higher order in ε. This is done, since our goal is to compare the
tumbling kernel for the kinetic and macroscopic model and higher order terms would not affect the
macroscopic equation [10, 17]. Therefore, it would not be possible to reconstruct those from the
macroscopic inverse model [17]. Thus, we have that K∗ = K0 is the limiting operator. We cite the
following assumption from [10, Assumption (A0)] and apply it to our case.

(A0) There exists a bounded velocity distribution F (v) > 0, independent of t, x and the chemoattrac-
tant c, such that the detailed balance K0(t, x, v, v′)F (v′) = K0(t, x, v′, v)F (v) holds. The flow
produced by this equilibrium distribution vanishes and F is normalized, meaning

∫
V
vF (v)dv = 0, ∫

V
F (v)dv = 1. (3.8)
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The turning rate K0 is bounded, and there exists a constant γ = γ(c) > 0 such that K0/F ≥
γ,∀(v, v′) ∈ V × V,x ∈R3 and t > 0.

Hence, we write the null-space of K0 as

N (K0) = {αF ∣ α ∈R, F > δ > 0,∫
V
Fdv = 1,∫

V
vFdv = 0} (3.9)

and f∗ ∈ N (K0) is of the form ρ(t, x)F (v) for a density function ρ(t, x). The function F is often
called local equilibrium, for example in [17]. Because of assumption (A0) the function F is a function
only of v. Following [10], inserting the formula into the Keller-Segel-Fisher equation and carrying
out the asymptotic expansion shows that ρ fulfils

∂tρ −∇ ⋅ (D ⋅ ∇ρ) +∇(ρΓ) =R(ρ)

ρ(0, x) = ρ0(x) = ∫
V
f0(x, v)dv.

In the following, this statement will be justified. In order to do so, (K0,K1) is supposed to be an
element of

A = {(K0,K1) ∈ C1([0,∞) ×R3 × V × V )2 ∣ ∥K0∥C1 , ∥K1∥C1 ≤ C,0 < α ≤K0 is symmetric and

K1 antisymmetric in (v, v′)} (3.10)

for some constants α,C > 0. Further, we will need the following two results from [10, Lemma 1,
Lemma 2].

Lemma 3.4 Let η ∶R→R and g ∶ V →R and denote by

ϕSε =
KεF

′ +K ′εF
2

,

ϕAε =
KεF

′ −K ′εF
2

the symmetric and respectively antisymmetric parts of KεF . Then it holds that

∫
V
Kε(Fg)η(g)dv =

1

2
∫
V
∫
V
ϕSε (g − g′)(η(g) − η(g′))dv′ dv

− 1

2
∫
V
∫
V
ϕAε (g − g′)(η(g) − η(g′))dv′ dv.

The same holds for K0 and K1 with analogous definitions of ϕS0,1 and ϕA0,1.

For the symmetric and antisymmetric parts, we have the expansions

ϕSε =K0F
′ +O(ε) (3.11)

ϕAε = ε
K1F

′ −K ′1F
2

+O(ε2), (3.12)

where we used that K0F
′ =K ′0F by assumption (A0), leading to ϕA0 = 0 and ϕS0 =K0F

′.

Lemma 3.5 Let (A0) hold. Then the entropy equality

∫
V
K0(f)

f

F
dv = 1

2
∫
V
∫
V
ϕS0 (

f

F
− f

′

F ′
)2dv′dv ≥ 0

holds. Further, for g ∈ L2(V ; dv/F ), the equation K0(f) = g has a unique solution f ∈ L2(V ; dv/F )
satisfying ∫V fdv = 0 if and only if ∫V gdv = 0.
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Remark 3.6 The entropy equality is a consequence of Lemma 3.4 applied to g = f/F and η = id.
Further, we note that in (A0) it is assumed that a constant γ > 0 exists such that K0/F ≥ γ. Thus,
ϕS0 ≥ γFF ′ and therefore also

∫
V
K0(f)

f

F
dv ≥ γ

2
∫
V
∫
V
FF ′( f

F
− f
F
)
2

dv′ dv = γ ∫
V

f2

F
dv. (3.13)

From this and the Lax-Milgram lemma the statement of Lemma 3.5 follows.

Regarding the birth-death term, the notation

Rε(fε) = r(1 −
ρε
c
)fε, R0(f0) = r(1 −

ρ0
c
)f0, R0(f1) = r(1 −

ρ0
c
)f1,

R1(f0) = −
r

c
ρ1f0 and R1(f1) = −

r

c
ρ1f1.

is used if it is more convenient to be in the operator notation. Overall, the R0 operator contains the
zeroth order terms of the reaction term and R1 the first order term which are then multiplied by f .
Otherwise, we will write

b(ρ○)f◻ = r(1 −
ρ○
c
)f◻

with ○,◻ = ε,0 if we want to highlight which ρ is taken into account.
For the proof of the following theorem as well as in other parts of this work, the lemma of Grönwall

will be used which is why we recall it here and refer to [38] for a proof.

Lemma 3.7 (Grönwall’s inequality) Suppose u(t), α(t) ∶ [t0, T ] → R are continuous functions, β ∶
[t0, T ]→R+ and the condition

u(t) ≤ α(t) + ∫
t

t0
β(s)u(s)ds (3.14)

is satisfied. Then it holds that

u(t) ≤ α(t) + ∫
t

t0
α(s)β(s) exp(∫

t

s
β(σ)dσ)ds. (3.15)

If in addition α(t) is non-decreasing, then

u(t) ≤ α(t) exp(∫
t

t0
β(s)ds). (3.16)

Taking [17, Theorem 1] as our basis we apply it to the chemotaxis equation including a reaction term.
This make the next Theorem 3.8 into a result which extends [17, Theorem 1].

Theorem 3.8 Suppose that the initial data is smooth in the sense that f0 ∈ C1
c (R3 × V ) and that

Kε = K0 + εK1 with (K0,K1) ∈ A. The solution fε of the scaled chemotaxis equation (3.7) satisfies
the following:

(i) The solution fε exists for sufficiently small ε and is bounded in L∞([0, T ], L1
+ ∩ L∞(R3 × V ))

for finite T <∞.

(ii) The solution fε converges to ρF ∈ L∞([0, T ], L1
+ ∩L∞(R3 × V )) where F lies in the null space

N (K0) as defined in (3.9) and ρ satisfies the Keller-Segel-Fisher system (3.5) with coefficients

D = ∫
V
v ⊗ κ(t, x, v)dv (3.17)

Γ = −∫
V
vΘ(t, x, v)dv (3.18)

where κ and θ fulfil
K0(κ) = vF and K0(Θ) = K1(F ).
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(iii) The boundedness and convergence is uniform in A.

Proof: (i) First, we show the boundedness of the solution fε for ε small enough. The growth-
rate of the birth-death term is bounded, hence it is reasonable to assume to have a maximum
density, the so-called saturation density f∗. Since we are interested in the density of bacteria,
we only consider positive solutions for the chemotaxis equation. It is important to note, that
the saturation density is not assumed to be a constant function, but its L1(R3 × V )-norm to
be a bound for every fε

∥fε∥L1(R3×V ) ≤ ∥f∗∥L1(R3×V ) <∞.

Now, we want to estimate the L∞(R3 × V )-norm of fε. Integrating the scaled chemotaxis
equation in time along the characteristic (t − s, x − vs

ε , v) yields

fε(t, x, v) = f0(x, v) + ∫
t

0
Kε(fε)(t − s, x −

vs

ε
, v)ds + ∫

t

0
(b(ρε)fε(t − s, x −

vs

ε
, v))ds

≤ f0(x, v) + ∫
t

0
∫
V
Kε(t − s, x −

vs

ε
, v, v′)fε(t − s, x −

vs

ε
, v′)dv′ ds

+ b∫
t

0
fε(t − s, x −

vs

ε
, v)ds

≤ f0(x, v) + 2C ∫
t

0
∫
V
fε(t − s, x −

vs

ε
, v′)dv′ ds + b∫

t

0
fε(t − s, x −

vs

ε
, v)ds. (3.19)

Note, that the shift (t − s, x − vs
ε , v) was chosen in order to reduce the transportation part of

the equation ∫ t
0 ∂tfε + v ⋅ ∇fεds to the expression fε(t, x, v) − f0(x, v). Also we used that

Kε(fε) = ∫
V
Kεf

′
ε −K ′εfεdv ≤ ∫

V
Kεf

′
εdv

due to Kε, fε being positive. Additionally, it holds that 0 <Kε =K0 + εK1 ≤ (1 + ε)C ≤ 2C for
small enough ε and that b(ρ) is bounded by a constant b. The occurring ε were estimated by
1. Thus we get

∥fε(t, ⋅ , ⋅ )∥L∞(R3×V ) ≤ ∥f0∥L∞(R3×V ) + (2C ∣V ∣ + b)∫
t

0
∥fε∥L∞(R3×V )ds.

Calling Lemma 3.7 (Grönwall’s inequality) and using that f0 ∈ L1
+ ∩ L∞, one obtains a bound

on ∥fε(t, ⋅ , ⋅ )∥L∞(R3×V ). For sufficiently small ε the bound is independent of ε and uniform

in A. The boundedness of fε in L∞([0, T ], L1
+ ∩ L∞(R3 × V )) for some bounded T < ∞ then

follows directly. By standard methods existence of the solution follows [10].

(ii) Now, let fε, fε̄ be solutions for the chemotaxis equation (3.3) with scaling parameter ε, ε̄
respectively, denote their difference by f̂ε,ε̄ = fε − fε̄ and let Kε = K0 + εK1. Subtracting the
equations for fε and fε̄ ,

ε2∂tfε + εv ⋅ ∇xfε = Kε(fε) + ε2Rε(fε)

and

ε̄2∂tfε̄ + ε̄v ⋅ ∇xfε̄ = Kε̄(fε̄) + ε̄2Rε̄(fε̄)

yields

ε2∂tfε + εv ⋅ ∇xfε − ε̄2∂tfε̄ − ε̄v ⋅ ∇xfε̄ = Kε(fε) + ε2Rε(fε) −Kε̄(fε̄) − ε2Rε̄(fε̄).
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For the expression Kε(fε) −Kε̄(fε̄) we have that

Kε(fε) −Kε̄(fε̄) = K0(fε) −K0(fε̄) + εK1(fε) − ε̄K1(fε̄)
= K0(fε − fε̄) + εK1(fε) − ε̄K1(fε̄) + εK1(fε̄) − εK1(fε̄)
= K0(f̂ε,ε̄) + εK1(f̂ε,ε̄) + (ε − ε̄)K1(fε̄)
= Kε(f̂ε,ε̄) + (ε − ε̄)K1(fε̄).

For the expression ε2Rε(fε) − ε̄2Rε̄(fε̄) we have

ε2Rε(fε) − ε̄2Rε̄(fε̄) = ε2b(ρε)fε − ε̄2b(ρε̄)fε̄
= ε2b(ρε)fε − ε̄2b(ρε̄)fε̄ + ε2b(ρε)fε̄ − ε2b(ρε)fε̄
= ε2b(ρε)f̂ε,ε̄ − ε̄2b(ρε̄)fε̄ + ε2b(ρε)fε̄
= ε2b(ρε)f̂ε,ε̄ − ε̄2b(ρε̄)fε̄ + ε2b(ρε)fε̄ + ε2b(ρε̄)fε̄ − ε2b(ρε̄)fε̄
= ε2b(ρε)f̂ε,ε̄ + ε2 (b(ρε) − b(ρε̄))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= r

c
(ρε−ρε̄)

fε̄ + (ε2 − ε̄2)b(ρε̄)fε̄

and further it holds that

ε2∂tfε − ε̄2∂tfε̄ = ε2∂tfε − ε̄2∂tfε̄ + ε2∂tfε̄ − ε2∂tfε̄
= ε2∂t(fε − fε̄) + (ε2 − ε̄2)fε̄
= ε2∂tf̂ε,ε̄ + (ε2 − ε̄2)fε̄

and with a similar calculation for εv ⋅ ∇xfε − ε̄v ⋅ ∇xfε̄ the chemotaxis equation above then is
equivalent to

ε2∂tf̂ε,ε̄ + εv ⋅ ∇xf̂ε,ε̄ = Kε(f̂ε,ε̄) + ε2b(ρε)f̂ε,ε̄ + ε2
r

c
(ρε − ρε̄)fε̄

− ((ε2 − ε̄2)∂tfε̄ + (ε − ε̄)v ⋅ ∇xfε̄ − (ε − ε̄)K1(fε̄) − (ε2 − ε̄2)b(ρε̄)fε̄)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Source term S of order ε−ε̄

.

(3.20)

Therefore, the function f̂ε,ε̄ satisfies a chemotaxis equation with a linear growth term b(ρε)f̂ε,ε̄,
a source term S and an additional reaction term r

c(ρε − ρε̄)fε̄. The growth part is linear, since

it does not depend on ρ̂ε,ε̄ = ∫V f̂ε,ε̄dv but on ρε. Using the same arguments as above the
L∞-boundedness of time and spatial derivative in the source term S can be shown, which is
why S is of order ε − ε̄. Running the same calculations as in (3.19) with the extra source term
S yields

f̂ε,ε̄(t, x, v) ≤

=0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
f̂ε,ε̄(0, x, v)+∫

t

0
∫
V
Kε(f̂ε,ε̄)dv ds + ∫

t

0
Rε(f̂ε,ε̄)ds

+ r
c
∫

t

0
fε̄∫

V
f̂ε,ε̄dv ds + ∫

t

0
Sds

≤ (2C ∣V ∣ + b)∫
t

0
f̂ε,ε̄ds +

r

c
cf ∫

t

0
∫
V
f̂ε,ε̄dv ds + ∫

t

0
Sds

where we omitted the shift (t − s, x − vs
ε , v) in the notation for a better readability and used

that

∥fε̄∥L∞([0,T ],L∞(R×V )) ≤ cf
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as shown in part (i). Also note, that we replaced ρε − ρε̄ by ∫V f̂ε,ε̄dv. This leads to

∥f̂ε,ε̄∥L∞(R×V ) ≤ (2C ∣V ∣ + b +
r

c
∣V ∣cf)∫

t

0
∥f̂ε,ε̄∥L∞(R×V )ds + ∫

t

0
∥S∥L∞(R×V )ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=O(ε−ε̄)

.

Since we have only non-decreasing functions in t, it follows from Grönwall’s inequality (3.16)
that

∥fε − fε̄∥L∞([0,T ];L∞(R3×V )) = O(ε − ε̄).

Additionally, the L1-boundedness of the source-term follows from the L1-boundedness of fε, as
shown in (i). Therefore, integrating (3.20) in time, space and velocity along the characteristic
(t − s, x − vs

ε , v) yields

∥f̂ε,ε̄∥L1(R3×V ) ≤ b∫
t

0
∫
R3
∫
V
f̂ε,ε̄dv dx ds + ∫

t

0
∫
R3
∫
V
Sdv dx ds

+ r
c
∫

t

0
∥f̂ε,ε̄∥L1(R3×V )∥fε̄(s, ⋅ , ⋅ )∥L1(R3×V )ds

≤ (b + r
c
∥f∗∥L∞([0,T ];L1(R3×V )))∫

t

0
∥f̂ε,ε̄∥L1(R3×V )ds + ∫

t

0
∥S∥L1(R3×V )ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(ε−ε̄)

,

where we used that f̂ε,ε̄(0, x, v) = 0. Again, it follows from Grönwall’s inequality (3.16) that

∥fε − fε̄∥L∞([0,T ];L1(R3×V )) = O(ε − ε̄),

thus overall we have
∥fε − fε̄∥L∞([0,T ];L1∩L∞(R3×V )) = O(ε − ε̄).

Hence, (fε)ε is a Cauchy sequence and thus converges to some f ∈ L∞([0, T ];L1∩L∞(R3×V )).
It remains to investigate how the limit function looks like. Substituting the expansion fε into
the scaled chemotaxis equation

ε2∂tfε + εv ⋅ ∇xfε = (K0 + εK1)(fε) + ε2Rε(fε)

and comparing the different orders of ε yields the following calculations. Consider the operator
K0 and assume its kernel to be spanned by some velocity distribution F with ∫V Fdv = 1 and

∫V vFdv = 0, as motivated in (3.9). Then, the comparison of orders in ε results in the following.

For O(1) we have that
K0(f0) = 0

leading to f0(t, x, v) = ρ0(t, x)F (v) since then

K0(f0) = ρ(t, x)K0(F ) = 0

is fulfilled due to F ∈ ker(K0). Further, looking at O(ε) yields

K0(f1) = v ⋅ ∇xf0 −K1(f0)
= vF∇xρ0 −K1(F )ρ0,
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resulting in
f1(t, x, v) = κ(t, x, v)∇xρ0(t, x) −Θ(t, x, v)ρ0(t, x) + ρ1F1

with F1 ∈ ker(K0) and κ and Θ being determined by the conditions

K0(κ) = vF (3.21)

K0(Θ) = K1(F ). (3.22)

The functions κ and Θ exist, following Lemma 3.5 since vF,K1(F ) ∈ L2(V ; dv/F ) and

∫
V
vFdv = 0

holds by assumption and we have

∫
V
K1(F )dv = ∫

V
(∫

V
K1(t, x, v, v′)F (v′) −K1(t, x, v′, v)F (v)dv′)dv

= ∫
V
(∫

V
K1(t, x, v, v′)F (v′)dv′)dv − ∫

V
(∫

V
K1(t, x, v′, v)F (v)dv′)dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
v→v′,v′→v

= ∫
V
(∫

V
K1(t, x, v, v′)F (v′)dv′)dv − ∫

V
(∫

V
K1(t, x, v, v′)dv)F (v′)dv′

= ∫
V
(∫

V
K1(t, x, v, v′)F (v′)dv′)dv − ∫

V
(∫

V
K1(t, x, v, v′)F (v′)dv′)dv

= 0.

Now we integrate the chemotaxis equation in v and divide by ε2

∂t∫
V
fεdv +∇x

1

ε
∫
V
vfεdv =

1

ε2
∫
V
Kε(fε)dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+b(ρε)∫
V
fεdv

leading to the conservation equation

∂tρε +∇xJε =Rε(ρε) (3.23)

with ρε = ∫V fεdv and the flux Jε = 1
ε ∫V vfεdv. Carrying out the expansion yields

Jε = ∫
V
vf1dv +O(ε),

where we used that f0 = ρ0F as well as that the assumption ∫V vFdv = 0 holds, resulting in

∫
V
vf0dv = ρ0∫

V
vFdv = 0.

Inserting f1 into (3.23) yields the convection-diffusion equation

∂tρ0 −∇(D∇ρ0) +∇(ρ0Γ) =R0(ρ0)

with

D(t, x) = ∫
V
v ⊗ κ(t, x, v)dv,

Γ(t, x) = −∫
V
vΘ(t, x, v)dv.
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(iii) Since only the boundedness of (K0,K1) is used within the proof, the boundedness as well as
the convergence are uniform in A. □

Overall, it could be shown that the two forward model are still asymptotic equivalent in the long-
time large-space regime when introducing a reaction term. The presented models are well-suited to
predict the motion of the bacteria. However, in reality the parameters of the models, namely the
diffusion and drift coefficients D,Γ in the macroscopic model or the tumbling kernel K in the kinetic
model, are usually unknown except from some well-studied bacteria. Hence, they have to be derived
from measuring the densities of the bacteria at certain times. Thus, experiments have to be designed
with measurable quantities in order to reconstruct the model parameters. This reconstruction then
corresponds to an inverse problem and will be discussed in the following section.
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4 Chemotaxis: Inverse Problem

In this section, the formulation of the inverse problems in the Bayesian setting is described. Then,
the convergence of the two inverse problems occurring from the kinetic and macroscopic forward
problem is investigated. Within the literature the study of inverse problems in the Bayesian setting
is well studied and prevalent, as for instance in [12,36] and the references therein. However, relating
two inverse problems from different regimes to each other is relatively rare. For example, in [31]
the asymptotic limit for the inverse problem coming from kinetic radiative transfer equation and the
corresponding macroscopic diffusion equation is established. Additionally, in [17] the convergence of
the inverse problems for chemotaxis (without a birth-death term) on kinetic and macroscopic level
in the asymptotic limit is shown. The results from [17] will be extended to the case of a chemotaxis
equation including a reaction term in this section and we will mainly follow the method presented
in [17, Chapter 3-4].

Each of the two forward models gives rise to an inverse problem which will be described within the
formulation of Bayesian inference in this section. This means, that for the quantities of interest, e.g.
on the kinetic level the tumbling kernel and on the macroscopic level the drift- and diffusion coeffi-
cients, are assumed to be random variables. Hence, the goal is to show that the posterior distribution
of the kinetic problem converges to the posterior distribution coming from the macroscopic equations.
We highlight, that in section 3 the quantities D and Γ where derived in a way, such that they depend
implicitly on the tumbling kernel (K0,K1) via the functions κ and Θ. In order to be able to compare
the two inverse problems, one has to make sure to infer the same quantity in both cases. Either,
one could determine the underlying tumbling kernel for the macroscopic equation and compare those.
Or one could determine the drift and diffusion coefficients from the macroscopic equation and derive
those coefficients from the determined tumbling kernel of the chemotaxis equation [17]. In this work,
we will choose the first option, thus comparing the underlying tumbling kernels, due to it being of ki-
netic nature and therefore more detailed. Since the calculation of (D,Γ) is unique for fixed (K0,K1),
the convergence then follows as a consequence.
Since the dependence of the Keller-Segel-Fisher equation on (K0,K1) is only implicit via the

functions κ and Θ, one has to clarify how to derive the posterior distribution µyKS(D,Γ) from a
prior distribution on (K0,K1). One way would be, to transform the prior to a prior distribution on
(D,Γ) and then reconstruct µyKS(D,Γ) in the inverse problem, as illustrated in the lower path in
Figure 7. Another approach is, to infer the posterior µyKS(K0,K1) from the prior on (K0,K1) in the
inverse problem and to transform it to a distribution on (D,Γ) afterwards, as demonstrated in the
upper path of Figure 7. In the following sections, the second way is chosen, but one could rightly

µ0(K0,K1) µyKS(K0,K1)

µ0(D,Γ) µyKS(D,Γ)

inverse problem

transformationtransformation

inverse problem

Figure 7: Determination of the posterior distribution µy
KS(D,Γ) from a prior distribution on (K0,K1)

in two different ways. [17, Figure 3]

ask themselves, whether or not the two possibilities yield the same posterior distribution. Looking
at the second approach, only the prior distribution is transformed since the likelihood only depends
on (D,Γ) in the macroscopic regime. This is also true for the first way, hence they indeed yield the
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same results [17, Remark 5].
For the experiment it is assumed to have no boundary effects which correlates to having a large

enough plate for the bacteria in the lab environment. The initial condition describes the distribution
of cells at the beginning of the experiment. After injecting the chemoattractant into the plate in a
controlled environment such that the concentration function is known, the bacteria density at time
t > 0 and point x ∈ R3 is measured. Usually, the measurements are done by taking a picture of the
plate and counting the bacteria in a small neighbourhood of x. There are other ways to do them, for
example by taking a sample and measure the density by techniques such as flow cytometry [9, 15].
But these kind of techniques are invasive which is why the measurement can only be taken at one
time.

4.1 Bayesian Inverse Setup

Depending on the model we use in the forward problem, we collect data of

Aε
K0,K1

∶ f0 ↦ ∫
V
fε(t, x, v)dv

A0
K0,K1

= AD,Γ ∶ ρ0 ..= ∫
V
f0dv ↦ ρ(t, x)

respectively. Those operators are also called Albedo-Operators and relate the initial condition to the
measured data.
When performing multiple experiments with various initial conditions, the same controlled c(t, x)

has to be used in order to ensure that the to-be-reconstructed tumbling kernel is the same for all
experiments. The indices of the different setups are denoted by k ∈ [1, . . . ,K] and we indicate the
measuring time and location by tj = tj1 and χj = χj2 ∈ Cc(R3) where j = (j1, j2) ∈ [1, . . . , J1] ⊗
[1, . . . , J2]. We consider the measurements

Gε,chemj,k (K0,K1) = ∫
R3
∫
V
f (k)ε (tj , x, v)dvχj(x)dx, (4.1)

GKS
j,k (K0,K1) = ∫

R3
ρ(k)(tj , x)χj(x)dx (4.2)

where the test functions χj can be interpreted as compactly supported blob function at a certain
location.

tj

χj

tj̃

χj̃

Figure 8: Representation of measurements at two different time steps tj , tj̃ . The density of bacteria is
illustrated as blue, where the darkness of the color indicates the number of bacteria. The loca-
tion of the measurement is illustrated by the support of the test functions χj , χj̃ . [17, Figure
2]

Further, we collect data of the form

yε,chemj,k = Gε,chemj,k (K0,K1) + ηjk,
yKS
j,k = GKS

j,k (K0,K1) + ηjk
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where the noise ηjk is assumed to be a random variable with a Gaussian distribution N (0, γ2) with
zero mean and known variance γ2 > 0.
In the Bayesian setting (K0,K1) is assumed to be a random variable and the goal is to reconstruct

its distribution µy○(K0,K1) via

µy○(K0,K1) =
1

Z○
µ(K0,K1)
○ (y)µ0(K0,K1) (4.3)

with

µ(K0,K1)
○ (y) = exp(− 1

2γ2
∥G○(K0,K1) − y∥2)

where ○ = ε, chem or ○ = KS and Z○ being the normalization constant, µ0 being the prior distribution

and µ
(K0.K1)
○ the likelihood of observing data y from a model with tumbling kernel (K0,K1).

4.2 Convergence of Posterior Distributions

Having two different forward models results in two different posterior distributions for the inverse
problems. The question arises whether or not, the posterior distribution coming from the kinetic
equation does also converge towards the posterior distribution from the Keller-Segel-Fisher equation.
Since we have the convergence of the forward models one might assume that the convergence of the
inverse problem follows directly, however, this is not the case. There are several issues arising during
the studies of the convergence, as discussed in [17]. One arises from the control of initial data and
the measurement operator. The solution converges in L∞([0, T ], L1

+ ∩ L∞(R3 × V )) for each initial
condition. Then a uniform convergence is needed when tested on the dual space, since we have a list
of initial data and the solutions are tested on a set of measuring operators. Another important aspect
is the choice of the metric on the probability function space. An additional issue comes from the
translation of convergence for one set of fixed (K0,K1) to the convergence on the entire admissible
set.
In the following we will assume that the initial data and the measuring operators are bounded

∥f (k)0 ∥L1 , ∥f (k)0 ∥L∞ < Cρ ∀k
max{∥χj∥L1 , ∥χj∥L2 , ∥χj∥L∞ , ∣suppχj ∣dx} < Cx ∀j, (4.4)

as done in [17].

Remark 4.1 When the uniform boundedness and convergence of fε was shown in subsection 3.3, we
imposed an assumption on the tumbling kernel (K0,K1) by choosing the admissible set. The usage of
this a priori knowledge will also play a crucial role in the convergence proof for the inverse problems
and the prior distribution µ0 is assumed to be supported on A.

Within this section the Lax-Milgram-Theorem will be needed, especially some details from its proof.
Therefore, the proof following [13, Chapter 6.2.1., Theorem 1] will be carried out, even though the
theorem is well known within linear functional analysis.

Theorem 4.2 (Lax-Milgram Theorem) Suppose that for the bilinear mapping B ∶H ×H →R with H
being a real Hilbert space there exist constants α,β > 0 such that

(i) B is bounded
∣B(u, v)∣ ≤ α∥u∥∥v∥

(ii) and coercive
β∥u∥2 ≤ B(u,u).
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Let f ∶H →R be a bounded linear function. Then there exists a unique u ∈H such that

B(u, v) = ⟨f, v⟩ (4.5)

holds true for all v ∈H.

Proof: The mapping v ↦ B(u, v) is a bounded linear functional on H for each fixed element u ∈H
thus it follows from the Riesz Representation Theorem that there exists a unique element w ∈H with

B(u, v) = ⟨w, v⟩.

We will write Au = w leading to
B(u, v) = ⟨Au, v⟩ (4.6)

and we want to show that A ∶ H → H is a bounded linear operator. Let λ1, λ2 ∈ R and u1, u2 ∈ H.
Linearity of A follows directly from the bilinearity of B and (4.6). Further, it follows from the
boundedness of B that

∥Au∥2 = ⟨Au,Au⟩ = B(u,Au) ≤ α∥u∥∥Au∥

holds and so A is bounded. From the coercivity of B it follows that

β∥u∥2 ≤ B(u,u) = ⟨Au,u⟩ ≤ ∥Au∥∥u∥.

Therefore, β∥u∥ ≤ ∥Au∥ and A is one-to-one and the range R(A) of A is closed in H. Since R(A) is
closed in H, it follows that R(A) = H. Otherwise, there would be a non-zero element w ∈ H with
w ∈ R(A)⊥, meaning that

β∥w∥2 ≤ B(w,w) = ⟨Aw,w⟩ = 0

which is a contradiction to w being nonzero. From the Riesz Representation Theorem it now follows
that

⟨f, v⟩ = (w, v)

for all v ∈ H showing (4.5). It remains to show that there is at most one element u ∈ H verifying
(4.5). Assume there exists another ũ ∈H with B(ũ, v) = ⟨f, v⟩. Then B(u − ũ, v) = 0 for v ∈H. With
v = u − ũ we get β∥u − ũ∥2 ≤ B(u − ũ, u − ũ) = 0, thus u = ũ follows. □

Remark 4.3 In the following, if we use the Lax-Milgram Theorem we will mostly use the fact that
the operator A is bounded from below and above

β∥u∥ ≤ ∥Au∥ ≤ α∥u∥.

In order to use the theorem of Lax-Milgram, we first have to show, that we get a bilinear mapping
B from the operators K0,K1 that fulfils the conditions of Theorem 4.2.

Proposition 4.4 The mappings B0,1(u,w) ∶H ×H →R for H = L2(V ; dv/F ) defined via

B0(u,w) = ∫
V
K0(u)w

dv

F
,

B1(u,w) = ∫
V
K1(u)w

dv

F

are bilinear, bounded and coercive.
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Proof: We will prove the proposition for B0, the results for B1 follow analogously. We will use the
notation u′ = u(v′) and u = u(v) as well as K ′0 = K0(v′, v) and K0 = K0(v, v′). The dependence on
(t, x) will be dropped for the sake of better readability. Since the operator K0 is linear in u, it follows
directly that B0 is a bilinear mapping. It holds that

∣B(u,w)∣ ≤ ∫
V
∣K0(u)w

1

F
∣dv

(∗)

≤ ∥K0(u)∥H∥w∥H

where in (∗) we used Hölder’s inequality. Remember, that since (K0,K1) ∈ A we have K0 ≤ C.
Hence, for ∥K0(u)∥H it holds that

∥K0(u)∥2H = ∫
V
(∫

V
(K0u

′ −K ′0u)dv′)
2 dv

F (v)
(∆)
≤ ∫

V
∫
V
(K0u

′ −K ′0u)
2
dv′

dv

F (v)

≤ ∫
V
(∫

V
(K0u

′)2 + (K ′0u)2 + 2K0K
′
0uu

′)dv′ dv

F (v)

≤ C2∫
V
(∫V
(u′)2dv′

F (v) + ∫
V

u2

F (v)dv
′)dv + ∫

V
∫
V
K0K

′
0∣2uu′∣

1

F (v)dv
′ dv

(⋆)

≤ C2∫
V
(∫V
(u′)2dv′

F (v) + ∫
V

u2

F (v)dv
′)dv +C2∫

V
(∫V
(u′)2dv′

F (v) + ∫
V

u2

F (v)dv
′)dv

= 2C2∫
V
(∫

V

1

F (V )dv∫V (u
′)2dv′ + ∫

V
1dv′

u2

F (v))dv

≤ 2C2∫
V
(∥F ∥∞∫

V

1

F (v)dv∫V
(u′)2
F (v′)dv

′ + ∣V ∣∫
V

u2

F (v)dv)dv

≤ 2C2∣V ∣(∥F ∥∞
minF

+ 1)∫
V

u2

F (v)dv

where in (∆) we used Jensen’s inequality and in (⋆) we used K0K
′
0 ≤ C2 and Cauchy-Schwarz in the

sense that ∣2uu′∣ ≤ u2 + (u′)2. Additionally, we used that

∫
V
u2dv ≤ ∥F ∥∞∫

V

u2

F (v)dv and ∫
V

1

F (v)dv ≤ ∣V ∣
1

minF
.

Overall, this yields

∣B(u,w)∣ ≤ C
¿
ÁÁÀ2∣V ∣(∥F ∥∞

minF
+ 1)∥u∥H∥w∥H .

That B0 is coercive follows from (3.13)

∫
V
K0(f)

f

F
dv ≥ γ

2
∫
V
∫
V
FF ′( f

F
− f
F
)
2

dv′ dv = γ ∫
V

f2

F
dv

thus leading to

B(u,u) = ∫
V
K0(u)u

dv

F
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≥ γ ∫
V

u2

F
dv

= γ∥u∥2H ,

which concludes the proof. □

For the proof of the lemma below, we will need the following result from [24, Chapter 6, Theorem
6.3].

Theorem 4.5 Let Ω ⊂R3 be a bounded and open subset and T > 0 and consider the equation

ut −
3

∑
i,j=1

∂i(aij∂ju) +
3

∑
j=1

bj∂ju + cu = f (4.7)

u(0, x) = g(x) (4.8)

where ai,j(t, x), bi(t, x), c(t, x) are bounded coefficient functions with ai,j = aj,i. Additionally, assume
that there exists ψ > 0 such that

3

∑
i,j=1

aij(t, x)ζiζj ≥ ψ∣ζ ∣2 for all (t, x) ∈ (0, T ) ×Ω and ζ ∈R3.

Further, we assume to have a L2(0, T ;H−1) source term f and L2(Ω) initial condition g with H−1

being the L2-Sobolev space. Then equation (4.7) has a unique weak solution

u ∈ C([0, T ];L2(Ω)) ∩L2(0, T ∶H1
0(Ω))

where H−1(Ω) = H1
0(Ω)′. Moreover, there exists a constant C depending on Ω, T and the coefficient

functions, such that

∥u∥L∞(0,T ;L2) + ∥u∥L2(0,T ;H1
0)
+ ∥ut∥L2(0,T ;H−1) ≤ C(∥f∥L2(0,T ;H−1) + ∥g∥L2).

Taking [17, Lemma 2] as our basis we apply it to the chemotaxis equation including a reaction
term. This makes the following Lemma 4.6 into a result extending [17, Lemma 2].

Lemma 4.6 Suppose that the initial condition f0(x, v) ∈ C1
c (R3 × V ) and the test functions χj(x) ∈

Cc(R3) fulfil condition (4.4). Then the following properties hold true.

(i) The measurements Gε,chemj,k and GKS
j,k are uniformly bounded in A and ε.

(ii) The measurements Gε,chemj,k and GKS
j,k are Lipschitz continuous for small enough ε with respect to

the tumbling kernel (K0,K1) under the norm ∥(K0,K1)∥∗ =max(∥K0∥∞, ∥K1∥∞) on A.

(iii) The posterior distributions are well-posed and absolutely continuous with respect of each other.

Proof: (i) For all tupel (j, k) we have

∣GKS
j,k (K0,K1)∣ = ∣∫

R3
ρ(k)(tj , x)χj(x)dx∣

≤ ∥χj(x)∥∞∥ρ(k)(tj , ⋅ )∥L1(R3)

≤ ∥χj(x)∥∞∥ρ∗∥L1(R3)

≤ CxCρ

with ρ∗ being the saturation density. Boundedness of Gε,chemj,k (K0,K1) follows analogously.

31



(ii) First we show Lipschitz continuity of Gε,chemj,k (K0,K1) with respect to (K0,K1) under the norm
∥(K0,K1)∥∗ ..=max(∥K0∥∞, ∥K1∥∞) . For this, let (K0,K1), (K̃0, K̃1) ∈ A.
Then we have

∣Gε,chemj,k (K0,K1) − Gε,chemj,k (K̃0, K̃1)∣ = ∣∫
R3
∫
V

f̄
(k)
ε³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(f (k)ε − f̃ (k)ε )dvχj(x)dx∣

≤ ∥χj(x)∥∞∫
supp(χj(x))

∫
V
∥f̄ (k)ε ∥dv dx

≤ Cx∣V ∣∣supp(χj(x))∣dx∥f̄ (k)ε ∥L∞(R3×V )

≤ C2
x ∣V ∣ ∥f̄ (k)ε (t, ⋅, ⋅)∥L∞(R3×V )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
needs to be estimated

.

The function f̄
(k)
ε satisfies the scaled equation

ε2∂t(f (k)ε − f̃ (k)ε ) + εv ⋅ ∇x(f (k)ε − f̃ (k)ε ) = Kε(f (k)ε ) − K̃ε(f̃ (k)ε )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2)

+ ε2Rε(f (k)ε ) − ε2R̃ε(f̃ (k)ε )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1)

.

For (1) it holds that

b(ρε)f (k)ε − b(ρ̃ε)f̃ (k)ε = r(1 − ρε
c
)f (k)ε − r(1 − ρ̃ε

c
)f̃ (k)ε

= r(f (k)ε − f̃ (k)ε ) −
r

c
(ρεf (k)ε − ρ̃εf̃ (k)ε )

= r(f (k)ε − f̃ (k)ε ) −
r

c
(ρεf (k)ε − ρ̃εf̃ (k)ε + ρ̃εf (k)ε − ρ̃εf (k)ε )

= r(1 − ρ̃ε
c
)(f (k)ε − f̃ (k)ε ) −

r

c
(ρε − ρ̃ε)f (k)ε

= b(ρ̃ε)f̄ (k)ε − r
c
ρ̄εf

(k)
ε

with ρ̄ε = ρε − ρ̃ε. Rewriting (2) as

Kε(f (k)ε ) − K̃ε(f̃ (k)ε ) = Kε(f (k)ε ) − K̃ε(f (k)ε ) + K̃ε(f (k)ε ) − K̃ε(f̃ (k)ε )
= K̄ε(f (k)ε ) + K̃ε(f̄ (k)ε )

with K̄ε = Kε − K̃ε yields

ε2∂tf̄
(k)
ε + εv ⋅ ∇xf̄

(k)
ε = K̄ε(f (k)ε ) + K̃ε(f̄ (k)ε ) + ε2b(ρ̃ε)f̄ (k)ε − ε2 r

c
ρ̄εf

(k)
ε

f̄ (k)ε (0, x, v) = 0. (4.9)

The goal is to again use Grönwall’s inequality for the chemotaxis equation derived for f̄
(k)
ε in

order to get an estimate via ∥K̄ε∥L∞(R3×V ) ≤ 2∥K̄ε∥L∞(R3×V ) ≤ 4∥(K0 − K̃0,K1 − K̃1)∥∗.
Integration in s along the characteristic (t − s, x − vs

ε , v) shows

f̄ (k)ε = ∫
t

0
(K̃ε(f̄ (k)ε )(t − s, x −

vs

ε
, v) + K̄ε(f (k)ε )(t − s, x −

vs

ε
, v))ds

+ ∫
t

0
b(ρ̃ε)f̄ (k)ε (t − s, x −

vs

ε
, v)ds − r

c
∫

t

0
∫
V
f̄ (k)ε (t − s, x −

vs

ε
, v)dvf (k)ε ds
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≤ ∫
t

0
∫
V
(K̃εf̄

′
ε(t − s, x −

vs

ε
, v) − K̃ ′εf̄ε(t − s, x −

vs

ε
, v))dv′ ds

+ ∫
t

0
∫
V
(K̄εf

′
ε(t − s, x −

vs

ε
, v) − K̄ ′εfε(t − s, x −

vs

ε
, v))dv′ ds

+ ∫
t

0
b(ρ̃)f̄ε(t − s, x −

vs

ε
, v)ds − r

c
∫

t

0
fε(t − s, x −

vs

ε
, v)∫

V
f̄εdv ds

≤ ∫
t

0
∫
V
K̃εf̄

′
ε(t − s, x −

vs

ε
, v)dv′ ds + ∫

t

0
∫
V
K̃ ′εf̄ε(t − s, x −

vs

ε
, v)dv′ ds

+ ∫
t

0
∫
V
K̄εf

′
ε(t − s, x −

vs

ε
, v)dv′ ds + ∫

t

0
∫
V
K̄ ′εfε(t − s, x −

vs

ε
, v)dv′ ds

+ ∫
t

0
b(ρ̃)f̄ε(t − s, x −

vs

ε
, v)ds − r

c
∫

t

0
fε(t − s, x −

vs

ε
, v)∫

V
f̄εdv ds

leading to

∥f̄ (k)ε (t, ⋅, ⋅)∥L∞(R3×V ) ≤ 2C ∣V ∣∫
t

0
∥f̄ (k)ε (t − s, ⋅, ⋅)∥L∞(R3×V )ds

+ 2C ∣V ∣∫
t

0
∥f̄ (k)ε (t − s, ⋅, ⋅)∥L∞(R3×V )ds

+ 2∥(K0 − K̃0,K1 − K̃1)∥∗∣V ∣∫
t

0
cfds

+ 2∥(K0 − K̃0,K1 − K̃1)∥∗∣V ∣∫
t

0
cfds

+ b∫
t

0
∥f̄ (k)ε (t − s, ⋅, ⋅)∥L∞(R3×V )ds

+ r
c
∣V ∣cf ∫

t

0
∥f̄ (k)ε (t − s, ⋅, ⋅)∥L∞(R3×V )ds

≤ (4C ∣V ∣ + b + r
c
∣V ∣cf)∫

t

0
∥f̄ (k)ε (t − s, ⋅, ⋅)∥L∞(R3×V )ds

+ 4∥(K0 − K̃0,K1 − K̃1)∥∗∣V ∣cfT

where we used that K̃ε ≤ 2C by assumption since (K0,K1) ∈ A and that f
(k)
ε ≤ cf is bounded

in L∞ uniformly on A by Theorem 3.8 (i). Using the Grönwall lemma, (3.16) gives an upper
bound

∥f̄ (k)ε (t, ⋅, ⋅)∥L∞(R3×V ) ≤ L(T, cf ,C, b, r, c)∥(K0 − K̃0,K1 − K̃1)∥∗,

from which the Lipschitz continuity of Gε,chemj,k (K0,K1) follows.

Now we look at the Lipschitz continuity of GKS
j,k (K0,K1). It holds that

∣GKS
j,k (K0,K1) − GKS

j,k (K̃0, K̃1)∣ ≤ ∥χj∥L2∥ρ(k) − ρ̃(k)∥L2

≤ Cx ∥ρ(k) − ρ̃(k)∥L2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(∗)

.

Taking a closer look at (∗) yields the following. Let ρ̄(k) = ρ(k) − ρ̃(k). Then ρ̄(k) fulfils

∂tρ̄
(k) = ∇(D̃∇ρ̄(k) − Γ̃ρ̄(k)) + r(1 − ρ + ρ̃

c
)ρ̄(k) +∇((

=D̄
³¹¹¹¹¹·¹¹¹¹¹µ
D − D̃)∇ρ(k) − (

=Γ̄
­
Γ − Γ̃ )ρ(k))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Source−term
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with initial condition ρ̄(k)(0, x) = 0. We used that

b(ρ)ρ − b(ρ̃)ρ̃ = r(1 − ρ
c
)ρ − r(1 − ρ̃

c
)ρ̃

= r(ρ − ρ̃) − r
c
(ρρ − ρ̃ρ̃)

= r(ρ − ρ̃) − r
c
(ρρ − ρ̃ρ̃ + ρρ̃ − ρρ̃)

= r(ρ − ρ̃) − r
c
((ρ − ρ̃)ρ̃ + (ρ − ρ̃)ρ)

= rρ̄ − r
c
(ρ − ρ̃)(ρ + ρ̃)

= rρ̄ − r
c
(ρ + ρ̃)ρ̄.

Since the growth term r(1− ρ+ρ̃
c ) does not depend directly on ρ̄ we can use Theorem 4.5, which

leads to

∥ρ̄(k)∥L∞((0,T );L2(R3)) ≤ C(T,D,Γ)(∥Source − term∥L2((0,T );H−1) + ∥initial cond.∥L2(R3)).
(4.10)

Theorem 4.5 can be applied here for R3 instead of a bounded and open subset Ω since we
assume the initial condition to have compact support and the birth-death term is bounded,
thus the support of ρ stays finite for finite time.

In order to get an estimate with (K0,K1) and (K̃0, K̃1), we have to investigate the source term
further.

Following [24, Chapter 4.3], we can estimate

∥∇(D̄∇ρ(k) − Γ̄ρ(k))∥L2((0,T );H−1) ≤ ∫
T

0

n

∑
i=0
∫
R3
(D̄∇ρ(k) − Γ̄ρ(k))

2

i
dx dt (4.11)

where we use

g = g0 +
n

∑
i=1

∂igi, g0, gi ∈ L2(R3)

for g being an element of the Sobolev space H−1(R3) [24, Theorem 4.7]. Thus, we want to
estimate the matrix norms ∥ ⋅ ∥2 of D̄ and Γ̄.

∥D̄∥2 = ∥∫
V
v ⊗ (κ − κ̃)dv∥2

(∆)
≤ ∣V ∣∫

V
∥v ⊗ (κ − κ̃)∥2dv

= ∣V ∣∫
V
∥v∥2∥κ − κ̃∥2dv

≤ ∣V ∣∥v∥L2∥F ∥∞∥κ − κ̃∥L2(V ;dv/F )

where in (∆) we used Jensen’s inequality. Further, from the definition of κ, κ̃

K0(κ) = vF and K̃0(κ̃) = vF

it follows that

0 = K0(κ) − K̃0(κ̃)
= K0(κ) − K̃0(κ̃) + K̃0(κ) − K̃0(κ)

34



= K̃0(κ − κ̃) + (K0 − K̃0)(κ)
= K̃0(κ − κ̃) + K̄0(κ).

Thus, κ − κ̃ solves
K̃0(κ − κ̃) = −K̄0(κ).

From Theorem 4.2 (Lax-Milgram) and (3.21) we have that

∥κ∥L2(V ;dv/F ) ≤
∥F ∥∞
β̃
∥vF ∥L2(V ;dv/F ) (4.12)

and

∥κ − κ̃∥L2(V,dv
F
)
≤ ∥F ∥∞

β
∥K̄0(κ)∥L2(V ;dv/F ). (4.13)

Moreover, it holds that

∥K̄0(κ)∥2L2(V,dv)/F = ∫
V

(K̄0(κ))
2

F
dv

= ∫
V

(∫V K̄0κ
′ − K̄ ′0κdv′)

2

F
dv

(∗)

≤ 2∫
V

1

F
(∫

V
(K̄0κ

′)2dv′ + ∫
V
(K̄ ′0)

2
dv′κ2)dv

≤ 2max∣K̄0∣2(∫
V

1

F
dv ⋅ ∥F ∥∞∫

V

(κ′)2
F ′

dv′ + ∣V ∣∫
V

κ2

F
dv)

≤ 2max∣K̄0∣2(
∥F ∥∞
minF

∣V ∣∥κ∥2L2(V ;dv/F ) + ∣V ∣∥κ∥
2
L2(V ;dv/F ))

≤ 2∥(K0,K1) − (K̃0, K̃1)∥∗ (
∥F ∥∞
minF

+ 1)∣V ∣ ∥F ∥∞
β̃
∥vF ∥L2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
..=ν̃/2

.

for the norm ∥(K0,K1)∥∗ =max(∥K0∥∞, ∥K1∥∞). Note, that F is bounded away from zero and
that

∫
V
(κ′)2dv ≤ ∥F ∥∞∫

V

(κ′)2
F (v′)dv

′ and ∫
V

1

F (v)dv ≤ ∣V ∣
1

minF
.

holds. In (∗) we again used Cauchy-Schwarz inequality, as in the proof of Proposition 4.4 and
we also used (4.12) in order to estimate ∥κ∥2L2(V ;dv/F ). It follows, that

∥D̄∥2 ≤ ∣V ∣∥v∥L2∥F ∥∞(ν̃
1

β
∥(K0,K1) − (K̃0, K̃1)∥∗)

..= ν∥(K0,K1) − (K̃0, K̃1)∥∗.

Now, the norm of the drift vector is estimated as

∥Γ̄∥2 = ∥∫
V
v(Θ − Θ̃)dv∥2

(∆)
≤ ∣V ∣∫

V
∥v∥2∥Θ − Θ̃∥2dv

≤ ∣V ∣∥v∥L2∥F ∥∞∥Θ − Θ̃∥L2(V ;dv/F )
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where in (∆) we used Jensen’s inequality since the norm ∥ ⋅ ∥2 is convex.

Using Lax-Milgram yields

∥Θ∥2L2(V ;dv/F ) ≤
∥F ∥∞
δ
∥K1(F )∥2L2(V ;dv/F )

≤ ∥F ∥∞
δ
∫
V

(∫V K1F
′ −K ′1Fdv′)

2

F
dv

(∗)

≤ 2
∥F ∥∞
δ
∫
V

(∫V K1F
′dv′)2 + (∫V K ′1Fdv′)

2

F
dv

≤ 2∥F ∥∞
δ

C2∫
V

(∫V F (v′)dv′)2 + ∣V ∣2F 2)
F

dv

≤ 2∥F ∥∞
δ

C2( ∣V ∣
minF

+ ∣V ∣2)

with ∥F ∥L2(V ;dv/F ) = ∫V F 2

F dv = ∫V Fdv = 1 and F being bounded away from zero by assumption

as well as ∫V 1
F dv ≤

∣V ∣
minF . In (∗) we again used Cauchy-Schwarz inequality, as in the proof of

Proposition 4.4. Thus, we have

∥Θ∥L2(V ;dv/F ) ≤
∥F ∥∞
δ̃

C

√
∣V ∣

minF
+ ∣V ∣2 ..= η̃.

Additionally, Θ − Θ̃ solves

K̃0(Θ − Θ̃) + (K0 − K̃0)(Θ) = K0(Θ) − K̃0(Θ̃) = K1(F ) − K̃1(F ) = K̄1(F ),

leading to
K̃0(Θ − Θ̃) = K̄1(F ) − K̄0(Θ).

Also with Lax-Milgram, it then follows

∥Θ − Θ̃∥L2(V ;dv/F ) ≤
∥F ∥∞
δ
(∥K̄0(Θ)∥L2(V ;dv/F ) + ∥K̄1(F )∥L2(V ;dv/F ))

≤ ∥F ∥∞
δ

√
∥F ∥∞
minF

+ 1
√
∣V ∣(∥Θ∥L2(V ;dv/F )max∣K̄0∣ + ∥F ∥L2(V ;dv/F )max∣K̄1∣)

≤ ∥F ∥∞
δ

√
∥F ∥∞
minF

+ 1
√
∣V ∣(η̃ + 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶..=η̂

∥(K0,K1) − (K̃0, K̃1)∥∗,

where the coefficient
√
∥F ∥∞
minF + 1

√
∣V ∣ can be derived in a similar fashion as has been done

previously for K̄0(κ). Therefore,

∥Γ̄∥2 ≤ ∣V ∣∥v∥L2∥F ∥∞(η̂∥(K0,K1) − (K̃0, K̃1)∥∗)
..= η∥(K0,K1) − (K̃0, K̃1)∥∗

All together with ξ ..=max(η, ν) this results in

∥∇(D̄∇ρ(k) − Γ̄ρ(k))∥L2((0,T );H−1) = ∫
T

0
∥∇(D̄∇ρ(k) − Γ̄ρ(k))∥H−1dt

(∗)

≤ ∫
T

0

n

∑
i=1
∫
R3
(D̄∇ρ(k) − Γ̄ρ(k))

2

i
dx dt
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= ∫
T

0
∫
R3
∥D̄∇ρ(k) − Γ̄ρ(k)∥22dx dt

≤ ∫
T

0
∫
R3

2(∥D̄∥22∥∇ρ(k)∥22 + ∥Γ̄∥22∥ρ(k)∥22)dx dt

≤ ∫
T

0
∫
R3
(∥∇ρ(k)∥22 + ∥ρ(k)∥22)(ξ∥(K̄0, K̄1)∥2∗)dx dt

= ∥ρ(k)∥2
L2((0,T );H1

0)
(ξ∥(K̄0, K̄1)∥2∗)

≤ ξC̃2∥(ρ∗)(k)∥L2∥(K̄0, K̄1)∥2∗

where
∥(K̄0, K̄1)∥2∗ = ∥(K0,K1) − (K̃0, K̃1)∥2∗

and in (∗) we used (4.11). Overall, we have that

∥ρ(k) − ρ̃(k)∥L2(R3) ≤ ξC̃2∥(ρ∗)(k)∥L2∥(K0,K1) − (K̃0, K̃1)∥2∗

Integrating in time proves the Lipschitz continuity of GKS
j,k .

(iii) From the boundedness of the measurements shown in (i) it follows that the likelihood

µ(K0,K1)
○ (y) = exp(− 1

2γ2
∥G○(K0,K1) − y∥2)

and normalization constants Z○ are bounded away from zero and are bounded uniformly in A
and ε. From the Lipschitz-continuity of the measurements shown in (ii) the measurability of the
likelihoods follows. Thus, the posterior distributions are well-defined and absolutely continuous
with respect to each other. The well-posedness of the distributions follows from the continuous
dependency of the likelihoods on the data y. □

Now, the convergence of the two measurements can be shown.

Corollary 4.7 Suppose that the initial condition f0(x, v) ∈ C1
c (R3 ×V ) and the test functions χj(x) ∈

Cc(R3) fulfil condition (4.4). Then the kinetic measurement Gε,chemj,k converges to GKS
j,k uniformly in

A for ε→ 0.

Proof: The convergence of the measurements is a direct consequence of the convergence of fε to
ρF in L∞([0, T ], L1

+ ∩L∞(R3 × V )) as shown in Theorem 3.8. Then it holds that

∣Gε,chemj,k − GKS
j,k ∣ = ∣∫

R3
∫
V
f (k)ε (tj , x, v)dvχj(x)dx − ∫

R3
ρ(k)(tj , x)χj(x)dx∣

≤ ∫
R3
∫
V
∣f (k)ε (tj , x, v) − ρ(k)(tj , x)F (v)∣dv∣χj(x)∣dx

≤ ∥f (k)ε (tj , ⋅ , ⋅ ) − ρ(k)(tj , ⋅ )F ( ⋅ )∥L∞(R3×V )∣V ∣∥χj(x)∥L1(R3)

→ 0,

where we used that

∫
R3
ρ(k)(tj , x)χj(x)dx = ∫

R3
ρ(k)(tj , x)χj(x)dx∫

V
F (v)dv = ∫

R3
∫
V
ρ(k)(tj , x)F (v)dvχj(x)dx

because of the assumption on F to fulfil ∫V Fdv = 1. Since the convergence of fε to ρF is uniformly,
the calculations above are uniform in A. The uniform convergence over (j, k) follows from the
boundedness of the initial data and the test functions. □
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Now, all preconditions are proven that are needed to show the convergence of the posterior dis-
tributions. As already mentioned, one issue may arise with the metric one chooses to compare the
distributions with each other. Here, we will choose two metrics to calculate the difference between
the posterior distributions, as done in [17]. Both metrics require the to-be-compared probability
measurements µ1 and µ2 to be either absolutely continuous with respect to each other or with re-
spect to a third measure µ0, in order to evaluate the distance between them. The first is called the
Kullback-Leibler divergence

dKL(µ1, µ2) ..= ∫
A
(log dµ1

dµ2
(u))dµ2(u). (4.14)

While this is in fact no metric, since it lacks the symmetry and triangle-equality properties, it is still
used widely due to its close connection to several information concepts such as the Fisher information
metric or the Shannon entropy [27]. The second metric - that is indeed a metric - is called Hellinger
metric

d2Hell(µ1, µ2) ..=
1

2
∫
A

⎛
⎝

√
dµ1
dµ0
(u) −

√
dµ2
dµ0
(u)
⎞
⎠

2

dµ0(u), (4.15)

where µ1 and µ2 are absolutely continuous with respect to µ0. Convergence in this metric also implies
that the expectations of any polynomially bounded function converges with respect to either of their
posterior distributions, as explained in [36]. For instance, the mean, covariance and higher moments
of the distribution converge.
The following theorem can be proven analogously to [17, Theorem 2] and [31, Theorem 3.2].

Theorem 4.8 Consider the measurements of the macroscopic bacteria density given by (4.1) in case
of the kinetic model and (4.2) in case of the Keller-Segel-Fisher model respectively. Suppose that the
initial condition f0(x, v) ∈ C1

c (R3 × V ) and the test functions χj(x) ∈ Cc(R3) fulfil condition (4.4).
For a given prior µ0 on A and an additive Gaussian noise in the data the two posterior distributions
coming from the kinetic chemotaxis equation and the macroscopic Keller-Segel-Fisher equation are
asymptotically equivalent in the Kullback-Leibler divergence

dKL(µyε,chem, µ
y
KS)

ε→0Ð→ 0. (4.16)

Proof: First, the order of the Kullback-Leibler divergence can be calculated via Bayes’ rule by

log
dµyε,chem

dµyKS

(K0,K1) = log
⎛
⎜
⎝

µ0(K0,K1)µ(K0,K1)

ε,chem (y)
Zε,chem

ZKS

µ0(K0,K1)µ(K0,K1)

KS (y)

⎞
⎟
⎠

= log ZKS

Zε,chem
+ log

µ
(K0,K1)

ε,chem (y)

µ
(K0,K1)

KS (y)
= O(∣Zε,chem −ZKS ∣) +O(∣µ(K0,K1)

ε,chem (y) − µ(K0,K1)

KS (y)∣)

= O(∣µ(K0,K1)

ε,chem (y) − µ(K0,K1)

KS (y)∣).

Therefore, the likelihoods have to be estimated via

∣µ(K0,K1)

ε,chem (y) − µ(K0,K1)

KS (y)∣ = ∣exp(− 1

γ2
∥y − Gε,chem(K0,K1)∥2) − exp(−

1

γ2
∥y − GKS(K0,K1)∥2)∣

≤ c∣− 1

γ2
∥y − Gε,chem(K0,K1)∥2 −

1

γ2
∥y − GKS(K0,K1)∥2∣,
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where c <∞ is the Lipschitz constant of the function x↦ exp(− ∣x∣
2γ2 ). Further it holds that

∣∥y − Gε,chem(K0,K1)∥2 − ∥y − GKS(K0,K1)∥2∣

= ∣tr[(2y − Gε,chem(K0,K1) − GKS(K0,K1))
T(Gε,chem(K0,K1) − GKS(K0,K1))]∣

≤ ∥2y − Gε,chem(K0,K1) − GKS(K0,K1)∥ ⋅ ∥Gε,chem(K0,K1) − GKS(K0,K1)∥

where the first factor is bounded uniformly in A and ε by Lemma 4.6. The second factor converges
to 0 uniformly on A due to the convergence of the measurements as shown in Corollary 4.7. Overall,
it follows that

dKL(µyε,chem, µ
y
KS)

ε→0Ð→ 0. □

As shown in [39, Lemma 2.4], the Hellinger metric is bounded by the Kullback-Leibler divergence

d2Hell(µ1, µ2) ≤ dKL(µ1, µ2)

which, together with the theorem above, shows the convergence in the Hellinger metric of the posterior
distributions.

Corollary 4.9 In the framework of Theorem 4.8, the posterior distributions are asymptotically equiv-
alent in the Hellinger metric

dHell(µyε,chem, µ
y
KS)

ε→0Ð→ 0.

4.3 Conclusion

In this chapter, the relation between the posterior distributions coming from the kinetic and macro-
scopic forward models was investigated by extending the results from [17] for models including a
reaction term, namely the birth-death term. In order to show the uniform convergence of the distri-
butions, assumptions were made on the information we put in the model, by imposing conditions on
the tumbling kernel. With this, the well-posedness of the posterior distributions could be shown and
that they converge in the asymptotic limit under the Kullback-Leibler divergence and the Hellinger
metric. This does now confirm the intuition, that the convergence of the forward problems as shown
in section 3 should translate into convergence of the inverse problems in the Bayesian setting.
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5 Ill conditioning of Inverse Keller-Segel

Now that the convergence of the two inverse problems is shown we want to take a look at the stability
of the inverse chemotaxis equation as ε → 0 in the following section. This will be done for the case,
where no reaction term occurs in the models. In the asymptotic limit the chemotaxis equation can be
approximated by the Keller-Segel-equation as discussed in section 3 and [10] and the inverse problems
converge as well, as shown in section 4 and [17]. Since our goal is to reconstruct the tumbling kernel
- a kinetic quantity - it is intuitive that we lose some information when entering the macroscopic
regime. In this chapter, the goal is to quantify this loss of information. In order to do so, we try
to extend the results from [28], where the ill-conditioning of stationary inverse radiative transfer in
the diffusive limit is being investigated, to the non-stationary case. On a global level, the difference
between the prior distribution and the posterior distribution under the Kullback-Leibler divergence
will be estimated. Since the posterior distribution takes the prior information as well as the data
into account, the difference tells us how much the posterior distribution is influenced by the data.
On a local level, we will take a closer look at the maximum a posteriori (MAP) point and more
precise at the flatness of the distribution at this point. If the distribution is rather flat around the
MAP point it means that different values for the quantity of interest are equally likely to actually
be the value one is looking for. Therefore, it does not matter whether or not we are exactly at the
MAP point and therefore the flatness characterizes the level of uncertainty of the maximizer. For
both approaches the dependence on ε will be analysed, exploring the loss of information between
the kinetic and macroscopic regime, following [28]. Within this work, the two presented approaches
do not suffice to quantify the loss of information for the non-stationary chemotaxis equation in the
diffusive limit.
In [28] those considerations were made regarding the stationary radiative transfer equation, which

has a similar structure as our chemotaxis equation without a time-dependency and thus being a
boundary-value problem instead of an initial-value problem. For this equation, which can be applied
to the field of optical imaging for instance, the goal is to reconstruct certain properties of an examined
tissue by sending near infrared light into the tissue and measuring the outgoing photons [31]. As one
decreases the photon energy, and thus enters the diffusive limit, the picture becomes less crisp and
the reconstruction more unstable. There exist various studies on the subject of loss of information
in the diffusive limit for radiative transfer, for example one can find numerical observations in [1,19]
and a rigorous proof in [2]. The main problem with those results is, that they assume that we have
access to the full Albedo Operator

AK0,K1 ∶ f0 ↦ ∫
V
f(t, x, v)dv (5.1)

which in reality is not the case. Knowing the full operator A would correspond to send in every set of
initial data and take measurements over the whole space. But in the lab one only has a finite number
of incoming data as well as a finite number of measurements, which is why the mentioned results
have been extended to the discrete case in [28] and we follow those elaborations in this section.

For a finite series of initial values {f (k)0 }k and blob functions {χj}j the parameter-to-measurement
map is defined as

Gj,k ∶K(t, x, v, v′)↦ {∫
R3
∫
V
f (k)(tj , x, v)dv χj(x) dx}

j,k
, (5.2)

where we will drop (j, k) in the notation of G if the statement is true for all (j, k). Additionally, we
define the parameter-to-solution map as

Sj,k ∶K(t, x)↦ f (k)(tj , x, v) (5.3)
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leading to the relation

G(K) = ∫
R3
∫
V
S(K)dvχj(x)dx. (5.4)

In order to investigate the global loss of information, we want to estimate the Kullback-Leibler
divergence by the derivative of the parameter-to-solution map. Following [28] we have the next
proposition about the Kullback-Leibler divergence of the prior and posterior distribution.

Proposition 5.1 For K ∈ B the Kullback-Leibler divergence between µpost and µ0 can be estimated via

dKL(µ0, µpost) ≤ C ∫
A
∫
A
∣(G(K ′) − G(K))(G(K) + G(K ′) − 2y)∣ dµ0(K ′) dµ0(K) (5.5)

for some positive constant C that does not depend on the admissible set A.

Remark 5.2 As shown in the proof of [28, Theorem 2], we can rewrite Proposition 5.1 such that we
get an estimate of the Kullback-Leibler divergence by the derivative of G′, thus

dKL(µ0, µpost) ≤ C ∫
A
∫
A
∣(G(K ′) − G(K))(G(K) + G(K ′) − 2y)∣ dµ0(K ′) dµ0(K)

= ∫
A
∫
A
∫

t

0
∣G′(K + s(K ′ −K))(K ′ −K)(G(K) + G(K ′) − 2y)∣ds dµ0(K ′) dµ0(K).

Hence, to estimate the Kullback-Leibler divergence, the derivative of G(K) respectively the deriva-
tive of S(K) needs to be investigated. We call a variation K̃ of K admissible if K + sK̃ ∈ A for all
sufficiently small parameter s. For such a variation we have that

G′jk(K)K̃ = lim
s→0

1

s
∫
V
∫
R3
(f (k)

K+sK̃
(tj , x, v) − f (k)K (tj , x, v))χj(x)dx dv

= ∫
V
∫

3

R

S ′jk(K)K̃dvχj(x)dx. (5.6)

Therefore, if G varies slowly over the admissible set A, then the information gain from the data
is small because µpost and µ0 only differ a little from each other. Thus the goal is to show that the
derivative of G is of order ε, since we assume to have a loss of information.
Up until now, it was explained how to identify the global loss of information, but we are also

interested in the local behaviour around the MAP point. If, for example, the distribution is flat
around the MAP it means that the probability remains unchanged in a certain area around the MAP
point. This results in the reconstruction being insensitive to the data illustrating the instability.
Following [28, Chap. 5], an intuition for the characterisation of the flatness of a distribution will be
derived. Suppose we have a linear problem, meaning

G(K) = GK

and let the prior distribution µ0 be Gaussian centered at K0 with covariance C0. Then the posterior
distribution is uniquely determined by

Kpost = C−1post(GTy +C−10 K0), Cpost = (GTG +C−10 )
−1

and its flatness is characterised by the covariance matrix

∫
A
∥Kpost −K∥2dµpost = tr(Cpost),

as stated in [28]. Thus, the less informative the forward map is, the smaller is G and the bigger
tr(Cpost) gets, indicating the higher mean square error which geometrically corresponds to a flatter
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Gaussian. In our case, the forward map is nonlinear in K, which is why the argument above only
serves as a guidance. If we denote the posterior distribution as

µpost =
1

Z
exp(−∥G(K) − y∥2/2)µ0 ∝ exp(−A),

its convexity is determined by the Hessian of A. From [28, Prop. 7] we have the following result.

Proposition 5.3 Let K∗ be admissible and K̂ be an admissible variation. Then we can express the
Hessian of the posterior distribution A in terms of the forward map G via

A′′(K∗)[K̂, K̂] =
1

2
∑
i

(G′i(K∗)[K̂]TG′i(K∗)[K̂] + Gi(K)TG′′i (K∗)[K̂, K̂] − yTi G′′i (K∗)[K̂, K̂]). (5.7)

Since this holds true for all admissible K∗ it is also valid for the MAP point. Therefore, in order to
show the flatness of the distribution we need to show that G′′ is small.
In order to have a shorter notation we introduce the abbreviations

f = fK(t, x, v), fs = fK+sK̃(t, x, v), w = S ′(K)K̃ (5.8)

and if the calculations hold true for all j and k the subscripts will be omitted.

5.1 Velocity Independent Case

First, we will simplify our equation and only look at tumbling kernels, that do not depend on the
velocity, meaning K(t, x, v, v′) =K(t, x). Therefore, the tumbling operator K is reduced to

K(t, x)L(g) ..=K(t, x)(∫
V
gdv − g)

for g ∈ L2(V ; dv). Also, the admissible set A can be replaced by

B = {K ∈ C1([0,∞) ×R3) ∣ 0 < α ≤K(t, x) and ∥K∥L∞(R3) ≤ CB}. (5.9)

To investigate the dependence of the derivative of the parameter-to-solution map on ε, the drift
diffusion limit for the case whereK(t, x, v, v′) =K(t, x) will be shortly derived, following [28, Theorem
1] and the elaborations in subsection 3.3.

Proposition 5.4 Consider the scaled chemotaxis equation

ε2∂tf(t, x, v) + εv ⋅ ∇xf(t, x, v) =K(t, x)(∫
V
f(t, x, v′)dv′ − f(t, x, v))

f(0, x, v) = f0(x, v). (5.10)

Then f(t, x, v)→ ρ(t, x) as ε→ 0 where ρ solves

∂tρ(t, x) −Cd∇x
1

K
∇xρ(t, x) = 0

ρ(0, x) = ρ0(x).

Proof: Consider the expansion f = f0 + εf1 + ε2f2 + ε3fr and compare orders in (5.10). For O(1) we
have that

KLf0 = 0

⇔ ∫
V
f0(t, x, v′)dv′ = f0(t, x, v)
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meaning that f0(t, x, v) = f0(t, x) ..= ρ0(t, x). Note, that we used ∫V 1dv = 1 since we consider V to
be the unit sphere in R3. For O(ε) it holds that

v ⋅ ∇xf0(t, x) =KLf1 (5.11)

which holds true for f1(t, x, v) = − 1
K v ⋅∇xρ0(t, x), since L(v) = −v and the other terms do not depend

on v. Looking at O(ε2) yields the relation

KL(f2) = ∂tf0 + v ⋅ ∇xf1 (5.12)

⇔ f2 = L−1(
1

K
∂tf0 +

1

K
v ⋅ ∇xf1). (5.13)

In order to f2 being well-defined, 1
K (∂tf0 + v ⋅ ∇xf1) needs to lie within the range of L. With the

condition

−∫
V

v

K
∇xf1dv =

1

K
∂tf0 (5.14)

⇔ ∫
V

v

K
∇x(

v

K
∇xρ0dv) =

1

K
∂tρ0, (5.15)

f2 is well defined since we have the inverse image

L(− 1

K
∂tf0 −

1

K
v ⋅ ∇xf1) =

=0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
L(− 1

K
∂tf0)+L(−

v

K
∇xf1)) (5.16)

= ∫
V
− v
K
∇xf1dv −

1

K
(−v ⋅ ∇xf1) (5.17)

(5.14)= 1

K
∂tf0 +

1

K
v ⋅ ∇xf1. (5.18)

The condition (5.15) equipped with suited initial data determines the function ρ0.
Now it remains to show, of which order fr is. Rearranging (5.10) and dividing by ε3 yields

ε2∂tfr(t, x, v) + εv ⋅ ∇xfr(t, x, v) −K(t, x)L(fr) = −(
1

ε
∂tf0(t, x) +

1

ε2
v ⋅ ∇xf0(t, x))

− (∂tf1(t, x, v) +
1

ε
v ⋅ ∇xf1(t, x, v) −

1

ε2
K(t, x)L(f1))

− (ε∂tf2(t, x, v) + v ⋅ ∇xf2(t, x, v) −
1

ε
K(t, x)L(f2))

= −ε∂tf2(t, x, v) − v ⋅ ∇xf2(t, x, v) − ∂tf1(t, x, v)

where we used the relations (5.11) and (5.12). We impose fr(0, x, v) = −ε2f1(0, x, v) − εf2(0, x, v) as
initial condition. Thus, fr fulfils a chemotaxis equation with O(ε) initial condition and O(1) source
term, hence from applying Lemma 3.7 (Grönwall’s inequality) it follows that ∥fr∥L∞(R3×V ) ≤ O(1).
Looking at O(ε2) gives

∂tf0(t, x) + v ⋅ ∇xf1(t, x, v) =KL(f2).
Integrating the equation in v and inserting the formula for f1(t, x, v) leads to

∂tρ0(t, x) −∇x
1

K
∫
V
v2dv ⋅ ∇xρ0(t, x)) = 0

⇒ ∂tρ0(t, x) −Cd∇x
1

K
∇xρ0(t, x) = 0

where Cd = ∫V v2dv. □
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5.1.1 Global Loss of Information

The proposition below characterizes the derivative of the parameter-to-solution map.

Proposition 5.5 Denote

T f = ε2∂tf + εv ⋅ ∇xf, CKf = −K(t, x)Lf (5.19)

with Lf = ∫V f(t, x, v)dv − f . For K ∈ B and an admissible variation K̃, the derivative of the
parameter-to-solution map w is the unique solution of

T w +CKw = −CK̃f,

w(0, x, v) = 0, (5.20)

with f ∈ F being the solution of the chemotaxis equation with parameter K. Also, for ε = 1 it holds
that

∥w∥L∞(0,T ;L∞(R3×V )) ≤ C(CB, T )∥f∥L∞(0,T ;L∞(R3×V )) (5.21)

where CB denotes the constant appearing in the definition of the admissible set B as defined in (5.9).

Proof: Let f be the solution of T f +CKf = 0 and fs of T fs +CK+sK̂fs = 0, where s describes the
variation of the parameter K. Then it holds that

T fs +CK+sK̂fs = T fs +CKfs + sCK̂fs,

since CK is a linear operator with respect to the parameter K. Subtracting the equation for f by
the one for fs yields

T (f − fs) +CK(f − fs) = −sCK̂fs

⇔ T ws +CKws = −CK̂fs

with ws = 1
s(f − fs). Carrying out the limit s → 0 shows the result, where uniqueness follows by

standard methods.
In order to show the boundedness we use that

∣L(w)∣ ≤ 2∥w∥L∞(R3×V ), ∣L(f)∣ ≤ 2∥f∥L∞(R3×V )

and integrate the equation in time and integrate along the characteristic (t − s, x − vs
ε , v) leading to

w(t, x, v) =
=0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
w(0, x, v)+∫

t

0
K(t − s, x − vs

ε
)L(w)(t − s, x − vs

ε
, v)ds

+ ∫
t

0
K(t − s, x − vs

ε
)L(f)(t − s, x − vs

ε
, v)ds

⇔ ∣w(t, x, v)∣ = ∣∫
t

0
K(t − s, x − vs

ε
)L(w)(t − s, x − vs

ε
, v)ds

+ ∫
t

0
K(t − s, x − vs

ε
)L(f)(t − s, x − vs

ε
, v)ds∣

≤ ∫
t

0
∣K(t − s, x − vs

ε
)∣ ⋅ ∣L(w)(t − s, x − vs

ε
, v)∣ds

+ ∫
t

0
∣K(t − s, x − vs

ε
)∣ ⋅ ∣L(f)(t − s, x − vs

ε
, v)∣ds

≤ CB ∫
t

0
∣L(w)(t − s, x − vs

ε
, v)∣ds +CB ∫

t

0
∣L(f)(t − s, x − vs

ε
, v)∣ds
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⇔ ∥w(t, ⋅ , ⋅ )∥L∞(R3×V ) ≤ 2CB ∫
t

0
∥w(t − s, ⋅ , ⋅ )∥L∞(R3×V )ds + 2CB ∫

t

0
∥f(t − s, ⋅ , ⋅ )∥L∞(R3×V )ds.

From Grönwall’s inequality it then follows that

∥w(t, ⋅ , ⋅ )∥L∞(R3×V ) ≤ 2CB ∫
t

0
∥f(t − s, ⋅ , ⋅ )∥L∞(R3×V )ds ⋅ exp(2CBT )

with t ≤ T . This concludes the proof. □

Now we are ready to investigate the dependence of the derivative G′ on ε. The desired statement
would be, that for every K ∈ B and admissible variation K ′ it holds that

G′(K)K ′ = O(ε). (5.22)

With this, we could then use Proposition 5.1 for the chemotaxis equation with a tumbling kernel
that does not depend on the velocity v and show that the Kullback-Leibler divergence vanishes as
ε→ 0,

dKL(µ0, µpost) = O(ε).

First, we expand
w = w0 + εw1 + ε2wr, f = f0 + εf1 + ε2f2 + ε3fr

and plug into (5.20). Note, that ε3fr = O(ε3). Comparing orders yields the following results. For
O(1) we have that

−KLw0 =K ′Lf0 = 0,

meaning that w0(t, x, v) = w0(t, x) since f0(t, x) = ρ0(t, x). Further, at O(ε) we can see that

v ⋅ ∇xw0 −KLw1 =K ′Lf1
⇒KLw1 = v ⋅ ∇xw0 −K ′Lf1

= v ⋅ ∇xw0 −
K ′

K
Lv
=̄−v

∇xρ0

⇒ w1(t, x, v) = −
1

K
v ⋅ ∇xw0(t, x) −

K ′

K2
v ⋅ ∇xρ0(t, x)

where we used that L(v) = ∫V vdv − v = −v, thus

L(w1) =
1

K
v ⋅ ∇xw0(t, x) +

K ′

K2
v ⋅ ∇xρ0(t, x)

yields the correct result. For O(ε2) we get

∂tw0 + v ⋅ ∇xw1 −KLwr =K ′L(f2) (5.23)

⇔ ∂tw0 − v ⋅ ∇x(
1

K
v ⋅ ∇xw0) − v ⋅ ∇x(

K ′

K2
v ⋅ ∇xρ0) =KLwr +K ′L(f2).

When averaging over v the right hand side becomes zero and we have

∂tw0 − ∫
V
v ⋅ ∇xv

1

K
∇xw0dv = ∫

V
v ⋅ ∇x

K ′

K2
v ⋅ ∇xρ0dv (5.24)

with zero initial condition w0(0, x) = 0. This estimate shows the boundedness of ∂tw0 and ∇xw0.
It is left to show of which order wr is. For wr it holds that
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ε2∂twr + εv ⋅ ∇xwr −KLwr = −∂tw0 −
1

ε
v ⋅ ∇xw0 − ε∂tw1 − v ⋅ ∇xw1

+ 1

ε
KLw1 +K ′L(

1

ε
f1 + f2 + εfr)

with initial condition wr(0, x, v) = −1
εw1(0, x, v). Note that w0 and f0 lie within the kernel of K0

which is why those terms are neglected. Using the boundedness of ∂tw0, ∇xw0, Lw1, Lf1 , Lf2 and
that Lfr ≤ O(1), and applying the lemma of Grönwall to ∣wr ∣ after integrating along the characteristic
yields ∥wr∥L∞(R3×V ) ≤ O(1ε), since we have a O(1ε) source term.

Overall, this leads to

G′(K)K ′ = ∫
R3
∫
V
w(t, x, v)dvχ(x)dx

= ∫
R3
∫
V
(w0(t, x) + εw1(t, x, v) + ε2wr(t, x, v))dvχ(x)dx

= ∫
R3
∫
V
w0(t, x)dvχ(x)dx +O(ε),

thus, we have to take a closer look at the Integral over w0(t, x).
Since we know the initial condition of w0(t, x) to be zero, we consider two approaches to estimate

the integral above. First, one could try to show that

∂t∫
R3
∫
V
w0(t, x)dvχ(x)dx = 0,

from which it would then follow that

∫
R3
∫
V
w0(t, x)dvχ(x)dx = 0

because of the zero initial condition. From integrating (5.23) in velocity and space

∫
R3
∫
V
∂tw0(t, x)dvχ(x)dx = −∫

R3
∫
V
v ⋅ ∇xw1(t, x, v)dvχ(x)dx − ∫

R3
∫
V
KLwrdvχ(x)dx

+ ∫
R3
∫
V
KL(f2 + fr)dvχ(x)dx

the desired result would follow, if it is true that

∫
R3
∫
V
v ⋅ ∇xw1(t, x, v)dvχ(x)dx = 0,

since the other terms vanish when averaging over the velocity. We assume to have compact initial
data for w1 and that our measures are equal to one on their support and 0 elsewhere, thus from the
divergence theorem we get that

∫
R3
∇xw1(t, x, v)χ(x)dx = ∫

supp(χ(x))
∇xw1(t, x, v)dv = ∫

∂ supp(χ(x))
w1(t, x, v)ndv, (5.25)

with ∂ supp(χ(x)) being the boundary of the compact support of the measurements and n its normal
vector. This means, that the integral over v ⋅∇xw1 would vanish if, for instance the first order term of
the derivative of the parameter-to-solution map equals zero on the boundary of our measurements. Or
in other words, the first order term of the solution itself would have to stay constant on the boundary
with respect to a change in the parameterK. Otherwise, one could try to choose another measurement
than a compactly supported blob-function, for instance the whole R3 since the divergence theorem
would then be applicable. But in the lab, this corresponds to taking a picture of all the bacteria on
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the plate at different time steps, meaning we would not gain any information other than the total
number of bacteria and have an ill-conditioned problem by construction of the experiment. Thus,
this approach leads to an assumption on the behaviour of w1 or on the measurements, which can not
or shall not be imposed in that way within an experiment.
A second approach could be, to derive a linear differential equation for ∫R3 ∫V w0(t, x)dvχ(x)dx,

from which the desired result could be established due to the zero initial condition. But in (5.24) we
have a differential equation for the term of interest

∂tw0 − ∫
V
v ⋅ ∇xv

1

K
∇xw0dv = ∫

V
v ⋅ ∇x

K ′

K2
v ⋅ ∇xρ0dv, (5.26)

which is not linear since we still have a source term depending on ρ0.
Overall, we could not draw information about ∫R3 ∫V w0(t, x)dvχ(x)dx from the two considered

approaches. A more detailed discussion of this follows in subsection 5.3, where the differences to [28]
are explained.

5.1.2 Local Behaviour around the MAP point

Now, the behaviour around the MAP-point for the velocity independent case is investigated in this
section. The second derivative of the parameter to solution map is characterized by the proposition
below.

Proposition 5.6 For any admissible K∗ and admissible variations K1,K2, the second derivative of
the parameter-to-solution map H = S′′(K∗)[K1,K2] is the unique solution of

T H +CK∗H = −CK1w
2 −CK2w

1

H(0, x, v) = 0 (5.27)

where f ∈ F is the solution to the chemotaxis equation with parameter K∗ and w1,2 are the solutions
to (5.20) with parameters K∗ + sK1,2. Moreover, it holds that ∥H∥L∞(R3×V ) is bounded.

Proof: First, we note that

Hs =
1

s
(f (1,2) − f (1) − f (2) + f) (5.28)

where f (i,j) all satisfy the chemotaxis equation with different tumbling kernel and same initial con-
dition,

T f (1,2) +CK∗+sK1+sK2f
(1,2) = 0,

T f (1) +CK∗+sK1f
(1) = 0,

T f (2) +CK∗+sK2f
(2) = 0,

T f +CK∗f = 0.

Combining these equations

T (f (1,2) − f (1) − f (2) + f)+CK∗(f (1,2) − f (1) − f (2) + f) = −sCK1f
(1,2)+sCK1f

(1)−sCK2f
(1,2)+sCK2f

(2)

and dividing by s2 yields

T Hs +CK∗Hs = −CK1

1

s
(f (1,2) − f (1)) −CK2

1

s
(f (1,2) − f (2)).
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For the expression 1
s
(f (1,2) − f (1)) it holds that it is equal to w2

s . This can be shown by replacing
K + sK2 in the proof of Proposition 5.5 with (K∗ + sK1) + sK2. With the same argumentation
1
s
(f (1,2) − f (2)) is equal to w1

s . From carrying out the limit s→ 0 it follows that

T H +CK∗H = −CK1w
2 −CK2w

1.

The boundedness follows from integrating the equation along its characteristic and applying Grön-
wall’s inequality to the absolute value of H. □

Now, we want to investigate the dependence of the second derivative G′′ on ε. The desired statement
would be, that for K∗ ∈ A and admissible variation K̂, the diagonal elements A′′(K∗)[K̂, K̂] fulfil

A′′(K∗)[K̂, K̂] = O(ε).

Or in terms of G′′, that for every admissible K∗ ∈ A and admissible variation K̂ it holds that

G′′(K∗)[K̂, K̂] = O(ε) (5.29)

for every j, k.
Consider the expansions

H =H0 + εH1 + ε2Hr

w1 = w1
0 + εw1

1 + ε2w1
r

w2 = w2
0 + εw2

1 + ε2w2
r ,

plug them into (5.27) and compare orders. For O(1) we get that

−K∗LH0 =K1Lw2
0 +K2Lw1

0 = 0

since w1,2
0 (t, x, v) = w

1,2
0 (t, x). Therefore, H0 does not depend on the velocity either. At O(ε) it holds

that

v ⋅ ∇xH0 −K∗LH1 =K1Lw2
1 +K2Lw1

1

⇔ LH1 =
1

K∗
v ⋅ ∇xH0 +

K1

K∗
w2
1 +

K2

K∗
w1
1

⇒H1 = −
1

K∗
v ⋅ ∇xH0 −

K1

K∗
w2
1 −

K2

K∗
w1
1.

Here, we used the assumption that K is bounded away from zero and that L(w○1) = −w○1 for ○ = 1,2.
Looking at O(ε2) yields

∂tH0 + v ⋅ ∇xH1 −K∗LHr =K1Lw2
r +K2Lw1

r
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 when averaging over v

. (5.30)

Integrating over v and inserting the formula for H1 results in

∂t∫
V
H0dv − ∫

V
v ⋅ ∇x(

1

K∗
v ⋅ ∇xH0)dv = ∫

V
v ⋅ ∇x(

K1

K∗
w2
1 −

K2

K∗
w1
1)dv (5.31)

which shows the boundedness of ∂tH0 and ∇xH0.
Now, it remains to show of what order Hr is. For Hr we have
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ε2∂tHr + εv ⋅ ∇xHr −K∗LHr = −∂tH0 −
1

ε
v ⋅ ∇xH0 +

1

ε2
K∗LH0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

−ε∂tH1 − v ⋅ ∇xH1 +
1

ε
K∗LH1

+ 1

ε2
K1Lw2

0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+1
ε
K1Lw2

1 +K1Lw2
r +

1

ε2
K2Lw1

0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+1
ε
K2Lw1

1 +K2Lw1
r

with initial condition Hr(0, x, v) = −1
εH1(0, x, v). From the boundedness of ∂tH0 and ∇xH0 and the

lemma of Grönwall it follows that ∥Hr∥L∞(R3×V ) ≤ O(1ε).
Overall, this leads to

G′′(K∗)[K̂, K̂] = ∫
R3
∫
V
H(t, x, v)dvχ(x)dx

= ∫
R3
∫
V
(H0(x, v) + εH1(t, x, v) + ε2Hr(t, x, v))dvχ(x)dx

= ∫
R3
∫
V
H0(x, v)dvχ(x)dx +O(ε)

Thus, we need to take a closer look at the integral over H0(t, x). Again, we can follow the two
different approaches of either using the divergence theorem or finding a linear differential equation
for the integral over H0. Note that H0(0, x) = 0 and from integrating (5.30) in space and velocity

∫
R3
∫
V
∂tH0dvχ(x)dx + ∫

R3
∫
V
v ⋅ ∇xH1dvχ(x)dx = ∫

R3
∫
V
(K∗LHr +K1Lw2

r +K2Lw1
r)dvχ(x)dx

⇔ ∂t∫
R3
∫
V
H0dvχ(x)dx = −∫

R3
∫
V
v ⋅ ∇xH1dvχ(x)dx,

where H0 = H0(t, x) and H1 = H1(t, x, v). But again, as it was the case for the global loss of
information, this leads to an assumption on the behaviour of f at the boundary of the measurements
which cannot be imposed in that way in an experiment. Also (5.31) gives a non-linear differential
equation for H0, which is why we cannot conclude that the integral vanishes from this. Again, the
two approaches do not lead to an estimate for the integral of interest.

5.2 Velocity Dependent Case

Now, the situation for a velocity dependent tumbling kernel will be investigated. Even though, the
approaches did not work out for the velocity independent case, we want to consider the more complex
problem in order to see, whether or not difficulties arise earlier on in the calculations, due to the
velocity dependency. The main difference to the previous case lies within the drift-diffusion limit
which is discussed in subsection 3.3 in case of including a birth-death-term and in [10, Chap. 2] in
case of no reaction term. In the following, no birth-death-term will be considered.

Remark 5.7 From [10, Chap. 2] we know that for fε(t, x, v) = f0(t, x, v)+εf1(t, x, v) and Kε(t, x, v) =
K0 + εK1 it holds that

f0(t, x, v) = ρ0(t, x)F (v), (5.32)

f1(t, x, v) = κ(t, x, v)∇xρ0(t, x) −Θ(t, x, v)ρ0(t, x) + ρ1(t, x)F (v) (5.33)

with F ∈ ker(K0). It remains to show what f2 looks like and of which order fr is, if we look at the
expansion fε = f1 + εf1 + ε2f2 + ε3fr. Consider the scaled chemotaxis equation

ε2∂tfε + εv ⋅ ∇xfε = (K0 + εK1)(fε)
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and the equations (5.32) and (5.33). Then looking at O(ε2) gives rise to the relation

K0(f2) = ∂tf0 + v ⋅ ∇xf1 −K1f1 (5.34)

⇔ f2 = K−10 (∂tf0 + v ⋅ ∇xf1 −K1f1). (5.35)

In order for f2 to be well-defined, ∂tf0 + v ⋅ ∇xf1 −K1f1 needs to lie within the range of the operator
K0. From Lemma 3.5 it follows, that the equation

K0(g) = −K1(f1)

has a solution g ∈ L2(V ; dv/F ) since K1(f1) ∈ L2(V ; dv/F ) and ∫V K1(f1)dv = 0. Also, it follows
from Lemma 3.5 that the equation

K0(h) = ∂tf0 + v ⋅ ∇xf1

has a solution h ∈ L2(V ; dv/F ) if and only if ∫V ∂tf0+v ⋅∇xf1dv = 0 and ∂tf0+v ⋅∇xf1 ∈ L2(V ; dv/F ).
In order to fulfil the first condition, it must hold true that

∫
V
v ⋅ ∇xf1dv = ∫

V
∂tf0dv.

Looking at the left hand side yields

∫
V
v ⋅ ∇xf1dv = ∫

V
(v ⋅ ∇x(κ(t, x, v)∇xρ0(t, x) −Θ(t, x, v)ρ0(t, x) + ρ1(t, x)F (v)))dv

= ∫
V
v ⋅ ∇x(κ(t, x, v)∇xρ0(t, x))dv − ∫

V
v ⋅ ∇x(Θ(t, x, v)ρ0(t, x))dv

+ ∫
V
v ⋅ ∇xρ1(t, x)F (v)dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

where we used that ∫V v ⋅ ∇xρ1(t, x)F (v)dv = ∇xρ1(t, x) ∫V vF (v)dv = 0 due to the properties we
imposed on F . Hence, in order to f2 being well-defined ρ0 has to fulfil

∫
V
v ⋅ ∇x(κ(t, x, v)∇xρ0(t, x))dv − ∫

V
v ⋅ ∇x(Θ(t, x, v)ρ0(t, x))dv = ∂tρ0(t, x)∫

V
Fdv = ∂tρ0(t, x).

This condition equipped with suitable initial condition determines ρ0. Now it remains to show of
what order fr is. Rearranging the chemotaxis equation and dividing by ε3 yields

ε2∂tfr + v ⋅ ∇xfr − (K0 + εK1)(fr) = −(
1

ε
∂tf0 +

1

ε2
v ⋅ ∇xf0 −

1

ε3
(εK1)(f0))

− (∂tf1 +
1

ε
v ⋅ ∇xf1 −

1

ε2
(K0 + εK1)(f1))

− (ε∂tf2 + v ⋅ ∇xf2 −
1

ε
(K0 + εK1)(f2))

= −∂tf1 − ε∂tf2 − v ⋅ ∇xf2 +K1(f2)

where we used that K0(f0) = 0, K0(f1) = v ⋅ ∇xf0 − K1(f0) and (5.34). With initial condition
fr(0, x, v) = −ε2f1(0, x, v)−εf2(0, x, v) and the source term being of order O(1) we get from applying
the lemma of Grönwall that ∥fr∥L∞(R3×V ) ≤ O(1). Further, we assume that the kernels of all K0

with (K0,K1) ∈ A are spanned by the same velocity distribution F .

50



5.2.1 Global Loss of Information

Now, we are ready to look at the global loss of information. The proposition below follows analogously
to Proposition 5.5.

Proposition 5.8 Denote

T f = ε2∂tf + εv ⋅ ∇xf, CKf = −∫
V
K(t, x, v, v′)f(t, x, v′) −K(t, x, v′, v)f(t, x, v)dv. (5.36)

For K ∈ A and an admissible variation K̃, the derivative of the parameter-to-solution map w is the
unique solution of

T w +CKw = −CK̃f,

w(0, x, v) = 0, (5.37)

with f ∈ F being the solution of the chemotaxis equation with parameter K. Also, for ε = 1 it holds
that

∥w∥L∞(0,T ;L∞(R3×V )) ≤ C(CA, T )∥f∥L∞(0,T ;L∞(R3×V )) (5.38)

where CA denotes the constant C appearing in the admissible set A as defined in (3.10)

Then, the desired result would be that for every K ∈ A and admissible variation K ′ it holds that

G′(K)K ′ ≤ O(ε). (5.39)

Expand
w = w0 + εw1 + ε2wr, f = f0 + εf1 + ε2f2 + ε3fr, K =K0 + εK1

and plug into (5.37). Comparing orders yields the following results. For O(1) we have that

−K0(w0) = K′0(f0) = 0

meaning, that w0(t, x, v) = ρw0(t, x)F (v). Further, at O(ε) one can see that

v ⋅ ∇xw0 −K1(w0) −K0(w1) = K′0(f1) +K′1(f0)
⇔ K0(w1) = vF∇xρw0 − ρw0K1(F ) −∇xρ0K′0(κ) − ρ0K′0(Θ) − ρ0K′1(F ),

where we used that

K′0(f1) = ∇xρ0K′0(κ) + ρ0K′0(Θ) + ρ1K′0(F ) = ∇xρ0K′0(κ) + ρ0K′0(Θ).

From this, it follows that

w1 = κw1∇xρw0 −Θw1ρw0 + κ′w1
∇xρ0 −Θ′w1

ρ0 + ρw1F (5.40)

with

K0(κw1) = vF, (5.41)

K0(Θw1) = K1(F ), (5.42)

K0(κ′w1
) = K′0(κ), (5.43)

K0(Θ′w1
) = K′0(Θ) +K′1(F ). (5.44)

The equations (5.41) - (5.44) all have a bounded solution according to Lemma 3.5, since the right
hand sides RHS each fulfil

RHS ∈ L2(V ; dv/F ), ∫
V
RHS dv = 0.
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That the integrals over the right hand sides is equal to zero holds true because of the property that
the tumbling operator vanishes when averaging over v and that we assume ∫V vFdv = 0. Additionally,
from Lemma 3.5 it holds that ∫V w1(t, x, v)dv = ρw1 . Looking at O(ε2) yields

∂tw0 + v ⋅ ∇xw1 −K0(wr) −K1(w1) = K′1(f1). (5.45)

Averaging over v then gives

∫
V
∂tw0dv + ∫

V
v ⋅ ∇xw1dv = 0

and plugging in (5.40) yields

∂tρw0 + ∫
V
v ⋅ ∇x(κw1∇xρw0)dv − ∫

V
v ⋅ ∇x(Θw1ρw0)dv = −∫

V
v ⋅ ∇x(κ′w1

∇xρ0)dv

− ∫
V
v ⋅ ∇x(Θ′w1

ρ0)dv

− ∫
V
vFdv ⋅ ∇xρw1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

. (5.46)

Since ρ0,∇xρ0 are bounded, ∂tρw0 ,∇xρw0 and thus ∂tw0,∇xw0 are bounded as well.
For wr we get

ε2∂twr + εv ⋅ ∇xwr −Kε(wr) = −(∂tw0 +
1

ε
v ⋅ ∇xw0 −

=0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1

ε2
K0(w0)−

1

ε
K1(w0))

− (ε∂tw1 + v ⋅ ∇xw1 −
1

ε
K0(w1) −K1(w1))

+ 1

ε2
K′0(f0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+1
ε
K′0(f1) +K′0(fr) +

1

ε
K′1(f0) +K′1(f1) + εK′1(fr)

with initial condition wr(0, x, v) = −1
εw1(0, x, v). From the previous results and the lemma of Grönwall

it follows that ∥wr∥L∞(R3×V ) ≤ O(1ε). Overall, this leads to

G′(K)K ′ = ∫
R3
∫
V
w(t, x, v)dvχ(x)dx

= ∫
R3
∫
V
(w0(t, x, v) + εw1(t, x, v) + ε2wr(t, x, v))dvχ(x)dx

= ∫
R3
∫
V
w0(t, x, v)dvχ(x)dx +O(ε),

Thus, we need to take a closer look at the integral over w0(t, x, v). Given that w0(0, x, v) = 0 and
integrating (5.45) in velocity and space

∫
R3
∫
V
∂tw0(t, x, v)dvχ(x)dx = −∫

R3
∫
V
v ⋅ ∇xw1(t, x, v)dvχ(x)dx + ∫

R3
∫
V
K0(wr)dvχ(x)dx

+ ∫
R3
∫
V
K1(w1)dvχ(x)dx − ∫

R3
∫
V
K′1(f1)dvχ(x)dx

⇔ ∂t∫
R3
∫
V
w0(t, x, v)dvχ(x)dx = 0.

yields

∫
R3
∫
V
w0(t, x, v)dvχ(x)dx = ∫

R3
∫
V
v ⋅ ∇xw1(t, x, v)dvχ(x)dx.
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We note that we assume to have compact initial data for w1 and that our measures are equal to one
on their support and 0 elsewhere, thus from the divergence theorem we get that

∫
R3
∇xw1(t, x, v)χ(x)dx = ∫

supp(χ(x))
∇xw1(t, x, v)dv = ∫

∂ supp(χ(x))
w1(t, x, v)ndv, (5.47)

with ∂ supp(χ(x)) being the boundary of the compact support of the measurements and n its normal
vector. Hence, we end up with the same preconditions as it was the case for the velocity-independent
case. Additionally, (5.46) gives rise to a nonlinear differential equation for the quantity of interest.
Again, neither the use of the divergence theorem or of finding a linear differential equation for the
integral of interest work out.

5.2.2 Local Behaviour around the MAP point

Now, the loss of information on a local level will be discussed. The proof of the following proposition
is analogously to the proof of Proposition 5.6.

Proposition 5.9 Denote

T f = ε2∂tf + εv ⋅ ∇xf, CKf = −∫
V
K(t, x, v, v′)f(t, x, v′) −K(t, x, v′, v)f(t, x, v)dv (5.48)

For any admissible K∗ and admissible variations K1,K2, the second derivative of the parameter-to-
solution map H = S′′(K∗)[K̂, K̂] is the unique solution of

T H +CK∗H = −CK1w
2 −CK2w

1

H(0, x, v) = 0 (5.49)

where f ∈ F is the solution to the chemotaxis equation with parameter K∗ and w1,2 are the solutions
to (5.20) with parameters K∗ + sK1,2. Moreover, it holds that ∥H∥L∞(R3×V ) is bounded.

The desired result would be that for K∗ ∈ A and admissible variation K̂, the diagonal elements
A′′(K∗)[K̂, K̂] fulfill

A′′(K∗)[K̂, K̂] = O(ε).

Or in terms of G′′, that for every admissible K∗ ∈ A and admissible variation K̂ it holds

G′′(K∗)[K̂, K̂] = O(ε) (5.50)

for every j, k.
Consider the expansions

H =H0 + εH1 + ε2Hr

w1 = w1
0 + εw1

1 + ε2w1
r

w2 = w2
0 + εw2

1 + ε2w2
r

K○ =K○0 + εK○1 ,

with ○ = ∗,1,2 and plug them into (5.49) and compare orders. For O(1) we get that

−K∗0(H0) = K2
0(w1

0) +K1
0(w2

0) = 0

leading to H0(t, x, v) = ρH0(t, x)F (v). Further, at O(ε) one can see that

v ⋅ ∇xH0 −K∗1(H0) −K∗0(H1) = K2
0(w1

1) +K2
1(w1

0) +K1
0(w2

1) +K1
1(w2

0)
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⇔ K∗0(H1) = vF∇xρH0 − ρH0K∗1(F ) −K2
0(w1

1) −K2
1(w1

0) −K1
0(w2

1) −K1
1(w2

0).
(5.51)

We take a closer look at K2
0(w1

1), K2
1(w1

0), K1
0(w2

1) and K1
1(w2

0) using (5.40)

w○1 = κw○1∇xρw○0 −Θw○1ρw○0 + κ
′
w○1
∇xρf0 −Θ′w○1ρf0 + ρw○1F

for ○ = 1,2. First we note that for all combinations of ○ = 1,2 and △ = 1,2

K○0(ρw△1 F ) = 0.

With

K2,1
0 (w

1,2
1 ) = ∇xρw1,2

0
K2,1

0 (κw1,2
1
) − ρ

w1,2
0
K2,1

0 (Θw1,2
1
) −∇xρf0K

2,1
0 (κ

′

w1,2
1

) − ρf0K
2,1
0 (Θ

′

w1,2
1

)

and

K2,1
1 (w

1,2
0 ) = ρw1,2

0
K2,1

1 (F ).

(5.51) can be rewritten as

K∗0(H1) = vF∇xρH0 − ρH0K∗1(F ) −∇xρw1
0
K2

0(κw1
1
) − ρw1

1
K2

0(Θw1
1
)

−∇xρw2
0
K1

0(κw2
1
) − ρw2

1
K1

0(Θw2
1
) −∇xρf0(K2

0(κ′w1
1
) +K1

0(κ′w2
1
))

− ρf0(K2
0(Θ′w1

1
) +K1

0(Θ′w2
1
)).

This leads to

H1 = κH1∇xρH0 − ρH0ΘH1 − κ1H1
∇xρw1

0
−Θ1

H1
ρw1

0
(5.52)

− κ2H1
∇xρw2

0
−Θ2

H1
ρw2

0
− κ3H1

∇xρf0 −Θ3
H1
ρf0 + ρH1F (5.53)

with

K∗0(κH1) = vF (5.54)

K∗0(ΘH1) = K∗1(F ) (5.55)

K∗0(κ1H1
) = K2

0(κw1
1
) (5.56)

K∗0(Θ1
H1
) = K2

0(Θw1
1
) (5.57)

K∗0(κ2H1
) = K1

0(κw2
1
) (5.58)

K∗0(Θ2
H1
) = K1

0(Θw2
1
) (5.59)

K∗0(κ3H1
) = K2

0(κ′w1
1
) +K1

0(κ′w2
1
) (5.60)

K∗0(Θ3
H1
) = K2

0(Θ′w1
1
) +K1

0(Θ′w2
1
). (5.61)

The equations (5.54) - (5.61) all have a bounded solution according to Lemma 3.5, since the right
hand sides RHS each fulfil

RHS ∈ L2(V ; dv/F ), ∫
V
RHS dv = 0.

That the integrals of the right hand sides are equal to zero, follows from the property of the tumbling
operator to vanish when averaging over V and that we assume ∫V vFdv = 0. Additionally, from
Lemma 3.5 it holds that ∫V H1(t, x, v)dv = ρH1 .
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Looking at O(ε2) yields

∂tH0 + v ⋅ ∇xH1 −K∗0(Hr) −K∗1(H1) = K2
1(w1

1) +K1
1(w2

1) +K2
0(w1

r) +K1
0(w2

r). (5.62)

Averaging over v leads to

∫
V
∂tH0dv + ∫

V
v ⋅ ∇xH1vdv = 0 (5.63)

and plugging in (5.53) gives the boundedness of ∂tρH0 ,∇xρH0 and thus ∂tH0 and ∇xH0 are bounded
as well.
It is left to show, of what order Hr(t, x, v) is. Rearranging (5.49) after plugging in the expansion

and dividing by ε2 gives

ε2∂tHr + εv ⋅ ∇xHr −K∗ε(Hr) = −∂tH0 −
1

ε
v ⋅ ∇xH0 +

1

ε2
K∗0LH0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+1
ε
K∗1(H0)

− ε∂tH1 − v ⋅ ∇xH1 +
1

ε
K∗0(H1) +K∗1(H1)

+ 1

ε2
K1

0(w2
0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+1
ε
K1

1(w2
0) +

1

ε
K1

0(w2
1) +K1

1(w2
1) +K1

0(w2
r) + εK1

1(w2
r)

+ 1

ε2
K2

0(w1
0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+1
ε
K2

1(w1
0) +

1

ε
K2

0(w1
1) +K2

1(w1
1) +K2

0(w1
r) + εK2

1(w1
r)

with initial condition Hr(0, x, v) = −1
εH1(0, x, v). From the previous results and the lemma of Grön-

wall it follows that ∥Hr∥L∞(R3×V ) ≤ O(1ε).
Overall, this leads to

G′′(K∗)[K̂, K̂] = ∫
R3
∫
V
H(t, x, v)dvχ(x)dx

= ∫
R3
∫
V
(H0(x, v) + εH1(t, x, v) + ε2Hr(t, x, v))dvχ(x)dx

= ∫
R3
∫
V
H0(t, x, v)dvχ(x)dx +O(ε)

Thus, we take a look at the integral over H0(t, x, v). Given that H0(0, x, v) = 0 and integrating
(5.62) in time and space

∫
R3
∫
V
∂tH0dvχdx + ∫

R3
∫
V
v ⋅ ∇xH1dvχdx = ∫

R3
∫
V
K2

1(w1
1) +K1

1(w2
1) +K2

0(w1
r) +K1

0(w2
r)dvχdx

⇔ ∂t∫
R3
∫
V
H0dvχdx = −∫

R3
∫
V
v ⋅ ∇xH1dvχdx

with H0 = H0(t, x, v), H1 = H1(t, x, v) and χ = χ(x), as it was the case for the velocity independent
problem. Also, (5.63) again gives rise to a non-linear differential equation for the integral of interest.
Therefore, we have the same situation as in the case of a tumbling kernel that does not depend on
the velocity and cannot quantify the loss of information.

5.3 Conclusion and Comparison with the Ill-Conditioning of Inverse Radiative Transfer

Within this chapter, the stability deterioration in the diffusive limit of the chemotaxis equation was
discussed. It has been attempted to extend the results from [28] about the instability deterioration in
the Bayesian framework of stationary radiative transfer to the non-stationary case with a parabolic
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scaling. In scope of this work, this could not be shown, but the previous sections can be seen as
a first attempt of quantifying the loss of information in the diffusive limit and thus a beginning of
further research.

We still want to discuss, why the approaches for global and local loss of information where chosen
and present some guesses on why it did not work out for the inverse chemotaxis equation. As
mentioned before, the chapter mainly followed the elaborations in [28], where the methods were
applied to the inverse problem of stationary radiative transfer (RTE). First, we want to shortly
summarize the results that can be found in the literature about the multiscale analysis of RTE in
order to compare it to our situation.
The model, that describes the propagation of photon particles, namely RTE, is of the form

v ⋅ ∇xf(x, v) = ∫
V
k(x, v, v′)f(x, v′)dv′ − α(x, v)f(x, v) (5.64)

as introduced for instance in [5,31] with x ∈ Ω ⊂Rd and v ∈ V = Sd−1. Here, one sees the similarity to
the kinetic equation for chemotaxis, where α corresponds to ∫V K(t, x, v′, v)dv′. The forward problem
would be to determine the particle distribution f by the optical properties of a tissue described via
k,α. We call k(x, v, v′) the scattering coefficient and α(x, v) the total absorption coefficient. The
inverse problem for RTE is widely discussed in literature, for example is the unique reconstruction of
the medium in dimension 3 shown in [11], in case of a fully known Albedo-Operator. Further reviews
can be found in [6, 7].
On the macroscopic level, the dynamic of the photons can be described by the diffusion equation

(DE)
−∇x(a(x)∇xρ(x)) = 0,

with a(x) being the diffusion coefficient [31]. Again, the equation resembles the macroscopic equation
in the case of chemotaxis, namely the Keller-Segel model. In [31], the diffusion limit for the case were

α(x, v) = k(x, v, v′) = ε−1σ(x),

where ε is the Knudsen number and corresponds to our scaling scaling parameter. For RTE, the
Knudsen number stands for the ratio of the mean free path, which is the average distance a particle
travels without scattering, and the domain [31]. Thus, we are in the case of velocity-independent
coefficients. Further, the boundary is defined as

Γ± = {(x, v) ∣ x ∈ ∂Ω,±v ⋅ nx > 0}

or for a fixed point y ∈ ∂Ω

Γ±(y) = {(x, v) ∣ x = y,±v ⋅ ny > 0}

where nx is the normal vector pointing out of the domain at point x. The boundary conditions are
imposed on Γ−, the measurements are taken on Γ+. The following theorem shows the convergence of
the two forward problems and the proof can be found in [31, Theorem 2.2].

Theorem 5.10 Suppose that f(x, v) satisfies

v ⋅ ∇xf(x, v) = ∫
V
k(x, v, v′)f(x, v′)dv − α(x, v)f(x, v)

f Γ− = ϕ(x, v) (5.65)

with smooth boundary condition and that ρ(x) solves

−∇x(a(x)∇xρ(x)) = 0
ρ ∂Ω = ξ(x). (5.66)

If the boundary data ϕ and ξ are compatible with each other, then f(x, v) → ρ(x) in the diffusive
limit ε→ 0.

56



With the established convergence of the forward problems, the convergence of the inverse problems
in the Bayesian setting could also be shown in [31]. Here, they consider the Albedo operator

(HRTE(σ)ϕ)(x) = − 1

Cε
∫
Γ+(x)∪Γ−(x)

v ⋅ nf(x, v)dv

and the map that takes the Dirichlet data to the Neumann outflow, the DtN-map

(HDE(σ)ϕ)(x) = 1

σ
∂nρ(x)

for a constant C depending on the dimension d, the solution f of (5.65) and ρ satisfying (5.66). The
forward maps are defined via

GRTE(σ)j,k = lj(HRTE(σ)ϕk)
GDE(σ)j,k = lj(HDE(σ)ϕk)

with lj being a linear functional of the Albedo-operator and the DtN-map respectively. Under the
assumption, that the prior distribution of σ is supported on the admissible set

A = {σ ∈ C3(Ω) ∣max{∥σ∥L∞(Ω), ∥σ−1∥L∞(Ω), ∥∇(σ−1)∥L∞(Ω)} < C}

the convergence of the forward maps is shown in [31, Proposition 3.1]

Proposition 5.11 Assume that ϕk(x, v) = ξ(x)− ε 1
σ(x)v(x)∇xξk(x). The the two forward maps GRTE

and GDE fulfil

sup
σ∈A
∥GRTE(σ) − GDE(σ)∥∞ ≤

CA
Cd

ε

where CA depends on C1. Further, there exists a constant C = C(C1,Ω) such that

max{sup
σ∈A
∥GRTE(σ)∥∞, sup

σ∈A
∥GDE(σ)∥∞} ≤ C.

Then in [31, Theorem 3.2] the authors conclude from the convergence of the forward maps, the
convergence under the Kullback-Leibler divergence and thus also under the Hellinger metric.

Theorem 5.12 Suppose that the prior distribution of σ is supported on the admissible set and the two
forward maps GRTE and GDE converge. Then it follows for the posterior distributions of RTE and
DE, µyRTE and µyDE, that

dKL(µyRTE, µ
y
DE) ≤ O(ε).

Remark 5.13 (Order of Convergence) Note, that in [31, Theorem 3.2] even an order of the conver-
gence in the Kullback-Leibler divergence could be accomplished. They also investigate the order
of convergence for a linearized radiative transfer equation, which can then be calculated to be of
O(ε2) [31, Chapter 4]. For the inverse problem of chemotaxis, no order of convergence could be
established, yet.

From this short overview of the multiscale analysis of stationary radiative transfer, one gets an idea
about the similarities - and differences - to the inverse problem for chemotaxis. The kinetic equations
for both problems underlie the same structure and can both be approximated by a diffusion equation
in the velocity independent case. Also the convergence of the forward problems was proved in a similar
fashion than in our case, by plugging an expansion for f into the kinetic equation [31]. Additionally,
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the convergence of the inverse problems could be shown in the same metrics, namely the Kullback-
Leibler divergence and the Hellinger metric. Because of all those parallels, we attempted to extend
the results of [28], where the ill-conditioning of inverse radiative transfer in the diffusive limit was
shown, to our case.

The biggest difference of the two problems lies within the kinds of measurements one considers.
Whereas we had an initial value problem and measured the density for different time steps at different
locations, the stationary RTE is a boundary value problem and the measurements are only taken on
the boundary as well. Hence, different

”
arithmetic tricks“ could be used. Throughout the proofs of

this thesis we often took advantage of zero-initial conditions when looking at the differences of two
solutions of the chemotaxis equation by using Grönwall’s inequality, for instance when proving that
fε is a Cauchy-sequence in section 3 or when investigating the derivative of the parameter-to-solution
map in section 5. For proving the ill-conditioning in the diffusive limit of RTE in [28], they use the
fact that their derivative of the parameter-to-solution map has zero boundary condition, thus this
also follows for w0 in their case. Since w0 does not depend on the velocity for stationary RTE, the
zero boundary condition on Γ− can then be expanded onto the whole boundary of the domain, leading
to the measurements on Γ+ being zero as well. Then, from looking at G′(σ∗)σ = ∫Γ+ w(x, v)v ⋅ ndv,
they can use that the integral over w0 vanishes. Therefore, we tried to get a similar result, by taking
advantage of the zero initial condition on w0 in our case of chemotaxis. But our measurements are
not taken in a way, that we get this outcome as natural as it comes for the stationary boundary-value
problem.
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6 Summary and Outlook

In the following, the results of the previous chapters are briefly summarised and an outlook on further
research is given. Within this work an overview of Bayesian Inference was given in section 2. This
was done by first introducing the conventional approach of solving an inverse problem by the method
of least squares and linking the solution arising from this approach to the Maximum a Posteriori
(MAP) point of the posterior distributions coming from Bayesian inversion. More precise, in the
finite-dimensional setting with Gaussian prior and noise, the MAP estimator corresponds to the
solution of a weighted least square problem. The influence of the prior on the solution was discussed
and put the choice of prior information into perspective. Afterwards, the concept of well-posed
solutions was established for distributions in the Bayesian setting. Under certain assumptions on the
prior and the potential, the posterior distribution resulting from Bayes theorem is well defined and
stable with respect to perturbations in the data. The chapter was complemented by the discussion
of selected numerical algorithms, such as Markov Chain Monte Carlo algorithms or variational and
filtering methods, which are used in order to draw information from Bayes formula.

Before Bayesian inversion can be applied to the inverse problem of chemotaxis, the two forward
models on the kinetic and macroscopic level were introduced in section 3. In this chapter, the
phenomenon of chemotaxis was introduced as well as the mathematical models which describe the
forward problems. In the case of bacteria that move by rotating their flagella, the model on the
kinetic level is a run and tumble model consisting of a term that describes the transport part and a
tumbling kernel, which describes the random process of the change of direction. Here, a probability
distribution dependent on time, space and velocity is described by the chemotaxis equation. On
the macroscopic level a drift-diffusion-equation, namely the Keller-Segel model, was introduced and
its properties described. The two models are asymptotically equivalent in the long-time-large-space
regime and the goal of this chapter was to extend this result for the case when a reaction term is
introduced to the system. We used the Fisher Term in order to represent the effect of birth and
death of bacteria, which depends on the distribution function. The asymptotic equivalence of the
extended system could be shown, if one assumes the occurring densities to be bounded and that the
kernel of the zeroth order term of the tumbling kernel is one dimensional and spanned by a velocity
distribution.
Building up on the results for the forward problem, the inverse problem in the Bayesian setting

was introduced in section 4. After establishing the asymptotic limit for the forward problem, the
convergence of the corresponding inverse problems with a reaction term shall be investigated. First,
the question which quantities have to be inferred in order to be able to compare the inverse problems
due to the different scales of the model was conquered. Then the measurements were introduced and
the process of collecting data was discussed. Afterwards, it was shown that the posterior distributions
resulting from Bayes’ rule are well-defined and the convergence under the Kullback-Leibler divergence
and the Hellinger-metric could be proven. The results were concluded while putting assumptions on
the structure of the tumbling kernel, such as boundedness and (anti-)symmetry as prior information.
The work is concluded by the analysis of the loss of information during the scaling process for

chemotaxis without a reaction term in section 5. On the global level, the loss of information was
attempted to be quantified by the difference between the prior and posterior distributions under the
Kullback-Leibler divergence. Since the posterior takes the prior as well as the data into account, a
small difference of the two distributions would mean that the data has little impact on the posterior
distribution. On the local level, the flatness of the posterior distribution around the MAP point was
investigated. A rather flat distributions implies, that the MAP point cannot be determined uniquely
making the reconstruction of the tumbling kernel insensitive to the data. Both, the global and the
local loss of information could not be quantified within this work. But the approach was compared
with similar results for the stationary radiative transfer equation and can be seen as a first attempt
to investigate the loss of information for chemotaxis in the diffusive limit.
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We want to conclude the thesis, by giving an outlook on further research an current developments
within this field.

The Analysis of the stability deterioration did not yield a quantification of the loss of information
in the diffusive limit, thus further research is needed for this topic. For instance, one could try to
use a different metric that may be better suited for the types of measurement we take. Another
approach would be to show, that the desired statement G′ = O(ε) is not true, meaning that there
would be a gain of information in the diffusive limit. In order to do so, one would have to prove that

∫R3 ∫V w0dvχdx ≥ O(1). But since we expect to have some sort of information loss when entering
the macroscopic regime, this would be a rather unintuitive outcome.
The results of the stability deterioration in the case of radiative transfer in [28] where G′ = O(ε)

could be shown, suggest that the Bayesian approach may not be suited for all kinds of inverse
problems. With Bayesian inference, the unique determination of the quantity of interest arises rather
naturally from Bayes’ theorem and can be a good foundation for some numerical algorithms, such
as Markov chain Monte Carlo algorithms, but it may not yield the most reasonable solution. Thus,
the question arises if one should use another approach to inverse problems. In [18], Hellmuth et. Al.
approach the inverse problem for chemotaxis with the method of singular decomposition, a technique
designed to investigate inverse problems coming from kinetic theory. They could show that given a
special design of initial data, the population density - a macroscopic quantity - suffices to reconstruct
the tumbling kernel, in the case of no occurring birth-death-term and with a known chemical stimulus.
Hence, further research of the inverse problem coming from chemotaxis could also include to extend
the results of [18] to more complex cases.
Overall, the multiscale analysis of the inverse chemotaxis problem still yields various open research

topics. Whether it be the question of ill-conditioning in the Bayesian setting when entering the
diffusive limit or of applying other methods to the inverse problem, such as singular decomposition,
in order to reconstruct the tumbling kernel from the macroscopic bacteria density. Understanding
the relation between the inverse problems coming from the kinetic and macroscopic framework re-
spectively, not only gives more insights about chemotaxis, but the established theory can serve as a
guidance for other kinetic equations as well.
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wörtlichen oder sinngemäßen Übernahmen und Zitate sind kenntlich gemacht und nachgewiesen.

Würzburg, den

Kaja Alina Jurak

64


	Introduction
	Bayesian Inference
	Linking the Bayesian and Classical Approach
	Bayesian Well-Posedness
	Numerical Applications
	Markov Chain Monte Carlo Algorithm
	Variational Methods
	Filtering Methods


	Chemotaxis: Forward Models
	Kinetic and Macroscopic Description
	Introduction of Birth-Death-Term
	Drift-Diffusion Limit

	Chemotaxis: Inverse Problem
	Bayesian Inverse Setup
	Convergence of Posterior Distributions
	Conclusion

	Ill conditioning of Inverse Keller-Segel
	Velocity Independent Case
	Global Loss of Information
	Local Behaviour around the MAP point

	Velocity Dependent Case
	Global Loss of Information
	Local Behaviour around the MAP point

	Conclusion and Comparison with the Ill-Conditioning of Inverse Radiative Transfer

	Summary and Outlook
	References

