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Abstract

In this thesis, we are interested in finding time-dependent gravitational solutions
of Einstein’s field equations in asymptotically hyperbolic spacetimes. In the
context of the anti-de Sitter/conformal field theory correspondence (AdS/CFT-

correspondence), these are dual to non-equilibrium systems in quantum field the-
ories. By foliating the n-dimensional spacetime into (n − 1)-dimensional spatial
Cauchy surfaces Σt, the system of Einstein’s field equations can be formulated as a
Cauchy-problem with constraints representing the conservation of momentum and
energy. The strongly hyperbolic first-order conformally covariant Z4 system (FO-
CCZ4) of Einstein’s field equations, as a first-order formulation of the CCZ4-system,
may be well suited as a time-evolving system for finding time-dependent solutions
of the Einstein field equations in asymptotically AdS spacetimes.

The FO-CCZ4 system of Einstein’s field equations in four spacetime dimensions
with vanishing cosmological constant Λ4 was derived by Dumbser et al. [20]. Fur-
thermore, it was shown that this system is strongly hyperbolic for various standard
gauge choices. As the anti-de Sitter space has a non-vanishing negative cosmological
constant and as we are interested in higher-dimensional AdS spaces, the FO-CCZ4
system was extended by previous work of Grosvenor [37] to a first-order system
of Einstein field equations in n spacetime dimensions with a non-trivial cosmolog-
ical constant Λn. Then, we argued that the generalized FO-CCZ4 system for a
three-dimensional and four-dimensional spacetime with a non-vanishing cosmologi-
cal constant remains strongly hyperbolic. The generalized FO-CCZ4 system, with
its n3/2 + n2 + 5n/2 unknown variables, is more complex than the Einstein field
equations in their original formulation. However, it has the advantages of a strongly
hyperbolic first-order system.

Furthermore, the AdS boundary is of utter importance for solving the FO-CCZ4
system of Einstein’s field equations in an asymptotically, non-globally hyperbolic
AdS space. In order for the entire space and not just a small neighbourhood in the
causal future to be determined by some initial data on the Cauchy surface Σt at time
t = 0, conditions for the variables of the FO-CCZ4 system at the AdS boundary
must be calculated. To gain some intuition about how these fields behave near the
boundary, we wrote the AdS metric ĝµν as a perturbation series and derived the
time-dependent conditions at the AdS boundary for the n3/2 + n2 + 5n/2 variables
of the generalized FO-CCZ4 system. Moreover, we checked these derived boundary
conditions for n = 3 and n = 4 with a Mathematica script. [36]

Since momentum and energy conservation of the FO-CCZ4 system must be sat-
isfied for all times on the (n− 1)-dimensional Cauchy surfaces Σt, setting up initial
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data at time t = 0 on the initial surface Σ0 becomes a non-trivial problem. For
simplicity, we restricted ourselves to a time-symmetric surface Σt and used a scalar
field ζ as a non-trivial deviation from the AdS space. To obtain physically relevant
initial data on the Cauchy surface Σ0, we derived a time-independent second-order
elliptic initial value problem using a conformal decomposition. For this problem, we
have found a solution for the trivial case of a vacuum AdS spacetime and simplified
the initial value problem for a scalar field ζ as matter.

Moreover, the numerical discontinuous Galerkin (DG) method for the FO-CCZ4
system was implemented by Dumbser et al. [20] in ExaHyPE (Exascale Hyperbolic
PDE Engine). ExaHyPE is open-source software for solving first-order hyperbolic
partial differential equations using the ADER-DG (arbitrary high-order using deriva-
tives - discontinuous Galerkin) or finite volume (FV) method. The simulations
of various physical phenomena, such as the numerical simulation of earthquakes,
tsunamis or the orbiting of two black holes around each other, have been success-
fully implemented within this framework. Based on this, the goal of this work was
to extend the implementation of the FO-CCZ4 system to asymptotically hyperbolic
spaces. However, a major challenge arose by explicitly setting the derived boundary
conditions in the ExaHyPE code. To address this complication, we tried to solve
first the simplified Cauchy-problem of a static vacuum three-dimensional AdS space-
time with time-symmetric initial data, i.e. (E = 0, pi = 0, Kij = 0, γ̂ij), and the
anti-de Sitter metric γ̂ij as a boundary condition within the ExaHyPE framework.



Zusammenfassung

In der vorliegenden Arbeit interessieren wir uns für zeitabhängige Gravita-
tionslösungen der Einsteinschen Feldgleichungen im asymptotisch hyperboli-
schen Raum. Diese sind im Rahmen der Anti-de Sitter/Konformen Feldtheorie-

Korrespondenz (engl. AdS/CFT-correspondence, für ’Anti-de Sitter/Conformal field
theory’) dual zu Nichtgleichgewichtssystemen in der Quantenfeldtheorie. Durch eine
Zerlegung der n-dimensionalen Raumzeit in (n−1)-dimensionale räumliche Cauchy-
Flächen Σt, kann das System der Einsteinschen Feldgleichungen als Cauchy-Problem
mit physikalischen Nebenbedingen, welche die Impuls- und Energieerhaltung dar-
stellen, formuliert werden. Das stark hyperbolische System erster Ordnung (engl.
FO-CCZ4, für ’first-order CCZ4’) der Feldgleichungen, welches auf der konform ko-
varianten Formulierung des Z4-Systems (engl. CCZ4, für ’conformal and covariant
Z4’) aufbaut, könnte als Zeitentwicklungssystem zum Finden von zeitabhängigen
Lösungen der Einsteinschen Feldgleichungen im asymptotischen AdS Raum gut ge-
eignet sein.

Das FO-CCZ4 System der Einsteinschen Feldgleichungen in 4 Raumzeitdimen-
sionen mit verschwindender kosmologischer Konstante Λ4 wurde von Dumbser et
al. [20] hergeleitet. Es wurde gezeigt, dass dieses System für ausgewälte Standartei-
chungen stark hyperbolisch ist. Da der Anti-de Sitter Raum eine nichtverschwinden-
de, negative kosmologische Konstante hat und wir uns für höherdimensionale AdS
Räume interessieren, wurde das FO-CCZ4 System durch vorherige Arbeiten von
Grosvenor [37] auf ein System erster Ordnung der Einsteinschen Feldgleichungen in
n Raumzeitdimensionen mit nichttrivialer kosmologischer Konstante Λn erweitert.
Das verallgemeinerte FO-CCZ4 System ist mit ihren n3/2 + n2 + 5n/2 unbekannten
Variablen komplexer als die Einsteinschen Feldgleichungen in ihrer ursprünglichen
Form. Da ein stark hyperbolisches System erster Ordnung große Vorteile bringt,
haben wir argumentiert, dass die starke Hyperbolizität des FO-CCZ4 Systems mit
nichtverschwindender kosmologischer Konstante in 3 und 4 Raumzeitdimensionen
erhalten bleibt.

Des Weiteren ist der AdS Rand für das Lösen des FO-CCZ4 Systems der Ein-
steinschen Feldgleichungen in einem asymptotischen, nicht-global hyperbolischen
AdS Raum von großer Bedeutung. Damit der gesamte Raum, und nicht nur eine
kleine Umgebung in der kausalen Zukunft, durch die Angabe von Anfangsdaten auf
der Cauchy-Fläche Σt zum Zeitpunkt t = 0 bestimmt werden kann, müssen Bedin-
gungen für die Variablen auf dem AdS-Rand hergeleitet werden. Um eine gewisse
Intuition zu gewinnen, wie sich diese Felder in der Nähe des Randes verhalten, haben
wir die AdS Metrik ĝµν als Störungsreihe geschrieben, und daraus die zeitabhängigen
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Bedingungen auf dem AdS-Rand für die n3/2 + n2 + 5n/2 Variablen des verallge-
meinerten FO-CCZ4 Systems hergeleitet. Diese Gleichungen haben wir für n = 3
und n = 4 durch ein Mathematica Skript [36] überprüft.

Da die Impuls- und Energieerhaltung des FO-CCZ4 Systems für alle Zeiten auf
den (n − 1)-dimensionalen Cauchy-Flächen Σt erfüllt sein müssen, wird das Auf-
stellen von Anfangsdaten zum Zeitpunkt t = 0 auf der Anfangsfäche Σ0 ein nicht-
triviales Problem. Zur Vereinfachung haben wir uns eine zeitsymetrische Fläche Σt

beschränkt, und ein Skalarfeld ζ als nicht-triviale Abweichung vom AdS Raum ge-
nutzt. Um nun physikalische Anfangsdaten auf der Cauchy-Fläche Σ0 zu erhalten,
haben wir mit Hilfe einer konformalen Zerlegung ein zeitunabhängiges, elliptisches
Anfangswertproblem zweiter Ordnung hergeleitet. Für dieses Problem haben wir
eine Lösung für den trivialen Fall einer Vakuumraumzeit gefunden und das An-
fangswertproblem für ein Skalarfeld ζ als Materie vereinfacht.

Des Weiteren wurde das numerischen diskontinuierliche Galerkin-Verfahren (engl.
DG, für ’discontinuous Galerkin’) für das FO-CCZ4 System von Dumbser et al. [20]
im ExaHyPE-Code (engl., für ’Exascale Hyperbolic PDE Engine’) implementiert.
ExaHyPE ist eine open source Computersofteware zur Lösung von hyperbolischen
partiellen Differentialgleichungen erster Ordnung mit Hilfe des ADER-DG (engl.,
für ’Arbitrary high order using Derivatives-Discontinuous Galerkin’) oder Finite
Volumen Verfahrens. Unterschiedlichste physikalische Phänomene, wie die nume-
rische Simulation von Erdbeben, Tsunamis oder das Umkreisen von zwei Schwar-
zen Löchern, wurden erfolgreich in ExaHyPE implementiert. Darauf aufbauend war
das Ziel dieser Arbeit, die Implementierung des FO-CCZ4 Systems auf asympto-
tisch hyperbolische Räume zu erweitern. Dafür müssen die von uns hergeleiteten
Randbedingungen und Anfangsdaten implementiert und das FO-CCZ4 System mit
den Termen der kosmologischen Konstante erweitert werden. Eine größere Schwie-
rigkeit stellte das explizite Setzen der von uns hergeleiteten Randbedingungen im
ExaHyPE-Code dar. Um diese Schwierigkeiten anzugehen, haben wir abschließend
versucht das triviale Cauchy-Problem einer statischen Vakuumraumzeit mit zeit-
symmetrischen Anfangsdaten, (E = 0, pi = 0, Kij = 0, γ̂ij), und der Anti-de Sitter
Metrik γ̂ij als Randbedinung für n = 3 mit ExaHyPE zu lösen.



Acknowledgement

Hereby I offer my sincerest gratitude to my supervisors Prof. Dr Chrisitan
Klingenberg and Prof. Dr Johanna Erdmenger. They made it possible for me
to write my thesis in the area of applied mathematics and theoretical physics.

It was a huge pleasure to be part of current research in the field of AdS/CFT.
Furthermore, I would particularly like to thank Anne Reinartz and Kevin Gros-

venor, respectively, for their extensive discussion about the ExaHyPE software and
the Anti-de Sitter spacetime. Without your time and leisure, I would not have come
this far.

My special thanks go to Marlies Pirner, Johanna Jans, Lukas Ziegler, Maximi-
lian Stegemeyer, Aimee Sixta, Rosamunde Pare and Eva Horlebein for constructive
suggestions for corrections. Moreover, I would like to thank my brother Marcel, the
Heavy Holes and the Kette161. Many people have supported me along the way, and
I thank them all, whether I have named them explicitly or not.

v



vi



Table of Contents

1 Introduction 1

2 First-Order Formulation of Einstein’s Field Equations 5
2.1 Motivation for rewriting Einsteins’s field equations . . . . . . . . . . . 5
2.2 The ADM evolution system . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The BSSNOK evolution system . . . . . . . . . . . . . . . . . . . . . 10
2.4 The Z4 evolution system . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 The Z4c evolution system . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 The CCZ4 evolution system . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 The generalized FO-CCZ4 evolution system . . . . . . . . . . . . . . 18

2.7.1 Auxiliary variables and ordering constraints . . . . . . . . . . 19
2.7.2 First-order formulation of the CCZ4 system . . . . . . . . . . 19
2.7.3 Hyperbolicity analysis of the generalized FO-CCZ4 system . . 21

2.8 The n degrees of freedom of gauge fixing . . . . . . . . . . . . . . . . 23
2.8.1 The different choices of foliation of the spacetime M . . . . . 23
2.8.2 The different choices of spatial coordinates . . . . . . . . . . . 24

3 The Initial Data Problem for an Asymptotically AdSn Spacetime 27
3.1 Initial data for a matter-free distribution . . . . . . . . . . . . . . . . 29
3.2 Initial data for scalar field as matter . . . . . . . . . . . . . . . . . . 30

4 The Boundary Behaviour for an Asymptotically AdSn Spacetime 33
4.1 Maximally symmetric spacetimes . . . . . . . . . . . . . . . . . . . . 33
4.2 The Anti-de Sitter spacetime AdSn . . . . . . . . . . . . . . . . . . . 34
4.3 The AdSn boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 The asymptotically AdSn spacetime . . . . . . . . . . . . . . . . . . . 37
4.5 Calculation of the timelike boundary conditions . . . . . . . . . . . . 39

4.5.1 The conformal factor φ . . . . . . . . . . . . . . . . . . . . . . 43
4.5.2 The conformally decomposed spatial metric γ̃ij . . . . . . . . . 46
4.5.3 The shift vector β . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.4 The lapse function α . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.5 Calculation for the auxiliary variables . . . . . . . . . . . . . . 49
4.5.6 The extrinsic curvature Kµν . . . . . . . . . . . . . . . . . . . 54
4.5.7 The conformally decomposed traceless part of the extrinsic
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Introduction

General Relativity Einstein’s theory of general relativity is by far the
most successful gravitational theory. While a significant number of exact
solutions of the Einstein field equations are known, only a few of them,

derived from highly idealized approximations, are physically relevant [42]. Three
astrophysically relevant solutions are the Kerr solution for stationary rotating black
holes, the TOV solution of a spherically symmetric perfect fluid model of stars and
the Friedman solution for the expansion describing the model of a homogeneous and
isotropic universe.

Since general relativity is strongly non-linear, the superposition principle does
not hold and certain approximations must be used to solve the two-body problem.
Nevertheless, the geodesic equation describes the motion of a sufficiently small ob-
ject in the gravitational field of a much bigger mass. This calculation is a reasonable
approximation for the motion of photons in the sun’s gravitational field. However,
for calculating the perihelion precession of Mercury’s orbit or the inspiral of a small
black hole inspiral into a giant black hole, the Post-Newtonian expansion [10], or
the gravitational self-force correction [63] has to be used, respectively. While these
approximations apply to most physical problems, they fail for binary systems of high
mass and rotation, such as two rotating black holes or neutron stars. In order to
describe the motion of an astrophysical object in a strong gravitational field regime,
one needs to solve Einstein’s field equations numerically without any approxima-
tions.

Numerical Relativity Several different methods for numerically solving Ein-
stein’s field equations have been studied in the past. There is the characteristic
formulation [65], the conformal field equations by Friedrich [25], the generalized-
harmonic formulation by Pretorius [57], and the commonly used 3 + 1 formalism,
originating from works by Darmois [16], Lichnerowicz [46, 47] and Choquet-Bruhat
[23, 24].

The space and time decomposition of general relativity relies on slicing the four-
dimensional spacetime into three-dimensional spacelike hypersurfaces, projecting
four-dimensional tensors onto submanifolds and time-evolving them from one hy-
persurface to another along a timelike vector field. This way, the Einstein field
equations can be cast as a Cauchy evolution problem with constraints, representing
the conservation of momentum and energy. The 3 + 1 decomposition is discussed
excessively in many modern books, such as [1, 6, 13, 27, 59, 61].
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2 Chapter 1. Introduction

However, it took almost a hundred years to recast the Einstein field equations as
a first-order, strongly hyperbolic system (known as FO-CCZ4 [20]) that is suitable
for stable numerical time integration. Steady long-term simulations for the head-on
collision of two puncture black holes and stable long-term evaluation of a neutron
star in an anti-Cowling approximation were only presented recently, respectively, by
Dumbser et al. [20, 19].

Anti-de Sitter/Conformal field theory The solutions of Einstein’s field
equations in hyperbolic space are in the context of AdS/CFT-correspondence dual
to non-equilibrium systems in quantum field theory. But, what is this AdS/CFT-
correspondence actually about? The most famous and original AdS/CFT duality
by Maldacena [48] is a relation between the maximally supersymmetric conformal
Yang-Mills theory as a conformal quantum field theory on our four-dimensional flat
space without gravity to the type IIB string theory, a theory of gravity on the curved
10-dimensional manifold AdS5 × S5. As the geometry of the boundary of the com-
pactified AdS5 spacetime is the four-dimensional Minkowski spacetime, we may say
that the CFT lives on the boundary of the compactified AdS5 spacetime. By taking
a particular limit, the string theory reduces to a classical weakly coupled theory of
gravity describing pointlike particles, while the conformal quantum field becomes
strongly coupled. For a detailed introduction to AdS/CFT, there are several good
books and lecture notes about AdS/CFT [4, 41, 49, 52, 53, 68].

The strongly coupled N = 4 Superconformal Yang-Mills theory and the AdS
spacetime are far from our real world, which can be described by quantum chromo-
dynamics (QCD) and has a positive cosmological constant. But why is then this
AdS/CFT-duality so interesting? While there is no universal approach for calcu-
lating observables in strongly coupled quantum field theories, perturbative meth-
ods facilitate the calculations in weakly coupled QFTs. Nevertheless, by studying
AdS/CFT, many things about strong couplings in QFTs and even for QCD have
been understood. An example of applying the AdS/CFT duality is the study of
far-from-equilibrium dynamics of strongly coupled QFTs. Here, the time evolution
of the combined cold-hot bath system of two identical copies of quantum critical
systems at different temperatures and chemical potential can be analyzed. After
joining the two systems, a non-equilibrium steady state forms between the shock,
moving towards the cold bath, and the rarefaction wave, moving towards the hot
bath [21]. Furthermore, the entanglement entropy as a measure of the entanglement
of quantum states of different spatial subregions can be studied. While the increase
in entropy of the steady-state region is small, it is given by the entropy production
of the shock and rarefaction wave [21]. For small temperature, [22] derived an ana-
lytical formula for the time dependence for the entanglement entropy. As we want
to numerically solve the FO-CCZ4 system for a hyperbolic AdS space and study
the real-time dynamics and time evolution of the entanglement entropy of strongly
coupled systems, we can use the analytic formula as a benchmark for solving the
FO-CCZ4 system within the ExaHyPE framework.

Structure of the thesis This thesis is structured as follows: In Chapter 2, we
state the various initial value problems of the Einstein field equations with main
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focus on the FO-CCZ4 system for a general n-dimensional spacetime with a non-
vanishing cosmological constant. As we want to evolve forward in time some ini-
tial data for the generalized FO-CCZ4 system for an asymptotically Anti-de Sitter
(AAdSn) spacetime, we derive a time-independent, elliptic, second-order partial dif-
ferential equation in Chapter 3. Solving this PDE will give us physical initial data
that satisfies the conservation of momenta and energy. Thereafter, we introduce the
main properties of an AdS spacetime and, in order to obtain a well-posed and deter-
ministic initial value problem of the generalized FO-CCZ4 system of the Einstein’s
field equations for an asymptotically Anti-de Sitter spacetime, calculate boundary
conditions for the unknowns of the generalized FO-CCZ4 system in Chapter 4.
Moreover, in Chapter 5, we summarize the boundary conditions for an AAdS3 and
AAdS4 spacetime, while in Chapter 6 we give a short introduction to the ExaHyPE
(Exascale Hyperbolic PDE-Engine) software and present some output in 7. We have
devoted much effort to defining the main objects for recasting Einstein’s equations
as a time-evolution problem in a mathematically rigorous manner in Appendix A.
Furthermore, we stated the main properties of the Lie derivative and for a rela-
tivistic spacetime, respectively, in Appendix B and C. To characterize symmetric
spacetimes, we need the notion of Killing vector fields as can be found in Appendix
D, while the tremendous calculation for the boundary behaviour and the Jupyter
notebook for the calculation of initial data can be found, respectively, in Appendix
E and F.

Convention and Notation Whenever there are upper and lower indices re-
peated, we will, unless otherwise indicated, apply the Einstein summation conven-
tion, i.e.

n−1∑
ν=0

gανg
νβ = gανg

νβ.

Greek letters generally run over the n spacetime coordiantes and take the values
0, 1, 2, 3, . . . , n− 1, where x0 = ct is the time coordinate. For example

gανg
νβ =

n−1∑
ν=0

gµνg
νδ.

Every time we use Einsteins summation convention, Greek letters from the beginning
of the alphabet α, β, γ, . . . are used as free indices, while Greek letters starting at
µ, ν, . . . are used as dumb indices for contraction. In this way, the tensorial degree
will be immediately clear. For example, we can easily see that

γµαγ
ν
βγ

γ
ργ

σ
δ R(n) ρ

σµν

is a ein (1, 3)-tensor. Latin letters only run over the spatial coordinates 1, 2, 3, . . . , n−
1, while Latin letters starting at i, j, k, . . . are purely spatial coordinates, Latin let-
ters from the beginning of the alphabet a, b, c, . . . represent only angle coordinates
and Latin letters starting at m,n, . . . are non-rodial coordinates. For example

γijγ
jk =

n−1∑
j=1

γijγ
jk
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gabg
bc = gaθ1g

θ1b + gaθ2g
θ2b + · · ·

Be careful with the notation used in Chapter 4, i.e.

gαµgµβh̄µβ = gα0g0βh̄0β + gα1g1βh̄1β + · · · ,

as we have to sum over gµβ and h̄µβ simultaneasly. For the sake of simplicity, we
will set the gravitational constant G and the speed of light c to one and symmetrize
a 2-fold contravariant tensor by

Aαβ = 1
2 (Aαβ + Aβα) .
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First-Order Formulation of
Einstein’s Field Equations

"Spacetime tells matter how to move.
Matter tells spacetime how to curve." [62]

John Wheeler (1911 - 2008)
Physicist

Since the Einstein field equations in their original formulation are not suitable
for high convergence order numerical integration, much effort has been devoted
to rewriting them as a strongly hyperbolic time-evolution system of partial

differential equations of first-order. This chapter states the different Cauchy-systems
suitable for numerical implementation. However, we focus primarily on the newly
derived generalized FO-CCZ4 system for an n-dimensional spacetime M with a
non-vanishing cosmological constant Λn, as we aim to numerically solve the latter
system for a hyperbolic AdS spacetime with the ExaHyPE software. Eventually,
we show that the generalized FO-CCZ4 system will be stable for numerical time
integration, as it remains strongly hyperbolic for the special cases of a three- and
four-dimensional spacetime.

2.1 Motivation for rewriting Einsteins’s field equa-
tions

The Einstein field equations, as the most essential part of general relativity, are
given globally by

Ric(n) −1
2 R(n) g + Λng = 8πT, (2.1)

where the Ricci tensor Ric(n) ∈ Γ∞(T ∗M⊗2), the metric tensor g ∈ Γ∞(T ∗M⊗2) and
the matter stress-energy tensor T ∈ Γ∞(T ∗M⊗2) are 2-fold covariant tensor fields
on the n-dimensional spacetime M , while their space is given by the set of smooth
sections of the tangent bundel T ∗M⊗2. The Ricci curvature scalar R(n) ∈ C∞(M,R)
is a smooth function on the manifold M and Λn is the cosmological constant. As
the 2-fold covariant Ricci, metric and matter-stress tensor fields and the smooth
function R(n) of Einstein’s field equations are of utter importance, we introduce
them in a mathematically rigorous manner in Appendix A.

5
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While the global formulation is not very usefule, we can write the Einstein field
equations locally as

R(n)
µν −

1
2 R(n) gµν + Λngµν = 8πTµν , (2.2)

where R(n)
µν , gµν , R(n) and Tµν are, respectively, the component functions of the

Ricci tensor Ric(n) , the component functions of the Lorentzian metric g, the corre-
sponding Ricci scalar R(n) , and the components of the matter energy-momentum
tensor T .

The Einstein field equations are a set of n(n + 1)/2 coupled, nonlinear partial
differential equations of hyperbolic and elliptic type, written in a tensorial form that
describes how mass and energy curves the geometry of spacetime. While a significant
number of exact solutions of the Einstein field equations (2.2) are known, only a few
of them are physical problems derived from highly idealized approximations. While
these approximations apply to most physical problems, they fail for binary systems
of high mass and rotation, such as two rotating black holes or neutron stars. In
order to describe the motion of an astrophysical object in a strong gravitational
field regime, one needs to solve Einstein’s field equations numerically without any
approximations. However, as the tensorial formulation of Einstein’s field equations is
not very suitable for high convergence order numerical integration, we need to recast
the most important equation of general relativity. But, rewriting Einstein’s field
equations as a first-order hyperbolic system of partial differential equations suitable
for stable numerical time integration has been a long way of almost a hundred
years. Let us, therefore, summarize in the following sections the reformulations of
Einstein’s field equations as a time-evolution Cauchy-problem while we focus on the
generalized FO-CCZ4 system with a non-vanishing cosmological constant Λn.

2.2 The ADM evolution system
We aim to rewrite the Einstein field equations (2.2) as an initial value Cauchy
problem. To do so, we need to introduce the notion of a foliation of an n-dimensional
spacetime into (n−1)-dimensional spacelike surfaces Σt. Then we need to project the
objects of Einstein’s field equation that are living on the n-dimensional spacetime
onto the hypersurfaces Σt, along the vector field N , and onto the hypersurface Σt

and along the vector field N .
Since we could not find a rigorous introduction to numerical relativity in physics

textbooks, we have devoted much effort to defining the main objects from numer-
ical relativity for recasting Einstein’s equations as a time-evolution problem in a
mathematically rigorous manner. The definitions of a spacelike hypersurfaces Σt, a
foliation of spacetime M and the projection operator γµν can be found, respectively,
in Section A.2, A.5 and A.6.

The derivation of the ADM equations

Using the projection operator γµν , as defined rigorously in Appendix A.6, and the
normal vector field N ∈ Γ∞(TM), as defined rigorously in Appendix A.4, we can
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project any tensor field living on the generalized tangent bundle TM⊗` ⊗ T ∗M⊗k

completly onto the spatial surfaces Σt, completly along the normal vector field N
or onto the spatial surfaces Σt and along the normal vector field N .

Let us first project the matter stress-energy tensor T ∈ Γ∞(T ∗M⊗2) of the
Einstein field equations. Locally, we can write the 2-fold covariant tensor as

T
∣∣∣
U

= Tµνdx
µ ⊗ dxν , (2.3)

where Tµν ∈ C∞(M,R) are the component functions. By the very definition of the
matter stress-energy tensor, we can locally define the following four quantities as
measured by the Eulerian observer with four-velocity Np as in Section 7.2.2 in [59]
by

E = TµνN
µN ν ∈ C∞(M,R) the energy density (2.4a)

Sα = −TµνγµαNν ∈ C∞(M,R) the momentum densitiy (2.4b)
Sαβ = Tµνγ

µ
αγ

ν
β ∈ C∞(M,R) the spatial energy momentum tensor and (2.4c)

S = Sii ∈ C∞(M,R) its trace. (2.4d)

As Gourgoulhon points out in Section 4.1.2 in [27], we can reconstruct the matter
stress-energy tensor from these quantities by

T = S +N [ ⊗ p+ p⊗N [ + EN [ ⊗N [, (2.5)

where [ : TM → T ∗M is the musical isomorphism. Next, let us project the metric
tensor g ∈ Γ∞(T ∗M⊗). Locally, we can write the tensor field as

g
∣∣∣
U

= gµνdx
µ ⊗ dxν , (2.6)

where gµν ∈ C∞(M,R) are the component functions. Then, the projections of the
component functions gµν , as given in Appendix A, are given by

gµνN
µN ν = −1 ∈ C∞(M,R), (2.7)

gµνγ
µ
αγ

ν
β = γαβ ∈ C∞(M,R), (2.8)

gµνγ
µ
αN

ν = 0 ∈ C∞(M,R). (2.9)

The last 2-fold covariant tensor field of the Einstein field equations, the Ricci tensor
Ric(n) ∈ Γ∞(T ∗M⊗2), can be written locally as

Ric(n)
∣∣∣
U

= R(n)
µνdx

µ ⊗ dxν . (2.10)

The projection of the component functions have been derived in Appendix A and
are given by

R(n)
µνN

µN ν = 1
2
(
R +K2 −KijK

ij − R(n)
)
∈ C∞(M,R), (2.11)

R(n)
µνγ

µ
αγ

ν
β = − 1

α
(LmKαβ −DαDβα +Rαβ) +KKαβ − 2KαµK

µ
β ∈ C∞(M,R),

(2.12)
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R(n)
µνγ

µ
αN

ν = DαK −DµK
µ
α ∈ C∞(M,R), (2.13)

where the projection (2.11) along the normal vector field N is given by the scalar
Gaus equation (A.92), the projection (2.12) onto the hypersurface Σt is given by
the combination of the contracted Gauss equation with the Ricci equation, i.e. Eq
(A.99), and the projection (2.13) once along the normal vector field and once onto
the hypersurface Σt is given by the contracted Peterson-Mainardi-Codazzi equation
(A.95). The Levi-Civita connection D on TΣ is rigorously defined in Section A.3.

Using the projections of the matter stress-engerg tensor T , metric tensor g and
the Ricci tensor Ric(n) , we can fully project the Einstein field equations with a
vanishing cosmological constant

Gµν − 8πTµν = 0, (2.14)

where Gµν = R(n)
µν − 1

2 R(n) gµν ∈ C∞(M,R) are the component functions of the
Einstein Tensor G ∈ Γ∞(T ∗M⊗2). While a full projection along the normal vector
field N yields the Hamilton constraint equation

H = (Gµν + Λngµν − 8πTµν)NµN ν = R +K2 −KijK
ij − 16πE = 0, (2.15)

the projection once along the normal vector field N and once onto Σt yields the
momentum constraint equations

Mα = (Gµν − 8πTµν) γµαN ν = DαK −DµK
µ
α + 8πSα = 0. (2.16)

A full derivation of the constraint equations can be found in Section 4.1.3 in [27].
Note that these equations (2.15) and (2.16) are called constrained equations as they
have to be fulfilled for all times t ∈ R, i.e. for all hypersurfaces Σt. But, even
if initially the constraint equations are satisfied, they will not be, up to numerical
accuracy, for later times as explained in Section 10.3.3 in [27]. Moreover, the full
projection of the Einstein equations onto Σt, i.e.

Gµνγ
µ
αγ

ν
β = 8πTµνγµαγνβ, (2.17)

yields the evolution equation of the extrinsic curvature Kαβ, namely

LMKαβ = −DαDβα+α
{
Rαβ+KKαβ−2KαµK

µ
β−8π

(
Sαβ + E − S

D − 2 γαβ
)}

. (2.18)

The component functions of the extrinsic curvature, a measure of how the hypersur-
face Σt is embedded into the spacetime manifold M , is defined rigorously in Section
A.3. A different, but equivalent definition of the extrinsic curvature, as calculated
in Section 3.3.5 in [27], is given by the Lie derivative of the spatial metric γµν in the
direction of the normal evolution vector field M ∈ Γ∞(TM), i.e.

LMγµν = −2αKµν . (2.19)

Using the timelike evolution vector field M ∈ Γ∞(TM), as defined rigorously in
Appendix A.4, the shift vector field β ∈ Γ∞(TM), as defined rigorously in Appendix
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A.4 as β = ∂t −M , we can write the Lie derivative in the direction of the vector
field M as

LM = L∂t − Lβ = ∂t − Lβ. (2.20)
Note, as explained in Appendix A, each term of Eq. (2.15), (2.16), (2.18) and
(2.19) is a tensor field tangent to Σt. Therefore, we can restrict the equations to
only spatial indicies without loss of generality. Using the property (2.20) of the Lie
derivative, we are ready to state the ADM equations, as given in Section 4.3.2 in
[27], the first and original reformulatlion of the Einstein field equations. Then,

(∂t − Lβ) γij = −2αKij (2.21a)

(∂t − Lβ)Kij = −DiDjα + α
{
Rij +KKij − 2KikK

k
j

− 8π
(
Sij + E − S

D − 2 γij
)}

(2.21b)

H = R +K2 −KijK
ij − 16πE − 2Λ = 0 (2.21c)

Mi = DiK −DjK
j
i + 8πSi = 0. (2.21d)

For the sake of completeness, let us introduce spatial coordinates (xi) and express
the terms of the ADM equations within this coordinate system. The terms with a
covariant derivative D associated with the hypersurface Σt can then be expressed
via Eq. (A.16) by

DiDjα = ∂i∂jα− Γkij∂kα, (2.22a)
DjK

j
i = ∂jK

j
i + ΓjjkKk

i −K
j
kΓkji, (2.22b)

Diα = ∂iK, (2.22c)

where the Christoffel symbolds are given by

Γkij = 1
2γ

kl (∂iγlj + ∂jγil − ∂lγij) . (2.23)

The Lie derivative of the spatial metric γij and the extrinsic curvature Kij in direc-
tion of the shift vector β can be written, respectively, by using Eq. (B.28) as

Lβγij = ∂jβi + ∂iβj − 2Γkijβk (2.24)

and
LβKij = βk∂kKij +Kkj∂iβ

k +Kik∂jβ
k. (2.25)

The Ricci tensor and the Ricci scalar of the (n− 1)-dimensional submanifold Σt are
given, respectively, by

Rij = ∂kΓkij − ∂jΓkik + ΓkijΓl kl − Γl ikΓklj and (2.26a)
R = γijRij. (2.26b)

The equations (2.21a) - (2.21d) with all terms expanded by (2.22a) - (2.26b) are
called the ADM equations, named after Arnowitt, Deser and Misner, even though
it was Darmois, Lichnerowicz and Choquet-Bruhat who have first derived these
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equations for special cases for the lapse function α and the shift vector β [27].
Arnowitt, Deser and Misner are well-known for their Hamiltonian formulation of
general relativity, where they derived a slightly different set of equations with the
extrinsic curvature replaced by the momentum conjugate of the spatial metric [27].
In numerical relativity, the n degrees of freedom for gauge fixing are incorporated
in the freedom to choose the lapse function α and the shift vector β freely. We will
postpone the discussion about the different choices used in the past for the lapse
function α and the shift vector β to Section 2.8.

Given initial fields that generate a certain matter distribution (E, pi, Sij), the
ADM equations constitute a second-order nonlinear system of PDEs in the unknows
(γij, Kij) that can be used on the same footing as the original Einstein equations
and have the same 10 degrees of freedom. As all quantities are (n− 1)-dimensional,
we may forget about the ambient n-dimensional spacetime and consider these equa-
tions as a time evolution problem of (n− 1)-dimensional tensor fields on the spatial
hypersurfaces with the constraint equations

R +K2 −KijK
ij − 2Λ = 16πE (2.27a)

DjK
j
i −DiK = 8πSi. (2.27b)

Furthermore, Choquet-Bruhat and Geroch showed in 1969 the global existence and
uniqueness of the Cauchy initial value problem with initial data (γ,K,E, p) on Σ0
that obey the constraint equations. Finally, we refer the attentive reader to the
summary of the Cauchy problem [15] by Choquet-Bruhat and reviews by York,
Andersson and Rendall that can be found in [27].

However, the AMD equations are only weakly hyperbolic and therefore not very
suitable for stable long-term numerical implementation [60]. We can achieve hy-
perbolicity of the Cauchy system by using several tricks. First, we decompose the
variables into a traceless and trace part, conformally decompose the ADM state
variables γij, Kij, add the constraint equations H = Mi = 0 to the evolution equa-
tions and evolve the evolution of the trace of the extrinsic curvature, the contracted
Christoffel symbol and the conformal factor. We will introduce this new system in
the following.

2.3 The BSSNOK evolution system
The ADM equations with a particular gauge fixing choice constitute a system of
evolution equations that are not well-suited for stable numerical integration. The
failure of a stable evolution is due to the weakly hyperbolicity property of this
system, which can be seen by a first-order reduction [39]. Consequently, this means
that the Cauchy initial value problem of the ADM equations is ill-posed, and it
can not be ensured that the solutions are well-behaved. But then, to ensure stable
numerical evolution, we should put these equations into a strongly hyperbolic form.
We can solve this problem using the constraint equations, performing a conformal
decomposition and separating the dynamical variables into trace and traceless parts.
However, before we have a look at the derivation of the BSSNOK system, we note
that well-posedness is a necessary condition to obtain a stable evolution scheme
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[33], but it is not a sufficient condition. Symmetric or strongly hyperbolic equations
are characterized by solutions that do not increase more rapidly than exponentially.
However, from the numerical point of view, exponentially growing solutions, unless
they can be controlled, are still very bad and can terminate the evolution system
after a finite time [6].

Definition of the traceless decomposition

Any 2-fold covariant tensor field S ∈ Γ∞(T ∗Σ⊗2) can be decomposed into its trace

S = γijSij (2.28)

and tracefree part
STFij = Sij −

1
D − 1Sγij, (2.29)

where TF stands for tracefree or traceless. Therefore, let us first decompose the
extrinsic curvature Kij into a traceless part

Aij = KTF
ij = Kij −

1
n− 1Kγij, (2.30)

and a trace part, where the trace is being taking with respect to the spatial metric
γ,

K = γijKij. (2.31)
Then, let us introduce an equivalence class of a conformal metric.

Definition of the conformal decomposition

Not only can we use the conformal decomposition to restore strong hyperbolicity of
the Einstein equations, but it also provides a useful tool to get valid initial data for
the Cauchy problem in Section 3.

Let g and g̃ be two metrics on the pseudo-Riemannian manifold M . Then g
and g̃ are called conformally invariant if there exits a smooth real-valued function
λ ∈ C∞(M,R) such that

g̃ = λg. (2.32)
The function λ is called the conformal factor. The various definitions of a conformal
equivalence class of the spatial metric γ in the literature, as stated in Section 12.2
in [43], are given by

γ̃ij = χγij with χ = γ−
1

n−1 , (2.33a)

γ̃ij = e−4Φγij with Φ = −1
4 logχ = 1

4(n− 1) log γ, (2.33b)

or

γ̃ij = φ2γij with φ = √χ = γ−
1

2(n−1) , (2.33c)

where γ = det γij. In the original derivation, the conformal metric as in Eq. (2.33b)
was used, while we use Eq. (2.33a) for the rest of this chapter. Mathematically
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speacking, the equations (2.33a) - (2.33c) define a class of metrics that are defined
up to scale. As we want to work with the conformal equivalence class, we need to
conformally decompose the related objects. First, we begin with the traceless part
of the extrinsic curvature Aij. Then, the conformal traceless part of the extrinsic
curvature is defined as

Ãij = χAij = χ
(
Kij −

1
n− 1Kγij

)
, (2.34)

where we can raise and lower indices with respect to the conformal metric γ̃ij and
γ̃ij. Then, we decompose the Ricci tensor into two parts, namely

Rij = R̃ij +Rχ
ij, (2.35)

where R̃ij is the Ricci tensor with respect to the conformal spatial metric γ̃ij and Rχ
ij

is the Ricci tensor with respect to the conformal factor χ. To overcome the numerical
instabiliites caused by the first three terms of R̃ij, we introduce the auxiliary variable

Γ̃i = γ̃jkΓ̃ijk = −∂j γ̃ij, (2.36)

where
Γ̃ijk = 1

2 γ̃
ij (∂j γ̃kl + ∂kγ̃jl − ∂lγ̃jk) (2.37)

are the Christoffel symbols associated with the conformally decomposed metric γ̃.
Using the conformal connection function Γ̃i, we can rewrite R̃ij and Rχ

ij as in [67]
by

R̃ij = −1
2
(
γ̃kl∂k∂lγ̃ij + ∂kγ̃il∂j γ̃

kl + ∂kγ̃jl∂iγ̃
kl − Γ̃l∂lγ̃ij

)
+ 1

2
(
γ̃ki∂jΓ̃k − γ̃kj∂iΓ̃k

)
− Γ̃likΓ̃kjl (2.38)

and

Rχ
ij = n− 3

2χ
(
∂i∂jχ− Γ̃kij∂kχ

)
− n− 3

4χ2 ∂iχ∂jχ

+ γ̃ij γ̃
kl

[
∂k∂l
2χ − (n− 1)∂kχ∂lχ4χ2

]
− 1

2 γ̃ij
∂mχ

χ
Γ̃m. (2.39)

The derivation of the BSSNOK system

There are different ways to derive the BSSNOK system. A full derivation by taking
the time derivatives of the newly defined tensor quantities, inserting them into the
ADM equations and using the definition of the conformal metric can be found in
the paper [14]. A different way, by adding the constraint equations to the ADM
equations and using tensor densities, can be found in the paper [66]. Then, after
doing some calculation, the BSSNOK system is given by

∂tχ = 2
n− 1αχK −

2
n− 1χ∂kβ

k + βk∂kχ (2.40a)
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∂tγ̃ij = −2αÃij −
2

n− 1 γ̃ij∂kβ
k + βk∂kγ̃ij + γ̃ik∂jβ

k + γ̃kj∂iβ
k (2.40b)

∂tK = α

(
ÃijÃ

ij + K2

n− 1

)
−DiDiα + 8πα

n− 2 ((n− 3)E + S) + βk∂kK (2.40c)

∂tÃij = χ
[
α
(
RTF
ij − 8πSTFij

)
− (DiDjα)TF

]
+ α

(
KÃij − 2ÃikÃkj

)
(2.40d)

− 2
n− 1Ãij∂kβ

k + 2Ãk(i∂j)β
k + βk∂kÃij (2.40e)

∂tΓ̃i = −2n− 2
n− 1αγ̃

ik∂kK − 2Ãik∂kα− α
n− 1
χ

Ãik∂kχ+ 2αΓ̃iklÃkl (2.40f)

+ 2
n− 1Γ̃i∂kβk + n− 3

n− 1 γ̃
ik∂k∂lβ

l + γ̃kl∂k∂lβ
i − 16παγ̃ijSj (2.40g)

+ βk∂kΓ̃i − Γ̃k∂kβi, (2.40h)

whereDi and D̃i are, respectively, the covariant derivatives associated to the physical
spatial metric γij and the conformal spatial metric γ̃ij, and (E, Si, Sij) the spatial
parts of the energy momentum tensor as defined earlier.

We consider χ, γ̃ij, Γ̃i, K and Ãij as fundamental variables and evolve them with
the evolution equations (2.40a), (2.40b), (2.40c), (2.40d) and (2.40f). Note that the
auxiliary algebraic and differential constraints to the system, namely

det γ̃ij = 1, γ̃ijÃij = 0 and γ̃ijΓ̃j = γ̃jk∂kγ̃ij (2.41)

are regarded as new constraint equations. They increased as the number of dynam-
ical variables increased. While we evolve the BSSNOK system, we can use these
conditions as a numerical check.

Furthermore, we can see that it is first-ordered in time and second-ordered in
space. Moreover, while in [9], the BSSNOK system was rewritten as a first-order in
time and space system to prove hyperbolicity, in [30], symmetric hyperbolicity for
the second-order BSSNOK system was shown for the second-order in space system.

Let us remark at the end that we have succeeded in rewriting the Einstein equa-
tions as a strongly hyperbolic system by introducing conformally transformed vari-
ables. Physically, it does not matter if we evolve the physical variables or their
representation from an equivalence class. In fact, it was shown by York [27] that the
conformal equivalence class carries the proper degrees of freedom of the gravitational
field.

Furthermore, let us notice that we can see from the very definition of a tensor
density of weight d ∈ Q, i.e. a quantity

s = γd/2S, (2.42)

where S is an arbitrary tensor field on Σt [27], that the dynamical variables (χ, γ̃ij, Ãij)
are tensor densities of weight d = −2/(n− 1), while the conformal connection func-
tion Γ̃i is the derivative of a tensor density and transforms as

Γ̃i = −γn/2
(
nγijΓkkj + ∂jγ

ij
)
. (2.43)

To avoid to work with tensor densities and to be able to work with spherical co-
ordinates, we could introduce an extra structure on the hypersurface Σt, namely a
background metric f , with the following properties
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• f is a Riemannian metric,

• L∂tf = 0,

• the inverse metric is given by f ikfkj = δij with f ij 6= γikγjlfkl in general,

• D is the Levi-Civita connection associated with the background metric f ,

• Γ̄kij are the Christoffel symbols associated with the background metric f .

By using the background metric and the new definition of the conformal factors, i.e.

χ =
(
γ

f

)− 1
n−1

, Φ = 1
4(n− 1) log γ

f
and W =

(
γ

f

)− 1
2(n−1)

, (2.44)

the conformal metric γ̃, the conformal traceless part of the extrinsic curvature Ãij
and the conformal factors become tensor fields on Σt, and the contraction of the
Christoffel symbolds associated with the conformal metric is just a partial derivative
of tensor fields. Be aware, that the constraints with respect to the background metric
changes to

det γ̃ij = f, γ̃ijÃij = 0 and γ̃ijΓ̃j = γ̃jk∂kγ̃ij, (2.45)
where f = det fij.

2.4 The Z4 evolution system
As noted in the paper [12], general relativity is general covariant as the physical
laws are invariant under arbitrary smooth coordinate transformations, i.e.

yµ = fµ(xν). (2.46)

As the original Einstein field equations are generally covariant, the solution space
of the ADM equations will be as well. If the constraint equations are satisfied at
t = 0, they will be, at least when all fields are analytical, satisfied for all times t > 0
[27]. Therefore, we could evolve the ADM equations without enforcing the constraint
equations at each time, but only at t = 0. This so-called free-evolution scheme of the
ADM equations breaks general covariance. Bona, Ledvinka, Palenzuela and Zacek
proposed in [11] to extend the Einstein field equations without breaking general
covariance by introducing an n-dimensional "zero" vector Zµ and adding it to the
Einstein field equations as a generalized Lagrangian multiplier (GLM) by

Rµν +∇µZν +∇νZµ = 8π
(
Tµν −

1
2Tgµν

)
. (2.47)

The modified Einstein field equations can be derived from the covariant Lagrangian

LG = gµν [Rµν + 2∇µZν ] (2.48)

by a variational action principle [43] and represent a set partial differential equations
of mixed-order: first-order in time, second-order in space in the metric components
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and first-order in space in the components of our newly defiend Z vector. These
PDE’s have to be solved for the field components {gµν , Zµ} and the physical solution
can be restored by setting Zµ = 0.

The Z4 system can be derived by projecting the terms of the Einstein equations
(2.47) as introduced in Section 2.2. As the component functions of the Ricci tensor
Rµν , the metric tensor gµν and matter stress-energy tensor Tµν have been projected,
we only need to project the ∇µZν+∇νZµ term. Let us first, decompose the n-vector
Zµ into

Zµ = (θ/α, Zi) , (2.49)
where θ = NµZ

µ. Then, we can calculate the full projection onto the hypersurface
Σt, namley

γµαγ
ν
β∇µZν = γµα∇µ

(
γνβZν

)
− Zνγµα∇µγ

ν
β

= γµα∇µ

(
γνβZν

)
− ZνNνγ

µ
α∇µNβ − ZνNβγ

µ
α∇µNν

= γµα∇µ

(
γνβZν

)
− θKαβ −KαµZ

µNβ.

The full projection along the vector field N is given by

NµNν∇µZ
ν = Nµ∇µ (NνZ

ν)− ZνNµ∇µNν

= Nµ∇µθ − ZµAµ

= Nµ∂µθ − ZiAi,

as the covariant derivative of a scalar function is just the partial derivative. And
the mixed projection is given by

γµαN
ν∇µZν = γµα∇µ (NνZ

ν)− Zνγµα∇µNν

= γµα∇µΘ−KαβZ
β (2.50a)

γµαN
ν∇νZµ = N ν∇ν (γµαZµ)− ZµNµN

ν∇νNα − ZµNαN
ν∇νNµ

= N ν∇ν (γµαZµ)−ΘAα − ZµAµNα (2.50b)

Putting the projections of all terms together, we derive the Z4 system

(∂t − Lβ) γij = −2αKij, (2.51a)

(∂t − Lβ)Kij = −DiDjα + α

[
Rij +DiZj +DjZi + (K − 2θ)Kij

− 2KikK
k
j − 8π

(
Sij + E − S

n− 2 γij
)]
, (2.51b)

(∂t − Lβ) θ = α

2
[
R + 2DkZ

k + (K − 2θ)K −KijK
ij − 16πE

]
− Zk∂kα, (2.51c)

(∂t − Lβ)Zi = α

[
DjK

j
i −DiK + ∂iθ − 2Kj

iZj − θ
∂iα

α
− 8πSi

]
. (2.51d)

The evolution equations for γij and Kij are still at our disposal, though in a slightly
different form. The n evolution equation for the algebraic constraint Zµ = 0 replace
the n constraint equations representing the physical Hamiltonian and momentum
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constraints. However, setting Zµ = 0 in Eq. (2.51c) and (2.51d), we can restore the
Hamiltonian and momentum constraint equation (2.21c) and (2.21d). Consequently,
we have to use the evolution equations for θ and Zi on the same footing as the
evolution equations for γij and Kij. This way, general covariance will not be broken.
Numerically, non-zero values for Zµ are possible, and they tell us how physical our
numerical solution will be [43].

The system (2.51a)-(2.51d) with γij, Kij, θ and Zi as evolution variables is
called the Z4 sytem1. Even though the Z4 system is strongly hyperbolic, Bernuzzi
introduced a conformal extension of the Z4 system.

2.5 The Z4c evolution system
A conformal extension of the Z4 system was introduced by Bernuzzi and Hilditch
in [8] and is known as Z4c (conformal Z4). This system can be derived from the
modified Einstein field equations

Rµν +∇µZν +∇νZµ + κ1
[
NµZν +NνZµ

− (1 + κ2)gµνNσZ
σ
]

= 8π
(
Tµν −

1
2Tgµν

)
, (2.52)

where Nµ is the timelike normal vector, and κ1 and κ2 are algebraic damping terms
used to hold the constraint violations modes in numerical applications small. Con-
sequently, using damping terms will keep the numerical solution of the system as
physical as possible. Bernuzzi and Hilditch derived the Z4c system by projecting
the terms of the damped Einstein equations (2.52) as introduced in Section 2.2. As
the component functions of the Ricci tensor Rµν , the metric tensor gµν , the matter
stress-energy tensor Tµν and the Z4-vector term have been projected respectively,
we only need to project

κ1
[
NµZν +NνZµ − (1 + κ2)gµνNσZ

σ
]
.

Therefore, as NσZ
σ is a constant, we get

−(1 + κ2)gµνNσZ
σNµN ν = (1 + κ2)NσZ

σ, (2.53)
−(1 + κ2)gµνNσZ

σγµαγ
ν
β = −(1 + κ2)NσZ

σγαβ, (2.54)
−(1 + κ2)gµνNσZ

σγµαN
ν = 0, (2.55)

and

γµαγ
ν
βNµZν = 0,

NµNνNµZν = −θ,
γµαN

νNνZµ = −γµαZµ,
γµαN

νNµZν = 0. (2.56)
1In their original formulation, this general covariant extension was studied for the four-

dimensional Einstein field equations. We will still call it Z4, even though we have written down
the system in general n dimensions.
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Then, the space and time projections yield evolution equations for the fundamental
variables γij, Kij, θ and Zi given by given by

(∂t − Lβ) γij = −2αKij, (2.57a)

(∂t − Lβ)Kij = −DiDjα + α

[
Rij +DiZj +DjZi + (K − 2θ)Kij − 2KikK

k
j

+κ1(1 + κ2)θγij − 8π
(
Sij + E − S

n− 2 γij
)]
, (2.57b)

(∂t − Lβ) θ = α

2
[
R + 2DkZ

k + (K − 2θ)K −KijK
ij − 16πE

]
−ακ1

(
n

2 + n− 2
2 κ2

)
θ − Zk∂kα, (2.57c)

(∂t − Lβ)Zi = α

[
DjK

j
i −DiK + ∂iθ − 2Kj

iZj − θ
∂iα

α
− 8πSi−κ1Zi

]
, (2.57d)

where the red terms represent the decomposed terms with respect to the damping
parameters κ1 and κ2 introduced in Eq. (2.52). As we can see, these terms con-
stitute exactly the differences to the decomposed Z4 system. A full derivation of
these equations for a general n-dimensional manifold M can be found in the notes
by Grosvenor in [37], while they agree with the equations for a four-dimensional
manifold in the paper [2].

The system (2.57a)-(2.57d) with γij, Kij, θ and Zi as evolution variables is called
the Z4c sytem.

2.6 The CCZ4 evolution system
This system was derived to adress the non-covariant part of the Z4c System. It
has to be understood as beeing more covariant as the Z4c system, as the it wil luse
the non-covariant conformal connection functions Γ̃i. The derivation starts with the
Einstein field equations (2.52). First, we define the following quantities

φ = γ−
1

2(n−1) , (2.58a)
γ̃ij = φ2γij, (2.58b)
Ãij = φ2Aij, (2.58c)
Γ̂i = Γ̃i + 2γ̃ijZj, Γ̃i = γ̃jkΓ̃ijk. (2.58d)

Then, by beforming a change of variables in the Z4c system, the full CCZ4 evolution
equations are then given by

∂tγ̃ij = −2αÃij + 2γ̃k(i∂j)β
k − 2

n− 1 γ̃ij∂kβ
k + βk∂kγ̃ij, (2.59a)

∂tÃij = φ2
[
−DiDjα + α

(
Rij + 2D(iZj) − 8πSij

)]TF
+ αÃij(K − 2θ)

− 2αÃikÃkj + 2Ãk(i∂j)β
k − 2

n− 1Ãij∂kβ
k + βk∂kÃij, (2.59b)

∂tφ = 1
n− 1φ

(
αK − ∂iβi

)
+ βi∂iφ, (2.59c)
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∂tK = −DiD
iα + α

[
R + 2DiZ

i + (K − 2θ)K
]
− (n− 1)ακ1(1 + κ2)θ

+ 8πα
n− 2 [S − (n− 1)E] + βi∂iK, (2.59d)

∂tθ = α

2

(
R + 2DiZ

i − ÃijÃij + n− 2
n− 1K

2 − 2θK
)
− Zi∂iα + βi∂iθ

− ακ1

(
n

2 + n− 2
2 κ2

)
θ − 8παE, (2.59e)

∂tΓ̂i = 2α
(

Γ̃ijkÃjk − (n− 1)Ãij ∂jφ
φ
− n− 2
n− 1 γ̃

ij∂jK

)
− 2Ãij∂jα

+ 2αγ̃ij
(
∂jθ − θ

∂jα

α
− 2
n− 1KZj − κ1Zj − 8πSj

)

+ γ̃jk∂j∂kβ
i + n− 3

n− 1 γ̃
ij∂j∂kβ

k + 2
n− 1Γ̂i∂jβj − Γ̂j∂jβi + βk∂kΓ̂i. (2.59f)

Again, these equations were derived for an n-dimensional manifold M by Grosvenor
in [37]. By setting n = 4, we can see that these equations agree with the system of
equation that can be found in [2]. Furthermore, the Γ̂i evolution equation for black-
hole-spacetime evolution was modified due to numerical instabilites by an extra
parameter κ3 in [2] by

2
n− 1Γ̂i∂jβj − Γ̂j∂jβi = 2

n− 1Γ̃i∂jβj + 2 2
n− 1 γ̃

ijZj∂kβ
k − Γ̃j∂jβi − 2γ̃kjZj∂kβi

→ 2
n− 1Γ̃i∂jβj + 2κ3

2
n− 1 γ̃

ijZj∂kβ
k − Γ̃j∂jβi − 2κ3γ̃

kjZj∂kβ
i. (2.60)

General covariance for the CCZ4 system is broken if κ3 6= 1 is choosen, but as
argued above, [2] uses a non-covariant (κ3 = 1/2) and conformal formulation of Z4
for black-hole spacetime evolutions.

The system (2.59a) - (2.59f) with γ̃ij, Ãij, φ, K, θ and Γ̂i as evolution variables
is called the CCZ4 system. To prove strong hyperbolicity of the CCZ4 system, we
need to rewrite it as a first-order system. This will be done in the next section.

2.7 The generalized FO-CCZ4 evolution system
As we want to evolve initial data for a hyperbolic Anti-de Sitter spacetime, we
need to derive the CCZ4 system from the modified Einstein field equations with a
non-vanishing cosmological constant Λn 6= 0

Rµν +∇µZν +∇νZµ + κ1 [NµZν +NνZµ − (1 + κ2)gµνNσZ
σ]

= 8π
(
Tµν −

1
2Tgµν

)
+ 2
n− 2Λngµν , (2.61)

Here, we will only state the equations of the CCZ4 system that will change with
respect to the non-vanishing cosmological constant Λn:

∂tK = [CCZ4]− 2(n− 1)
n− 2 αΛn (2.62a)
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∂tθ = [CCZ4]− αΛn, (2.62b)

where [CCZ4] represents the right-hand sight of the respective equations of the
CCZ4 system. A full derivation of the FO-CCZ4 system for a general n-dimensional
manifold can be found in the notes by Grosvenor in [37].

To prove the strong hyperbolicity of the second-order CCZ4 system, we need
to rewrite it as a first-order system and analyze the eigenstructure of the coefficient
matrices. Although there are many different ways of performing a first-order reduc-
tion, we will follow the ideas introduced in [20] by making maximum use of auxiliary
variables and second-order ordering constraints.

2.7.1 Auxiliary variables and ordering constraints
From here on, we will closely follow chapter II of the paper [20] by Dumbser et al.
In order to rewrite the CCZ4 system as a first-order system, we use the 33 auxiliary
variables

Ai = ∂i lnα = ∂iα/α, Bi
k = ∂kβ

i,

Dkij = ∂kγ̃ij/2, Pi = ∂i lnφ = ∂iφ/φ, (2.63)

the second-order ordering constraints

Aki = ∂kAi − ∂iAk = 0, Bikl = ∂kB
i
l − ∂lBi

k = 0,
Dklij = ∂kDlij − ∂lDkij = 0, Pki = ∂kPi − ∂iPk = 0, (2.64)

and the hereafter defined constraints from the paper [20]. As γ̃ijÃij = 0, Dumbser
et al. derived the constraint equation

Tk = ∂k
(
γ̃ijÃij

)
= Ãij∂kγ̃

ij + γ̃ij∂kÃij = 0. (2.65)

Moreover, from the constraint det γ̃ij = f , we can derive via the general law of
variation

δ(ln detA = tr
(
A−1 × δA

)
, (2.66)

where δ denotes any derivative that fulfills the Leibniz rule, the following constraint

γ̃ijDkij = 1
2∂k ln f (2.67)

for arbitrary coordinates. Note that for Cartesian coordinates, i.e. f = 1, this
simplifies to

γ̃ijDkij = 0, (2.68)
as was derived by Dumbser et al. in [20].

2.7.2 First-order formulation of the CCZ4 system
As was done in the PhD thesis by Köppel [2], Grosvenor made maximum use of
the above introduced auxiliary variables and ordering constraints in order to evolve
the variables defining the physical metric gµν as a nonlinear system of ordinary
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differential equations and wrote the other dynamical partial differential equations
in terms of non-conservative products with vanishing flux.

We will not get into detail, but refer the reader to the papers [43], [20] and [19]
to understand the proper use of the auxiliary variables and ordering constraints.
For example, as mentioned in Chapter II in [20], a naive first-order formulation or
the use of the first- and second-order ordering constraints alone are not enough, and
the system would lose its strong hyperbolicity.

After some tremendous calculations, that was done by Grosvenor [37], the FO-
CCZ4 system in general n dimensions and with nonvanishing cosmological constant
Λn then reads

∂tγ̃ij = 2βkDkij + 2γ̃k(iB
k
j) − 2

n−1 γ̃ijB
k
k − 2αÃTFij − τ−1(γ̃ − f)γ̃ij (2.69a)

∂t lnφ = βkPk + 1
n− 1(αK −Bk

k) (2.69b)

∂tK = βk∂kK −∇i∇iα + α(R + 2∇iZ
i) + αK(K − 2θc)

− (n− 1)ακ1(1 + κ2)θ − 2(n−1)
n−2 αΛ + 8πα

n−2 [S − (n− 1)E] (2.69c)
∂tÃij = βk∂kÃij + φ2[−∇i∇jα + α(Rij +∇iZj +∇jZi − 8πSij)]

− 1
n−1 γ̃ij[−∇

k∇kα + α(R + 2∇kZ
k − 8πS)] + ÃkiB

k
j + ÃkjB

k
i

− 2
n−1ÃijB

k
k + αÃij(K − 2θc)− 2αÃilγ̃lmÃmj − τ−1γ̃ijÃ

k
k (2.69d)

∂tθ = βk∂kθ + 1
2αe

2
(
R + 2∇iZ

i + n−2
n−1K

2 − ÃijÃij − 2Λ− 16πE
)

− αθKc− αZiAi − ακ1(n2 + n−2
2 κ2)θ (2.69e)

∂tΓ̂i = βk∂kΓ̂i − 2(n−2)
n−1 αγ̃ij∂jK + 2αγ̃ki∂kθ + sγ̃kl∂(kB

i
l) + n−3

n−1sγ̃
ik∂(kB

l
l)

+ 2sαγ̃ikγ̃nm∂kÃnm + 2
n−1 Γ̃iBk

k − Γ̃kBi
k + 2α(Γ̃ijkÃjk − (n− 1)ÃijPj)

− 2αγ̃ki(θAk + 2
n−1KZk)− 2αÃijAj − 4sαγ̃ikDnm

k Ãnm

+ 2κ3( 2
n−1 γ̃

ijZjB
k
k − γ̃jkZjBi

k)− 2ακ1γ̃
ijZj − 16παγ̃ijpj (2.69f)

∂tAk = βl∂lAk − αf(α)(∂kK − ∂kK0 − 2c∂kθ)− sαf(α)
[
γ̃nm∂kÃnm

+ 2Dnm
k Ãnm

]
− αAk(K −K0 − 2θc)(f(α) + αf ′(α)) +Bl

kAl (2.69g)

∂tB
i
k = s

(
βl∂lB

i
k + k∂kb

i + α2µγ̃ij(∂kPj − ∂jPk) +Bl
kB

i
l (2.69h)

− α2µγ̃ij γ̃nl(∂kDljn − ∂lDkjn)
)

(2.69i)

∂tDkij = βl∂lDkij + s
2 γ̃mi∂(kB

m
j) + s

2 γ̃mj∂(kB
m
i) − s

n−1 γ̃ij∂(kB
m
m) − α∂kÃij

+ 1
n−1αγ̃ij γ̃

nm∂kÃnm +Bl
kDlij +Bl

jDkli +Bl
iDklj − 2

n−1B
l
lDkij

− 2
n−1αγ̃ijD

nm
k Ãnm − αAkÃTFij (2.69j)

∂tPk = βl∂lPk + 1
n−1α∂kK + s

n−1∂(kB
i
i) + 1

n−1αAkK +Bl
kPl

+ s
n−1α

(
γ̃nm∂kÃnm − 2Dnm

k Ãnm
)

(2.69k)

Let us give some remarks about the coloured terms that can be found in the FO-
CCZ4 system:

• the red terms have been added by using the second-order ordering constraints
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(2.64) and the constraint (2.65) to symmetrize the sparsity pattern of the
system matrices in order to avoid Jordan blocks as they cannot be diagonilazied

• the constant e is introduced in front of the Hamiltonian constraint only for
numerical reasons: e > 1 achvies better numerical constraint values, but breaks
covariance

• the constant τ is a relaxation time and is used to impose the constraints
det γ̃ij = f and γ̃ijÃij = 0 weakly

• the constant µ is used to adjust the second-oder odering constraints

• the constant s is used to turn on or off the evolution of the shift vector β:
While s = 0 corresponds to ∂tβi = 0, s = 1 corresponds to the Gamma-driver
shift condition

• the constant c is used to remove the algebraic source of the modified 1 + log-
slicing

• the blue terms are the terms with a non-vanishing cosmological constant Λn

Finally, the equations (2.69a)-(2.69k) with γ̃ij, lnφ, K, Ãij, θ, Γ̂i, Ak, Bi
k, Dijk

and Pk as evolution variables is called the generalized FO-CCZ4 system for an n-
dimensional manifold with a non-vanishing cosmological constant Λn. By setting
n = 4 and Λn = 0, these equations will simplify to the original formulation by
Dumbser et al. in Chapter II in [20].

2.7.3 Hyperbolicity analysis of the generalized FO-CCZ4
system

As strong hyperbolicity for the FO-CCZ4 sytem in four dimensions with vanishing
cosmological constant Λn = 0 was shown by Dumser et al. in Section D of Chapter
II in [20], we need to show strong hyperbolicity for the generalized FO-CCZ4 system
with a non-vanishing cosmological constant. In compact matrix-form, we can write
the FO-CCZ4 system as

∂Q
∂t

+
n−1∑
i=1

Ai(Q)∂Q
∂xi

= S(Q), (2.70)

where Ai ∈ Rξ×ξ are the system-matrices and

Q =
(
γ̃ij, lnα, βi, lnφ, Ãij, K, θ, Γ̂i, bi, Ak, Bi

k, Dkij, Pk
)
∈ Rξ (2.71)

is the state vector containing ξ = n3

2 + n2 + 5
2n variables. By splitting the state

vector Q and the algebraic source S(Q), respectively, into Q = (V,U) with

V =
(
γ̃ij, lnα, βi, lnφ

)
(2.72)

U =
(
Ãij, K, θ, Γ̂i, bi, Ak, Bi

k, Dkij, Pk
)

(2.73)
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and S(Q) = (S′(Q),S′′(Q)) ∈
(
Rξ1 ,Rξ2

)
, we can write the system (2.70) as

∂

∂t

[
V
U

]
+

n−1∑
i=1

[
0 0
0 Bi(V)

]
∂

∂xi

[
V
U

]
=
[

S′(Q)
S′′(Q)

]
. (2.74)

Thus, this equation can be decomposed, respectively, into the ξ1 = n2

2 + n
2 + 1 and

ξ2 = n3

2 + n2

2 + 2n− 1 equations

∂V
∂t

= S′(Q), (2.75)

and
∂U
∂t

+
n−1∑
i=1

Bi(V)∂U
∂xi

= S′′(Q). (2.76)

As the system matrices for the ODE subsystems are vanishing, the eigenvalues will
be trivially zero, and the eigenvectors are just the unit vectors. Now, we need to
calculate the eigenvalues and the eigenvectors for the reduced system (2.76). This
has been done in the appendix of [20] for a four-dimensional manifold with vanishing
cosmological constant Λn for the two coordinate gauge choices:

• zero shift βi = 0 and harmonic slicing as well as

• Gamma-driver shift and 1 + log-slicing.

As the two blue terms proportional to the cosmological constant that were added
are purely algebraic, they will not affect the hyperbolicity analysis and the four-
dimensional generalized FO-CCZ4 system will remain strongly hyperbolic. The full
eigenstructure of the coefficient matrices

P = ωiBi

for the unit normal vector ωi = (1, 0, 0), such that P = B1, with all their eigenvalues
and eigenvectors can be found in the appendix of [20]. As the Einstein field equa-
tions are isotropic, we do not have to analyze the eigenstructure for all unit normal
vectors, but we can restrict ourselves to just one. Now, the non-trivial eigenvec-
tors of the system (2.70) are given by "glueing" the unit vectors obtained from
the ODE subsystem to the eigenvectors obtained from the reduced system (2.76).
Therefore, the generalized FO-CCZ4 system for a four-dimensional spacetime with
a non-vanishing cosmological constant remains strongly hyperbolic. Furthermore,
as the FO-CCZ4 system restricted to a three-dimensional embedded surface, by
setting the z-component of the four-dimensional spacetime to zero, is strongly hy-
perbolic, the FO-CCZ4 system for a three-dimensional spacetime will be strongly
hyperbolic. This way, the FO-CCZ4 system for n = 3 and n = 4 will be strongly
hyperbolic, while the eigenvectors and the eigenvalues of the coefficient matrices of
the generalized FO-CCZ4 system with a non-vanishing cosmological constant for a
n > 4-dimensional manifold still have to be calculated.

As noted in [43], the FO-CCZ4 system admits constraint violations. Thus, the
hyperbolicity analysis is only valid for the augmented solution space. However, as
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we have noted earlier, if the constraint equations are satisfied for the initial data,
they will be satisfied for all times t > 0 and thus, the hyperbolicity analysis in [20]
is also valid for the solutions that satisfy the constraint equations.

Fixing the gauge variables (α, β) is equivalent to choosing a coordinate system in
general relativity and therefore of utter importance for numerical implementation.
Therefore, let us discuss in the next section the various gauge choices used in the
past. After that, we will mainly follow and summarize the notes in Chapter 9 by
[27].

2.8 The n degrees of freedom of gauge fixing
In numerical relativity, the 4 degrees of freedom for gauge fixing are incorporated
in the freedom to choose the lapse function α and the shift vector β freely. Thus,
they are the same n degrees of gauge freedom fixing a reference frame as in general
relativity. While the lapse function α and the shift vector β, respectively, are defined
in a differential geometric rigorous manner in Section A.4, they tell us how far
a slice is located perpendicular above another and how to propagate the spatial
coordinates (xi) from one slice to another. In this way, the lapse function and the
shift vector reflect the choice of foliation (Σt)t∈R of the spacetime and the choice of
spatial coordinates on each leaf Σt, respectively. If we want to numerically solve
the dynamical evolution equations, every term must be given a specific numerical
value or solved via a PDE. While a numerical value is straightforward to implement,
evolving the lapse function α and the shift vector β via a PDE extends the overall
evolution system, and the system can be made more hyperbolic or elliptic [27].

In the following two sections, we will only state the choices of foliation and spatial
coordinates used in the past and state their main properties, but refer the attentive
reader to Chapter 9 in [27] and references within.

2.8.1 The different choices of foliation of the spacetime M
The most simple way of choosing the lapse function is called the geodesic slicing,
i.e.

α = 1. (2.77)
It is called geodesic as for α = 1, the n-acceleration of the Eulerian observer is zero,
and thus the word lines of the Eulerian observer are geodesics. [27] From equation
(A.55), we can see that the eigentime coincides with the coordinate time. As argued
in [27], this type of foliation will collapse after a limited range of time due to the
tendency of timelike geodesics without vorticity to focus and eventually cross.

The maximal slicing foliation of the spacetime maximizes the volume of the
hypersurfaces Σt by the condition that the trace of the extrinsic curvature is zero,
i.e.

K = 0. (2.78)
This foliation has a singularity avoidance property, which means that the entire
spacetime outside the event horizon is covered, while near this region, the slices pile
up. A consequence is that the lapse goes to zero if time increases. This choice of
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foliation yields an elliptic equation for the lapse α that is time-consuming if one
does not use fast elliptic solvers. However, it could be transferred into a parabolic
equation to approximate the maximal slicing.

The harmonic slicing gauge can be imposed by requiring that the harmonic
condition holds for the time coordinate t, i.e.

∇µ∇µt = 0, (2.79)

leaving the freedom to choose the spatial coordintes. This gauge has a weaker
singularity avoidance property than the maximal slicing and has been generelized
by Bona, Massó, Seidel and Stela [27] to(

∂

∂t
− Lβ

)
α = − (K −K0)α2f(α), (2.80)

where f is an arbitrary function and K0 = K(t = 0). This equation reduces to the
geodesic slicing for f(α) = 0, and to the harmonic slicing for f(α) = 1 and K0 = 0.
We call this dynamical evolution equation the "1 + log"-slicing, since the solution
for K0 = 0 and β = 0 are of the form α = 1 + ln γ. The "1 + log"-slicing has even
better singularity avoidance properties then the harmonic slicing and is hyperbolic.
In [2], the 1 + log-slicing condition was slighlty modified to(

∂

∂t
− Lβ

)
α = −α2f(α) (K −K0 − 2θ) , (2.81)

where f(α) = 2/α and K0 = 0 was choosen, while [20] uses due to numerical reasons

∂t lnα = βkAk − αf(α)(K −K0 − 2θ). (2.82)

From the very definitions of these gauges, we can see that the maximal slicing can
be defined on a single hypersurface Σt, while the other foliations are only meaningful
for a foliation (Σt)t∈R.

2.8.2 The different choices of spatial coordinates
Once some coordinates are set in the initial slice Σ0, the shift vector β tells us how
these spatial coordinates propagate to all other slices. As for the lapse function, the
most simple way to choose the shift vector is to set it to zero, i.e.

β = 0. (2.83)

These coordinates are called normal coordinates since the lines xi = const are or-
thogonal to all hypersurfaces Σt. However, as soon as we want to simulate rotating
star spacetimes, the field lines of the stationary Killing vector are not orthogonal to
the hypersurfaces [27], and we need to use β 6= 0.

The minimal distortion tries to minimize the time derivative of the conformal
spatial metric γ̃ij that we will introduce in the subsequent section. This condition
yields an elliptic equation for the shift vector β that has to be solved or could
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be simplified by considering the pseudo-minimal distortion or approximate minimal
distortion.

Most interesting for us will be the Gamma-freezing and Gamma-driver condi-
tions. The Gamma-freezing is just a simplification of the pseudo-minimal distortion
and is given by

L∂tΓ̃i = 0, with Γ̃i := γ̃jk
(
Γ̃i jk − Γ̄i jk

)
, (2.84)

where Γ̄i jk are the Christoffel symbols with respect to a background metric f and
the tilde objects are conformal quantities that will be introduced as well in the next
section. This condition will yield an elliptic equation for the shift vector and can be
modified by

∂tβ
i = k∂tΓ̃i (2.85)

yielding a parabolic equation and

∂2
t β

i = k∂tΓ̃i − (η − ∂t ln k) ∂tβi (2.86)

yielding an hyperbolic equation that is given by the first-order system

∂tβ
i = kbi + βk∂kb

i (2.87a)
∂tb

i = ∂tΓ̃i − βk∂kΓ̃i − ηbi + βk∂kb
i, (2.87b)

where k = 3/4 is usually used, a damping term η and an auxiliary field bi in order
to rewrite the hyperbolic equation as a first order system. In [2], the Gamma-driver
shift condition was slighlty modified to

∂tβ
i = kbi + βk∂kβ

i (2.88a)
∂tb

i = ∂tΓ̂i − βk∂kΓ̂i − ηbi + βk∂kb
i, (2.88b)

where Γ̃i was replaced with the newly defined variable Γ̂i. As noted in [2], the choise
of k = 3/4 can lead to weak hyperbolicity of the system, when the lapse function is
close to one. The Gamma-driver shift condition will be nowadays used as a standard
choice for the spatial coordinates.

All choices for spatial coordinates mentioned above tell us how the coordinates
propagate from Σt to Σt′ with t, t′ 6= 0, but do not tell us how to choose the
coordinates on the initial hypersurface Σ0. We can choose an initial coordinate
system by so-called spatial coordinate-fixing choices, but instead, refer the attentive
reader to the well-explained section in [27] and the references within.

We aimed to fully specify the generalized FO-CCZ4 system of the Einstein field
equations for a n-dimensional AdS spacetime with a non-vanishing cosmological
constant Λn. We have shown that the system for a three- and four-dimensional AdS
spacetime remains strongly hyperbolic and we derived gauge variables for gauge
fixing our reference frame. From here on, we will use the generalized FO-CCZ4
system (2.69a)-(2.69k) with the gauge fixing (2.82), (2.88a)-(2.88b).
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The Initial Data Problem for an
Asymptotically AdSn Spacetime

"The resolution of Einstein equation amounts to solving a Cauchy problem,
namely to evolve forward in time some initial data. However, this is a

Cauchy problem with constraints. This makes the set up of initial data
a non-trivial task, because these data must obey the constraints" [27]

Éric Gourgoulhon
Physicist

As we want to find a unique solution to the generalized FO-CCZ4 system
(2.69a)-(2.69k) with the gauge fixing (2.82), (2.88a)-(2.88b), we need to set
initial conditions. However, the Einstein system constitutes a time evolution

problem with constraints that have to be fulfilled for all times t ∈ R. Thus, the initial
data that we want to evolve forward in time has to satisfy the n constraint equations,
making the set-up a quite non-trivial task. Mathematically, we have the following
problem taken from [27]:

Given some hypersurface Σ0 at t = 0, we need to find a Riemannian metric γ, a
symmetric bilinear form K and some energy-matter distribution (E, p) on Σ0 such
that the Hamiltonian and momentum constraints

R +K2 −KijK
ij − 2Λn = 16πE (3.1)

DjK
j
i −DiK = 8πpi, (3.2)

are satiesfied. Let us remember that R is the spatial Riemannian scalar curvature
with respect to the spatial metric γij.

There is no natural way of freely choosing between these variables [27], though,
Lichnerowicz, Choquet-Bruhat, York and Ó Murchadha, and York and Pfeiffer have
shown that we can split the initial data into freely choosable parts and parts ob-
tained by solving the constrained equations by performing a conformal decompo-
sition. However, we will not get into detail but refer the attentive reader to the
respective chapter in [27] and references within.

For the sake of simplicity, we restricted ourselves to a time-symmetric surface
Σt, i.e. as given in [5] equivalent to demanding that Kij|t=0 on Σ0. Thus, the mo-
mentum density pi must vanish everywhere on Σ0 in order to satisfy the momentum

27
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constraint. This leaves us only with the simplified Hamiltionian constraint

R− 2Λn = 16πE. (3.3)

By performing a conformal decomposition, i.e.

γij = ζ2γ̂ij and γij = ζ−2γ̂ij, (3.4)

for the spatial part of the AdSn metric γ̂ij with the boundary condition ζ|∂Σ = 1,
we can write the scalar curvature for an n-dimensional manifold as

R = ζ−2
[
R̂− 2(n− 2)D̂kD̂

k ln ζ + (n− 3)(2− n)D̂k ln ζD̂k ln ζ
]
, (3.5)

where
R̂ = γ̂ijR̂ij (3.6)

is the Riemannian scalar curvature associated with the conformal spatial metric γ̂ij.
Now, we can rewrite the scalar curvature R by using

D̂iD̂
i ln ζ = D̂i

(
1
ζ
D̂iζ

)
= − 1

ζ2 D̂iζD̂
iζ+1

ζ
D̂iD̂

iζ = −D̂i ln ζD̂i ln ζ+1
ζ
D̂iD̂

iζ (3.7)

to
R = ζ−2

[
R̂ + (n− 2)(5− n)D̂i ln ζD̂i ln ζ − 2(n− 2)ζ−1D̂iD̂

iζ
]
. (3.8)

The Hamiltonian constraint for an n-dimensional manifold is then given by

R̂ + (n− 2)(5− n)D̂i ln ζD̂i ln ζ − 2(n− 2)ζ−1D̂iD̂
iζ − 2Λnζ

2 = 16πζ2E, (3.9)

where
R̂ = 2Λn = −(n− 1)(n− 2)

L2 . (3.10)

By using Eq. (3.10) and by setting the AdSn radius L = 1, thereby fixing the
cosmological constant to

Λn = −(n− 1)(n− 2)
2 , (3.11)

we can at last simplify the Hamiltonian constraint to

D̂iD̂
iζ −

( 1
n− 2Λn + 5− n

2 D̂i ln ζD̂i ln ζ
)
ζ + 1

n− 2 (Λn + 8πE) ζ3 = 0. (3.12)

Now, as D̂ is the covariant derivative with respect to the conformally decomposed
spatial AdSn metric γ̂ij, let us explicitely write out the D̂-derivative terms. Then,

D̂iD̂
iζ = D̂i

(
γ̂ijD̂jζ

)
= γ̂ijD̂iD̂jζ + D̂iγ̂

ijD̂jζ = γ̂ijD̂i (∂jζ)

= γ̂ij
(
∂i∂jζ − ∂kζΓ̂kij

)
= γ̂ij∂j∂iζ − γ̂ij∂kζΓ̂kji

= γ̂ρρ∂2
ρζ + γ̂ab∂a∂bζ − γ̂ρρΓ̂kρρ∂kζ − γ̂abΓ̂kab∂kζ

= γ̂ρρ∂2
ρζ + γ̂ab∂a∂bζ − γ̂ρρΓ̂ρρρ∂ρζ

− γ̂ρρΓ̂aρρ∂aζ − γ̂abΓ̂
ρ
ab∂ρζ − γ̂abΓ̂cab∂cζ, (3.13)
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where we have used that the covariant derivative D̂ is compatible with the metric
γ̂, i.e. D̂iγ̂

ij = 0. Furthermore,

D̂i ln ζ = ∂i ln ζ (3.14a)
D̂i ln ζ = γ̂ij∂j ln ζ = γ̂iρ∂ρ ln ζ + γ̂ia∂a ln ζ (3.14b)

and therefore

D̂i ln ζD̂i ln ζ = ∂i ln ζ
(
γ̂iρ∂ρ ln ζ + γ̂ia∂a ln ζ

)
= γ̂ρρ∂ρ ln ζ∂ρ ln ζ + γ̂ab∂a ln ζ∂b ln ζ (3.15)

As we want the spatial metric γij to be asymptotically AdS, the ζ function has to
be one on the boundary, i.e. ζ

∣∣∣
∂Σ0

= 1. Therefore, we can now state the initial value
problem

D̂iD̂
iζ +

(
n− 1

2 − 5− n
2 D̂i ln ζD̂i ln ζ

)
ζ

− 1
n− 2

(
(n− 1)(n− 2)

2 − 8πE
)
ζ3 = 0 on Σ0

ζ = 1 on ∂Σ0, (3.16)

where the covariant derivative terms D̂iD̂
iζ and D̂i ln ζD̂i ln ζ are, respectivley, given

by Eq. (3.13) and (3.15). After solving the initial value problem Eq. (3.16), we can
reconstruct the spatial metric γij by

γij = ζ2γ̂ij, (3.17)

while we choose the energy-density E and set

pi = 0 and Kij = 0 ∀ i, j. (3.18)

on the initial slice Σ0 at t = 0.
Let us note that Eq. (3.16) is a second-order, time-independent elliptic partial

differential equation, which can be solved numerically by so-called spectral methods.
Readers not familiar with the initial value problem in numerical relativity can have
a look at the respective chapter in [27], and read about the spectral method for
elliptic partial differential equations in [29] and [38]. Even though getting valid
initial physical data sets in numerical relativity is a whole domain to itself, let us
take a look at the initial data sets for a matter-free distribution, i.e. E = 0, and a
symmetric scalar field as matter.

3.1 Initial data for a matter-free distribution
Assuming a matter-free distribution at time t = 0, i.e. E = 0, we can simplify the
initial value problem to

D̂iD̂
iζ +

(
n− 1

2 − 5− n
2 D̂i ln ζD̂i ln ζ

)
ζ − n− 1

2 ζ3 = 0 on Σ0
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ζ = 1 on ∂Σ0. (3.19)

A closer look shows that for the simple case Σ0 = Rn−1

ζ = 1 (3.20)

is a solution. This way, we can choose

γij = γ̂ij, pi = 0, E = 0 and Kij = 0 (3.21)

as initial data. If we are taking the topology of the initial leave as Σ0 = Rn−1 \Bρ(0)
or as Σ0 = Rn−1 \O, we need to set boundary conditions for ζ, respectively, on the
sphere or at the puncture O.

By choosing the latter initial data for Σ0 = Rn−1, the state vector at t = 0, i.e.

Q
∣∣∣
t=0

=
(

ˆ̃γij, ln α̂, β̂i, ln φ̂, ˆ̃Aij, K̂, θ̂, ˆ̂Γi, b̂i, Âk, B̂i
k, D̂kij, P̂k

)
, (3.22)

is given by the purely AdSn part of the state variables.

3.2 Initial data for scalar field as matter
In the following, we will derive an explicit formula for the energy density E, con-
structed from a scalar field ξ ∈ C∞(M,R). As noted in [5], scalar fields are of utter
importance, as we can use their energy density E as a parameter to tune the desired
initial data.

The energy-momentum tensor, constructed from the Lagrangian density of a
scalar field ξ, is given by

Tαβ = ∂αξ∂βξ − gαβ
(1

2g
µν∂µξ∂νξ + V (ξ)

)
. (3.23)

By substituting Eq. (3.23) into Eq. (2.4a), we can derive the energy density of a
scalar field ξ

E = TµνN
µN ν = ∂µξ∂νξN

µNν − gµνNµN ν︸ ︷︷ ︸
=−1

(1
2g

ρσ∂ρξ∂σξ + V (ξ)
)

= ∂µξ∂νξN
µN ν + 1

2g
µν∂µξ∂νξ + V (ξ)

= (NµN ν + gµν) ∂µξ∂νξ − 1
2g

µν∂µξ∂νξ + V (ξ)
= γµν∂µξ∂νξ − 1

2g
µν∂µξ∂νξ + V (ξ)

= γij∂iξ∂jξ − 1
2g

µν∂µξ∂νξ + V (ξ)
= γij∂iξ∂jξ − 1

2

(
gtt∂tξ∂t + 2gti∂tξ∂iξ + gij∂i∂jξ

)
+ V (ξ)

= γij∂iξ∂jξ −
1
2

(
− 1
α2∂tξ∂tξ + 2 β

i

α2∂tξ∂iξ + γij∂iξ∂jξ −
1
α2β

iβj∂iξ∂jξ

)
+ V (ξ)

= 1
2γ

ij∂iξ∂jξ + 1
2α2

(
∂tξ∂tξ − 2βi∂iξ∂tξ + βiβj∂iξ∂jξ

)
+ V (ξ)
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= 1
2γ

ij∂iξ∂jξ + 1
2α2

[(
∂t − βi∂i

)
ξ
]2

= 1
2ζ
−2γ̂ij∂iξ∂jξ + V (ξ), (3.24)

where we have set (∂t − βi∂i) ξ
∣∣∣
t=0

= 0. If one only sets ∂tξ
∣∣∣
t=0

= 0, as was done in
Eq. (35) in [5], there is one term missing. Furthermore, Eq. (35) in [5] is missing
a factor of 1/2. Plugging the energy density (3.24) into the Hamilton constraint
(3.12), we get the initial value problem that needs to be solved

D̂iD̂
iζ +

n− 1
2 − 5− n

2 D̂i ln ζD̂i ln ζ + 1
n− 28πγ̂ij∂iξ∂jξ

ζ
− 1
n− 2

(
(n− 1)(n− 2)

2 − 8πV (ξ)
)
ζ3 = 0 on Σ0

ζ = 1 on ∂Σ0, (3.25)

As the scalar field ξ on the initial data slice is completely arbitrary, we can choose
whatever suits us best. Furthermore, for the sake of simplicity, we can even restrict
ourselves to free and massless fields by setting V (ξ) = 0.

Let us at last write down the explicit formulas for the derivatives D̂iD̂
iζ and

D̂i ln ζD̂i ln ζ in three and four dimensions. The Derivatives for an AdS3 spacetime
are given by

D̂iD̂
iζ = γ̂ρρ∂2

ρζ + γ̂χχ∂2
χζ − γ̂ρρ∂ρζΓ̂ρρρ − γ̂ρρ∂χζΓ̂χρρ

− γ̂χχ∂ρζΓ̂ρχχ − γ̂χχ∂χζΓ̂χχχ
= γ̂ρρ∂2

ρζ + γ̂χχ∂2
χζ −

(
γ̂ρρΓ̂ρρρ + γ̂χχΓ̂ρχχ

)
∂ρζ

−
(
γ̂ρρΓ̂χρρ + γ̂χχΓ̂χχχ

)
∂χζ

= γ̂ρρ∂2
ρζ + γ̂χχ∂2

χζ −
(
γ̂ρρΓ̂ρρρ + γ̂χχΓ̂ρχχ

)
∂ρζ

= q2a∂2
ρζ + q2

ρ2∂
2
χζ −

(
qa

`
+ q3

`
− ρq2

L2 −
qa

ρ

)
∂ρζ, (3.26)

where we have used in the second to the last line the results from the Jupyter
notebook F.1, and

D̂i ln ζD̂i ln ζ = q2a∂ρ ln ζ∂ρ ln ζ + q2

ρ2∂χ ln ζ∂χ ln ζ, (3.27)

where we have used the spatial AdS metric γ̂ij. The Derivatives for an AdS4 space-
time are given by

D̂iD̂
iζ = γ̂ρρ∂2

ρζ + γ̂χχ∂2
χζ + γ̂θθ∂2

θζ

− γ̂ρρ∂ρζΓ̂ρρρ − γ̂ρρ∂χζΓ̂χρρ − γ̂ρρ∂θζΓ̂θρρ
− γ̂χχ∂ρζΓ̂ρχχ − γ̂χχ∂χζΓ̂χχχ − γ̂χχ∂θζΓ̂θχχ
− γ̂θθ∂ρζΓ̂ρθθ − γ̂θθ∂χζΓ̂χθθ − γ̂θθ∂θζΓ̂θθθ

= γ̂ρρ∂2
ρζ + γ̂χχ∂2

χζ + γ̂θθ∂2
θζ

−
(
γ̂ρρΓ̂ρρρ + γ̂χχΓ̂ρχχ + γ̂θθΓ̂ρθθ

)
∂ρζ
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−
(
γ̂ρρΓ̂χρρ + γ̂χχΓ̂χχχ + γ̂θθΓ̂χθθ

)
∂χζ

−
(
γ̂ρρΓ̂θρρ + γ̂χχΓ̂θχχ + γ̂θθΓ̂θθθ

)
∂θζ

= γ̂ρρ∂2
ρζ + γ̂χχ∂2

χζ + γ̂θθ∂2
θζ

−
(
γ̂ρρΓ̂ρρρ + γ̂χχΓ̂ρχχ + γ̂θθΓ̂ρθθ

)
∂ρζ − γ̂θθΓ̂χθθ∂χζ

= q2a∂2
ρζ + q2

ρ2∂
2
χζ + q2

ρ2 sin2 χ
∂2
θζ

−
(
qa

`
+ q3

`
− ρq2

L2 −
2qa
ρ

)
∂ρζ + q2 cotχ

ρ2 ∂χζ, (3.28)

where we have used in the second to the last line the results from the Jupyter
notebook F.2, and

D̂i ln ζD̂i ln ζ = q2a∂ρ ln ζ∂ρ ln ζ + q2

ρ2∂χ ln ζ∂χ ln ζ + q2

ρ2 sin2 χ
∂θ ln ζ∂θ ln ζ, (3.29)

where we have used the spatial AdS metric γ̂ij.
Finally, we have found physical relevant initial data for a matter-free distribution,

while the second-order, time-independent elliptic PDE (3.25) still needs to be solved.
As we first aim to numerically solve the FO-CCZ4 system (2.69a)-(2.69k) with the
gauge fixing (2.82), (2.88a)-(2.88b) for a static vacuum asymptotic AdS spacetime,
we will postpone finding initial data for a symmetric scalar field for the moment.
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The Boundary Behaviour for an
Asymptotically AdSn Spacetime

"Holographic duality between gauge theory and gravity
is the best we have now for a nonperturbative

description of quantum gravity." [26]
Edward Witten

Physicist

Even though Anti-de Sitter spacetimes can be characterised as maximally sym-
metric spacetimes which are geodesically complete, they will not be globally
hyperbolic. Consequently, an Anti-de Sitter spacetime does not admit a

Cauchy surface, i.e. an achronal subset of the spacetime, which is met by every in-
extendible causal curve. As we want the entire manifold to be determined by some
specified initial data on the initial Cauchy surface Σ0 at t = 0, the spacetime must
be globally hyperbolic. Only in this case, one can find a globally unique solution.
Therefore, to obtain a well-posed, unique and deterministic initial value problem for
the FO-CCZ4 system (2.69a)-(2.69k) with the gauge fixing (2.82), (2.88a)-(2.88b) for
an asymptotically Anti-de Sitter spacetime, we need to specify boundary conditions
at spacelike infinity, i.e. r →∞.

Before we state the boundary conditions for the variables of state vector Q, we
will give a short introduction to Anti-de Sitter spacetimes. Most of the results will be
taken from the book [4] by Erdmenger and the paper [5] by Bantilan, Pretorius and
Gubser, whereas the ideas on how to obtain a well-posed and deterministic Cauchy
problem for a non-globally hyperbolic Anti-de Sitter spacetimes can be found in the
paper [35].

4.1 Maximally symmetric spacetimes
As symmetries are of utter importance in physics, we will focus on maximally sym-
metric solutions to the vacuum Einstein field equations, i.e. solutions without any
matter. We can characterise symmetries of spacetimes locally by so-called Killing
vector fields X ∈ Γ∞(TM), which are vector fields satisfying the following condition

LgX = 0. (4.1)

33
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For further characterisations of Killing vector fields, see Appendix D. Furthermore,
we want to know how many linear independent Killing vector fields, and therefore
symmetries, a manifold can have. Moreover, exactly those spacetimes with maximal
linear independent Killing vector fields are of interest and we call them maximally
symmetric spacetimes. As noted in [4], an n-dimensional manifold can have at most
n(n + 1)/2 independent symmetries. The manifold M we are interested in will be
pseudo-Riemannian, putting it more precisely Lorentzian, and we can find three
maximally symmetric spacetimes depending on the sign of the Ricci scalar Rn :

• R(n) = 0: Minkowski spacetime

• R(n) > 0: de Sitter spacetime

• R(n) < 0: Anti-de Sitter spacetime.

Maximally symmetric spacetimes will have the same curvature R(n) everywhere and
we can see by taking the trace of the vacuum Einstein field equations, i.e.

R(n) = 2Λnn

n− 2 , (4.2)

that the cosmological constant Λn will be zero for Minkowski spacetimes, positive
for de Sitter spacetimes, and negative for Anti-de Sitter spacetimes. We refer the
attentive reader to [51], [31] or [40], respectively, for some introduction to Minkowski
and de Sitter spacetimes.

4.2 The Anti-de Sitter spacetime AdSn
As mentioned in the latter section, the maximally symmetric spacetime with neg-
ative scalar curvature R(n) and therefore negative cosmological constant Λn < 0 is
called an Anti-de Sitter spacetime. Such spacetimes can occur as the maximally
symmetric solution to the vacuum Einstein equations

R(n)
µν −

1
2 R(n) gµν + Λngµν = 0. (4.3)

Geometrically, we can view the AdSn spacetime as the hypersurface defined by

−
(
x0
)2

+
n−1∑
i=1

(
xi
)2
−
(
x4
)2

= −L2, (4.4)

embedded in a higher-dimensional pseudo-Euclidean spacetime Rn−1,2 with two time
dimensions and the metric

gRn−1,2 = −
(
dx0

)2
+

n−1∑
i=1

(
dxi

)2
−
(
dx4

)2
. (4.5)

For xi = const., the temporal coordinates x0 and x4 define a circle by(
x0
)2

+
(
x4
)2

= const. (4.6)
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This way, the AdSn spacetime is homeomorphic to S1 × Rn−1 [56], where the prod-
uct topology is given by the subspace topology of S1 and the standard topology
of Rn−1. As the hyperbolic space Hn−1, the unique, simply connected and non-
compact (n− 1)-dimensional Riemannian manifold with sectional curvature −1, is
diffeomorphic to Rn−1, the product topology of AdSn spacetime is given by the
product topology of S1 × Hn−1.

But, as the temporal coordinates x0 and x4 define a circle in the (x0, x4)-plane,
closed timelike curves (CTC) exist. For closed timelike curves, light cones are ar-
ranged so that particles moving in free fall on a CTC can loop back to the same
spacetime event on the manifold. As this is very uncomfortable for us as we do not
yet know if such CTC’s are possible, we will pass to the universal covering spacetime
denoted by ÃdSn, which is defined in the same way as AdSn but instead has the
product topology of

R× Hn−1, (4.7)
where we have unwrapped the circle S1 to R. This way, time t does not run from 0
to 2πL, but instead from −∞ to ∞.

The AdSn hyperboloid can be parametrized by a chart (U, x) that cover the
spacetime by

x0 =
√
r2 + L2 sin (t/L)

x1 = r sin θn−2 · · · sin θ4 sin θ3 sin θ2 cos θ1

x2 = r sin θn−2 · · · sin θ4 sin θ3 sin θ2 sin θ1

x3 = r sin θn−2 · · · sin θ4 sin θ3 cos θ2
...

xn−2 = r sin θn−2 cos θn−3

xn−1 = r cos θn−2

xn =
√
r2 + L2 cos (t/L) , (4.8)

where (t, r, θn−2, . . . , θ1) ∈ (−∞,∞)×(0,∞)×(0, π)n−3×(0, 2π) are the coordinates.
By plugging Eq. (4.8) into Eq. (4.5), we get the solution of the vacuum Einstein
field equation by

ds2 = −f(r)dt2 + 1
f(r)dr

2 + r2dΩ2
n−2 ≡ ĝµνdx

µdxν , (4.9)

where we have defined f(r) := 1+ r2/L2 and where dΩ2
n−2 is the line element of the

(n− 2)-unit sphere Sn−2 parametrized by the angels (θn−2, . . . , θ1). Furthermore,
the Eq. 4.2 corresponds for n = 5 with the metric given in [5], and L is the AdS
radius related to the cosmological constant via

Λn = −(n− 1)(n− 2)
2L2 . (4.10)

As the AdSn boundary is important for the AdS/CFT duality and for the sake of
simplicity for further calculations, let us compactify the "radial" coordinate r to a
finite value ρ, as used in [5], by

r = ρ

1− ρ/`, (4.11)
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where ` is an arbitrary compactification scale that is independent of the AdSn ra-
dius L. This way, the AdSn boundary is at the finite value ρ = `, even though
we will set ` = 1 in the code, but write it out explicitly in all the calculations
in order to dimensionally check the equations. Transforming to the coordinates
xµ = (t, ρ, θn−2, . . . , θ1), we can write the line element of AdSn by

ds2 = −
(

1 + ρ2

q2L2

)
dt2 + 1

q2
(
q2 + ρ2

L2

)dρ2 + ρ2

q2 dΩ2
n−2, (4.12)

where we have defined the smooth scalar field

q = 1− ρ

`
∈ C∞(M,R) (4.13)

with simple zero at the AdSn boundary ρ = `. As the AdSn boundary is of utter
importance for us, let us state the most important properties in the following section.

4.3 The AdSn boundary
The AdSn boundary is given by the set of all lines on the light-cone originating from
the point 0 ∈ Rn−1,2 and is properly defined in [4] by

∂AdSn =
{

[x]
∣∣∣∣x ∈ Rn−1,2, x 6= 0,−

(
x0
)2

+
n−1∑
i=1

(
xi
)2
−
(
x4
)2

= 0
}
, (4.14)

where [x] is an equivalence class such that two parametrizations are equivalent if
they only differ by a real number. Furthermore, as noted in [4], the topology of
∂AdSn is given by the quotient topology of(

S1 × Sn−2
)
/Z2, (4.15)

where we take the quotient space as x ∈ Rn−1,2 and −x ∈ Rn−1,2 on ∂AdSn are differ-
ent points in S1×Sn−2, but the same points in ∂AdSn. By conformally compactifing
AdSn with the coordinate transformation

r/L = tanR (4.16)

as discussed in [5], the infinite region r ∈ [0,∞] is compactified to the region
R ∈ [0, π/2]. Therefore, AdSn is conformal to one-half of the Einstein static uni-
verse. Furthermore, we note that the time coordinate has not been compactified
and thus spatial infinity runs along the time coordiate as one can see in Fig. 4.1.
Now, an essential consequence is that spatial infinity is timelike and causally con-
nected to the interior [5].

As AdSn is not globally hyperbolic, a Cauchy surface does not exist. Therefore,
we can not just set initial date at t = 0, but have to specify boundary conditions at
spacelike infinity. These boundary conditions will therefore be time-dependent and
derived in 4.5.
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Figure 4.1: The conformal diagram of an Anti-de Sitter spacetime take from [5].
The boundary is the timelike surface J . Dashed lines represent constant time t
surfaces, and solid lines are constant r surfaces. Past and future timelike infinity
are given by i− and i+, respectively. Note that the angles have been suppressed and
that we have to add a uni-sphere Sn−2 at each point of the diagram.

4.4 The asymptotically AdSn spacetime
As we want to solve the Cauchy problem of the Einstein equations for an asymp-
totically AdSn spacetime, let us state the main properties in the following.

An asymptotically AdSn spacetime has the same structure as the AdSn spacetime
near the boundary, i.e. at q = 0 or ρ = `. And, as we want to find a spacetime that
can be characterised by the metric gµν within the bulk and the AdSn metric ĝµν on
the boundary, we need to find physical fall-off conditions near the boundary ρ = `
such that we can decompose the full metric gµν near the horizon by

gµν = ĝµν + hµν . (4.17)

The matter-free asymptotics of hµν for an asymptotically AdSn spacetime were found
in [32] by using that the boundary conditions are invariant under the AdSn symmetry
group. Now, taken from [5], the physical fall-off conditions hµν near the boundary
are given by

hrr(t, r, θn−2 . . . θ1) = frr(t, θn−2 . . . θ1) 1
rn+1 +O(r−(n+2))

hrm(t, r, θn−2 . . . θ1) = frm(t, θn−2 . . . θ1) 1
rn

+O(r−(n+1))

hmn(t, r, θn−2 . . . θ1) = fmn(t, θn−2 . . . θ1) 1
rn−3 +O(r−(n−2)), (4.18)
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where m,n are the non-radial coordiantes (t, θn−2 . . . θ1). As we want to use the
compactified "radial coordinate", let us transform the fall-off metric hµν from the
coordinates (t, r, θn−2 . . . θ1) to the coordinates (t, ρ, θn−2 . . . θ1). The transformation
law of the metric tensor gµν is given by

gαβ = ∂xµ

∂x′α
∂xν

∂x′β
gµν , (4.19)

and due to Eq. (4.17), the fall-off metric hµν transforms in exaclty the same way

hαβ = ∂xµ

∂x′α
∂xν

∂x′β
hµν . (4.20)

Furthermore, the spatial part of the full metric gµν transforms as

γkl = ∂xµ

∂x′k
∂xν

∂x′l
gµν

= ∂xi

∂x′k
∂xj

∂x′l
γij + 2 ∂x

i

∂x′k
∂x0

∂x′l
βi + ∂x0

∂x′k
∂x0

∂x′l
g00, (4.21)

where we have used gij = γij and gi0 = βi as in Eq. A.85. As we are only interested
in coordinate transformation that does not involve a time transformation, we can
simplify the latter equation to

γkl = ∂xi

∂x′k
∂xj

∂x′l
γij. (4.22)

Now, as gij = γij, we can write

γij = γ̂ij + hij, (4.23)

where γ̂ij and hij are the spatial parts, respectively, of the AdSn metric and the fall-
off metric hµν . Therefore, we know that the spatial part hij transforms in exactly
the same way

hkl = ∂xi

∂x′k
∂xj

∂x′l
hij (4.24)

and we can finally transform the fall-off metric components to

hρρ(t, ρ, θn−2 . . . θ1) = ∂r

∂ρ

∂r

∂ρ
hrr(t, r(ρ), θn−2 . . . θ1)

= 1
(1− ρ/`)4hrr(t, r(ρ), θn−2 . . . θ1)

= (1− ρ/`)n−3

ρn+1 fρρ +O
(

(1− ρ/`)n−2

ρn+2

)

= qn−3

ρn+1fρρ +O
(
qn−2

ρn+2

)
= qn−3fρρ +O(qn−2)

hρm(t, ρ, θn−2 . . . θ1) = ∂r

∂ρ
hrm(t, r, θn−2 . . . θ1)
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= 1
(1− ρ/`)2hrm(t, r(ρ), θn−2 . . . θ1)

= (1− ρ/`)n−2

ρn
fρm +O

(
(1− ρ/`)n−1

ρn+1

)

= qn−2

ρn
fρm +O

(
qn−1

ρn+1

)
= qn−2fρm +O(qn−1)

hmn(t, ρ, θn−2 . . . θ1) = hmn(t, r, θn−2 . . . θ1)

= (1− ρ/`)n−3

ρn−3 fmn +O
(

(1− ρ/`)n−2

ρn−2

)

= qn−3

ρn−3fmn +O
(
qn−2

ρn−2

)
= qn−3fmn +O(qn−2), (4.25)

where we have renamed in the third line the f -functions frr → fρρ and frm → fρm as
these are just labels and wrote them for the sake of simplicity without coordinates,
used Eq. 4.13 in the fourth line and performed a Taylor-expansion in q around the
boundary q = 0 in the last line. As mentioned in [5], the fall-off conditions (4.18) and
(4.25) hold for vacuum asymptotically AdS spacetimes and for spacetimes containing
localized matter distributions with sufficiently rapid fall-off near the boundary. To
use general energy-matter distributions, see the fall-off conditions obtained in the
references noted by Gubser et al. in [5].

As the coordinates of the components functions hij(t, ρ, θn−2 . . . θ1) are clear, we
will omit them from here on and only write hij.

4.5 Calculation of the timelike boundary condi-
tions

To find solutions for the Cauchy problem of the FO-CCZ4 system in an asymptot-
ically AdSn spacetime, we need to specify boundary conditions at timelike infinity
for the variables of the state vector Q. In order to gain some intuition on how these
fields behave near the boundary ρ = `, we will write the spacetime metric gµν as

gµν = ĝµν + εhµν , (4.26)

where εhµν represents a small perturbation, while ε is an auxiliary variable according
to which we expand. By using Eq. (4.26), we can derive the boundary behaviour of
the evolution variables of the state vector Q, writing them as a power series in ε.

We will use the regularization scheme proposed by Gubser et al. [5], although
they have not proven that it is a correct and complete characterization of the asymp-
totically AdSn boundary behaviour, but rather argued that it is consistent with the
considered initial data, as they obtained stable and convergent numerical solutions.
However, as we have not yet obtained any numerical output, we can not say if this
holds for the considered FO-CCZ4 system, i.e. Eqs. (2.69a) - (2.69k).
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The regularization scheme by Gubser et al. [5] is given by writing the fall-off
metric components hµν as a power series in q around the boundary q = 0, i.e.

hµν =
∞∑
i=0

hµν,iq
i. (4.27)

For a regular solution, a solution that has the desired fall-off as given in Eq. (4.25),
the first n− 3 terms for hρρ, the first n− 2 terms for hρm and the first n− 3 terms
for hmn on the right hand sight have to vanish, while the n − 2, n − 1 and n − 2
term describes, respectively, the leading-order behaviour of the vacuum boundary
conditions. This seems that we would need to supply, respectively, n− 2, n− 1 and
n−2 boundary conditions for the fall-off conditions. Following the discussion in [5],
the next step will be to define a new evolution variable h̄µν via

hρρ = qn−4h̄ρρ, hρm = qn−3h̄ρm and hmn = qn−4h̄mn, (4.28)

where we demand that the new evolution variable h̄µν satisfies the Dirichlet boundary
problem

h̄µν(t, q = 0, θn−2 . . . θ1) = 0 (4.29)
at q = 0. Inserting Eq. (4.28) into Eq. (4.27), we can write

h̄µν = · · ·+ hµν,n−2q
−1 + hµν,n−1 + hµν,nq + . . .

Now, we see that if we choose regular initial data for h̄µν that fulfils

h̄µν(t = 0, q = 0, θn−2 . . . θ1) = 0, (4.30)

the first terms with undesired fall-off at t = 0 vanish.
Using the newly defined evolution variable h̄ij that asymptotically falls of with

h̄µν ∼ q, we can write the perturbated metric field gµν as

gµν =

ĝtt + εqn−4h̄tt εqn−3h̄tρ εqn−4h̄tb
εqn−3h̄tρ ĝρρ + εqn−4h̄ρρ εqn−3h̄ρb
εqn−4h̄at εqn−3h̄aρ ĝab + εqn−4ρ2gab,Sn−2h̄ab

 , (4.31)

where we have, similiar as Gubser et al. in [5], added ρ2gab,Sn−2 in order to ensure
regularity at the origin ρ = 0. By using this ansatz, motivated by perturbation
theory, we can gain some intuition on how the n3/2 + n2 + 5n/2 variables of the
state vector Q behave near the boundary.

As we are only considering solutions that preserve a SO(n − 2) symmetry, let
us apply the SO(1), SO(2) and SO(3) symmetry to the metric tensor field in Eq.
(4.31), respectively, for an AAdS3, AAdS4 and AAdS5 spacetime.

The ansatz for an asymptotically AdS3 spacetime
The components of the perturbated metric gµν around the purely AdS3 metric gµν
by some small value εh̄µν is given by

gtt = ĝtt + εq−1h̄tt
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gtρ = εh̄tρ

gtχ = εq−1h̄tχ

gρρ = ĝρρ + εq−1h̄ρρ

gρχ = εh̄ρχ

gχχ = ĝχχ + εq−1ρ2h̄χχ, (4.32)

where we have used (t, ρ, χ) ∈ (−∞,∞)× (0, `)× (0, 2π) as coordinates.

The ansatz for an asymptotically AdS4 spacetime
The components of the perturbated metric gµν around the purely AdS4 metric gµν
by some small value εh̄µν with an SO(2) symmetry is given by

gtt = ĝtt + εh̄tt

gtρ = εqh̄tρ

gtχ = εh̄tχ

gtθ = 0
gρρ = ĝρρ + εh̄ρρ

gρχ = εqh̄ρχ

gρθ = 0
gχχ = ĝχχ + ερ2h̄χχ

gχθ = 0
gθθ = ĝθθ + ερ2 sin2 χh̄θθ, (4.33)

where we have used (t, ρ, χ, θ) ∈ (−∞,∞)× (0, `)× (0, π)× (0, 2π) as coordinates.

The ansatz for an asymptotically AdS5 spacetime
The components of the perturbated metric gµν around the purely AdS5 metric gµν
by some small value εh̄µν with an SO(3) symmetry is given by

gtt = ĝtt + εqh̄tt

gtρ = εq2h̄tρ

gtχ = εqh̄tχ

gtθ = 0
gtφ = 0
gρρ = ĝρρ + εqh̄ρρ

gρχ = εq2h̄ρχ

gρθ = 0
gρφ = 0
gχχ = ĝχχ + ερ2qh̄χχ

gχθ = 0
gχφ = 0
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gθθ = ĝθθ + ερ2 sin2 χqh̄ψ

gθφ = 0
gφφ = ĝφφ + ερ2 sin2 χ sin2 θqh̄ψ, (4.34)

where we have used (t, ρ, χ, θ, φ) ∈ (−∞,∞)×(0, `)×(0, π)2×(0, 2π) as coordinates.
As we are considering solutions that preserve an SO(3) symmetry, we can use a single
term that rotates the S2 [5].

As the newly defined evolution variables h̄µν ∈ C∞(M,R) have to satisfy a couple
of constraint equations, let us state them next.

Boundary Conditions for the h̄µν functions

Now, by using the regularized fall-off metric variables h̄µν , we can fully capture the
boundary conditions given in Eq. (4.18) or Eq. (4.25) by a Dirichlet boundary
problem

h̄ρρ
∣∣∣
ρ=`

= 0

h̄ρm
∣∣∣
ρ=`

= 0

h̄mn
∣∣∣
ρ=`

= 0. (4.35)

Furthermore, the origin and axis regularity conditions, taken from [5], are given,
respectively, by

∂ρh̄ρρ
∣∣∣
ρ=0

= 0

h̄ρm
∣∣∣
ρ=0

= 0

∂ρh̄mn
∣∣∣
ρ=0

= 0, (4.36)

and

∂χh̄ρρ
∣∣∣
χ=0,π

= 0

∂χh̄ρm′
∣∣∣
χ=0,π

= 0

∂χh̄m′n′
∣∣∣
χ=0,π

= 0

h̄µ′χ
∣∣∣
χ=0,π

= 0, (4.37)

where m′, n′ are non-radial coordiantes with m′, n′ 6= χ unless m′ = n′ in the first
line and µ′ 6= χ.

As we have stated the perturbational ansatz of the full metric in Eq. (4.31), the
precise ansatz of the full metric for an AAdS3, AAdS4 and AAdS5 manifold is given,
respectively, in Eq. (4.32), Eq. (4.33) and Eq. (4.34). The boundary, origin and
regularity conditions for the evolution variables h̄µν are written down, respectively,
in Eq. (4.35), Eq. (4.36) and Eq. (4.37).

Now, we are ready to calculate the boundary conditions for the evolutions vari-
ables of the state vector Q in the following section.
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Let us already note here that our Mathematica script [36] proves the following
equations for a three- and four-dimensional manifold, i.e. setting n = 3 and n = 4.
This gives us a good hint that the general formulas might be as well correct for
n > 4.

4.5.1 The conformal factor φ
The conformal factor φ was first introduced in Chapter 2.3 for the derivation of the
BSSNOK system to ensure stable evolution and remains a variable of the generalized
FO-CCZ4 system. Let us, therefore, begin by calculating the boundary behaviour
of φ by using the ansatz in Eq. (4.31).

Due to Eq. (A.85), i.e. ĝij = γ̂ij, and Eq. (A.86) with a vanishing AdSn shift
vector β̂, i.e. ĝij = γ̂ij, the spatial AdSn metric γ̂ij and the inverse spatial AdSn
metric γ̂ij are given, respectively, by

γ̂ij = diag
 1
q2
(
q2 + ρ2

L2

) , ρ2

q2 gab,Sn−2

 , (4.38)

and
γ̂ij = diag

(
q2
(
q2 + ρ2

L2

)
,
q2

ρ2 g
ab
Sn−2

)
, (4.39)

where gab,Sn−2 is the round metric of a n − 2-dimensional unit sphere Sn−2. Note
that, as the shift vector β̂i = 0, the dual shift vector β̂i, as it is defined by

β̂j = γ̂ij ĝti = γ̂ijβ̂i, (4.40)

vanishes as well. Let furthermore γ = det(γij) be the determinant of the spatial
part of the full metric gµν ,

γ̂ = det(γ̂ij) = ρ2(n−2) det(gab,Sn−2)
q2(n−1)

(
q2 + ρ2

L2

) (4.41)

be the determinant of the spatial metric of the AdSn metric ĝµν and hij be the
spatial part of hµν . By using the latter equations, the determinant of γij near the
boundary ρ = ` can be written as

det(γij) = det(γ̂ij + εhij) = det(γ̂ij) + εhij
∂ det γij
∂γij

∣∣∣∣
γ=γ̂

+ 1
2εhklεhij

∂2 det γij
∂γkl∂γij

∣∣∣∣
γ=γ̂

+ ...

= det(γ̂ij) + εhij det(γ̂ij)γ̂ij +O(ε2)
= det(γ̂ij)

(
1 + εγ̂ijhij

)
+O(ε2)

= ρ2(n−2) det(gab,Sn−2)
q2(n−1)

(
q2 + ρ2

L2

) (
1 + γ̂ρρεhρρ + γ̂abεhab

)
+O(ε2)

= ρ2(n−2) det(gab,Sn−2)
q2(n−1)

(
q2 + ρ2

L2

) (
1 + γ̂ρρεhρρ + γ̂abεhab

)
+O(ε2)



44 Chapter 4. The Boundary Behaviour for an Asymptotically AdSn Spacetime

= ρ2(n−2) det(gab,Sn−2)
q2(n−1)

(
q2 + ρ2

L2

) (
1 + q2

(
q2 + ρ2/L2

)
εhρρ + q2

ρ2 g
ab
Sn−2εhab

)
+O(ε2)

= ρ2(n−2) det(gab,Sn−2)
q2(n−1)a

(
1 + qn−2aεh̄ρρ + q2

ρ2 g
ab
Sn−2qn−4ρ2gab,Sn−2εh̄ab

)
+O(ε2)

= ρ2(n−2) det(gab,Sn−2)
q2(n−1)a

(
1 + qn−2

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
ε

)
+O(ε2), (4.42)

where we have Taylor-expandet the determinant of γij in εhij in the first line and
set

a = q2 + ρ2

L2 . (4.43)

By defining

hγij = qn−2
(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
, (4.44)

we can decompose Eq. (4.42) into a purely AdSn and a perturbational part

det(γij) = det(γ̂ij)
(
1 + εhγij

)
+O(ε2). (4.45)

As the conformal factor φ is defined in Eq. (2.33c) by

φ = det (γij)−
1

2(n−1) , (4.46)

we can simplify this equation by using the binomial approximation (1 + x)α ≈ 1 + αx
if x ∈ R is small to

φ = γ̂−
1

2(n−1)

(
1− 1

2(n− 1)εhγij
)

+O(ε2). (4.47)

By defining the conformal factor φ̂ for an AdSn spacetime as

φ̂ = γ̂−
1

2(n−1) (4.48)

and the perturbation hφ for the conformal factor as

hφ = − 1
2(n− 1)hγij = − qn−2

2(n− 1)

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
, (4.49)

we can write the boundary behaviour of the conformal factor φ as a purely AdSn
part plus a small deviation, i.e. given by

φ = φ̂ (1 + εhφ) +O(ε2). (4.50)

This equation tells us how the conformal factor φ behaves near the boundary for the
perturbated AdSn metric as given in Eq. (4.31). In order to preserve the positivity
of the conformal factor φ, we are time evolving the logarithm of the conformal
factor. Let us, therefore, write down the corresponding boundary behaviour of the
logarithm of the conformal factor. Thus,

lnφ = ln φ̂+ ln
(
1 + εhφ +O(ε2)

)
= 1

2(n− 1) ln det(γ̂ij) + εhφ +O(ε2)
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=
ln
(
q2(n−1)a

)
2(n− 1) −

ln
(
ρ2(n−2) det(gab,Sn−2)

)
2(n− 1)

− εqn−2

2(n− 1)

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
+O(ε2)

= ln q + 1
2(n− 1) ln a− n− 2

n− 1 ln ρ− 1
2(n− 1) ln det(gab,Sn−2)

− qn−2

2(n− 1)

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
ε+O(ε2) (4.51)

where we have used the approximation of the logarithm, i.e. ln(1 + x) = x+O(x2)
if x ∈ R is small. By defining the purely AdSn part

ln φ̂ = ln q + 1
2(n− 1) ln a− n− 2

n− 1 ln ρ− 1
2(n− 1) ln det(gab,Sn−2) (4.52)

and the deviation
hlnφ = − qn−2

2(n− 1)

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
, (4.53)

we can write the boundary behaviour of the logarithm of the conformal factor as

lnφ = ln φ̂+ hlnφε+O(ε2). (4.54)

The logarithm of the conformal factor lnφ has to behave near the boundary ρ = `
or q = 0 precisely as given in Eq. (4.51). It can be seen that the first three terms are
purely AdSn and that the first term diverges at q = 0, while the last term, reflecting
the physical fall-off, vanishes at the boundary.

In order to calculate the boundary behaviour of the conformally decomposed
spatial metric γ̃ij and its inverse γ̃ij, we will need the square of the conformal factor
φ. Therefore,

φ2 = φ̂2
(
1 + εhφ +O(ε2)

)2
= φ̂2

(
1 + 2εhφ +O(ε2)

)
= n−1

√√√√ aq2(n−1)

ρ2(n−2) det(gab,Sn−2)

(
1− εqn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

))
+O(ε2) (4.55)

and

φ−2 = φ̂−2
(
1 + εhφ +O(ε2)

)−2
= φ̂−2

(
1− 2εhφ +O(ε2)

)
= n−1

√√√√ρ2(n−2) det(gab,Sn−2)
aq2(n−1)

(
1 + εqn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

))
+O(ε2). (4.56)

By defining hφ2 = 2hφ and hφ−2 = 2hφ, we can write the boundary behaviour of the
smooth function φ2 as

φ2 = φ̂2 (1 + εhφ2) +O(ε2) and φ−2 = φ̂−2 (1− εhφ−2) +O(ε2). (4.57)
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These equations give us the behaviour of the square of the conformal factor near the
boundary of the perturbated AdSn metric tensor field. The square of the confor-
mal factor behaves as the square of the purely AdSn conformal factor plus a small
perturbation εφ̂2hφ2 .

Now, we will be able to state the boundary conditions for the conformally de-
composed spatial metric γ̃ij in the following section.

4.5.2 The conformally decomposed spatial metric γ̃ij
The conformally decomposed spatial metric γ̃ij was introduced in Chapter 2.3 as an
equivalence class of conformally related metrics on pseudo-Riemannian manifolds
to restore hyperbolicity of the evolution system. However, as it remains a variable
of the generalized FO-CCZ4 system, let us calculate the boundary behaviour by
using the boundary behaviour of the spatial metric γij and the boundary behaviour
conformal factor φ.

Now, the spatial metric γij is given, as gij = γij, by the spatial part of the full
metric gµν in Eq. (4.31), i.e.

γij =
(
γ̂ρρ + εqn−4h̄ρρ εqn−3h̄ρb
εqn−3h̄aρ γ̂ab + εqn−4ρ2gab,Sn−2h̄ab

)
, (4.58)

while the inverse of the spatial perturbated metric is given by the formula

γij = γ̂ij − εγ̂ilγ̂jkhkl +O(ε2). (4.59)

Using the latter, the components of the inverse of the spatial metric can then be
written as

γij =
(
γ̂ρρ − εγ̂ρργ̂ρρqn−4h̄ρρ −εγ̂ρργ̂abqn−3h̄ρa
−εγ̂ρργ̂baqn−3h̄ρb γ̂ab − εγ̂acγ̂bdqn−4ρ2gcd,Sn−2h̄cd

)
+O(ε2). (4.60)

In order to calculate the boundary behaviour of the conformally decomposed spa-
tial metric γ̃ij and its inverse γ̃ij, we have to plug in, respectively, the boundary
behaviour of the spatial metric γij and the square of the conformal factor φ2, and
the boundary behaviour of its inverse γij and φ−2 into

γ̃ij = φ2γij and γ̃ij = φ−2γij. (4.61)

Then, the boundary behaviour is given by

γ̃ij = φ̂2 (1 + εhφ2) (γ̂ij + εhij) +O(ε2)
= φ̂2γ̂ij + φ̂2 (hij + hφ2 γ̂ij) ε+O(ε2), (4.62)

and

γ̃ij = φ̂−2 (1 + εhφ−2)
(
γ̂ij + εhij

)
+O(ε2)

= φ̂−2γ̂ij + φ̂−2
(
hij + hφ−2 γ̂ij

)
ε+O(ε2). (4.63)
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By defining the conformaly decomposed spatial metric related to the purely AdSn
spacetime

ˆ̃γij = φ̂2γ̂ij and ˆ̃γij = φ̂−2γ̂ij (4.64)
and the small perturbation near the boundary

hγ̃ij = φ̂2 (hij + hφ2 γ̂ij) , and hγ̃ij = φ̂−2
(
hij + hφ−2 γ̂ij

)
, (4.65)

we can write the boundary behaviour as

γ̃ij = ˆ̃γij + εhγ̃ij +O(ε2) and γ̃ij = ˆ̃γij + εhγ̃ij +O(ε2) (4.66)

While a complete calculation for the boundary behaviour of the conformally de-
composed spatial metric γ̃ij and its inverse γ̃ij can be found in Appendix E.1, the
components are given, respectively, by

γ̃ρρ = 1
a
n−2
n−1ρ

2(n−2)
n−1 det(gab,Sn−2)

1
n−1

(
1 + qn−2

n− 1

(
(n− 2)ah̄ρρ −

n−2∑
i=1

h̄θiθi

)
ε

)

+O(ε2) (4.67a)

γ̃ρb = a
1

n−1 qn−1

ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1

h̄ρbε+O(ε2) (4.67b)

γ̃ab =a
1

n−1ρ
2

n−1 gab,Sn−2

det(gab,Sn−2)
1

n−1

(
1− qn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi − (n− 1)h̄ab
)
ε

)
+O(ε2), (4.67c)

and

γ̃ρρ =a
n−2
n−1ρ

2(n−2)
n−1 det(gab,Sn−2)

1
n−1

(
1 + qn−2

n− 1

(
(2− n)ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
ε

)
+O(ε2) (4.68a)

γ̃ρa =− a
n−2
n−1 det(gab,Sn−2)

1
n−1

ρ
2

n−1
gbaSn−2qn−1h̄ρbε+O(ε2) (4.68b)

γ̃ab =det(gab,Sn−2)
1

n−1

ρ
2

n−1a
1

n−1

gabSn−2 − qn−2gacSn−2gbdSn−2gcd,Sn−2h̄cdε

+ qn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
gabSn−2ε

+O(ε2). (4.68c)

This gives us the boundary behaviour of the components of the conformally decom-
posed spatial metric γ̃ij and its inverse γ̃ij. We can see that the purely AdSn metric
γ̂ij, as given in Eq. (4.38), diverges at the boundary q = 0, whereas the conformally
decomposed spatial metric ˆ̃γij takes finite values unless for some angle values. Note
that we have to sum over the whole object gbdSn−2gcd,Sn−2h̄cd.
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4.5.3 The shift vector β
We will, furthermore, need to calculate the boundary behaviour of the gauge variable
βi. The spatial vector field β ∈ Γ∞(TM) was first introduced in Subsection A.4
to decompose the timelike section ∂t ∈ Γ∞(TM) into time and space. While a
numerical value is straightforward to implement, evolving the shift vector β via
a PDE extends the overall evolution system, and the system can be made more
hyperbolic. For this reason, the shift vector β is a state variable of the generalized
FO-CCZ4 system.

Plugging the boundary behaviour of γij, as given in Eq. (4.58), and the boundary
behaviour of gti, as given in Eq. (4.31), into the definition of the components of dual
shift vector

βj = γijgti, (4.69)
we can calculate the boundary behaviour of β. Then,

βρ = γρρgtρ + γaρgta

= qn−3
(
γ̂ρρ + εqn−4h̄γ̂ρρ

)
εh̄tρ − ε2qn−4qn−3γ̂ρργ̂abh̄ρbh̄ta

= qn−1ah̄tρε+O(ε2) (4.70a)
βa = γρagtρ + γbagtb

= −ε2γ̂ρργ̂aaqn−3h̄ρaq
n−3h̄tρ +

(
γ̂ba + εqn−4ρ2gab,Sn−2h̄ab

)
εqn−4h̄tb

= qn−4γ̂bah̄tbε+O(ε2)

= qn−2

ρ2 gbaSn−2h̄tbε+O(ε2). (4.70b)

As the purely AdSn part of the shift vector β̂ vanishes, the boudary behaviour of
the varibale can be written as

βi = β̂i + εhβi +O(ε2), (4.71)

where β̂i = 0. This way, the boundary behaviour of the shift vector βi is only
determined by the deviation and vanishes, as excpected, at the boundary q = 0.

4.5.4 The lapse function α

Another gauge variable, reflecting the coordinate degrees of freedom, is the lapse
function α ∈ C∞(M,R). It was first introduced in Subsection A.4 to decompose
the timelike section ∂t ∈ Γ∞(TM) into time and space. While a numerical value is
straightforward to implement, evolving the lapse function α via a PDE extends the
overall evolution system, and the system can be made more hyperbolic. For this
reason, the lapse function α is still a variable of the generalized FO-CCZ4 system.

Plugging the boundary behaviour for the shift vector β and the time-time com-
ponent of perturbated metric gµν into Eq. (A.84a), we can calculate the boundary
behaviour of α to

α =
√
βiβi − gtt =

√√√√gtρβρ +
n−2∑
i=1

gtθiβ
θi − gtt
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=
√
qn−1qn−3ah̄tρh̄tρε2 + qn−4qn−3h̄ρθi γ̂

θiθih̄tθiε
2 − ĝtt − qn−4h̄ttε

=
√
a

q2 − q
n−4h̄ttε+O(ε2). (4.72)

By defining, respectively, the purely AdSn part

α̂ =
√
a

q
(4.73)

and the deviation
hα = −q

n−2

2a htt, (4.74)

we can decompose the lapse function α, using the binomial approximation, into the
purely AdSn lapse function α̂ plus some small perturbation hα

α =

√√√√ a

q2

(
1− εqn−2

a
h̄tt +O(ε2)

)

=
√
a

q

√
1− εqn−2

a
h̄tt +O(ε2)

=
√
a

q

(
1− εqn−2

2a h̄tt

)
+O(ε2)

= α̂ (1 + εhα) +O(ε2). (4.75)

As we are time evolving the logarithm of the lapse function, let us derive the bound-
ary behaviour of the logarithm of the lapse function α. Then,

lnα = ln
(
α̂
(
1 + εhα +O(ε2)

))
= ln α̂ + ln

(
1 + εhα +O(ε2)

)
= ln α̂ + εhα +O(ε2)

= 1
2 ln

(
q2 + ρ2

L2

)
− ln q − qn−2

2a h̄ttε+O(ε2)

= 1
2 ln

(
ρ2

L2

(
1 + q2L2

ρ2

))
− ln q − qn−2

2a h̄ttε+O(ε2)

= ln (1− q) + ln `

L
+ 1

2 ln
(

1 + q2L2

ρ2

)
− ln q − qn−2

2a h̄ttε+O(ε2). (4.76)

The logarithm of the lapse function α has to behave near the boundary q = 0 exactly
as in Eq. (4.76). We see that the first four terms are purely AdSn, while the last
term describes the fall-off condition near the boundary. Thus, at the boundary, the
logarithm of the purely AdSn lapse function α̂ diverges, whereas the perturbation
vanishes.

4.5.5 Calculation for the auxiliary variables
The 33 auxiliary variables Ai, Bi

k, Dkij and Pi were only introduced in [20] to rewrite
the CCZ4 system as a first-order evolution system and have no physical meaning. As
they are evolution variables of the generalized FO-CCZ4 system, we need to derive
their boundary behaviour.
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The auxiliary variable Ai

Let us first calculate the boundary behaviour for the auxiliary variable

Ai := ∂i lnα (4.77)

as defined in Eq. (2.63). As the boundary behaviour of α is given in Eq. (4.76) by

lnα = ln α̂ + εhα +O(ε2), (4.78)

where α̂ = α̂(ρ) and hα = hα(ρ, θn−2, . . . , θ1), we can write the boundary behaviour
of Ai as

Ai = ∂i ln α̂ + ε∂ihα +O(ε2). (4.79)
By defining the purely AdSn auxiliary variable

Âi = ∂i ln α̂ (4.80)

and the deviation
hAi = ∂ihα, (4.81)

we can write the boundary behaviour of the auxiliary variable Ai as

Ai = Âi + εhAi +O(ε2). (4.82)

The individual derivatives, as can be found in Appendix E.2, are given by

Aρ = ρ

L2qa
+
(
qn−2ρ

a2L2 −
qn−1

a2l
+ (n− 2)qn−3

2la

)
h̄ttε

− qn−2

2a ∂ρh̄ttε+O(ε2) (4.83a)

Aa = −q
n−2

2a ∂ah̄ttε+O(ε2). (4.83b)

In terms of the perturbational split, the purely AdSn part of Ai is given by

Âρ = ρ

L2qa
and Âa = 0, (4.84)

while the perturbation of the auxiliary variable takes the form

hAρ =
(
qn−2ρ

a2L2 −
qn−1

a2l
+ (n− 2)qn−3

2la

)
h̄tt −

qn−2

2a ∂ρh̄tt (4.85a)

hAa = −q
n−2

2a ∂ah̄tt. (4.85b)

Thus, the ρ-component of the auxiliary variable Ai behaves near the horizon as
the purely AdSn part of the auxiliary variable Âρ plus the small perturbation εhAρ ,
while the boundary behaviour of the angle components is governed by just the small
perturbation εhAa .
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The auxiliary variable Pi

Let us next calculate the boundary conditions for the auxiliary variable

Pi = ∂i lnφ, (4.86)

as defined in Eq. (2.63). As the boundary behaviour of the logarithm of the confor-
mal factor φ is given in Eq. (4.51) by

lnφ = ln φ̂+ hφ +O(h2
φ), (4.87)

where φ̂ = φ̂(ρ, θn−3, θn−4, . . . ) and hφ = hφ(ρ, θn−2, . . . , θ1), we can write the bound-
ary behaviour of Pi as

Pi = ∂i ln φ̂+ ε∂ihφ +O(ε2). (4.88)
By defining the purely AdSn auxiliary variable

P̂i = ∂i ln φ̂ (4.89)

and the deviation of P̂i
hPi = ∂ihφ (4.90)

we can write the boundary behaviour of the auxiliary variable Pi as

Pi = P̂i + εhPi +O(ε2). (4.91)

The individual derivatives, as can be found in Appendix E.2, are given by

Pρ = − 1
ql

+
2ρ
L2 − 2q

l

2(n− 1)a −
n− 2

(n− 1)ρ + (n− 2)qn−3

2(n− 1)`

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
ε

− qn−2

2(n− 1)

(
∂ρah̄ρρ + a∂ρh̄ρρ +

n−2∑
i=1

∂ρh̄θiθi

)
ε+O(ε2), (4.92a)

Pa = − 1
2(n− 1)

∂a det(gab,Sn−2)
det(gab,Sn−2)

− qn−2

2(n− 1)

(
a∂ah̄ρρ +

n−2∑
i=1

∂ah̄θiθi

)
ε+O(ε2). (4.92b)

In terms of the perturbational split, the purely AdSn part of the auxiliary variable
Pi is given by

P̂ρ = − 1
ql

+ 1
n− 1)L2

ρ

a
− 1

(n− 1)a`
q

a
− n− 2

(n− 1)
1
ρ
, (4.93a)

P̂a = − 1
2(n− 1)

∂a det(gab,Sn−2)
det(gab,Sn−2) , (4.93b)

while the perturbation of Pi given by

hAρ = (n− 2)qn−3

2(n− 1)`

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
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− qn−2

2(n− 1)

(
∂ρah̄ρρ + a∂ρh̄ρρ +

n−2∑
i=1

∂ρh̄θiθi

)
, (4.94a)

hAa = − qn−2

2(n− 1)

(
a∂ah̄ρρ +

n−2∑
i=1

∂ah̄θiθi

)
. (4.94b)

We note that the ρ-component of Pi behaves near the horizon as the purely AdSn
part of the auxiliary variable P̂ρ plus the small perturbation εhPρ , while the boundary
behaviour of the angle components is governed by just the perturbation εhPa if the
partial derivative of the determinant of the round metric gab,Sn−2 vanishes.

The auxiliary variable Bl
k

Next, let us calculate the boundary behaviour of the auxiliary variable

Bl
k = ∂kβ

l (4.95)

as defined in Eq. (2.63). Using the boundary behaviour of the shift vector β, as
given in Eq. (4.71), we can derive the boundary behaviour of the auxiliary variable
Bl
k. Thus,

Bl
k = ∂k

(
β̂l + εhβl +O(ε2)

)
= ∂kβ̂

l + ε∂khβl +O(ε2). (4.96)

By defining the purely AdSn part of the auxiliary variable Bl
k as

B̂l
k = ∂kβ̂

l (4.97)

and the perturbational part of Bl
k as

hBl
k

= ∂khβl , (4.98)

we can write the boundary behaviour of the auxiliary variable Bl
k as

Bl
k = B̂l

k + εhBl
k

+O(ε2). (4.99)

By using Eq. (4.70a) and Eq. (4.70b), we calculate explicit the components of Bl
k.

Then,

Bρ
ρ = −(n− 1)qn−2

`
ah̄tρε+ qn−1∂ρah̄tρε+ qn−1a∂ρh̄tρε+O(ε2), (4.100a)

Bρ
a = qn−1a∂ah̄tρε+O(ε2), (4.100b)

Ba
ρ = −qn−4

(
(n− 2)q
ρ2`

+ 2q2

ρ3

)
gbaSn−2h̄tbε+ qn−2

ρ2 gbaSn−2∂ρh̄tbε+O(ε2), (4.100c)

Bb
a = qn−2

ρ2 ∂ag
cb
Sn−2h̄tcε+ qn−2

ρ2 gcbSn−2∂ah̄tcε+O(ε2). (4.100d)

The boundary behaviour of the auxiliary variable Bl
k is governed explicitly by the

small perturbation εhBl
k
, as the shift vector β is already purely perturbational.
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The auxiliary variable Dijk

And finally, let us calculate the boundary behaviour of the auxiliary variable

Dijk = 1
2∂iγ̃jk, (4.101)

as defined in Eq. (2.63). Using the boundary behaviour of the conformally decom-
posed spatial metric γ̃ij as defined in Eq. (4.62), we can write

Dkij = 1
2∂kγ̃ij = 1

2∂k
[
ˆ̃γij + εhγ̃ij +O(ε2)

]
= 1

2∂k
ˆ̃γij + 1

2ε∂khγ̃ij +O(ε2). (4.102)

By defining the purely AdSn part of Dijk as

D̂kij = 1
2∂k

ˆ̃γij (4.103)

and the perturbational part as

hDkij = ∂khγ̃ij = ∂k
(
φ̂2 (hij + hφ2 γ̂ij)

)
= 1

2hij∂kφ̂
2 + 1

2hφ
2 γ̂ij∂kφ̂

2 + 1
2 φ̂

2∂khij + 1
2 φ̂

2γ̂ij∂khφ2 + 1
2 φ̂

2hφ2∂kγ̂ij. (4.104)

we can decompose the boundary behaviour of the auxiliary varibale Dkij by

Dkij = D̂kij + εhDkij +O(ε2). (4.105)

After some tremendous calculations, that can be found in Appendix C, we can
summarize the components of the auxiliary variable Dkij by

Dcab =− 1
2a

1
n−1ρ

2
n−1

 1
n− 1

gab,Sn−2∂c det(gab,Sn−2)
det(gab,Sn−2)

n
n−1

− ∂cgab,Sn−2

det(gab,Sn−2)
1

n−1


+ qn−2a

1
n−1ρ

2
n−1

2(n− 1)2

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi − (n− 1)h̄ab
)
gab,Sn−2∂c det(gab,Sn−2)

det(gab,Sn−2)
n
n−1

ε

− a
1

n−1ρ
2

n−1 qn−2

2(n− 1)
gab,Sn−2

det(gab,Sn−2)
1

n−1

(
a∂ch̄ρρ +

n−2∑
i=1

∂ch̄θiθi − (n− 1)∂ch̄ab
)
ε

− a
1

n−1ρ
2

n−1 qn−2

2(n− 1)
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ah̄ρρ +
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i=1
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)
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det(gab,Sn−2)
1

n−1
ε

+O(ε2), (4.106a)

Daρρ =− a
n−2
1−nρ

2(n−2)
1−n

2(n− 1)
∂a det(gab,Sn−2)
det(gab,Sn−2)

n
n−1

+ a
n−2
1−nρ

2(n−2)
1−n

2(n− 1)
∂a det(gab,Sn−2)
det(gab,Sn−2)

n
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qn−2

n− 1

(
(2− n)ah̄ρρ +
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ε
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− qn−2

2(n− 1)
a
n−2
1−nρ

2(n−2)
1−n

det(gab,Sn−2)
1

n−1

(
(2− n)a∂ah̄ρρ +

n−2∑
i=1

∂ah̄θiθi
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+O(ε2), (4.106b)

Daρb =− a
1

n−1 qn−1

2ρ
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n−1

 ∂a det(gab,Sn−2)
det(gab,Sn−2)

n
n−1

h̄ρb
n− 1 −

∂ah̄ρb

det(gab,Sn−2)
1

n−1

ε+O(ε2),

(4.106c)

Dρρa = a
n−2
1−n

det(gab,Sn−2)
1

n−1

 qn−1
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L2 − 2q

`
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2(n−2)
n−1
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n− 1
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1
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∂ρh̄ρaε+O(ε2), (4.106d)
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+O(ε2). (4.106f)

Note that the boundary behaviour of Dρρa and Daρb is purely governed by a small
perturbation, i.e. the purely AdSn part of these components of the auxiliary variable
vanishes, while the boundary behaviour of the other variables is governed by the
purely AdSn part D̂ijk of the auxiliary variable plus some small perturbation εhDijk .

Conclusively, we have calculated how the 33 auxiliary variables, as defined in Eq.
(2.63), have to behave near the boundary q = 0. Again, these auxiliary variables
were introduced in order to rewrite the second-order CCZ4 system as a first-order
system and have no physical meaning.

4.5.6 The extrinsic curvature Kµν

Furthermore, we will need to derive the boundary behaviour of the extrinsic cur-
vature Kij that is a measure of how the hypersurfaces Σt are embedded into the



4.5. Calculation of the timelike boundary conditions 55

spacetime manifold M . The second fundamental form Kij is an evolution variable
of the originally derived ADM evolution system but got replaced by the trace of the
extrinsic curvatureK and the conformally decomposed traceless part of the extrinsic
curvature in the derivation of the CCZ4 system.

Before we can calculate the boundary behaviour of the trace of the extrinsic
curvature K, we need to derive the behaviour of the extrinsic curvature Kij first.
To do so, we first need to find an expression of the extrinsic curvature Kij in terms
of the auxiliary variables from above. Therefore, let us rewrite Eq. (2.21a) to

Kij = − 1
2α (∂t − Lβ) γij, (4.107)

where
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= γilB
l
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l
i + βl∂lγij

= γilB
l
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l
i + βl∂l

(
φ2γijφ

−2
)
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l
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l∂lφ
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= γilB
l
j + γjlB

l
i + 2φ−2βlDlij + γijβ
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l
i + 2φ−2βlDlij − 2γijβlPl (4.108)

is the Lie derivative of the spatial metric γij in the direction of the shift vector β.
Plugging this formula into Eq. (4.107), we receive

Kij = − 1
2α

(
∂tγij − γikBk

j − γjkBk
i − 2φ−2βlDkij + 2γijβkPk

)
, (4.109)

an expresion of the extrinsic curvature in terms of the auxiliary variable. Then, by
using the boundary behaviour of the auxiliary variables, we can write the boundary
behaviour of the extrinsic curvature as

Kij = − 1
2α

(
∂tγij − γikBk

j − γjkBk
i − 2φ−2βkDkij + 2γijβkPk

)
= − 1
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]
ε+O(ε2),

(4.110)



56 Chapter 4. The Boundary Behaviour for an Asymptotically AdSn Spacetime

where we have used the boundary behaviour of the spatial metric, as given in Eq.
(4.58), the boundary behaviour of the shift vector β as in Eq. (4.71), the boundary
behaviour of the lapse function α as in Eq. (4.75), the boundary behaviour of
the auxiliary variable Pi as in Eq. (4.91), the boundary behaviour of the auxiliary
variable Bl

k as in Eq. (4.99), the fact that Bl
k and βk are purely perturbative and the

boundary behaviour of the Dijk auxiliary variable as in Eq. (4.102). Furthermore,
we have simplified the equations by keeping only the lowest order in ε. In general,
the boundary behaviour of the extrinsic curvature can be written as

Kij = K̂ij + εhKij +O(ε2), (4.111)

where K̂ij = 0 for all combinations and hKij is given by

hKij = − 1
2α̂

[
∂thij − γ̂ikhBkj − γ̂jkhBki − 2φ̂−2hβkD̂kij + 2γ̂ijP̂khβk

]
. (4.112)

Now, the components of the extrinsic curvature Kij, as calculated in Appendix E.5,
are explicitly given by

Kρρ = −q
n−3

2
√
a

[
∂th̄ρρ − 2q∂ρh̄tρ +

(
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l
− 2ρ
aL2

)
h̄tρ

]
ε+O(ε2), (4.113a)

Kab = −q
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√
a

[
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− gdcSn−2∂cgab,Sn−2h̄td − 2ρgab,Sn−2ah̄tρ

]
ε+O(ε2), (4.113b)

Kρa = −q
n−3

2
√
a

[
q∂th̄ρa − q∂ah̄tρ +

(
n− 2
q`

+ 2
ρ

)
h̄ta − ∂ρh̄ta

]
ε+O(ε2). (4.113c)

Near the boundary, the behaviour of the components of the extrinsic curvature Kij

is governed by the perturbation, while they vanish at the boundary q = 0.
Let us now derive the boundary behaviour of the trace of the extrinsic curvature

K. Then,

K = γijKij = γρρKρρ + 2γρaKρa + γabKab

=
(
γ̂ρρ − εγ̂ρργ̂ρρqn−4h̄ρρ

) (
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)
+ 2

(
γ̂ρa − εγ̂ρργ̂abqn−3h̄ρb

) (
K̂ρa + εhKρa

)
+
(
γ̂ab − εqn−4ρ2gab,Sn−2 γ̂acγ̂bdh̄cd

) (
K̂ab + εhKab

)
+O(ε2)

= γ̂ρρhKρρε+ γ̂abhKabε+O(ε2), (4.114)

where we have used the formula for the inverse of a perturbated metric, i.e.

γij = γ̂ij − εγ̂ilγ̂jkhkl +O(ε2),

the boundary behaviour of the extrinsic curvature Kij, as given in Eq. (4.111), the
fact that the extrinsic curvature Kij is purely perturbative and the latter equations
for Kρρ, Kab. By defining

hK = γ̂ρρhKρρ + γ̂abhKab , (4.115)
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the boundary behaviour of the trace of the extrinsic curvature K is given by

K = K̂ + εhK +O(ε2), (4.116)

where K̂ = 0. After some calculations, that can be found in Appendix C, the
boundary behaviour of the trace of the extrinsic curvature K can be explicitly
summarized by

K = −q
n−1

2
√
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a∂th̄ρρ +
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2g
cd
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)ε
+O(ε2). (4.117)

Note that the boundary behaviour of the trace of the extrinsic curvature K is gov-
erned by the small perturbation εhK , while the purely AdSn part vanishes.

4.5.7 The conformally decomposed traceless part of the ex-
trinsic curature Ãij

The conformally decomposed traceless part Ãij of the extrinsic curvature, i.e. Eq.
(2.34), was first introduced for the derivation of the CCZ4 system. Together with
the trace of the extrinsic curvature, it replaces the evolution equation of the extrinsic
curvature.

Before we can calculate the boundary behaviour of the conformally decomposed
traceless part of the extrinsic curvature, we need to derive the boundary condition
for the traceless part of the extrinsic curvature Aij, as defined in Eq. (2.30). Using
the boundary behaviour of the extrinsic curvature Kij and spatial metric γij, we can
calculate the boundary behaviour of the conformally decomposed traceless part of
the extrinsic curvature to

Aij = Kij −
1

n− 1Kγij =
(
K̂ij + εhKij

)
− 1
n− 1

(
K̂ + εhK

)
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(
hKij −

1
n− 1 γ̂ijhK

)
ε+O(ε2), (4.118)

where we have used the boundary behaviour of the extrinsic curvature Kij, as given
in Eq. (4.111), and the boundary behaviour of the spatial metric γij. By defining

Âij = K̂ij −
1

n− 1K̂γ̂ij (4.119)

and
hAij = hKij −

1
n− 1 γ̂ijhK , (4.120)
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we can write Aij in terms of the perturbation as

Aij = Âij + hAijε+O(ε2). (4.121)

Note that as K̂ij = 0, K̂ vanishes as well. Therefore, the boundary behaviour of the
traceless part of the extrinsic curvature Aij is governed by the small perturbation
εhAij .

The components of the traceless part of the extrinsic curvature, as calculated in
Appendix E.5 by using Eq. (4.118), are given then by

Aρρ = −q
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Now, we are able to derive the boundary behaviour for the conformally decomposed
traceless part of the extrinsic curvature. Then, using Eq. (2.58d), we get

Ãij = φ2Aij = φ̂2 (1 + εhφ2)
(
Âij + εhAij

)
+O(ε2)

= φ̂2
(
Âij + εhAij + εÂijhφ2

)
+O(ε2)

= φ̂2Âij + φ̂2
(
hAij + Âijhφ2

)
ε+O(ε2), (4.123)

where we have used the boundary behaviour of the conformal factor φ, as defined in
Eq. (4.50), the boundary behaviour of the traceless part of the extrinsic curvature
Aij, as given in Eq. (4.118) and kept the lowest order in the auxiliary variable ε. As
the traceless part of the extrinsic curvature is purely perturbative, i.e. Âij = 0, the
latter equation simplifies to

Ãij = φ̂2hAijε+O(ε2). (4.124)

By defining
hÃij = φ̂2hAij , (4.125)
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we can write the boundary behaviour of Ãij as

Ãij = ˆ̃Aij + εhÃij +O(ε2), (4.126)

where ˆ̃Aij vanishes. Therefore, the boundary behaviour of the conformally decom-
posed tracless-part of the extrinsic curvature is purely perturbative. By using Eq.
(4.48) and Eq. (4.127a)-(4.127c), we can explicitly write down the boundary be-
haviour of the components of the conformally decomposed traceless part as
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As caculated in Appendix E.6, these equations verify that the trace of the confor-
mally decomposed traceless part of the extrinsic curvature Ãij with respect to the
conformal spatial metric γ̃ij should vanish, i.e.

γ̃ijÃij = 0. (4.128)

This gives us a hint that the calculated equations for the conformally decomposed
traceless part variables Ãij of the state vector Q are correct. As already noted, these
variables are governed purely by the small perturbation εhÃij , while the purely AdSn
part vanishes.

4.5.8 The Γ̃i and Γ̂i variables
Another fundamental variable of the state vector Q that was first introducced for
the derivation of the CCZ4 system is the Γ̂i variable, as defined in Eq. (2.58d).
Before we can write down the boundary behaviour of Γ̂i, we need to calculate the
boundary behaviour of the Γ̃i variable.
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The Γ̃i variable

The auxiliary variable Γ̃i was first introduced to reduce the Ricci tensor to a Laplacian-
like operator for the derivation of the BSSNOK system and is defined as

Γ̃i = γ̃jkΓ̃ijk. (4.129)

However, the idea is to allow for any value of the coordinate choice Γ̃i [27]. To be
able to write down the boundary behaviour, let us first rewrite this variable by some
fundamental variables of the state vector Q. Thus,

Γ̃i = γ̃jkΓ̃ijk = γ̃jk
1
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= 2γ̃ij γ̃klDljk, (4.130)

where we have switched, due to symmetry reason, j ↔ k in the first term in the
second line, and used

− 1
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ilγ̃jk∂lγ̃jk = −γ̃il 12 tr(∂lγ̃jk) = −γ̃il∂l
√

det(γ̃) = 0, (4.131)

as det(γ̃) = n is constant. Using Eq. (4.66) and the boundary behaviour for the
auxiliary variable Dijk, we can derive
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By defining the purely AdSn part as

ˆ̃Γi = 2γ̂ij γ̂klD̂ljk (4.133)

and the perturbation as
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we can write the boundary behaviour of Γ̃i as

Γ̃i = ˆ̃Γi + hΓ̃iε+O(ε2). (4.135)
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After some calculations that can be found in Appendix E.7, we can write down the
explicit boundary behaviour of the components of the Γ̃i variable
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ah̄ρρ +
n−2∑
i=1

h̄θiθi

gabSn−2∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

ε

+O(ε2). (4.136b)

Note that we can not just sum over gabSn−2gcdSn−2gbc,Sn−2 in Eq. (4.136a) as the h̄µν
functions have the same indicies and we need to sum over all of them. Furthermore,
the AdSn part of the boundary behaviour of Γ̃i is given by

ˆ̃Γρ = −n− 2
n− 1ρ

2(n−2)
n−1 a

1
1−n det(gab,Sn−2)

1
n−1∂ρa

− 2(n− 2)
n− 1 ρ

n−3
n−1a

n−2
n−1 det(gab,Sn−2)

1
n−1 (4.137a)
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ˆ̃Γa = − 1
a

1
n−1ρ

2
n−1

1
n− 1

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

gabSn−2 , (4.137b)

while the rest is the small perturbation εhΓ̃i .

The fundamental Γ̂i variable

Before we are able to state the asymptotic behaviour of the fundamental Γ̂-variable,
as defined in Eq. (2.58d), we need to derive the boundary behaviour of the algebraic
constraint vector Zµ. As the boundary behaviour of Zµ should match those of the
generators ξµ as in Eq. (12) in [5], their behaviour is given by

Zt = ξt +O(q), Za = ξa +O(q) and Zρ = − ρ
3

qL
[ξρ +O(q)] . (4.138)

As derived in Appendix E.8, the algebraic constraint vector Zµ can be decomposed
into a purely AdSn part of the algebraic vector plus a small perturbation, i.e.

Zµ = Ẑµ + εhZµ +O(ε2). (4.139)

Therefore, the boundary behaviour of Γ̂i is given by

Γ̂i = Γ̃i + 2γ̃ijZj
= ˆ̃Γi + εhΓ̃i + 2

(
ˆ̃γij + εhγ̃ij

) (
Ẑj + εhZj

)
+O(ε2)

= ˆ̃Γi + 2ˆ̃γijẐj + εhΓ̃i + 2εˆ̃γijhZj + 2εhγ̃ij Ẑj +O(ε2) (4.140)

where we have used the boundary behaviour of the Γ̃i variable as in Eq. (4.135),
the boundary behaviour of the algebraic constraint four-vector Zµ as in E.8 and the
boundary behaviour of the conformally decomposed spatial metric γ̃ij as defined in
Eq. (4.62). By defining

ˆ̂Γi = ˆ̃Γi + 2ˆ̃γijẐj, (4.141)
and

hΓ̂i = hΓ̃i + 2ˆ̃γijhZj + 2ˆ̃γijhγ̃ij Ẑj, (4.142)
we can decompose the boundary behaviour into a purely AdSn part plus some per-
turbation

Γ̂i = ˆ̂Γi + εhΓ̂i +O(ε2), (4.143)

Now, we are ready to state the boundary behaviour of the Γ̂i variables. The calcu-
lation can be found in Appendix E.9, while the components can be summarized as

Γ̂ρ = Γ̃ρ + 2ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1

a
1

n−1 q2
Zρ + 2ρ

2(n−2)
n−1 det(gab,Sn−2)

1
n−1a

n−2
n−1 qn−3h̄tρZ

tε

+ 2qn−4

n− 1
ρ

2(n−2)
n−1 det(gab,Sn−2)

1
n−1

a
1

n−1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
Zρε+O(ε2), (4.144a)
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Γ̂a = Γ̃a + 2det(gef,Sn−2)
1

n−1

a
1

n−1

ρ
2(n−2)
n−1

q2 Za + 2det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gabSn−2qn−4h̄tbZ

tε

+ 2qn−4

n− 1
det(gef,Sn−2)

1
n−1ρ

2(n−2)
n−1

a
1

n−1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
Zaε+O(ε2), (4.144b)

where the first terms without an h̄ij term represents the purely AdS part, while
the terms containing an ε term represent the perturbation. We can see that the
boundary behaviour of non of these three variables is purely perturbative, but has
at least one purely AdS term.

4.5.9 The t-component of the algebraic constraint
The algebraic constraint Z vector, as defined in Eq. (2.49), was first introduced in
Section 2.4 to replace the constraint equations with evolution equations.

The boundary behaviour of the t-component of the algebraic constraint, i.e. θ,
can be derived by inserting the boundary behaviour of the lapse function α, as
defined in Eq. (4.50), into Eq. (2.49). Then,

θ = αZt = α̂ (1 + εhα)Zt +O(ε2) =
√
a

q

(
1− qn−2

2a h̄ttε

)
Zt +O(ε2)

=
√
a

q
Zt − qn−3

2
√
a
h̄ttZ

tε+O(ε2). (4.145)

By defining
θ̂ =
√
a

q
Zt (4.146)

and
hθ = −q

n−3

2
√
a
h̄ttZ

t, (4.147)

we can write the boundary behaviour of the t-component of the algebraic constraint
as

θ = θ̂ + εhθ +O(ε2). (4.148)
We see that the purely AdSn part diverges at the boundary q = 0, while the small
perturbation εhθ vanishes.

4.5.10 The auxiliary field bi

The auxiliary field bi was introduced in [27] to rewrite the second-order hyperbolic
PDE for the shift vector β as a first-order system. It is, therefore, part of the
standard Gamma-driver shift-condition-choice for choosing spatial coordinates.

Substituting the boundary condition of the shift vector β, as defined in Eq.
(4.71), and the boundary behaviour of the auxiliary variable Bl

k, as defined in Eq.
(4.99) into Eq. (2.88a) for the Gamma-driver, we obtain the boundary behaviour of
the auxiliary field. Thus,

bi = 1
k

[
∂tβ

i − βkBi
k

]
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= 1
k

[
∂t
(
β̂i + εhβi

)
−
(
β̂k + εhβk

) (
B̂i
k + εhBi

k

)]
+O(ε2)

= 1
k

[
∂tβ̂

i + ε∂thβi − β̂kB̂i
k − εhβkB̂i

k − εβ̂khBik
]

+O(ε2)

= 1
k

[
∂tβ̂

i − β̂kB̂i
k

]
+ 1
k

[
∂thβi − hβkB̂i

k − β̂khBik
]
ε+O(ε2). (4.149)

By defining
b̂i = 1

k

[
∂tβ̂

i − β̂kB̂i
k

]
(4.150)

and
hbi = 1

k

[
∂thβi − hβkB̂i

k − β̂khBik
]
, (4.151)

we can decompose the boundary behaviour of bi into

bi = b̂i + εhbi +O(ε2), (4.152)

where b̂i = 0. Whereas a full derivation can be found in Appendix E.10, the bound-
ary behaviour of the components are summarized as

bρ = qn−1a

k
∂th̄tρε+O(ε2), (4.153a)

ba = qn−2

kρ2 g
ab
Sn−2∂th̄tbε+O(ε2). (4.153b)

We note that the boundary behaviour of the auxiliary field bi is governed by the
small perturbation εhbi , while the AdSn part vanishes.

Finally, we have derived for all variables of the state vector Q the boundary
behaviour near q = 0. We can summarize that we can decompose the boundary
behaviour of each term of the state vector into a purely AdSn part of this very
variable plus a small perturbation. This can be written, if u is a variable of Q, as

u = û+ εhu +O(ε2). (4.154)

By using the explicit formulas for the variables of the state vector Q, we gained
some intuition on how these fields behave near the boundary.

Furthermore, we have written a Mathematica script [36] that double-checks the
boundary condition equations for all variables of the state vector Q in three and
four dimensions. This gives us a good hint that the generalized boundary equations
for the variables of the state vector Q for an asymptotically AdSn spacetime are as
well correct.

To obtain a well-posed and deterministic initial value problem for the generalized
FO-CCZ4 system of the Einstein field equations (2.69a)-(2.69k) with gauge fixing
(2.82), (2.88a)-(2.88b) for an asymptotically Anti-de Sitter spacetime parametrized
by the coordinates (t, ρ, θn−2, . . . , θ1) ∈ (−∞,∞) × (0, `) × (0, π)n−3 × (0, 2π) and
with time-symmetric initial data from the PDE (3.25), we need to explicitly set the
derived boundary conditions (4.67a)-(4.67c) for γ̃ij, (4.76) for lnα, (4.70a)-(4.70b)
for βi, (4.51) for log φ, (4.127a)-(4.127c) for Ãij, (4.117) forK, (4.145) for θ, (4.144a)-
(4.144b) for Γ̂i, (4.153a)-(4.153b) for bi, (4.83a)-(4.83a) for Ak, (4.100a)-(4.100d) for
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Bi
k, (E.17a)-(4.106f) for Dijk and (4.92a)-(4.92b) for Pk at spacelike infinity in the

ExaHyPE code.
As we aim to numerically solve the latter time evolution system for a n = 3 and

n = 4 AdS spacetime, let us explicitly write out the boundary conditions for an
AdS3 and AdS4 space in the following section.
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Boundary Conditions for an
AdS3 and AdS4 spacetime

"The Cauchy problem for an evolution equation
is the problem of determining this evolution
from the knowledge of its initial value." [28]

T. Gowers
Mathematician

In the following section, we state, respectively, the boundary conditions at ρ = `
or q = 0 for the 30 and 58 variables of the state vector Q to obtain a well-posed
and deterministic initial value problem for the generalized FO-CCZ4 system of

the Einstein field equations (2.69a)-(2.69k) with gauge fixing (2.82), (2.88a)-(2.88b)
for an asymptotically Anti-de Sitter spacetime parametrized by the coordinates

(t, ρ, θn−2, . . . , θ1) ∈ (−∞,∞)× (0, `)× (0, π)n−3 × (0, 2π) (5.1)

and with initial data (3.25) that still needs to be solved for.

5.1 Boundary conditions for an AdS3 spacetime
We will set ` = 1 and L = 1 in the code, thereby fixing the cosmological constant
to Λ3 = −1 and keep, for the sake of simplicity, the following quantities

a(ρ) = q2 + ρ2

L2 and q(ρ) = 1− ρ

`
. (5.2)

Note that h̄µν = h̄µν(t, ρ, χ), depending on the spherical coordinates (t, ρ, χ), satisfies
a Dirichlet boundary problem, i.e.

h̄tt
∣∣∣
ρ=`

= 0

h̄tρ
∣∣∣
ρ=`

= 0

h̄tχ
∣∣∣
ρ=`

= 0

h̄ρρ
∣∣∣
ρ=`

= 0

67
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h̄ρχ
∣∣∣
ρ=`

= 0

h̄χχ
∣∣∣
ρ=`

= 0, (5.3)

while the origin and axis regularity conditions, taken from [5], are given, respectively,
by

∂ρh̄tt
∣∣∣
ρ=0

= 0 ∂χh̄tt
∣∣∣
χ=0,π

= 0

h̄tρ
∣∣∣
ρ=0

= 0 ∂χh̄tρ
∣∣∣
χ=0,π

= 0

∂ρh̄tχ
∣∣∣
ρ=0

= 0 and h̄tχ
∣∣∣
χ=0,π

= 0

∂ρh̄ρρ
∣∣∣
ρ=0

= 0 ∂χh̄ρρ
∣∣∣
χ=0,π

= 0

h̄ρχ
∣∣∣
ρ=0

= 0 h̄ρχ
∣∣∣
χ=0,π

= 0

∂ρh̄χχ
∣∣∣
ρ=0

= 0 ∂χh̄χχ
∣∣∣
χ=0,π

= 0, (5.4)

Now, the 30 boundary equations have to satisfy the following equations.

The boundary behaviour of the γ̃ij variable

is given by

γ̃ρρ = 1√
aρ

(
1 + q

2
(
ah̄ρρ − h̄χχ

))
+O(h2), (5.5a)

γ̃ρχ = q2√a
ρ

h̄ρχ +O(h2), (5.5b)

γ̃χχ =
√
aρ
(

1 + q

2
(
−ah̄ρρ + h̄χχ

))
+O(h2), (5.5c)

and diverges at the origin ρ = 0.

The boundary behaviour of the logarithm of the lapse function lnα

is given by

lnα = ln (1− q) + ln `

L
+ 1

2 ln
(

1 + q2L2

ρ2

)
− ln q − q

2ah̄tt +O(h2), (5.6)

and diverges at the origin ρ = 0 and at the boundary q = 0.

The boundary behaviour of the shift vector β

is given by

βρ = q2ah̄tρ +O(h2), (5.7a)

βχ = q

ρ2 h̄tχ +O(h2), (5.7b)

and diverges at the origin ρ = 0.
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The boundary behaviour of the logarithm of the conformal factor lnφ

is given by
lnφ = ln q + ln a

4 −
ln ρ
2 −

q

4
(
ah̄ρρ + h̄χχ

)
+O(h2), (5.8)

and diverges at the origin ρ = 0 and at the boundary q = 0.

The boundary behaviour of the conformally decomposed traceless-part
of the extrinsic curvature Ãij

is given by

Ãρρ =− q2

2ρ

1
2∂th̄ρρ −

1
2a∂th̄χχ − q∂ρh̄tρ + 1

ρ2a
∂χh̄tχ +

(
2
`

+ q2

aρ

)
h̄tρ


+O(h2), (5.9a)

Ãρχ =− q2

2ρ

[
q∂th̄ρχ − q∂χh̄tρ +

(
1
q`

+ 2
ρ

)
h̄tχ − ∂ρh̄tχ

]
+O(h2), (5.9b)

Ãχχ =− q2ρ

4

− a∂th̄ρρ + ∂th̄χχ −
2
ρ2∂χh̄tχ + 2qa∂ρh̄tρ −

(
4a
l

+ 2q2

ρ

)
h̄tρ


+O(h2), (5.9c)

and diverges at the origin ρ = 0.

The boundary behaviour of the trace of the extrinsic curvature K

is given by

K = − q2

2
√
a

a∂th̄ρρ + ∂th̄χχ − 2qa∂ρh̄tρ

+
(

4a
`
− 2q2

ρ
− 4ρ
L2

)
h̄tρ −

2
ρ2∂χh̄tχ

+O(h2), (5.10)

and diverges at the origin ρ = 0.

The boundary behaviour of the θ variable

is given by
θ =
√
a

q
Zt − 1

2
√
a
h̄ttZ

t +O(h2), (5.11)

and diverges at the boundary q = 0.
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The boundary behaviour of the Γ̂i variable

is given by

Γ̂ρ = −1
2
ρ√
a
∂ρa−

√
a+

(
1
4
qρ√
a
∂ρa+ 1

2q
√
a− 1

2`
√
aρ

)(
ah̄ρρ − h̄χχ

)
+ 1

2
√
aqρ

(
∂ρah̄ρρ + a∂ρh̄ρρ − ∂ρh̄χχ

)
+ q2√a

ρ
∂χh̄ρχ

+ 2ρ√
aq2Z

ρ + 2ρ
√
ah̄tρZ

t + ρ

q
√
a

(
ah̄ρρ + h̄χχ

)
Zρ +O(h2), (5.12a)

Γ̂χ = q2√a
ρ

∂ρh̄ρχ −
q2√a
ρ

(
1
ρ

+ 2
q`
− 1

2
∂ρa

a

)
h̄ρχ −

1
2

q

ρ
√
a

(
a∂χh̄ρρ − ∂χh̄χχ

)
+ 2ρ√

aq2Z
χ + 2√

aqρ
h̄tχZ

t + ρ

q
√
a

(
ah̄ρρ + h̄χχ

)
Zχ +O(h2), (5.12b)

and diverges at the origin ρ = 0 and at the boundary q = 0.

The boundary behaviour of the auxiliary field bi

is given by

bρ = q2a

k
∂th̄tρ +O(h2), (5.13a)

bχ = q

kρ2∂th̄tχ +O(h2), (5.13b)

and diverges at the origin ρ = 0.

The boundary behaviour of the auxiliary variable Ai

is given by

Aρ = ρ

L2aq
+
(
qρ

a2L2 −
q2

a2`
+ 1

2a`

)
h̄tt −

q

2a∂ρh̄tt +O(h2), (5.14a)

Aχ = − q

2a∂χh̄tt +O(h2), (5.14b)

and diverges at the boundary q = 0.

The boundary behaviour of the auxiliary variable Bi
k

is given by

Bρ
ρ =

(
−2qa

`
− q2

(2q
`
− 2ρ
L2

))
h̄tρ + q2a∂ρh̄tρ +O(h2), (5.15a)

Bρ
χ = q2a∂χh̄tρ +O(h2), (5.15b)

Bχ
ρ = −

(
1
ρ2`

+ 2q
ρ3

)
h̄tχ + q

ρ2∂ρh̄tχ +O(h2), (5.15c)

Bχ
χ = q

ρ2∂χh̄tχ +O(h2), (5.15d)

and diverges at the origin ρ = 0.
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The boundary behaviour of the auxiliary variable Dijk

is given by

Dχχχ = −1
4
√
aρq

(
a∂χh̄ρρ − ∂χh̄χχ

)
+O(h2), (5.16a)

Dχρρ = q

4
√
aρ

(
a∂χh̄ρρ − ∂χh̄χχ

)
+O(h2), (5.16b)

Dχρχ =
√
aq2

2ρ ∂χh̄ρχ +O(h2), (5.16c)

Dρρρ = −
(

1
2L2a3/2 −

q

2`ρa3/2 + 1
2
√
aρ2

)(
1 + q

2
(
ah̄ρρ − h̄χχ

))
+ q

4ρ
√
a

(
∂ρah̄ρρ + a∂ρh̄ρρ − ∂ρh̄χχ

)
− 1

4ρ
√
a`

(
ah̄ρρ − h̄χχ

)
+O(h2), (5.16d)

Dρρχ =
(

q2

2L2√a
− q3

2`ρ
√
a
−
√
aq

ρ`
−
√
aq2

2ρ2

)
h̄ρχ +

√
aq2

2ρ ∂ρh̄ρχ +O(h2), (5.16e)

Dρχχ = ρ2

2L2√a
− ρq

2`
√
a

+
√
a

2 −
(
qρ∂ρa

8
√
a

+ q
√
a

4 −
√
aρ

2`

)(
ah̄ρρ − h̄χχ

)
−
√
aρ

4`
(
ah̄ρρ − h̄χχ

)
−
√
aρq

4
(
∂ρah̄ρρ + a∂ρh̄ρρ − ∂ρh̄χχ

)
+O(h2), (5.16f)

and diverges at the origin ρ = 0.

The boundary behaviour of the auxiliary variable Pi

is given by

Pρ = − 1
ql

+ ρ

2aL2 −
q

2a` −
1
2ρ + 1

4`
(
ah̄ρρ + h̄χχ

)
− q

4

((
−2q
`

+ 2ρ
L2

)
h̄ρρ + a∂ρh̄ρρ + ∂ρh̄χχ

)
+O(h2), (5.17a)

Pχ = −q4
(
a∂χh̄ρρ + ∂χh̄χχ

)
+O(h2), (5.17b)

and diverges at the origin ρ = 0 and at the boundary q = 0.

5.2 Boundary conditions for an AdS4 spacetime
We will set ` = 1 and L = 1 in the code, thereby fixing the cosmological constant
to Λ4 = −3 and keep, for the sake of simplicity, the following quantities

a(ρ) = q2 + ρ2

L2 and q(ρ) = 1− ρ

`
. (5.18)

Note that h̄µν = h̄µν(t, ρ, χ, θ), depending on the spherical coordinates (t, ρ, χ, θ),
satisfies a Dirichlet boundary problem, i.e.

h̄tt
∣∣∣
ρ=`

= 0
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h̄tρ
∣∣∣
ρ=`

= 0

h̄tχ
∣∣∣
ρ=`

= 0

h̄ρρ
∣∣∣
ρ=`

= 0

h̄ρχ
∣∣∣
ρ=`

= 0

h̄χχ
∣∣∣
ρ=`

= 0

h̄θθ
∣∣∣
ρ=`

= 0, (5.19)

while the origin and axis regularity conditions, taken from [5], are given, respectively,
by

∂ρh̄tt
∣∣∣
ρ=0

= 0 ∂χh̄tt
∣∣∣
χ=0,π

= 0

h̄tρ
∣∣∣
ρ=0

= 0 ∂χh̄tρ
∣∣∣
χ=0,π

= 0

∂ρh̄tχ
∣∣∣
ρ=0

= 0 h̄tχ
∣∣∣
χ=0,π

= 0

∂ρh̄ρρ
∣∣∣
ρ=0

= 0 and ∂χh̄ρρ
∣∣∣
χ=0,π

= 0

h̄ρχ
∣∣∣
ρ=0

= 0 h̄ρχ
∣∣∣
χ=0,π

= 0

∂ρh̄χχ
∣∣∣
ρ=0

= 0 ∂χh̄χχ
∣∣∣
χ=0,π

= 0

∂ρh̄θθ
∣∣∣
ρ=0

= 0 ∂χh̄θθ
∣∣∣
χ=0,π

= 0. (5.20)

Now, the 58 boundary equations have to satisfy the following equations.

The boundary behaviour of the γ̃ij variable

is given by

γ̃ρρ = 1
a2/3ρ4/3 sin2/3 χ

− q2

3a2/3ρ4/3 sin2/3 χ

(
−2ah̄ρρ + h̄χχ + h̄θθ

)
+O(h2), (5.21a)

γ̃ρχ = a1/3q3

ρ4/3 sin2/3 χ
h̄ρχ +O(h2), (5.21b)

γ̃ρθ = 0, (5.21c)

γ̃χχ = a1/3ρ2/3

sin2/3 χ
− q2a1/3ρ2/3

3 sin2/3 χ

(
ah̄ρρ − 2h̄χχ + h̄θθ

)
+O(h2), (5.21d)

γ̃χθ = 0, (5.21e)

γ̃θθ = a1/3ρ2/3 sin4/3 χ− q2a1/3ρ2/3 sin4/3 χ

3
(
ah̄ρρ + h̄χχ − 2h̄θθ

)
+O(h2), (5.21f)

and diverges at the origin ρ = 0 and for the angular coordinates χ = {0, π}. The
(ρ, θ) and (χ, θ) components vanish due to the symmetry reason discussed in Section
4.5.
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The boundary behaviour of the logarithm of the lapse function lnα

is given by

lnα = ln (1− q) + ln `

L
+ 1

2 ln
(

1 + q2L2

ρ2

)
− ln q − q2

2ahtt +O(h2), (5.22)

and diverges at the origin ρ = 0 and at the boundary q = 0.

The boundary behaviour of the shift vector β

is given by

βρ = q3ah̄tρ +O(h2), (5.23a)

βχ = q2

ρ2 h̄tχ +O(h2), (5.23b)

βθ = 0, (5.23c)

diverges at the origin ρ = 0 and for the angular coordinates χ = 0, π. The θ-
component vanishes due to symmetry reasons.

The boundary behaviour of the logarithm of the conformal factor lnφ

is given by

lnφ = ln q + 1
6 ln a− 2

3 ln ρ− 1
3 ln sinχ− q2

6
(
ah̄ρρ + h̄χχ + h̄θθ

)
+O(h2), (5.24)

and diverges at the origin ρ = 0 and at the boundary q = 0.

The boundary behaviour of the conformally decomposed traceless part
of the extrinsic curvature Ãij

is given by

Ãρρ = − q3

2a1/6ρ4/3 sin2/3 χ

2
3∂th̄ρρ −

1
3a∂th̄θθ −

1
3a∂th̄χχ −

4q
3 ∂ρh̄tρ

+
(

4
`

+ 4q2

3aρ

)
h̄tρ + 2

3aρ2

(
∂χh̄tχ + cotχh̄tχ

)+O(h2),

(5.25a)

Ãχχ = − q3ρ2/3

2a1/6 sin2/3 χ

2
3∂th̄χχ −

a

3∂th̄ρρ −
1
3∂th̄θθ −

4
3ρ2∂χh̄tχ + 2qa

3 ∂ρh̄tρ

−
(

2a
`

+ 2q2

3ρ

)
h̄tρ + 2

3ρ2 cotχh̄tχ

+O(h2), (5.25b)

Ãθθ = −q
3ρ2/3 sin4/3 χ

2a1/6

− a

3∂th̄ρρ −
1
3∂th̄χχ + 2

3∂th̄θθ + 2qa
3 ∂ρh̄tρ
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−
(

2a
`

+ 2q2

3ρ

)
h̄tρ −

4 cotχ
3ρ2 h̄tχ + 2

3ρ2∂χh̄tχ

+O(h2), (5.25c)

Ãρχ = − q3

2a1/6ρ4/3 sin2/3 χ

q∂th̄ρχ − ∂ρh̄tχ
+
(

2
q`

+ 2
ρ

)
h̄tχ − q∂χh̄tρ

+O(h2), (5.25d)

Ãρθ = q4

2a1/6ρ4/3 sin2/3 χ
∂θh̄tρ +O(h2), (5.25e)

Ãθχ = q3

2a1/6ρ4/3 sin2/3 χ
∂θh̄tχ +O(h2), (5.25f)

and diverges at the origin ρ = 0 and for the angular coordinates χ = {0, π}.

The boundary behaviour of the trace of the extrinsic curvature K

is given by

K = − q3

2
√
a

a∂th̄ρρ + ∂th̄θθ + ∂th̄χχ − 2qa∂ρh̄tρ

+
(

6a
`
− 6ρ
L2 −

4q2

ρ

)
h̄tρ −

2
ρ2

(
∂χh̄tχ + cotχh̄tχ

)+O(h2), (5.26)

and diverges at the origin ρ = 0.

The boundary behaviour of the θ variable

is given by
θ =
√
a

q
Zt − q

2
√
a
h̄ttZ

t +O(h2), (5.27)

diverges at the boundary q = 0.

The boundary behaviour of the Γ̂i variable,

given by

Γ̂ρ = −2
3
ρ4/3 sin2/3 χ

a1/3

(2ρ
L2 −

2q
`

)
− 4

3ρ
1/3a2/3 sin2/3 χ+ 2ρ4/3 sin2/3 χ

q2a1/3 Zρ

− 2
9q

2a2/3ρ4/3 sin2/3 χ

(
1
a

(2ρ
L2 −

2q
`

)
+ 2
ρ
− 3
q`

)(
−2ah̄ρρ + h̄χχ + h̄θθ

)
− 1

3q
2a2/3ρ4/3 sin2/3 χ

(
−2∂ρah̄ρρ − 2a∂ρh̄ρρ + ∂ρh̄χχ + ∂ρh̄θθ

)
+ q3a2/3 sin2/3 χ

ρ2/3 ∂χh̄ρχ + 2
3
q3a2/3 sin2/3 χ cotχ

ρ2/3 h̄ρχ + 2qa2/3ρ4/3 sin2/3 χh̄tρZ
t
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+ 2
3
ρ4/3 sin2/3 χ

a1/3

(
ah̄ρρ + h̄χχ + h̄θθ

)
Zρ +O(h2), (5.28a)

Γ̂χ = −2
3

sin2/3 χ cotχ
ρ2/3a1/3 + 2ρ4/3 sin2/3 χ

a1/3q2 Zχ + q3a2/3 sin2/3 χ

ρ2/3 ∂ρh̄ρχ

− q3a2/3 sin2/3 χ

ρ2/3

(
2
3ρ + 3

q`
− 4ρ

3aL2 + 4q
3a`

)
h̄ρχ

− 2q2 sin2/3 χ cotχ
9a1/3ρ2/3

(
ah̄ρρ − 2h̄χχ + h̄θθ

)
− q2 sin2/3 χ

3a1/3ρ2/3

(
a∂χh̄ρρ − 2∂χh̄χχ + ∂χh̄θθ

)
+ 2

3
ρ4/3 sin2/3 χ

a1/3

(
ah̄ρρ + h̄χχ + h̄θθ

)
Zχ + 2 sin2/3 χ

a1/3ρ2/3 h̄tχZ
t +O(h2), (5.28b)

Γ̂θ = 2ρ4/3 sin2/3 χ

a1/3q2 Zθ − q2

3ρ2/3 sin4/3 χa1/3

(
a∂θh̄ρρ + ∂θh̄χχ − 2∂θh̄θθ

)
+ 2

3
ρ4/3 sin2/3 χ

a1/3

(
ah̄ρρ + h̄χχ + h̄θθ

)
Zθ +O(h2), (5.28c)

and diverges at the origin ρ = 0, at the boundary q = 0 and for the angular
components χ = {0, π}.

The boundary behaviour of the auxiliary field bi

is given by

bρ = q3a

k
∂th̄tρ +O(h2), (5.29a)

bχ = q2

kρ2∂th̄tχ +O(h2), (5.29b)

bθ = 0, (5.29c)
and diverges at the origin ρ = 0. Again, the θ component vanishes due to the SO(3)
symmetry as discussed in 4.5.

The boundary behaviour of the auxiliary variable Ai

is given by

Aρ = ρ

L2aq
+
(
q2ρ

a2L2 −
q3

a2`
+ q

a`

)
h̄tt −

q2

2a∂ρh̄tt +O(h2), (5.30a)

Aχ = − q
2

2a∂χh̄tt +O(h2), (5.30b)

Aθ = − q
2

2a∂θh̄tt +O(h2), (5.30c)

and diverges at the boundary q = 0.

The boundary behaviour of the auxiliary variable Bi
k

is given by

Bρ
ρ = q3a∂ρh̄tρ −

(
3q2a

`
+ q3

(2q
`
− 2ρ
L2

))
h̄tρ +O(h2), (5.31a)
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Bχ
ρ = q2

ρ2∂ρh̄tχ −
(

2q
ρ2`

+ 2q2

ρ3

)
h̄tχ +O(h2), (5.31b)

Bθ
ρ = 0, (5.31c)

Bρ
χ = q3a∂χh̄tρ +O(h2), (5.31d)

Bχ
χ = q2

ρ2∂χh̄tχ +O(h2), (5.31e)

Bθ
χ = 0, (5.31f)

Bρ
θ = q3a∂θh̄tρ +O(h2), (5.31g)

Bχ
θ = q2

ρ2∂θh̄tχ +O(h2), (5.31h)

Bθ
θ = 0, (5.31i)

and diverges at the origin ρ = 0, while the zero Bθ
i components vanish due to the

SO(3) symmetry.

The boundary behaviour of the auxiliary variable Dijk

is given by

Dχθθ =2
3ρ

2/3a1/3 sin1/3 χ cosχ− 2
9q

2a1/3ρ2/3 sin1/3 χ cosχ
(
ah̄ρρ + h̄χχ − 2h̄θθ

)
− 1

6q
2a1/3ρ2/3 sin4/3 χ

(
a∂χh̄ρρ + ∂χh̄χχ − 2∂χh̄θθ

)
+O(h2), (5.32a)

Dθθθ =− 1
6q

2ρ2/3 sin4/3 χa1/3
(
a∂θh̄ρρ + ∂θh̄χχ − 2∂θh̄θθ

)
+O(h2), (5.32b)

Dθχχ =− 1
6
q2a1/3ρ2/3

sin2/3 χ

(
a∂θh̄ρρ − 2∂θh̄χχ + ∂θh̄θθ

)
+O(h2), (5.32c)

Dχχχ =− 1
3
ρ2/3a1/3 cosχ

sin5/3 χ
+ 1

9
q2a1/3ρ2/3 cosχ

sin5/3 χ

(
ah̄ρρ − 2h̄χχ + h̄θθ

)
− 1

6
q2a1/3ρ2/3

sin2/3 χ

(
a∂χh̄ρρ − 2∂χh̄χχ + ∂χh̄θθ

)
+O(h2), (5.32d)

Dχρρ =− 1
3

cosχ
a2/3ρ4/3 sin5/3 χ

+ 1
9

q2 cosχ
a2/3ρ4/3 sin5/3 χ

(
−2ah̄ρρ + h̄χχ + h̄θθ

)
− 1

6
q2

a2/3ρ4/3 sin2/3 χ

(
−2a∂χh̄ρρ + ∂χh̄χχ + ∂χh̄θθ

)
+O(h2), (5.32e)

Dθρρ =− 1
6

q2

a2/3ρ4/3 sin2/3 χ

(
−2a∂θh̄ρρ + ∂θh̄χχ + ∂θh̄θθ

)
+O(h2), (5.32f)

Dχρχ =− 1
3

q3a1/3

ρ4/3 sin2/3 χ
cotχh̄ρχ + 1

2
q3a1/3

ρ4/3 sin2/3 χ
∂χh̄ρχ +O(h2), (5.32g)

Dχρθ = 0, (5.32h)

Dθρχ =1
2

q3a1/3

ρ4/3 sin2/3 χ
∂θh̄ρχ +O(h2), (5.32i)

Dθρθ = 0, (5.32j)
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Dχχθ = 0, (5.32k)
Dθχθ = 0, (5.32l)
Dρχθ = 0, (5.32m)

Dρρρ =− 1
3

1
a2/3ρ4/3 sin2/3 χ
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2ρ
aL2 −

2q
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+ 2
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9
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(
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)
+O(h2), (5.32n)

Dρρχ = q3a1/3

ρ4/3 sin2/3 χ
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L2 − 2q

`

6a − 2
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3
2q`

)
h̄ρχ + 1
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]

+O(h2), (5.32o)

Dρρθ = 0, (5.32p)

Dρχχ = ρ2/3

6a2/3 sin2/3 χ

(2ρ
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`

)
+ a1/3
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−
(
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)
×
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9a2/3 sin2/3 χ

(
ρ

L2 −
q

`

)
+ a1/3q2

9ρ1/3 sin2/3 χ
− a1/3ρ2/3q

3` sin2/3 χ

)

− ρ2/3q2a1/3

6 sin2/3 χ

(
a∂ρh̄ρρ + h̄ρρ∂ρa− 2∂ρh̄χχ + ∂ρh̄θθ

)
+O(h2), (5.32q)

Dρθθ =ρ
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+O(h2), (5.32r)

and diverges at the origin ρ = 0 and for the angular components χ = {0, π}. Again,
some components vanish due to the SO(3) symmetry.

The boundary behaviour of the auxiliary variable Pi

is given by

Pρ = − 1
ql
− q

3a` + ρ

3aL2 −
2
3ρ + q

3`
(
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`
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Pχ = −cotχ
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6
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+O(h2), (5.33b)

Pθ = −q
2

6
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+O(h2), (5.33c)
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and diverges at the origin ρ = 0 and at the boundary q = 0.

Now, we need to implement these boundary function in terms of the used coordi-
nates in the ExaHyPE-code. However, as we do not know the explicit behaviour of
the h̄-functions, this turns out to be a two-step problem. First, we need to numer-
ically solve the Dirichlet boundary problem of the h̄-functions and then insert the
results back into the boundary conditions of the variables of the state vector Q. As
this would go beyong the scope of this thesis, we argued to numerically solve only
the generalized FO-CCZ4 system of the Einstein field equations (2.69a)-(2.69k) with
gauge fixing (2.82), (2.88a)-(2.88b) for an Anti-de Sitter spacetime parametrized by
the coordinates (t, ρ, θn−2, . . . , θ1) ∈ (−∞,∞)× (0, `)× (0, π)n−3 × (0, 2π) and with
time-symmetric, matter-free initial data (3.21) and with the AdS metric γ̂ij, without
any h̄-functions, as boundary values. Since we start at t = 0 with an AdS metric
as initial data, the h̄-functions that were derived for asymptotically AdS spacetimes
with matter fields within the bulk, should vanish everywhere. Therefore, for the
sake of simplicity, we want to numerically solve the generalized FO-CCZ4 system of
the Einstein field equations (2.69a)-(2.69k) with gauge fixing (2.82), (2.88a)-(2.88b)
for an Anti-de Sitter spacetime in three dimensions parametrized by the coordinates
(t, ρ, χ) ∈ (−∞,∞) × (0, 1) × (0, 2π), with matter-free AdS initial data (3.25) and
the AdS metric γ̂ij as boundary values withhin the ExaHyPE framework. Let us
therefore introduce the PDE engine in the next section.



6Ch
ap
te
r

Introduction into ExaHyPE
"Due to the robustness and shock-capturing abilities of ExaHyPE’s

numerical methods, users of the engine can simulate
linear and non-linear hyperbolic PDEs

with very high accuracy." [58]

We are aiming, even beyond the scope of this thesis, to eventually solve the
initial value problem for the generalized FO-CCZ4 system of the Einstein
field equations (2.69a)-(2.69k) with gauge fixing (2.82), (2.88a)-(2.88b),

time-symmetric initial data from the PDE (3.25) and the boundary conditions
(4.67a)-(4.67c) for γ̃ij, (4.76) for lnα, (4.70a)-(4.70b) for βi, (4.51) for log φ, (4.127a)-
(4.127c) for Ãij, (4.117) for K, (4.145) for θ, (4.144a)-(4.144b) for Γ̂i, (4.153a)-
(4.153b) for bi, (4.83a)-(4.83a) for Ak, (4.100a)-(4.100d) for Bi

k, (E.17a)-(4.106f) for
Dijk and (4.92a)-(4.92b) for Pk for an three- and four-dimensional asymptotically
Anti-de Sitter spacetime parametrized by the spherical coordinates

(t, ρ, θn−2, . . . , θ1) ∈ (−∞,∞)× (0, `)× (0, π)n−3 × (0, 2π) (6.1)

at spacelike infinity with the ExaHyPE software. Let us therefore state the main
properties, taken from the ExaHyPE guidebook [18], in the following chapter.

6.1 Setup and installation
We will assume that a Linux-based operating system is used, though ExaHyPE
should be made configurable to work with Windows or Mac. We will run the com-
mands in a terminal window and have the following dependencies installed.

• A C++ compiler, as ExaHyPE source code is written in C++
• A Fortran compiler if we wish to write our code in Fortran
• GNU Make
• Python 3 as some development environments rely on python 3 dependencies
• Peano, as ExaHyPE is built on top of the AMR framework Peano
• TBB or OpenMP, as they can be used for parallel programming. Both work

with GCC and Intel compilers

79
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• MPI, as it can be used for working on distributed memory clusters.

There are different ways to set up ExaHyPE. One of them is to clone the ExaHyPE
repository via

git clone https://gitlab.lrz.de/exahype/ExaHyPE-Engine.git
git clone https://gitlab.lrz.de/exahype/ExaHyPE-Astrophysics.git
git clone https://gitlab.lrz.de/exahype/ExaHyPE-Documentation.git

into a specific folder. But note that one needs an LRZ GitLab account to clone the
Astrophysics repository. Then, as all python 3 dependecies and Peano are regis-
tered as git submodules, they can be obtained (if not installed and used in different
projects) by running

./updateSubmodules.sh

in the ./ExaHyPE-Enginge/Submodules-folder. Furthermore, by running

./toolkit.sh -h

in the ./ExaHyPE-Enginge/Toolkit-folder we should get a description of the various
toolkit options telling us that the installation is complete. Furthermore, we need to
register the Astrophysics repository by

cd ExaHyPE-Astrophysics && ./link-to-exahype.sh && cd ..

Finally, we are ready to start programming.

6.2 The ExaHyPE workflow
Let us first summarise the overall workflow before getting into more detail.

To solve a specific physical PDE problem using ExaHyPE, one must write a
plain specification text file that holds all required data. This file has to be written
completely by the ExaHyPE user. It is then handed over to the ExaHyPE toolkit
that will create glue code and empty files. These empty files have to be filled by the
ExaHyPE user with the actual PDE, the PDE related flux functions, eigenvalues
and so forth. The simple make command will create the ExaHyPE executable file,
and we can run it by handing the specification file over to the executable file. Let
us now go through the particular steps by running, for example, the gauge-wave
benchmark ExaHyPE project that can be found in the ExaHyPE repository.

6.2.1 The specification file
First, we need to write a specification file.

exahype-project CCZ4

peano-kernel-path const = ./Peano
exahype-path const = ./ExaHyPE
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output-directory const = ./AstroApplications/CCZ4
architecture const = snb
plotter-subdirectory const = Writers

computational-domain
dimension const = 3
width = 1.0, 1.0, 1.0
offset = 0.0, 0.0, 0.0
end-time = 0.5

end computational-domain

shared-memory
identifier = dummy
configure = {}
cores = 2
properties-file = sharedmemory.properties

end shared-memory

distributed-memory
identifier = static_load_balancing
configure = {hotspot,fair}
buffer-size = 64
timeout = 60

end distributed-memory

global-optimisation
spawn-predictor-as-background-thread = off
spawn-amr-background-threads = off
disable-vertex-exchange-in-time-steps = off
time-step-batch-factor = 0.0
disable-metadata-exchange-in-batched-time-steps = off
double-compression = 0.0
spawn-double-compression-as-background-thread = on

end global-optimisation

solver ADER-DG CCZ4Solver_ADERDG
variables const = G:6,K:6,theta:1,Z:3,lapse:1,shift:3,b:3,

dLapse:3,dxShift:3,dyShift:3,dzShift:3,
dxG:6,dyG:6,dzG:6,traceK:1,phi:1,P:3,K0:1,
domain:1,pos:3

order const = 3
maximum-mesh-size = 0.33339
maximum-mesh-depth = 0
time-stepping = global
type const = nonlinear
terms const = ncp,source
optimisation const = generic
language const = C
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constants = mexa/ref:/exahype/solvers/solver/constants,
mexa/style:adapted,
mexa/encoding:quotedprintable,
initialdata/name:GaugeWave,
ccz4/k1:0.0,
ccz4/k2:0.0,
ccz4/k3:0.0,
ccz4/eta:0.0,
ccz4/itau:0.0,
ccz4/f:0.0,
ccz4/g:0.0,
ccz4/xi:0.0,
ccz4/e:2.0,
ccz4/c:0.0,
ccz4/mu:0.0,
ccz4/ds:1.0,
ccz4/sk:0.0,
ccz4/bs:0.0,
ccz4/lapsetype:0,
limiter/criterion:geometric_sphere,
limiter/radius:0.5,
refinement/criterion:geometric_sphere,
refinement/radius:0.5

plot vtk::Cartesian::cells::ascii ConservedWriter
variables const = 59
time = 0.0
repeat = 0.01
output = ./vtk-output

end plot
end solver

end exahype-project

This .exahype file is the centrepiece of solving the equations numerically. The
first block defines all the mandatory paths to the Peano- and ExaHyPE-folders,
where the output is saved, specifies the microarchitecture of our processor and spec-
ifies where the used plotters get generated.

The second block defines the computational domain, where we can choose be-
tween two- and three-dimensional setup. The parameters width and offset have to
be adopted, respectively. Furthermore, we specify the number of timesteps.

The third block defines shared-memory parallelisation through Intel’s Threading
Building Blocks (TBB) or OpenMP. Whenever we add this block, the default value
will be a shared-memory using TBB or OpenMP, depending on whether we have
specified the SHAREDMEM environment variable with

export SHAREDMEM=TBB
or
export SHAREDMEM=OpenMP.
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Note that as all arguments within the shared-memory block are not marked with
const., they will be read at runtime and can be changed without rerunning the
toolkit. Using OpenMP, we have to set the environment variables TBB_INC and
TBB_SHLIB1. If we want at any time, after successfully running the toolkit, to not
use shared-memory or use a different shared-memory method, we can redefine the
SHAREDMEM environment variable via

export SHAREDMEM=None

or as noted above. If we have redefined the SHAREDMEM environment variable, we
do not have to rerun the toolkit but the makefile at this point. For more information
on shared-memory parallelisation, see the respective chapter in [18].

We can add the distributed-memory block to the specification file if we want to
use MPI with our ExaHyPE project, and switch MPI on/off through the environment
variable DISTRIBUTEDMEM. If we have added the distributed-memory block, the
default value will be DISTRIBUTEDMEM=mpi and by running

export DISTRIBUTEDMEM=None

we can switch it off. If we have not specified the distributed-memory block, then
the default value will be DISTRIBUTEDMEM=None. Then, by adding this block,
we can either rerun the toolkit and recompile or

export DISTRIBUTEDMEM=mpi

and recompile. Make sure that an MPI compiler is installed, and note that we can
reconfigure it by rewriting the EXAHYPE_CC flag.

The fifth block defines some optimisations that can be switched on or off on
runtime and can be changed without rerunning the toolkit as they are not marked
as const. See the respective chapter in [18] for further information for these param-
eters.

The last environment, reading

solver [solver] [name_of_the_solver]
...
end solver,

sets the main properties. First, we need to choose a specific numerical PDE solver.
Here, we can use either use

• ADER-DG
• Finite-Volumes
• or Limiting-ADER-DG.

Then, we give the solver a name. In the latter gauge-wave benchmark, we used
ADER-DG as a numerical scheme and gave the solver environment the name CCZ4Solver_
ADERDG. Before we characterise the parameters within this solver block, let us first

1TBB_INC=-I/mypath/include and TBB_SHLIB="-L/mypath/lib64/intel64/gcc4.4 -ltbb"
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give an overview of ExaHyPE’s main solver concepts. By using ExaHyPE, we can
solve equations of the following form

P︸︷︷︸
materialmatrix

∂

∂t
Q + ∇ · F︸︷︷︸

fluxes

(Q) +
d∑
i=1

Bi(Q) ∂Q
∂xi︸ ︷︷ ︸

ncp

= S(Q)︸ ︷︷ ︸
sources

+
∑

δ︸ ︷︷ ︸
pointsources

. (6.2)

Depending on the mathematical problem, not all specified terms are required, and
therefore, we need to specify in our specification file which terms we want to use.
This can be done by specifying the terms parameters, where the following values,
taken from [18], are supported

materialparameters If this PDE term is present, ExaHyPE allows the user
to specify a spd matrix P . If it is not present, ExaHyPE
uses P = id.

fluxes Informs ExaHyPE that we want to use a standard, con-
servative first-order flux formulation.

ncp Informs ExaHyPE that we plan to use non-conservative
formulations.

sources Informs ExaHyPE that we plan to use algebraic sources,
i.e. right-hand side terms.

pointSources Informs ExaHyPE that we plan to use point sources,
i.e. Dirac distribution right-hand side terms.

Table 6.1: Supported solver PDE terms

Furthermore, we need to specify which type of solver and integration scheme we
want to use. Again, the supported values are take from [18]

ADER-DG
linear Is a shortcut for linear, Legendre.
nonlinear Is a shortcut for nonlinear, Legendre.
linear, Legendre Kernel for linear PDEs solved on Gauss-Legendre-Nodes
nonlinear, Legendre Kernel for nonlinear PDEs, solved on Gauss-Legendre-

Nodes
linear, Lobatto Kernel for linear PDEs solved on Gauss-Lobatto-Nodes
nonlinear, Lobatto Kernel for nonlinear PDEs solved on Gauss-Lobatto-

Nodes
Finite Volumes
musclhancock Use a MUSCL-Hancock Riemann solver.
robustmusclhancock Use a slightly more robust version of the MUSCL-

Hancock Riemann solver.
godunov Use a standard Godunov Riemann solver.

Table 6.2: Solver types.
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Within the global optimisation block, we can choose a particular optimisation
method. For further reading about all the used parameters, take a look at the
respective chapter in [18].

In ExaHyPE, there are two possible ways of telling our program about all the
unknown variables of the state vector Q. Here, we work with symbolic identifiers
but refer the reader to the respective chapter in [18] for more information.

The global time-stepping parameter characterises that all cells have the same
time step size.

The constants environment sets some constants that are used in the PDE,
specifies which initial data should be used and sets some further parameters that
we do not have to worry about.

Furthermore, we add the respective

plot [plotter_type] [plotted_data]
...
end plot

environment within the solver environment to create output. The different types
and data that could be plotted can be found in [18], while the parameters within
this environment are self-explanatory. If we want to change the type or the number
of our output data, then add the respective block to the specification file, rerun the
toolkit and rerun our code.

6.2.2 The ExaHyPE toolkit and make
After writing the specification file, the next step will be to hand the specification
file over to the toolkit. This can be done by running the following command

./Toolkit/toolkit.sh [path_to_the_exahype_file]

in ./ExaHyPE-Enginge. Depending on our system, we might have to change some
environment variables, taken from [18],

export COMPILER=Intel Select Intel compiler (default)
export COMPILER=GNU Select GNU compiler

export MODE=Debug Build debug version of our code
export MODE=Asserts Build release version of our code that is

augmented with assertions
export MODE=Profile Build release version of our code that

produces profiling information
export MODE=Release Build release version of our code (default)

export SHAREDMEM=TBB Uses TBB
export SHAREDMEM=OMP Uses OpenMP
export SHAREDMEM=None Do not use TBB or OpenMP (default)

export TBB_INC=-I/mypath/include
export TBB_SHLIB=-L/mypath/lib64/intel64/gcc4.4 -ltbb
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export DISTRIBUTEDMEM=MPI Uses MPI
export DISTRIBUTEDMEM=None Do not use MPI (default)

Afterwards, we need to navigate to our application’s folder and run

make.

This step will create a makefile, a README-file, a lot of glue code and an executable
file in our directory.

6.2.3 Running the code
Once we have successfully run the toolkit and the make command, our terminal will
prompt

....
=================
An ExaHyPE solver

Now, we can start running the code by handing the specification file over to the
executable

./ExaHyPE-CCZ4 [path_to_the_exahype_file]

And at last, after successfully running our code, we can open our output with, e.g.
Paraview 2.

2https://www.paraview.org/
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Numerical Output
"With the aid of computer, it is possible to tackle

these highly nonlinear equations numerically
in oder to examine these scenarios in detail" [7]

Thomas W. Baumgarte
Physicist

The first example of numerical output is the evolution the generalized FO-
CCZ4 system of the Einstein field equations (2.69a)-(2.69k) with gauge fix-
ing (2.82), (2.88a)-(2.88b), with matter-free initial data (3.25) and the AdS

metric γ̂ij as boundary values for a static Anti-de Sitter spacetime in three dimen-
sions parametrized by the coordinates (t, ρ, χ) ∈ (−∞,∞) × (0, 1) × (0, 2π) using
the ExaHyPE software engine. This means that we want to numerically evolve the
AdS3 vacuum spacetime metric while we set the values of the state vector at the
boundary to the purely AdS3 part. The evolution of a static AdS spacetime is a
trivial example and nothing should happen, but it will give us a good hint that the
numerical program works. The initial data for a static AdS3 spacetime is given by

γij = γ̂ij, pi = 0, E = 0 and Kij = 0, (7.1)

where the spatial metric on the initial slice is given by the vacuum AdS3 metric
γ̂ij, while the energy and matter distribution vanishes, i.e. pi = 0 and E = 0.
Furthermore, we have specified time-symmetric initial data, which means setting
the extrinsic curvature to zero for the initial slice Σ0. i.e. Kij = 0. Furthermore,
we will set the variables of the state vector at the boundary exactly to the purely
AdS3 part of these variables to ensure the well-posedness of the initial value problem
of the generalized FO-CCZ4 system. Now, let us note where we have modified the
ExaHyPE code.

Initial Data

First we modified the InitialData.f90 file. Here, we added the following case to the
InitParameters(STRLEN,PARSETUP) subroutine

case('AdS3')
! We use the same parameters as for the Gauge wave
EQN%CCZ4k1 = 0.0
EQN%CCZ4k2 = 0.0

87
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EQN%CCZ4k3 = 0.0
EQN%CCZ4eta = 0.0
EQN%CCZ4f = 0.0
EQN%CCZ4g = 0.0
EQN%CCZ4xi = 0.0
EQN%CCZ4e = 2.0
EQN%CCZ4c = 0.0
EQN%CCZ4mu = 0.0
EQN%CCZ4ds = 1.0
EQN%CCZ4sk = 0.0
EQN%CCZ4bs = 0.0
EQN%CCZ4LapseType = 0 ! harmonic lapse
isAdS3 = LOGICAL( .TRUE., KIND=C_BOOL ),

and the following case to the InitialData(xGP, tGp, Q) subroutine

case('AdS3')
! Let us first define the following:
! The compactified radial coordiante rho = r/(1+r)

AdSrho = xGP(1)/(1+xGP(1))

! The scalar field q = 1-rho
AdSq = 1-AdSrho

! The auxiliary variable a = q^2 + rho^2
AdSa = AdSq**2 + AdSrho**2

! The derivative of a
DAdSa = -2 + 4*AdSrho

V0(:) = 0.0

! The conformally decomposed spatial metric
V0(1) = 1/(SQRT(AdSa)*AdSrho)
V0(4) = SQRT(AdSa)*AdSrho

! The conformally decomposed traceless part of the extrinsic
curvature

! Theta

! Gamma-hat
V0(14) = -0.5*AdSrho/SQRT(AdSa)*DAdSa - SQRT(AdSa)

! Logarithm of the lapse function
V0(17) = LOG(1-AdSq) + 0.5*LOG(1+AdSq**2/AdSrho**2) - LOG(AdSq)

! The shift vector
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! Gamma driver condition

! A_i
V0(24) = AdSrho/(AdSa*AdSq)

! B_i^j

! D_ijk
V0(36) = -1/(2*AdSa**(1.5)) + AdSq/(2*AdSrho*AdSa**(1.5)) -

1/(2*SQRT(AdSa)*AdSrho**2)

V0(39) = AdSrho**2/(2*SQRT(AdSa)) - AdSrho*AdSq / (2*SQRT(AdSa)) +
0.5*SQRT(AdSa)

! The trace K of the extrinsic curvature K_ij

! The logarithm of the conformal factor phi
V0(55) = LOG(AdSq) + 0.25*LOG(AdSa) - 0.5*LOG(AdSrho)

! P_i
V0(56) = -1/AdSq + AdSrho/(2*AdSa) - AdSq/(2*AdSa) - 1/(2*AdSrho)

! Trace K of the extrinsic curvature K_ij at time t=0

The first case sets some parameters that can be found in the FO-CCZ4 (2.69a)-
(2.69k), while the second case sets initial data. First, we defined some AdS specific
variables, then set the variables of the state vector at t = 0 to V 0(:) = 0.0 and
overwrote the nonvanishing variables afterwards.

Boundary Values

Then, we modified the FOCCZ4::FOCCZ4Solver::boundaryValues function in the
FOCCZ4Solver.cpp file for setting boundary values to the finite volume solver. Here,
we added the following if(AdS3_) statement.

void FOCCZ4::FOCCZ4Solver::boundaryValues(
const double* const x,
const double t,const double dt,
const int faceIndex,
const int direction,
const double* const stateInside,
double* const stateOutside) {
const int nVars = FOCCZ4::FOCCZ4Solver::NumberOfVariables;

double Qgp[nVars];

double ti = t + 0.5 * dt;
// Compute the outer state according to the initial condition

double x_3[3];
x_3[2]=0;
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std::copy_n(&x[0],DIMENSIONS,&x_3[0]);

if (isAdS3_){
// rho = r/(1+r)
double rho = AdSrho(x[0]);
// q=1-rho
double q = AdSq(rho);
// a=q^2 + rho^2
double a = AdSa(AdSq(rho), AdSrho(x[0]));
double Da = DAdSa(AdSrho(x[0]));

// Setting all statevariables which are zero to -stateInside
for(int m=0; m < nVars; m++){
stateOutside[m]=-stateInside[m];

}

// Overwriting the components which are not zero
// conformally decomposed spatial metric
stateOutside[0] = 1/(sqrt(a)*rho);
stateOutside[3] = sqrt(a)*rho;

// conformally traceless part of the extrinsic curvature

// Theta

// Gamma hat
stateOutside[13] = - 0.5*rho*Da/sqrt(a) - sqrt(a);

// lapse function
stateOutside[16] = log(1-q) + 0.5*log(1+q*q/(rho*rho)) - log(q);

// shift vector

// Gamma driver condition

// Auxiliary variable A_i
stateOutside[23] = rho/(a*q);

// Auxiliary variable B_i^j

// Auxiliary variable D_ijk
stateOutside[35] = -1/(2*pow(a,3/2)) + q/(2*rho*pow(a,3/2)) -

1/(2*sqrt(a)*rho*rho);
stateOutside[38] = rho*rho/(2*sqrt(a)) - q*rho/(2*sqrt(a)) +

0.5*sqrt(a);

// Trace of the extrinsic curvature

// conformal factor
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stateOutside[54] = log(q) + 0.25*log(a) - 0.5*log(rho);

// Auxiliary variable P_i
stateOutside[55] = -1/q + rho/(2*a) - q/(2*a) - 1/(2*rho);

// Trace of the extrinsic curvature at t=0
}
else {

initialdata_(x_3, &ti, Qgp);
for(int m=0; m < nVars; m++) {

stateOutside[m] = Qgp[m];
}

}
}

Furthermore, we have implemented the following header file specified for some AdS
variables in the FOCCZ4Solver.cpp file

#pragma once

double AdSrho(double a){
double b;
b = a/(1+a);
return b;
}

double AdSq(double a){
double q;
q = 1-a;
return q;
}

double AdSa( double b, double c){
double a;
a = b*b + c*c;
return a;
}

double DAdSa(double a){
double b;
b = -2 + 4*a;
return b;
}

PDE

And finally, we had to add the non-trivial cosmological constant to the partial
differential equation system. As we set L = 1, the cosmological constant will be
given for a four-dimensional manifold by Λ4 = −3. Therefore, we have to add
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+9alpha and +6, respectively, in the conditional preprocessing block

#if defined(CCZ4EINSTEIN) || defined(CCZ4GRHD) || defined(CCZ4GRMHD) ||
defined(CCZ4GRGPR)

in the PDE.f90 file to the evolution equation of the trace of the extrinsic curvature

dtTraceK = - nablanablaalphaNCP - nablanablaalphaSrc + alpha*(
RPlusTwoNablaZNCP + RPlusTwoNablaZSrc + traceK**2 - 2*Theta*traceK )
- 3*alpha*k1*(1+k2)*Theta + SUM(beta(:)*dtraceK(:)) + 9*alpha,

and to the evolution equation of the theta algebraic constraint

dtTheta = 0.5*alpha*e**2*(RplusTwoNablaZNCP + RplusTwoNablaZSrc) +
beta(1)*dTheta(1) + beta(2)*dTheta(2) + beta(3)*dTheta(3) & !
temporal Z

+ 0.5*alpha*e**2*( - Aupdown + 2./3.*traceK**2 + 6 ) -
alpha*Theta*traceK - SUM(Zup*alpha*AA) -
alpha*k1*(2+k2)*Theta

Note, we have used the value for the four-dimensional cosmological constant because
ExaHyPE still uses the equations for a four-dimensional spacetime but plots a 2-
dimensional slice of the three-dimensional space by setting the z-component to zero.
If we want to solve for a "real" AdS3 spacetime numerically, we need to change some
of the prefactors, depending on the dimension of the spacetime, in the FO-CCZ4
system (2.69a)-(2.69k).

Unfortunately, the ExaHyPE software for solving the simplified Cauchy-problem
of a static vacuum three-dimensional AdS spacetime with time-symmetric initial
data, i.e. (E = 0, pi = 0, Kij = 0, γ̂ij), and the anti-de Sitter metric γ̂ij as bound-
ary condition broke up after several timesteps. Within the time framework of this
thesis, we could not debug this error message and had to leave it open for further
investigation.
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Conclusion
"I became interested in this question of whether
you can build wormholes for interstellar travel.

I realized that if you had a wormhole,
the theory of general relativity by itself

would permit you to go backward in time." [34]
Kip Thorne

Physicist

By reading the quote above, we realize how fantastic general relativity is.
However, as a theory combining such beautiful math of differential geometry
with such complicated answers of the universe, it still cannot accurately

describe compact objects such as neutron stars and black holes in the strong-field
regime. Therefore, much work has been put into solving Einstein’s field equations
for compact objects numerically.

This thesis presented a derivation for the well-posed initial value problem for the
strongly hyperbolic FO-CCZ4 system for an asymptotically Anti-de Sitter space in
n spacetime dimensions. First, the FO-CCZ4 system for a general n-dimensional
manifold with a non-trivial cosmological constant was derived by Grosvenor in [37].
Then, we argued why this augmented system of PDE remained for a three- and
four-dimensional manifold strongly hyperbolic and wrote it in a compact, non-
conservative matrix form similar as in Dumser et al. [20]. However, we still need to
show strong hyperbolicity of the FO-CCZ4 system for a n 6= 4-dimensional manifold.

As the Anti-de Sitter spacetime is not globally hyperbolic, we had to derive
conditions for the n3/2 + n2 + 5n/2 unknown variables of the FO-CCZ4 system at
the boundary. First, the AdS space was compactified to some finite value ρ, then,
the metric near the boundary was written as a first-order perturbation series, i.e.
gµν = ĝµν+εhµν , and finally all conditions for the n3/2+n2+5n/2 unknown variables
were derived from this. If we do not specify some boundary conditions at timelike
infinity, we could only evolve forward in time some given initial data on a spacelike
hypersphere at time t = 0 for a small environment in the causal future. Moreover,
these boundary conditions were verified for n = 3 and n = 4 by a Mathematica
script [36].

As initial data on the spacelike hypersurface Σ0 must satisfy the conservation
of energy and momenta, the set-up is non-trivial. For the sake of simplicity, we
restricted ourselves to time-symmetric initial data and used a scalar field ζ as a non-
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trivial deviation from the purely matter-free AdS spacetime. In order to obtain phys-
ically relevant initial data on the Cauchy surface Σ0, a time-independent, elliptic,
second-order initial value problem was derived with the help of a conformal decompo-
sition. For a time-symmetric, matter-free distribution, i.e. (E = 0, pi = 0, Kij = 0),
we found a solution to the initial value problem and reconstructed the spatial AdS
spacetime metric γ̂ij as last part of the initial data. Nevertheless, further work in
the area of inital data needs to be done. First, we need to find a solution to the
less-trivial second-order, elliptic initial value problem on Σ0 = Rn−1 with scalar field
ζ as matter (3.25) by using, e.g., spectral methods. Then, for choosing the topology
on the initial leave as Σ0 = Rn−1\Bρ(0) or as Σ0 = Rn−1\O, we need to set boundary
conditions for the conformal factor ζ ∈ C∞(M,R), respectively, on the sphere or at
the puncture O.

Further work in the field of numerically solving the FO-CCZ4 system for an
asymptotically AdS3 and AdS4 spacetime with ExaHyPE is needed. As we want to
numerically evolve some initial data on a compactified asymptotically Anti-de Sitter
spacetime, we need to explicitly set some boundary conditions near ρ = 1. As the
boundary behaviour of each variable of the state vector Q is given by the purely
AdSn part plus a small deviation εhstatevariable, we need to tell ExaHyPE how these
fields behave near the boundary. While the boundary conditions (4.18) give us the
power of the radial coordinate r with which the deviation falls off, we do not know
the explicit behaviour concerning time and angle coordinates. Therefore, solving the
FO-CCZ4 system for an asymptotically AdS spacetime is twofold: First, we need to
numerically solve the FO-CCZ4 initial value problem for the h̄-functions, and then
insert the numerical output into the boundary behaviour of each state variable. After
finding the exact behaviour of the fall-off conditions near the boundary, we can use
the set-up of initial data in the paper [22] as a benchmark for the time-evolution
of an asymptotically AdS3 spacetime. Then, after successfully evolving the AdS-
benchmark, we can try to evolve some less-trivial initial data for an asymptotically
AdS4 spacetime.

To address the complication to explicitly set the h̄-function, we tried to solve the
simplified Cauchy-problem of a static vacuum three-dimensional AdS spacetime with
time-symmetric initial data, i.e. (E = 0, pi = 0, Kij = 0, γ̂ij), and the anti-de Sitter
metric γ̂ij as a boundary condition within the ExaHyPE framework. This, however,
could not be solved within the time framework of this thesis, as the numerics of the
ExaHyPE code broke up after some timesteps.
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The mathematically rigorous
Definition of the Space and

Time Decomposition
"Numerical relativity picks up where post-Newtonian theory and

general relativistic perturbation theory leave off." [6]
Thomas W. Baumgarte

Physicist

The basis of numerical relativity is the notion of a hypersurface Σ of a space-
time M . Since we could not find a rigorous introduction to numerical rela-
tivity in physics textbooks, we have devoted much effort to defining the main

objects from differential geometry in a mathematically rigorous manner for recast-
ing Einstein’s equations as a time-evolution problem. Therefore, the first chapter
of the appendix, independent of the Einstein field equations, is entirely devoted to
differential geometry, and we will introduce physical quantities only in Chapter 2.
While we define the main objects for working with the Einstein field equations in
the first section, we state in a mathematically rigorous manner the essential objects
that are necessary for rewriting Einstein’s field equations as an initial value problem
in the sections that follow.

A.1 The basis of differential geometry
As the spacetime M will be the framework on which we will build the theory of
numerical relativity, let us state the properties that it carries. A general relativistic
n-dimensional spacetime is a pair (M, g), where M is a real smooth n-dimensional
manifold and g a Lorentzian metric on M . [44] However, we need to ask ourselves
which condition the spacetime M must satisfy such that it admits a Lorentzian
metric. Well, a smooth manifold M admits a Lorentzian metric if there exists
a non-vanishing vector field X on M . [45] As we want to define a global time
direction, we assume that the spacetime (M, g) is time-orientable. Furthermore, as
we want the entire manifold to be determined by some specified initial data on the
initial Cauchy surface Σt at t = 0, the spacetime must be globally hyperbolic. As
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Appendix A. The mathematically rigorous Definition of the Space and Time

Decomposition

the definitions of time-orientability and global hyperbolicity would go beyond the
scope of this chapter, we have summarized the main aspects in Appendix B.

We denote by TpM the tangent space and T ∗pM the cotangent space of the
manifold M at the point p ∈ M . The set of all disjoint tangent spaces will form a
smooth manifold, the tangent bundle TM of M , i.e.

TM =
∐
p∈M

TpM. (A.1)

As every tangent vector vp ∈ TM has a base point p ∈ M , there exists a canonical
projection

pr : TM 3 vp 7→ p ∈M. (A.2)
The space for l-fold contravariant and k-fold covariant tensor fields on M will be

given by the set of smooth sections Γ∞(TM⊗l ⊗ T ∗M⊗k) of the generalized tangent
bundel TM⊗l ⊗ T ∗M⊗k. A smooth section S ∈ Γ∞(TM⊗l ⊗ T ∗M⊗k) is a smooth
map

S : M → TM⊗l ⊗ T ∗M⊗k (A.3)
such that

prTM⊗l⊗T ∗M⊗k ◦S = idM , (A.4)
where

prTM⊗l⊗T ∗M⊗k : TM⊗l ⊗ T ∗M⊗k 3 Sp 7→ p ∈M (A.5)
is the projection of the tensor Sp to its base point p ∈ M as defined in [64]. This
way, a vector field X ∈ Γ∞(TM) is a 1-fold contravariant tensor field.

Furthermore, a local frame for the tangent bundle TM
∣∣∣
U
and the cotangent bun-

dle T ∗M
∣∣∣
U
restricted to some open neighbourhood U ⊆ M of p ∈ M , respectively,

is a set of smooth sections
∂

∂x0 , . . . ,
∂

∂xn−1 ∈ Γ∞(TM
∣∣∣
U

) and dx0, . . . , dxn−1 ∈ Γ∞(T ∗M
∣∣∣
U

) (A.6)

such that
∂

∂x0

∣∣∣∣
p
, . . . ,

∂

∂xn−1

∣∣∣∣
p
∈ TpM ∀p ∈ U and dx0

p, . . . , dx
n−1
p ∈ T ∗pM ∀p ∈ U (A.7)

form a vector basis of TpM and a dual basis of T ∗pM . This way we have

dxα
(

∂

∂xβ

)
= δαβ (A.8)

on an open neighbourhood U of p ∈ M , and any `-fold contravariant and k-fold
covariant tensor S ∈ Γ∞(TM⊗` ⊗ T ∗M⊗k) on M can be written in a local chart
(U, x) for M as in [64] by

S
∣∣∣
U

= Sµ1...µ`
ν1...νk

∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµ`
⊗ dxν1 ⊗ · · · ⊗ dxνk , (A.9)

where Sµ1...µ`
ν1...νk

∈ C∞(U,R).
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Now, a Lorentzian metric is a pseudo-Riemannian metric that is a smooth sym-
metric 2-fold covariant tensor field

g : M → T ∗M ⊗ T ∗M
p 7→ g

∣∣∣
p

:= gp (A.10)

that is non-degenerate at each point p ∈ M with the signature (−,+, · · · ,+) [45],
and whose value gp at each p ∈M is an inner product on TpM defined by

gp : TpM × TpM → R

(up, vp) 7→ gp(up, vp). (A.11)

Locally, the metric can be written as

g
∣∣∣
U

= gµνdx
µ ⊗ dxν , (A.12)

where gµν ∈ C∞(U,R), dxµ ∈ Γ∞(T ∗M) and gµν(p) = gp

(
∂µ
∣∣∣
p
, ∂ν

∣∣∣
p

)
. Furthermore,

we need the notion of a connection on our manifold M that is a bilinear map

∇ : Γ∞(TM)× Γ∞(TM) 3 (X, Y ) 7→ ∇XY ∈ Γ∞(TM) (A.13)

satisfying for f ∈ C∞(M) the following two properties [45]

∇fXY = f∇XY (A.14a)
∇X(fY ) = (LXf)Y + f∇XY, (A.14b)

where LXf is the Lie-derivative of f in the direction of the vector fieldX ∈ Γ∞(TM).
See Appendix A for some properties of the Lie-derivative.

Now, we say that ∇XY is the covariant derivative of the vector field Y in the
direction of the vector field X. Locally, the covariant derivative of the coordinate
vector fields ∂

∂xα
∈ Γ∞(TM) can be written as

∇ ∂
∂xα

∂
∂xβ

= Γµαβ
∂

∂xµ
, (A.15)

where Γµαβ : U → R are called the connection coefficients of ∇. The connec-
tion ∇ is completely determined in a neighbourhood U by the Christoffel sym-
bols Γµαβ, and ∇ uniqueley determines another connection ∇ on the tensor tan-
gent bundle TM⊗l ⊗ T ∗M⊗k [45] that we will denote by the same symbol. The
covariant derivative of any `-fold contravariant and k-fold covariant tensor field
S ∈ Γ∞(TM⊗l ⊗ T ∗M⊗k), where S is expressed locally by (A.9), is given in [45]
locally by

∇XS
∣∣∣
U

=
(
LXSµ1...µ`

ν1...νk
+
∑̀
s=1

XρSµ1...σ...µ`
ν1...νk

Γµsρσ −
k∑
s=1

XρSµ1...µ`
ν1...σ...νk

Γσρνs

)

× ∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµ`
⊗ dxν1 ⊗ · · · ⊗ dxνk , (A.16)
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and we define for the sake of simplicity

∇∂γS
α1...α`
β1...βk

:= ∂γS
α1...α`
β1...βk

+
∑̀
s=1

Sα1...µ...α`
β1...βk

Γαsγµ −
k∑
s=1

Sα1...α`
β1...µ...βk

Γµγβs . (A.17)

To choose a particular connection on our Lorentzian manifold that reflects the prop-
erties of the Lorentzian metric, it has to have the following two properties:

• compatibility with the metric: ∇X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 1

• symmetric: ∇XY −∇YX ≡ [X, Y ]

for all vector fields X, Y, Z ∈ Γ∞(TM). These two conditions are enough to uniquely
determine the connection associated to the Lorentzian metric [55], and it will be
called the Levi-Civita connection after Tullio Levi-Civita. Furthermore, the connec-
tion coefficients associated to the Levi-Civita connection are given locally by

Γγαβ = 1
2g

γµ

(
∂gβµ
∂xα

+ ∂gαµ
∂xβ

− ∂gαβ
∂xµ

)
. (A.18)

The covariant derivative of a tensor S ∈ Γ∞(TM⊗` ⊗ T ∗M⊗k) of type (`, k) on M
in all directions, given by the map

∇S : Γ∞(T ∗M)× · · · × Γ∞(T ∗M)× Γ∞(TM)× · · · × Γ∞(TM)→ C∞(M),
(A.19)

defines by

(∇S)
(
ω1, . . . , ωk, Y1, . . . , Yl, X

)
= (∇XS)

(
ω1, . . . , ωk, Y1, . . . , Yl

)
, (A.20)

where ω1, . . . , ωk ∈ Γ∞(T ∗M) and Y1, . . . , Yl, X ∈ Γ∞(TM), a single `-fold con-
travariant and k+1-fold covariant tensor tensor field that is called the total covariant
derivative [45].

Thanks to the canonical isomorphism [64]

Γ∞(T ∗M⊗3⊗TM) ' HomC∞(M,R)(Γ∞(TM),Γ∞(TM),Γ∞(TM); Γ∞(TM)) (A.21)

there exists for the multilinear map Riem over C∞(M)

Riem: Γ∞(TM)× Γ∞(TM)× Γ∞(TM)→ Γ∞(TM)
(X, Y, Z) 7→ [∇X ,∇Y ]Z −∇[X,Y ]Z (A.22)

a uniquely determined (1, 3) tensor field Riem ∈ Γ∞(TM ⊗ T ∗M⊗3) that we will
call the Riemannian curvature tensor. This tensor can be written locally as

Riem
∣∣∣
U

= Rσ
µνρdx

µ ⊗ dxν ⊗ dxρ ⊗ ∂

∂xσ
, (A.23)

1To say that the connection ∇ is compatible with the metric g is equivalent to that the metric
g is parallel with respect to the connection ∇: ∇g ≡ 0.
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where the components of the tensor are given by

Rδ
αβγ = ∂αΓδβγ − ∂βΓδαγ + ΓµβγΓδαµ − ΓµαγΓδβµ. (A.24)

By taking the trace of the Riemannian curvature tensor we can define the Ricci
tensor Ric ∈ Γ∞(T ∗M ⊗ T ∗M) of ∇ globally by

Ric(X, Y ) = tr (Z 7→ R(Z,X)Y ) , (A.25)

where X, Y ∈ Γ∞(TM), and locally by

Ric
∣∣∣
U

= Rµν dx
µ ⊗ dxν , (A.26)

where Rαβ = Rµ
µαβ. By taking the trace of the Ricci tensor we get the Ricci scalar

curvature
R = tr Ric = Rµ

µ. (A.27)
We have now defined all differential geometric objects that we need to decompose
our spacetime manifold M into space and time. Let us, therefore, begin by defining
a hypersurface and the induced spatial metric.

A.2 Definition of the hypersurface Σt and the spa-
tial metric γ

In this section, we will make the notion of a hypersurface Σ. As well as in the latter
chapter, (M, g) denotes an n-dimensional Lorentzian manifold.

A spacelike (n − 1)-dimensional submanifold Σt of the ambient spacetime M
is called a hypersurface and can be defined by the smooth embedding [3], i.e. an
injective immersion and a topological embedding,

Φ: Σ̂t →M

q 7→ Φ(q) = p = (t, q). (A.28)

We can write p = (t, q) ∈ M globally as a product, as we have assumed that M
is globally hyperpolic. A topological embedding is injective and a homeomorphism
onto its non-intersecting-self-image Σt := Φ(Σ̂t). [64] Locally, a hypersurface can be
defined as a scalar field t̂ ∈ C∞(M,R) by

Σt = {p ∈M |t̂(p) = t}, (A.29)

where t ∈ R. [27] The smooth map Φ induces a linear map for all q ∈ Σ̂t

TqΦ: TqΣ̂t → TΦ(q)M, (A.30)

where any vq = viq∂i
∣∣∣
q
∈ TqΣ̂t will be mapped to TqΦ(vq) = (t, vq) ∈ TΦ(q)M such

that Φ(q) = p. This is sometimes also called the push-forward or tangent map of Φ.
Furthermore, the embedding function induces another important mapping, called
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the pull-back. In order to define the pull-back Φ∗S of an `-fold contravariant and
k-fold covariant tensor field S ∈ Γ∞(TM⊗l ⊗ T ∗M⊗k) by

Φ∗Sq(α1, . . . , α`, v1, . . . , vk) = SΦ(q)(α1◦(TqΦ)−1, . . . , α`◦(TqΦ)−1, TqΦ(v1), . . . , TqΦ(vk)),
(A.31)

where q ∈ Σ̂t, α1, . . . , α` ∈ T ∗q Σ̂t and v1, . . . , vk ∈ TqΣ̂t [64], we need to assume
furthermore that Φ is at least locally a diffeomorphism. The first and most important
pull-back for us, for which Φ does not need to be locally diffeomorphic but only
smooth, will be the induced metric on Σ̂t

γ := Φ∗g ∈ Γ∞(T ∗Σ̂⊗2
t ). (A.32)

For the sake of simplicity, we will identify Σ̂t with Σt = Φ(Σ̂t) ⊂ M and write for
any vector vq ∈ TqΣt just vp = TqΦ(vq) ∈ TpΣt. The induced metric γ is related to
the ambient metric g by

γq(vq, wq) = gΦ(q)(TqΦ(vq), TqΦ(wq)) = gp(vp, wp) (A.33)

for any tangent vectors vq, wq ∈ TqΣ.
In this way, we have defined a spatial hypersurface Σt of the spacetime M and

the spatial metric γ in a rigorous manner. Now, we can see if there exists a unique
connection D defined on the submanifold Σt.

A.3 Definition of the Levi-Civita connection D

and extrinsic curvature K
As Φ is a smooth embedding, i.e. an injective immersion that is also a topological
embedding, and Σt is spacelike, we can split the tangent space TpM into the direct
sum

TpM = TpΣt ⊕NpΣt, (A.34)
where we have defined (TpΣt)⊥ := NpΣt to be the 1-dimensional orthogonal comple-
ment generated by the unit normal vector Np that will be defined in Section A.45.
The Gauss formula says that if X, Y ∈ Γ∞(TM) are extended arbitrarily to smooth
vector fields on an open neighbourhood of Σc in M , then we can decompose the
ambient covariant derivative with respect to the Levi-Civita connection by

∇XY = (∇XY )> + (∇XY )⊥, (A.35)

where > and ⊥ represents the tangential and normal projection, respectively. [55]
Furthermore, we know that the tangential projection (∇XY )> is just the covariant
derivative with respect to the Levi-Civita connection of the induced metric on Σc,

(∇XY )> = DXY, (A.36)

where D is the pull-back of ∇ by the embedding map

D := Φ∗∇. (A.37)
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Again, the fundamental theorem of Riemannian geometry says that there exists a
unique connection D on TΣ that is compatible with γ and symmetric, and we will
call it the Levi-Civita connection of γ.

The normal projection (∇XY )⊥ can be described either by the second fundamen-
tal form of Σc or by the scalar-valued second fundamental form, which is defined by
the normal projection of the covariant derivative of tangent vector fields and by the
tangent projection of the covariant derivative of a normal vector field, respectively.

The second fundamental form

We can define the second fundamental form of Σc by the map

K : Γ∞(TΣ)× Γ∞(TΣ)→ Γ∞(NΣ), (A.38)

such that K(X, Y ) := (∇XY )⊥. Thus, we can write Eq. (A.35) as

∇XY = DXY +K(X, Y ). (A.39)

The scalar-valued second fundamental form

Here, we define for each normal vector field N ∈ Γ∞(NΣ) the scalar-valued second
fundamental form by the map

KN : Γ∞(TΣ)× Γ∞(TΣ)→ C∞(M,R), (A.40)

such that KN(X, Y ) := 〈N,K(X, Y )〉 = 〈X,WN(Y )〉, where we have used the self-
adjoint linear Weingarten map

WN : Γ∞(TΣ)→ Γ∞(TΣ). (A.41)

For every X ∈ Γ∞(TΣ) and N ∈ Γ∞(NM) the Weingarten map is given by
WN(X) = − (∇XN)>, where N is an arbitrary extension to an open subset of
M . Thus, we can write Eq. (A.35) explicitely as

∇XY = DXY +KN(X, Y )N
= DXY − 〈X, (∇XN)>〉N. (A.42)

Let us give some remarks at the end: The Levi-Civita connection D on TΣ is called
the intrinsic curvature of (Σ, γ) and there exists as well a Riemannian curvature ten-
sor, Ricci tensor and Ricci scalar on Σ with respect to D. The scalar-valued second
fundamental form KN ∈ Γ∞(T ∗Σ⊗2) is also called the extrinsic curvature tensor and
tells us how the hypersurface is embedded into the spacetime manifold. From Eq.
(A.42), we can interpret it as a measure of the difference between the intrinsic Levi-
Civita connection on TΣ and the ambient Levi-Civita connection on TM . Another
interpretation is given in [27]: the extrinsic curvature tensor K measures the failure
of a geodesic of (Σ, γ) to be a geodesic of (M, g), and the two notions only coincide
in the case where K = 0.

Next, as we want to define a global direction of time, define a timelike normal
vector field N in the next section.
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A.4 Characterisation of the normal vector field N
In the latter chapter, we have defined (Σc, γ) as an embedded spacelike (n − 1)-
dimensional submanifold of an n-dimensional ambient Lorentzian manifold (M, g).
In this case, there are at each point q ∈ Σc two unit normal vectors. However,
it is generally not clear that a smooth unit normal vector field exists on all of Σc.
However, there will always be a unit normal vector field on some open neighbourhood
of q ∈ Σc. [45]

Let t ∈ C∞(M,R) be a smooth scalar field such that Σc = t−1(c). Then we can
define the one-form dtp ∈ T ∗pM at the point p ∈M by

dtp(vp) = vp(t), (A.43)

where vp ∈ TpM . Let now vp ∈ TpΣc, then the one-form and the gradient of the
scalar field t ∈ C∞(M,R) are normal to Σc, since

gp(∇t
∣∣∣
p
, vp) = dtp(vp) = vp(t

∣∣∣
Σ

) = 0, (A.44)

because the scalar field is constant on Σc. [55] Since Σt is a spacelike hypersurface,
we can normalise the timelike tangent vector ∇t

∣∣∣
p
∈ TpM as in [27] by

Np := − 1√
−gp(∇t

∣∣∣
p
,∇t

∣∣∣
p
)
∇t
∣∣∣
p
∈ TpM, (A.45)

where the minus sign is chosen so that the vector Np is future-oriented if the scalar
field t ∈ C∞(M,R) is increasing towards the future. By calculating the scalar product
of the normal vector, i.e.,

gp(Np, Np) = −1, (A.46)
we see that the normal vector is timelike, and we have found an unit timelike normal
vector field N ∈ Γ∞(TM) on some open neighbourhood of q ∈ Σc.

The definition of the lapse function α

If we define the normalization factor of Eq. (A.45) as in [27] by

αp := 1√
−gp(∇t

∣∣∣
p
,∇t

∣∣∣
p
)
, (A.47)

then α ∈ C∞(M,R) is a scalar field on M called the lapse function.

The definition of the normal evolution vector field M

We can define the normal evolution vector as well as in [27] by setting

Mp := αpNp. (A.48)
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This way, M ∈ Γ∞(TM) will be a timelike vector field on some open neighbourhood
of q ∈ Σc with the properties

gp(Mp,Mp) = −α2
p and ∇M t

∣∣∣
p

= LM t
∣∣∣
p

= Mp(t) = gp(∇pt,Mp) = 1. (A.49)

From the very definition of the Lie-derivative and LM t
∣∣∣
p

= 1, we can see that
t(p′) = t(p) + δt, where p′ = p + δtMp ∈ Σt+δt. Geometrically, this means that the
vector δtMp carries the hypersurface Σt to the neighbouring one Σt+δt. [27] If you
are not familiar with the notion of a Lie derivative, you may consult Appendix B.

The definition of the shift vector field β

Let us take (t, x1, . . . , xn−1) as natural basis of M . Then, ∂t ∈ Γ∞(TM
∣∣∣
U

) and
dt ∈ Γ∞(T ∗M

∣∣∣
U

) will be smooth sections on the tangent and cotangent bundle
satisfying dt (∂t) = 1. Then, as

dtp (Mp) = Mp(t) = 1 ∀p ∈M, (A.50)

we can see that the smooth time section ∂t ∈ Γ∞(TM) has the same properties
as the normal evolution vector field M ∈ Γ∞(TM). In general, these two sections
differ by the shift vector field β ∈ Γ∞(TM) by

∂t =: M + β. (A.51)

By calculating
dtp (βp) = dtp

(
∂t
∣∣∣
p

)
− dtp (Mp) = 1− 1 = 0 (A.52)

we can see that the shift vector βp at some point p ∈M is tangent to the hypersur-
faces Σt. Furthermore, by using the definition of the normal evolution vector field,
we can view

∂t = αN + β (A.53)
as the decomposition of the time vector section ∂t ∈ Γ∞(TM) into time and space.
[27] Locally, we can write the shift vector field β ∈ Γ∞(TM) as

β
∣∣∣
U

= βi∂i and β[
∣∣∣
U

= βidx
i. (A.54)

Now, we are ready to foliate our spacetime M into spacelike hypersurfaces in such
a way that we can define a global direction of time.

The characterization of Eulerian observer

Since N ∈ Γ∞(TM) denotes a unit timelike vector field, we can view it as the four-
velocity vector field of some observer. As time goes by, the observer moves along
the vector flow Φ of N . We call it the wordline of the Eulerian observer, since the
vector flow traces out the time history of the observer. This means as well that the
locally defined hypersurface Σt is the set of events that happen at the same time
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from the point of view of the Eulerian observer. The proper time τ of two close
events, p and p′ = p+ δtMp, measured by the Eulerian observer is given by [27]

δτ =
√
−gp(δtMp, δtMp) =

√
−gp(Mp,Mp)δt = αpδt, (A.55)

and the four-acceleration vector field A ∈ Γ∞(TM) of the Eulerian observer is
defined via

A = ∇NN, (A.56)
and with

〈A,N〉
∣∣∣
p

= 〈N,∇NN〉
∣∣∣
p

= 1
2∇N〈N,N〉

∣∣∣
p

= 1
2LN〈N,N〉

∣∣∣
p

= 1
2Np(〈N,N〉) = 0, (A.57)

since 〈N,N〉 ∈ C∞(M,R) is constant on Σt, it follows that Ap = ∇NN
∣∣∣
p
∈ TpΣt.

A.5 The foliation of the spacetime M
The principle idea to decompose the spacetime M into "time" and "space" dates
back to the beginning of the Hamiltonian formulation of general relativity. [59] It is
commonly used in modern numerical relativity to rewrite the Einstein equations as
a "time" evolution problem suitable for numerical implementation.

A foliation of an n-dimensional manifold M is a partition of M into injectively
immersed (n− 1)-dimensional submanifolds Σt, i.e.,

M =
⋃
t∈R

Σt with Σt ∩ Σt′ = ∅ for t 6= t′, (A.58)

in such a way that for each p ∈M there is a coordinate chart (U, x) that maps the
intersection Σt ∩ U to a subset in Rn−1 × {t} ⊂ Rn−1 × R1 = Rn. [17] In general, we
could have foliated the manifold M by any (n − k)-dimensional submanifolds, but
since we want to split "time" and "space" this seems to be the right choice. By the
very definition, the hypersurfaces (Σt)t∈R do not intersect themself and others and
by the assumption that M is globally hyperbolic, we can write the spacetime as a
global product

M = Σt × R, (A.59)
where the topology is given by the product topology of the leave-topology and the
standard topology of R.

As we want to project our objects living on our spacetime M onto the spatial
hypersurface Σt and along the normal vector field N , we need to define the notion
of the projection onto the submanifolds in the next section.

A.6 The definition of the projection operator γµν
In the latter chapter, we have denoted the orthogonal projection of some section of
the tangent bundle of M by >. From now on, we will denote it by γ and define it
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by

γ : Γ∞(TM)→ Γ∞(TΣ)
V 7→ V + 〈N, V 〉N, (A.60)

where N ∈ Γ∞(NΣ) and V ∈ Γ∞(TM) [27]. Evaluating the right-hand side at a
point p, we see that

γ(N)
∣∣∣
p

= 0 and γ(V )
∣∣∣
p

= Vp for all Vp ∈ TpΣ. (A.61)

Locally, we can write

γ(V )
∣∣∣
p

= V µ
p

∂

∂xµ

∣∣∣∣
p

+Nµ
p V

ν
p

〈
∂

∂xµ

∣∣∣∣
p
,
∂

∂xν

∣∣∣∣
p

〉
Nρ
p

∂

∂xρ

∣∣∣∣
p

= V µ
p

∂

∂xµ

∣∣∣∣
p

+Nµ
p V

ν
p gµν(p)Nρ

p

∂

∂xρ

∣∣∣∣
p

=
(
V µ
p +Np,νV

ν
p N

µ
p

) ∂

∂xµ

∣∣∣∣
p

=
(
δµν +Nµ

pNp,ν

)
V ν
p

∂

∂xµ

∣∣∣∣
p

= γµν(p)V ν
p

∂

∂xµ

∣∣∣∣
p
, (A.62)

where we have defined the components of γ with respect to the basis ∂
∂xα

∣∣∣∣
p
of TpM

by
γµν = δµν +NµNν . (A.63)

Furthermore, we can define a mapping to extend any k-fold covariant tensor on
T ∗Σ⊗k to a k-fold covariant tensor on T ∗M⊗k by

γ∗M : Γ∞(T ∗Σ⊗k)→ Γ∞(T ∗M⊗k), (A.64)

such that
γ∗M(A)(p)(V1, . . . , Vk) := A(p)(γ(V1)

∣∣∣
p
, . . . , γ(Vk)

∣∣∣
p
). (A.65)

We will be interested in the extension of the spatial metric γ and the extrinsic
curvature KN to all vectors. These are given by

γ∗M(γ)(p)(V1, V2) := γ(p)(γ(V1)
∣∣∣
p
, γ(V2)

∣∣∣
p
) (A.66)

and
γ∗M(KN)(p)(V1, V2) := KN(p)(γ(V1)

∣∣∣
p
, γ(V2)

∣∣∣
p
). (A.67)

The extended spatial metric γ∗M(γ) can be expressed globally by

γ∗M(γ) = g +N [ ⊗N [, (A.68)

and locally by

γ∗M(γ)
∣∣∣
U

= (γ∗M(γ))ij dx
i ⊗ dxj = (gij +NiNj)dxi ⊗ dxj. (A.69)
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The extended extrinsic curvature γ∗M(KN) can be expressed globally by

γ∗M(KN) = −∇N [ − A[ ⊗N [, (A.70)

since for all U, V ∈ Γ∞(TM)

γ∗M(KN)(U, V ) = KN(γ(U), γ(V )) = −〈γ(U),
(
∇γ(V )N

)>
〉

= −〈U + 〈N,U〉N,
(
∇V+〈N,V 〉NN

)>
〉

= −〈U + 〈N,U〉N,∇VN + 〈N, V 〉∇NN〉
= −〈U,∇VN〉 − 〈N, V 〉〈U,∇NN〉 − 〈N,U〉〈N,∇VN〉
− 〈N,U〉〈N, V 〉〈N,∇NN〉

= −〈∇VN,U〉 − 〈∇NN,U〉〈N, V 〉
= − (∇VN)[ (U)− A[(U)N [(V )
= −∇VN

[(U)− A[(U)N [(V )
= −∇N [(U, V )− A[(U)N [(V ), (A.71)

where∇N [ is the total derivative of N [ ∈ Γ∞(T ∗M) given by the map A.19. Locally,
it can be expressed by [27]

γ∗M(KN)
∣∣∣
U

= − (Nµ;ν + AµNν) dxµ ⊗ dxν , (A.72)

where Nα;β = ∂Nα
∂xβ
− NµΓµβα. To close this section, we will introduce another map

to project any tensor of M to the hypersurface Σ ⊂ M . This can be done by
extending the above defined projection operator γ to any `-fold contravariant and
k-fold covariant tensor S ∈ Γ∞(TM⊗l ⊗ T ∗M⊗k) by the map

γ∗M : Γ∞(TM⊗l ⊗ T ∗M⊗k)→ Γ∞(TM⊗l ⊗ T ∗M⊗k) (A.73)

such that the components of γ∗S are projected to the hypersurface Σt by

(γ∗MS)α1,...,α`
β1,...,βk

= γα1
µ1 . . . γ

α`
µ`
γν1
β1 . . . γ

νk
βk
Sµ1,...,µ`

ν1,...,νk
. (A.74)

Thus, we can write locally

γ∗MS
∣∣∣
U

= γσ1
µ1 . . . γ

σ`
µ`
γν1
ρ1 . . . γ

νk
ρk
Sµ1,...,µ`

ν1,...,νk
dxρ1 ⊗· · ·⊗ dxρk ⊗∂σ1 ⊗· · ·⊗∂σ` . (A.75)

Using the projection map γ∗, we can link the total covariant derivative of a tensor

S ∈ Γ∞(TΣ⊗l ⊗ T ∗Σ⊗k)

on Σ with the total covariant derivative of some extension of S on M by

γ∗M(DS) = γ∗ [∇ (γ∗MS)] . (A.76)

For the sake of simplicity, we will denote the extensions always by the same symbol

DS := γ∗M(DS), S := γ∗MS , γ := γ∗M(γ) and KN := γ∗M(KN). (A.77)
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This way we can write Eq. (A.68), Eq. (A.70) and Eq. (A.76) as
γ = g +N [ ⊗N [ (A.78)

with γαβ = gαβ +NαNβ,
KN = −∇N [ − A[ ⊗N [ (A.79)

with KN,αβ = Nα;β + AαNβ and
DS = γ∗∇S (A.80)

with DγS
α1,...,α`
β1,...,βk

= γα1
µ1 . . . γ

α`
µ`
γν1
β1 . . . γ

νk
βk
γργ∇ρS

µ1,...,µ`
ν1,...,νk

.
Using the projection operators of this section, we can split our full metric tensor

g into its space and time components in the following section.

A.7 The (n− 1) + 1-decomposition of the metric
Locally, we can write the spatial metric γ and the Lorentzian metric g, respectively,
as

γ
∣∣∣
U

= γijdx
i ⊗ dxj (A.81)

and
g
∣∣∣
U

= gµνdx
µ ⊗ dxν . (A.82)

By using
gαβ = g (∂α, ∂β) , (A.83)

we can calculate
gtt = g (∂t, ∂t) = −α2 + g (β, β) = −α2 + βiβ

i (A.84a)
gti = g (∂t, ∂i) = g (M + β, ∂i) = g (β, ∂i) = βi (A.84b)
gij = g (∂i, ∂j) = γ (∂i, ∂j) = γij. (A.84c)

Therefore, we can write the metric components in terms of the (n− 1) + 1 split as

gαβ =
(
gtt gtj
git gij

)
=
(
−α2 + βkβ

k βj
βi γij

)
, (A.85)

and the inverse metric by

gαβ =
(
gtt gtj

git gij

)
=
(
−1/α2 βj/α2

βi/α2 γij − βiβj/α2

)
. (A.86)

We can easily see that these matrices satisfy
gαµgµβ = δαβ (A.87)

and we can write the (n− 1) + 1 decomposition of the Lorentzian metric g in terms
of the line element as

gµνdx
µdxν = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
. (A.88)

So far, we have decomposed the metric tensor g and the smooth section ∂t
into space and time. We can do this for all objects and the next one will be the
Riemannian curvature tensor Rγ

µαβ. From the decomposition of this object, we can
derive the space and time decomposition of the Ricci tensor Rµν . This will be needed
for decomposing the Einstein field equations into space and time.
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Decomposition

A.8 Derivation of the Gauss-, Codazzi- and Ricci-
relation

The Gauß-Peterson-Mainardi-Codazzi relations are the most important equations
for deriving of the (n−1)+1 decomposition of the spacetime since they link objects
living on the hypersurface Σ with the projection of objects living on the spacetime
M . We will not derive any of these equations but instead, refer the reader to the
respective section in [27].

From here on, we will use the local component notation with respect to a local
frame (∂α)α∈I ∈ Γ∞(TM

∣∣∣
U

) and (dxα)α∈I ∈ Γ∞(T ∗M
∣∣∣
U

) where I = {0, . . . , n− 1},
and label all objects that live in the n-dimensional manifoldM with a superscript (n).

The Gauss-Relation

We can derive the Gauss-equation from the extended Ricci identity
(DαDβ −DβDα) vγ = Rγ

µαβv
µ, (A.89)

where vp = vµp∂µ
∣∣∣
p
∈ TpM is a tangent vector to Σ, Dα the components of the

extended covariant derivative andRγ
δαβ the components of the extended Riemannian

curvature tensor. By using the relation between the total derivative on Σ and M ,
i.e. Eq. (A.80), and a lot of index gymnastic, we can derive the Gauss relation

γµαγ
ν
βγ

γ
ργ

σ
δ R(n) ρ

σµν = Rγ
δαβ +Kγ

αKδβ −Kγ
βKαδ. (A.90)

By contracting the Gauss equation on the indices γ and α, we obtain the contracted
Gauss relation

γµαγ
ν
β R(n)

µν + γαµN
νγρβN

σ R(n) µ
νρσ = Rαβ +KKαβ −KαµK

µ
β, (A.91)

and by taking the trace with respect to γ, the scalar Gauss relation

R(n) + 2 R(n)
µνN

µN ν = R +K2 −KijK
ij. (A.92)

The scalar Gauss relation is a generalization of the Theorema Egregium by Gauss
and relates the intrinsic curvature of Σ represented by R with the extrinsic curvature
represented by K2 −KijK

ij.

The Codazzi-Relation

We can get this relation by projecting the Ricci idendity applied locally to some
normal vector field, i.e.

(∇α∇β −∇β∇α)Nγ = R(n) γ
µαβN

µ, (A.93)
three times onto the hypersurface Σt, we get the Peterson-Mainardi-Codazzi
relation

γγρN
ργµαγ

ν
β R(n) ρ

σµν = DβK
γ
α −DαK

γ
β. (A.94)

Contracting this equation on the indices α and γ yields the contracted Peterson-
Mainardi-Codazzi relation

γµαN
ν R(n)

µν = DαK −DµK
µ
α. (A.95)
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The Ricci-Relation

We can get the Ricci-relation by projecting the Ricci identity applied to some normal
vector field, i.e.

(∇α∇β −∇β∇α)Nγ = R(n) γ
µαβN

µ, (A.96)
twice onto the hypersurface Σt and once along the normal vector filed N . After a lot
of index gymnastic that can be found in [27], we get the so-called Ricci equation

γαµγ
ν
βN

ρNσ R(n) µ
ρνσ = 1

α
LmKαβ + 1

α
DαDβα +KαµK

µ
β. (A.97)

We have projected the Riemannian curvature tensor

• fully onto Σt

• three times onto Σt and once along the normal vector field N
• and twice onto Σt and twice along the normal vector field N .

The other possibility to project the Riemannian tensor three times along the normal
vector field N will vanish identically, since

Riem(n) (N [, N,N, ·) = 0 and Riem(n) (·, N,N,N) = 0 (A.98)

due to the partial antisymmetry. [27] Thus, the Gauss-relation (A.90), the Codazzi-
relation (A.94) and the Ricci equation (A.97) state the full decomposition of the
n-dimensional Riemannian curvature tensor.

There are three more important equations that we will state here and refer
the attentive reader to the book [27] by Éric Gourgoulhon. By plugging the Ricci-
equation (A.97) into the contracted Gauss-relation (A.91) we get an equation holding
only the spacetime Ricci tensor

γµαγ
ν
β R(n)

µν = − 1
α
LmKαβ −

1
α
DαDβα +Rαβ +KKαβ − 2KαµK

µ
β. (A.99)

By taking the trace of the latter equation with respect to the spatial metric γ, we
get

R(n) + R(n)
µνN

µN ν = R +K2 − 1
α
LmK −

1
α
DiD

iα, (A.100)

and by combining the latter equation with the scalar Gauss relation (A.92), we get
an equation involving only the spacetime scalar curvature R(n)

R(n) = R +K2 +KijK
ij − 2

α
LmK −

2
α
DiD

iα. (A.101)
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The Lie Derivative

In this section, we will shortly summarize the main aspects of Lie derivatives
of tensor fields in the direction of a vector field as this will be used for the
derivation of the FO-CCZ4 system. All definitions, theorems and formulas are

taken from [64].

B.1 The Lie Derivative of a Tensor Field

B.1.1 The idea of a Lie Derivative

Let us assume that we have a field of on a manifold M , and we want to quantify
how it changes along a smooth vector field X ∈ Γ∞(TM). To see how the field of

changes along the vector field X, we could move forward along the integral curve
φXt of X and compare the field of at the point p and φXt (p) ∈ M . However, as
we want to quantify the change of the field at the point p, it is not a good idea to
move away from p. But, we could pull back and evaluate the field of at the point
p. Then, by dividing by the stepsize and taking the limit gives as the idea of the
Lie derivative:

LX
∣∣∣∣
p

:= lim
t→0

backdragged (p)− (p)
t

. (B.1)

Before we can make the idea of a Lie derivative precise, we will need the notion of
an integral curve and how to pull back fields on a manifold.

B.1.2 Integral Curve and Pull-Backs
We can view a vector field X ∈ Γ∞(TM) as the map

X : C∞(M,R)→ C∞(M,R) (B.2)
f 7→ X(f)

defined by
X(f)|p := Xp(f), (B.3)

where we identify the tangent vector Xp ∈ TpM as a R-linear derivation on germs
of functions

Xp : C∞(M,R)→ R. (B.4)
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and we can write locally on (U, x)

X(f)|p := Xp(f) = Xµ
p

∂

∂xµ

∣∣∣∣
p
f = Xµ

p

∂(f ◦ x−1)
∂xµ

∣∣∣∣
x(p)

(B.5)

Let X ∈ Γ∞(TM) be a vector field on M . Then for each tangent vector Xp ∈ TpM ,
it is easy to find a curve γ through p having Xp as tangent vector by the equivalent
definition of a tangent vector by a smooth curve γ : (−ε, ε)→M with γ(0) = p

γ̇(0) : C∞p (M,R) 3 f 7→ γ̇(0)(f) := d(f ◦ γ)
dt

∣∣∣∣
t=0
∈ R (B.6)

But if this should hold for each point p ∈ im(γ), we get the notion of an integral
curve.

Definition B.1.1 (Integral Curve). Let X ∈ Γ∞(TM) be a smooth vector field on
M . Then a smooth curve γ : I → M with some open interval I ⊆ R is called an
integral curve of X if for all t ∈ I

γ̇(t) = Xγ(t). (B.7)

We can indeed compare both sides: γ̇(t) is a tangent vector of γ and Xγ(t) is a
tangent vector of the vector field X at the point γ(t). As we want to move points
p ∈M along their integral curve, we need the notion of the flow of a vector field.

Definition B.1.2 (Flow of a Vector Field). Let X ∈ Γ∞(TM) be a smooth vector
field on M and Ip ⊆ R be the maximal interval on which the integral curve γ of X
with γ(0) = p is defined. Then

U =
⋃
p∈M

Ip × {p} ⊆ R×M (B.8)

is an open neighbourhood of {0} ×M in R×M and we call the smooth map

Φ: U →M (B.9)
(t, p) 7→ Φ(t, p) := γ(t) (B.10)

satisfying

Φ(0, p) = γ(0) = p (B.11)
Φ(t,Φ(s, p)) = Φ(t+ s, p) (B.12)

for all p ∈M , t, s ∈ R the flow of the vector field X.

Furthermore, we can write for all (t, p) ∈ U

d

dt
Φ(t, p) = XΦ(t,p) = Xγ(t), (B.13)

and restrict the flow of a complete vector field, i.e U = R×M , for each t ∈ R to the
map

Φt : M →M
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p 7→ Φt(p) := Φ(t, p) = γ(t)

satisfying
Φ0 = idM and Φt ◦ Φs = Φt+s (B.14)

for all t, s ∈ R by the flow property. The procedure of moving points along the
integral curve γp of a vector field X is called Lie dragging. We can Lie drag points,
functions and tensor fields forward from a point p to q or backwards from q to p.
Lie dragging forward is called the push-forward Φt,∗ and Lie dragging backwards is
called the pull-back Φ∗t . If Φt is a diffeomorphism, then both are related by

Φt,∗ = (Φ−1
t )∗ = Φ∗−t.

Now, let us define the pull-back of a function f ∈ C∞(M,R) and a `-fold contravari-
ant and k-fold covariant tensor field S ∈ Γ∞(TM⊗l⊗T ∗M⊗k) by the restricted flow
map phit.

Definition B.1.3 (Pull-back of a function). Let Φt : M → M be a map on the
manifold M and f : M → R be a function. Then the pull-back Φ∗tf of f by Φt is
defined by

Φ∗tf = f ◦ Φt : M → R. (B.15)

Definition B.1.4 (Pull-back of a tensor field). Let Φt : M → M be a local diffeo-
morphism, k, ` ∈ N0 and S ∈ Γ∞(TM⊗` ⊗ T ∗M⊗k) be a `-fold contravariant and
k-fold covariant tensor field on M . Then, for p ∈ M the pull-back Φ∗tS of S by Φt

is defined by

(Φ∗tS)p(α1, . . . , α`, v1, . . . , vk)
= SΦt(p)(α1 ◦ (TpΦt)−1, . . . , α` ◦ (TpΦt)−1, TpΦt(v1), . . . , TpΦt(vk)), (B.16)

where α1, . . . , α` ∈ T ∗pM and v1, . . . , vk ∈ TpM .

This definition can be simplified to only covariant or contravariant tensor fields
on M by setting respectively ` = 0 or k = 0. An alternative way to write a
contravariant tensor field S ∈ Γ∞(TM⊗`) is given by

(Φ∗S)(p) = ((TpΦ)−1 ⊗ · · · ⊗ (TpΦ)−1)(S(Φ(p))) (B.17)

for all p ∈M .

B.1.3 The Lie Derivative
Theorem B.1.1 (Lie derivative of a function). Let X ∈ Γ∞(TM) be a smooth
vector field with complete flow Φ: R ×M → M . Then for every f ∈ C∞(M,R) we
have

LXf = lim
t→0

Φ∗tf − f
t

= d

dt

∣∣∣∣
t=0

Φ∗tf = X(f). (B.18)
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Proof. Let γp : R → M be an integral curve of M with γp(0) = p. Then we can
calculate

LXf
∣∣∣∣
p

:= lim
t→0

Φ∗tf(p)− f(p)
t

= lim
t→0

(f ◦ Φt)(p)− f(p)
t

= lim
t→0

(f ◦ γp)(t)− (f ◦ γp)(0)
t

= d

dt

∣∣∣∣
t=0

(f ◦ γp)(t) = d

dt

∣∣∣∣
t=0

(f ◦ Φ)(t, p) = d

dt

∣∣∣∣
t=0

(Φ∗tf)(p)

= d

dt

∣∣∣∣
t=0

(f ◦ γp)(t) = γ̇p(0)(f) = (X ◦ γp)(0)(f) = Xp(f) = X(f)
∣∣∣∣
p

Let us give some remarks for the Lie derivative of functions.
Remark B.1.1. If the vector field flow would not be complete, then there would not
exist a map Φt : M →M for all t 6= 0. However, around every point p ∈M we find
a neighbourhood U ⊆ M and an ε > 0 such that for all t ∈ (−ε, ε) the restrictions
Φt : U →M are defined and diffeomorphism onto their images and we can consider
the local pull-back (Φt

∣∣∣∣
U

)∗S for some tensor fields S on M yielding a tensor field on
U for all t ∈ (−ε, ε). Since it is enough for the Lie derivative to be computed locally
around p and as the size of ε is irrelevant, we can define the Lie derivative for a
non-complete flow as well. Bearing this in mind, we can now state the definition of
the Lie derivative of a vector and tensor field.

Theorem B.1.2 (Lie derivative of a vector field). Let X ∈ Γ∞(TM) be a smooth
vector field on M with flow Φ. For a vector field Y ∈ Γ∞(TM) one defines the Lie
derivative of Y in the direction of X by

LXY = lim
t→0

Φ∗tY − Y
t

= d

dt

∣∣∣∣
t=0

Φ∗tY = [X, Y ], (B.19)

where [·, ·] denotes the Lie bracket.

Theorem B.1.3 (Lie derivative of a tensor field). Let X ∈ Γ∞(TM) be a smooth
vector field on M with flow Φ. For a tensor field S ∈ Γ∞(TM⊗` ⊗ T ∗M⊗k) one
defines the Lie derivative of S in the direction of X by

LXS = lim
t→0

Φ∗tS − S
t

= d

dt

∣∣∣∣
t=0

Φ∗tS. (B.20)

Remark B.1.2. Let us notice that the Lie derivative is a linear map

LX : Γ∞(TM⊗` ⊗ T ∗M⊗k)→ Γ∞(TM⊗` ⊗ T ∗M⊗k) (B.21)

and a differential operator of order one, but for practical reasons, these definitions
are not very suitable as it requires to compute the flow of the vector field X, which
amounts to solving a differential equation. Let us therefore state in the next section
some local formulas of the Lie derivative.
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B.1.4 Local Formulas
Theorem B.1.4 (Local formulas). Let (U, x) be a local chart for M . Then we have
the following local Lie derivatives

i.) For coordinate vector field one has for all µ, ν = 0, . . . , n− 1

L ∂
∂xµ

∂

∂xν
=
[
∂

∂xµ
,
∂

∂xν

]
= 0 (B.22)

ii.) For coordinate one-forms one has for all µ, ν = 0, . . . , n− 1

L ∂
∂xµ
dxν = 0 (B.23)

iii.) The Lie derivative LX is only C∞(M,R)-linear in the argument X for functions
g ∈ C∞(M,R)

LfXg = fLXg. (B.24)
For vector fields we get

LfXY = [fX, Y ] = fLXY + Y (f)X. (B.25)

iv.) Let S ∈ Γ∞(TM⊗` ⊗ T ∗M⊗k) and X ∈ Γ∞(TM) be a tensor and vector field,
respectively, on M with the local forms

S
∣∣∣∣
U

= Sµ1...µ`
ν1...νk

∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµ`
⊗ dxν1 ⊗ · · · ⊗ dxνk (B.26)

and
X
∣∣∣∣
U

= Xµ ∂

∂xµ
(B.27)

we can write the Lie derivative LXS locally by

LXS
∣∣∣∣
U

=
(
Xρ∂S

µ1...µ`
ν1...νk

∂xρ
−
∑̀
r=1

Sµ1...µr−1σµr+1...µ`
ν1...νk

∂Xµr

∂xσ
+

k∑
s=1

Sµ1...µ`
ν1...νs−1σνs+1...νk

∂Xσ

∂xνs

)
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµ`
⊗ dxν1 ⊗ · · · ⊗ dxνk . (B.28)

v.) Notice that the local formula B.28 can be written by any connection without
torsion, such as the Levi-Civita connection ∇ associated with the metric g by

LXS
∣∣∣∣
U

=
(
Xρ∇ρS

µ1...µ`
ν1...νk

−
∑̀
r=1

Sµ1...µr−1σµr+1...µ`
ν1...νk

∇σX
µr +

k∑
s=1

Sµ1...µ`
ν1...νs−1σνs+1...νk

∇νsX
σ

)
∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµ`
⊗ dxν1 ⊗ · · · ⊗ dxνk . (B.29)
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Properties of a relativistic
Spacetime

In this section, we will shortly summarize the main properties the spacetime
manifoldM has to satisfy. First, we will recall what a differentiable manifold is
and when it admits a Lorentzian metric. Then, as we assume that the spacetime

M will be time-orientable and globally hyperbolic, we will recall the definitions of
the latter and give some remarks.

C.1 Manifold Properties
Definition C.1.1 (Topological manifold). Let (M,M) be a topological space. Then
(M,M) is called a topological manifold of dimension n ∈ N0 if it allows for
an n-dimensional topological atals, satisfies the second countability axiom and is
Hausdorff.

Since we can use local coordinates around every point p ∈ M , we can use the
familiar concepts of differentiation in Rn and transfer them to topological manifolds.
This will need the additional assumption that for any two local charts (Uα, xα) and
(Uβ, xβ) of the atlas U = {(Uα, xα)}α∈I either Uα∩Uβ = ∅ or xα ◦x−1

β

∣∣∣∣
xβ(Uα∩Uβ)

∈ Ck

and we will call an atlas with such a structure a Ck-atlas. Therefore,

Definition C.1.2. A Ck-manfiold is a topological manifold together with a maximal
Ck-atlas.

Definition C.1.3 (Spacetime). The pair (M, g) of a differentiable manifold M and
a Lorentz metric g ∈ Γ∞(T ∗M⊗2) is called a general relativistic spacetime.

But how do we know that there exists for any spacetime M a Lorentzian metric
g? Well, [55] states:

Proposition C.1.1. For a smooth manifold M the following statements are equiv-
alent

(1) There exists a Lorentz metric g ∈ Γ∞(T ∗M⊗2) on M

(2) There exists a time-orientable Lorentz metric g ∈ Γ∞(T ∗M⊗2) on M

117
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(3) There exists a non-vanishing vector field X ∈ Γ∞(TM) on M

(4) Either M is non-compact, or M is compact and has Euler characterisic zero

C.2 Time-orientability
Furthermore, as we want the spacetime to have a global direction of time, we need
to assume that (M, g) will be time-orientable. But what does this mean? Let
X ∈ Γ∞(TM) be a smooth vector field on M , then a tangent vector Xp ∈ TpM at
a point p ∈M can be

• timelike if gp(Xp, Xp) < 0
• null or lightlike if gp(Xp, Xp) = 0
• spacelike if gp(Xp, Xp) > 0,

where we have used the Lorentzian signature (−,+,+,+) of the metric g. Further-
more, a tangent vector Xp is called non-spacelike if gp(Xp, Xp) ≤ 0, so if it is time-
or lightlike. Besides, every timelike vector Xp ∈ TpM at a point p ∈ M can be
divided into two equivalence classes - the "future" and the "past" direction.

To do so, we first recall the concepts of orientation for any smooth manifold:
at each p ∈ M , we partition all ordered bases in TpM into exactly two equivalence
classes depending on if the change of basis from one (ordered) basis to another basis
has positive or negative determinant. The determinant of the change of basis can’t
be zero since the change of basis is bijective. We can now orientM by simply picking
one equivalence class at each TpM and say that M is smoothly positively oriented
if at each point we can find a smooth local frame Ei ∈ Γ∞(TM

∣∣∣
U

) of TM such that
(E0

∣∣∣
p
, · · · , En−1

∣∣∣
p
) is a positively oriented basis for TpM at each point p ∈ U [44].

The concept of time orientation works the same way. Instead of ordered bases at
each TpM we have time-cones: namely, for any timelike vector Xp ∈ TpM we define
the time-cone of TpM containing Xp to be

C(Xp) : = {Yp any timelike vector in TpM : gp(Xp, Yp) < 0}.

Two timelike vectors Xp, Yp are in the same time-cone at TpM if and only if
gp(Xp, Yp) < 0. So just as with orientation, we can time-orient our manifold by
picking one of the two time-cones from each tangent space TpM [55]. We can now
arbitrarily call one equivalence class future-directed and the other one past-directed.
If we can do this continuously for the entire manifold, i.e. ∀p ∈M , then we say that
the Lorentzian manifold M is time-orientable.

Furthermore, the following lemma is taken from [54]

Lemma C.2.1. The following statements are equivalent:

• There exists a continuous non-vanishing time-like vector field X ∈ Γ∞(TM)
on M
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• Any means of transporting a timelike vector around an arbitrarily closed loop
in spacetime that is continuous and keeps the vector timelike does not result in
time inversion of the vector when it returns to the starting point

• Parallel transport of a timelike vector around an arbitrarily closed loop in the
spacetime does not result in time inversion

Lemma C.2.2. For any (M, g) if M is simply connected, then (M, g) is time ori-
entable.

Lemma C.2.3. If (M, g) is not temporally orientable, then time orientability can
be achieved by passing to a covering spacetime.

C.3 Global Hyperbolicity
The following lemma and definition about strong causality is taken from [50]

Lemma C.3.1. For any event p of a spacetime (M,g), the following sentences are
equivalent:

• Given any neighborhood U of p there exists a neighborhood V ⊂ U , p ∈ V
(which can be chosen globally hyperbolic), such that V is causally convex in M
and thus in U .

• Given any neighborhood U of p there exists a neighborhood V ⊂ U , p ∈ V ,
such that any future-directed (and hence also any past-directed) causal curve
γ : I →M with endpoints at V is entirely contained in U .

Definition C.3.1 (Strongly Causal). A spacetime (M, g) is called strongly causal
at p ∈M if it satisfies one of the equivalent properties in Lemma C.3.1. A spacetime
is strongly causal if it is strongly causal ∀p ∈M .

Definition C.3.2. A spacetime (M, g) is globally hyperbolic if and only if M is
strongly causal and ∀p, q ∈M such that p << q, C−(q) ∩ C+(p) is compact.

The set C−(p) and C+(p), respectivley, are the causal past and causal future,
and p << q means that p chronologically preceeds to q.

Lemma C.3.2. The spacetime (M, g) is globally hyperbolic if and only if it admits a
Cauchy surface, i.e. a spacelike hypersurface which meets every maximally extended
timelike curve exactly once.
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DAppend
ix

Characterization of Killing
Vector Fields

In this short appendix, we will state the definition of a Killing vector field, as
they can be used to characterise symmetries of spacetimes. And exactly those
spacetimes with maximal linear independent Killing vector fields are of interest

and we call them maximally symmetric spacetimes.

Definition D.0.1. Let (M, g) and (N, h) be n-dimensional pseudo-Riemannian
manifolds with Lorentzian metrics. Then, a diffeomorphism

φ : M → N

p 7→ φ(p) = q (D.1)

is called an isometry of a pseudo-Riemannian manfiold (M, g) if it preserves the
metric tensor [55]

hφ(p) (Tpφ(vp), Tpφ(wp)) = gp (vp, wp) , (D.2)
for all p ∈ M and vp, wp ∈ TpM . The set of all isometries of (M, g) is denoted by
Iso(M, g).

As the metrics are 2-fold covariant tensor fields, we can write the definition of
an isometry equivalently as

φ∗h = g, (D.3)
where φ∗ is the pull-back map as defined in (A.31). From the properties of the
pull-back map, we can easily see that Iso(M, g) forms a group, i.e.

• the identity map id is an isometry
• the composition of isometries is an isometry,
• and the inverse map of an isometry is an isometry.

Isometries are of importance, as they leave the metric and all other objects expressed
in terms of the metric invariant. Let us therefore see how the metric components
gαβ(p) at the point p ∈M can be related to the metric components gµν(φ(p)) at the
point φ(p) ∈ N .
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Proposition D.0.1. Let (U, x) and (V, y), respectively, be local charts of M around
p and N around φ(p) = q, and φ an isometry of M . Then,

gαβ = ∂ (yµ ◦ φ)
∂xα

∂ (yν ◦ φ)
∂xβ

hµν ◦ φ. (D.4)

Proof. Let us calculate how the metric components are related via the isometry φ

gαβ(p) = g
∣∣∣
p

(
∂
∂xα

∣∣∣∣
p
, ∂
∂xβ

∣∣∣∣
p

)
= (φ∗h)

∣∣∣
p

(
∂
∂xα

∣∣∣∣
p
, ∂
∂xβ

∣∣∣∣
p

)

= h
∣∣∣
φ(p)

(
Tpφ

(
∂
∂xα

∣∣∣∣
p

)
, Tpφ

(
∂
∂xβ

∣∣∣∣
p

))

= ∂ (yµ ◦ φ ◦ x−1)
∂xα

∣∣∣∣
x(p)

∂ (yν ◦ φ ◦ x−1)
∂xβ

∣∣∣∣
x(p)

h
∣∣∣
φ(p)

(
∂

∂yµ

∣∣∣∣
q
,
∂

∂yν

∣∣∣∣
q

)

= ∂ (yµ ◦ φ ◦ x−1)
∂xα

∣∣∣∣
x(p)

∂ (yν ◦ φ ◦ x−1)
∂xβ

∣∣∣∣
x(p)

hµν(φ(p))

= ∂

∂xα

∣∣∣∣
p

(yµ ◦ φ) ∂

∂xβ

∣∣∣∣
p

(yν ◦ φ)hµν(φ(p)) ∀p ∈M. (D.5)

Thus,
gαβ = ∂ (yµ ◦ φ)

∂xα
∂ (yν ◦ φ)
∂xβ

hµν ◦ φ. (D.6)

If we want to figure out, how the metric g ∈ Γ∞(T ∗M⊗2) behaves under coordinate
transformation, we can take the identity φ = id as isometry and simplify

gαβ(p) = ∂ (yµ ◦ φ ◦ x−1)
∂xα

∣∣∣∣
x(p)

∂ (yν ◦ φ ◦ x−1)
∂xβ

∣∣∣∣
x(p)

hµν(φ(p))

= ∂ (yµ ◦ x−1)
∂xα

∣∣∣∣
x(p)

∂ (yν ◦ x−1)
∂xβ

∣∣∣∣
x(p)

hµν(φ(p))

= ∂

∂xα

∣∣∣∣
p
yµ

∂

∂xβ

∣∣∣∣
p
yν hµν(p) ∀p ∈M. (D.7)

Thus,
gαβ = ∂yµ

∂xα
∂yν

∂xβ
hµν ∈ C∞(M,R). (D.8)

Let φ : U →M be the flow of the vector field X ∈ Γ∞(TM), then we can restrict
this map to the smooth map

φt : U →M (D.9)
for all t ∈ I ⊂ R and U ⊂ M . If X is a complete vector field, then we can restrict
the flow to the diffeomorphism

φt : M →M (D.10)
for all t ∈ R. If φt is a (local) isometry, i.e. preserving the metric, then

φ∗tg = g (D.11)
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and can we motivate the infinitesimal couterpart to (D.11) by taking the Lie deriva-
tive:

LXg
∣∣∣∣
p

(vp, wp) =
(
d

dt

∣∣∣∣
t=0
φ∗tg

)
(p) (vp, wp)

= d

dt

∣∣∣∣
t=0

(φ∗tg)p (vp, wp)

= d

dt

∣∣∣∣
t=0
gp (vp, wp)

= 0 (D.12)

for all p ∈M and vp, wp ∈ TpM . This gives us the following definition

Definition D.0.2. Let (M, g) be a pseudo-Riemannian manifold. Then, a vector
field X ∈ Γ∞(TM) is called a Killing vector field with respect to the metric g if

LXg = 0. (D.13)

The set of Killing vector fields is a Lie subalgebra denoted by iso(M, g) ⊂ Γ∞(TM).

Thus, by Eq. (B.1.3), the metric does not change under the flow φ∗t of the vector
field X ∈ Γ∞(TM) and we can view a Killing vector field as an "infinitesimal isom-
etry" [55]. Furthermore, it follows from Lemma 28 in [55], that the Lie subalgebra
iso(M, g) for a connected pseudo-Riemannian manifold M has dimension at most
n(n+ 1)/2.

For further characterisation of Killing vector fields, see the respective chapters
in [55] and references within.
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pe
nd

ix

Calculations for the Boundary
Behaviour

In this appendix, you can find all the cumbersome derivation of the condition of
the n3/2 + n2 + 5/2n unknown variables of the state vector Q at the boundary
ρ = `, q = 0 or r →∞. To gain some intuition on how these fields behave near

the boundary, we have perturbated the AdS metric ĝµν with a small deviation εhµν .

E.1 The conformally-decomposed spatial metric

Let us first prove that the spatial metric γij and its inverse γij satisfy the condition

γijγij = n− 1. (E.1)

Then,

γijγij = γρργρρ + 2γρaγρa + γabγab

=
(
γ̂ρρ + qn−4h̄ρρε

) (
γ̂ρρ − γ̂ρργ̂ρρqn−4h̄ρρε

)
− 2qn−3h̄ρaεγ̂

ρργ̂abqn−3h̄ρbε

+
(
γ̂ab + qn−4ρ2gab,Sn−2h̄abε

) (
γ̂ab − γ̂acγ̂bdqn−4ρ2gcd,Sn−2h̄cdε

)
= γ̂ρργ̂

ρρ + γ̂abγ̂
ab +O(ε2)

= n− 1 +O(ε2). (E.2)

Furthermore, we can show that

φ2 × φ−2 = φ̂2
(
1 + εhφ2 +O(ε2)

)
× φ̂−2

(
1 + εhφ−2 +O(ε2)

)
=
(

1− q2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
ε+O(ε2)

)

×
(

1 + q2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
ε+O(ε2)

)

= 1− q2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
ε+ q2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
ε+O(ε2)

= 1 +O(ε2). (E.3)
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Now, we can calculate the boundary behaviour of the conformally decomposed spa-
tial metric via

γ̃ij = ˆ̃γij + εhγ̃ij +O(ε2) and γ̃ij = ˆ̃γij + εhγ̃ij +O(ε2), (E.4)

where the purely AdSn part is given by

ˆ̃γij = φ̂2γ̃ij and ˆ̃γij = φ̂−2γ̃ij (E.5)

while the deviation is given by

hγ̃ij = φ̂2 (hij + hφ2 γ̂ij) , and hγ̃ij = φ̂−2
(
hij + hφ−2 γ̂ij

)
, (E.6)

Then,

γ̃ρρ =ˆ̃γρρ + φ̂2
(
qn−4h̄ρρ + hφ2 γ̂ρρ

)
ε+O(ε2)

= a
n−2
1−nρ

2(n−2)
1−n

det(gab,Sn−2)
1

n−1
+ 1
n− 1

qn−2a
n−2
1−nρ

2(n−2)
1−n

det(gab,Sn−2)
1

n−1

(
(n− 2)ah̄ρρ −

n−2∑
i=1

h̄θiθi

)
ε+O(ε2)

= 1
a
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n−1ρ
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1
n−1

[
1 + qn−2

n− 1

(
(n− 2)ah̄ρρ −
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h̄θiθi

)
ε

]

+O(ε2) (E.7a)

γ̃ρb =φ̂2qn−3h̄ρbε+O(ε2) = a
1

n−1 qn−1

ρ
2(n−2)
n−1 det(gab,Sn−2)

1
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h̄ρbε+O(ε2) (E.7b)

γ̃ab =ˆ̃γab + φ̂2
(
qn−4ρ2gab,Sn−2h̄ab + hφ2 γ̂ab

)
ε+O(ε2)
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ε
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+O(ε2) (E.7c)

and

γ̃ρρ = ˆ̃γρρ + φ̂−2
(
−γ̂ρργ̂ρρqn−4h̄ρρ + hφ−2 γ̂ρρ

)
ε+O(ε2)

= ρ
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+ qn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
q2a

]
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)
ε
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γ̃ρa = −φ̂−2γ̂ρργ̂baqn−3h̄ρbε+O(ε2)

= −ρ
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γ̃ab = ˆ̃γab + φ̂−2
(
−γ̂acγ̂bdqn−4ρ2gcd,Sn−2h̄cd + hφ−2 γ̂ab
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Finally, we can calculate the trace of the conformally decomposed spatial metric to
prove the correctness of these equations. Therefore,

γ̃ij γ̃ij = γ̃ρργ̃ρρ + γ̃abγ̃ab
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This gives a good hint that our calculated equations for the conformally decomposed
spatial metric are correct. This will be verified by a Mathematica script for an n = 3
and n = 4 dimensional manifold M .

E.2 The auxiliary variable Ai

The individual derivatives of

Aρ = ∂ρ lnα = ∂ρ ln α̂ + ∂ρhα +O(h2
α) (E.10)

are given, using Eq. (4.73) and Eq. (4.74) respectively, by

∂ρ ln α̂ = ∂ρ ln
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and
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E.3 The auxiliary variable Pi
The individual derivatives of

Pρ = ∂ρ ln φ̂+ ∂ρhφ +O(h2
φ), (E.13)

are given, using Eq. (4.52) and Eq. (4.53) respectively, by

∂ρ ln φ̂ = ∂ρ
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and
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E.4 The auxiliary variables Dijk

By using
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we can calculate the Dijk auxiliary varibles.
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This was the cumbersome calculation for the boundary behaviour of the auxiliary
variables Dijk.

E.5 The extrinsic curvature Ki

Let us now calculate the boundary behaviour of the extrinsic curvature
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Kab = − 1
2α̂

[
∂thab − γ̂akhBk

b
− γ̂bkhBka − 2φ̂−2hβkD̂kab + 2γ̂abP̂khβk

]
ε+O(ε2)

= − q

2
√
a

[
qn−4ρ2gab,Sn−2∂th̄ab − ρ2qn−6gac,Sn−2

(
q2

ρ2∂bg
dc
Sn−2h̄td + q2

ρ2 g
dc
Sn−2∂bh̄td

)

− ρ2qn−6gbc,Sn−2

(
q2

ρ2∂ag
dc
Sn−2h̄td + q2

ρ2 g
dc
Sn−2∂ah̄td

)

− gab,Sn−2

n− 1 qn−3h̄tρ
(
ρ2∂ρa+ 2aρ

)
+ qn−4gdcSn−2h̄td

(
gab,Sn−2∂c det(gab,Sn−2)
(n− 1) det(gab,Sn−2) − ∂cgab,S

n−2

)

+ 2ρ2gab,Sn−2

(
− 1
ql

+ ∂ρa

2(n− 1)a −
n− 2

(n− 1)ρ

)
qn−3ah̄tρ

− 1
n− 1

gab,Sn−2∂c det(gab,Sn−2)
det(gab,Sn−2) qn−4gdcSn−2h̄td

]
ε+O(ε2)

= − q

2
√
a

[
qn−4ρ2gab,Sn−2∂th̄ab − qn−4gac,Sn−2

(
∂bg

dc
Sn−2h̄td + gdcSn−2∂bh̄td

)
− qn−4gbc,Sn−2

(
∂ag

dc
Sn−2h̄td + gdcSn−2∂ah̄td

)



E.5. The extrinsic curvature Ki 137

(((
((((

(((
((

−gab,S
n−2

n− 1 qn−3h̄tρρ
2∂ρa−

gab,Sn−2

n− 1 qn−3h̄tρ2aρ

((((
(((

((((
(((

((((
(

+qn−4gdcSn−2h̄td
gab,Sn−2∂c det(gab,Sn−2)
(n− 1) det(gab,Sn−2) − q

n−4gdcSn−2h̄td∂cgab,Sn−2

− 2ρ2gab,Sn−2

(
1
ql

+ n− 2
(n− 1)ρ

)
qn−3ah̄tρ +

���
���

���
���

ρ2gab,Sn−2
∂ρa

n− 1q
n−3h̄tρ

(((
((((

(((
((((

(((
((

−gab,S
n−2∂c det(gab,Sn−2)

(n− 1) det(gab,Sn−2) qn−4gdcSn−2h̄td

]
ε+O(ε2)

= −q
n−3

2
√
a

[
ρ2gab,Sn−2∂th̄ab − 2g(ac,Sn−2∂b)g

dc
Sn−2h̄td − 2∂(ah̄tb)

− gdcSn−2∂cgab,Sn−2h̄td − 2ρgab,Sn−2ah̄tρ

]
ε+O(ε2) (E.19)
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Now, we are able to calculate the trace of the extrinsic curvature
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E.6 The traceless-part of the extrinsic curvature
Let us calculate the traceless-part of the extrinsic curvature. Then,
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From theory, we know that
γijAij = 0. (E.23)

Therefore, let us see if our derived equations satisfy this condition.
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= 0 +O(ε2) (E.24)

We can verify if the Ã-equations Eq. (E.22a) - Eq. (E.22c) are correct by calculating

γ̃ijÃij = γ̃ijhÃijε+O(ε2)
= ˆ̃γρρhÃρρε+ ˆ̃γabhÃabε+O(ε2)
= γ̂ρρhAρρε+ γ̂abhAabε+O(ε2)
= γijAij

= 0 +O(ε2), (E.25)

where we have used the fact φ2 × φ−2 = 1 and γijAij = 0 +O(ε2).

E.7 The Γ̃ equations

Let us calculate the Γ̂-variables.

Γ̃ρ = 2γ̃ρρ
(
γ̃ρρDρρρ + γ̃ρaDaρρ + γ̃aρDρρa + γ̃abDaρb

)
+ 2γ̃ρa

(
γ̃ρρDρaρ + γ̃ρbDbaρ + γ̃bρDρab + γ̃bcDcab

)
= 2γ̃ρρ

{(
ˆ̃γρρ + εhγ̃ρρ

) (
D̂ρρρ + εhDρρρ

)
+ εhγ̃ρa

(
D̂aρρ + εhDaρρ

)
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+ εhγ̃aρεhDρρa +
(
ˆ̃γab + εhˆ̃γab

)
εhDaρb

}
+ 2γ̃ρa

{(
ˆ̃γρρ + εhˆ̃γρρ

)
εhDρaρ + εhγ̃ρbεhDbaρ + εhγ̃bρ

(
D̂ρab + εhDρab

)
+
(
γ̃bc + εhγ̃bc

) (
D̂cab + εhDcab

)}
+O(ε2)

= 2γ̃ρρ
(

ˆ̃γρρD̂ρρρ + εD̂ρρρhγ̃ρρ + εˆ̃γρρhDρρρ + εhγ̃ρaD̂aρρ + εˆ̃γabhDaρb
)

+ 2γ̃ρa
(
εˆ̃γρρhDρaρ + εhγ̃bρD̂ρab + ˆ̃γbcD̂cab + εˆ̃γbchDcab + εD̂cabhγ̃bc

)
+O(ε2)

= 2
(
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)(
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)
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(
εˆ̃γρρhDρaρ + εhγ̃bρD̂ρab + ˆ̃γbcD̂cab + εˆ̃γbchDcab + εD̂cabhγ̃bc

)
+O(ε2)

= 2ˆ̃γρρ ˆ̃γρρD̂ρρρ +
(

4ˆ̃γρρD̂ρρρhγ̃ρρ + 2ˆ̃γρρ ˆ̃γρρhDρρρ + 2ˆ̃γρρhγ̃ρaD̂aρρ

+ 2ˆ̃γρρ ˆ̃γabhDaρb + 2hγ̃ρa ˆ̃γbcD̂cab

)
ε+O(ε2). (E.26)

Let us now calculate the individual terms by using

φ−2 = ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1

a
1

n−1 q2
(E.27)

ˆ̃γρρ = ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1a

n−2
n−1 (E.28)

ˆ̃γab = det(gcd,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gabSn−2 (E.29)

hγ̃ρρ = det(gab,Sn−2)
1

n−1

a−
n−2
n−1ρ−

2(n−2)
n−1

qn−2

n− 1

(
(2− n)ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
+O(h2) (E.30)

hγ̃ρa = −det(gab,Sn−2)
1

n−1a
n−2
n−1

ρ
2

n−1
qn−1gabSn−2h̄ρb +O(h2) (E.31)

D̂ρρρ = − 1
2 det(gcd,Sn−2)

1
n−1

n− 2
n− 1

a 3−2n
n−1 ∂ρa

ρ
2(n−2)
n−1

+ 2 a
2−n
n−1

ρ
3n−5
n−1

 (E.32)

D̂aρρ = − a
2−n
n−1

2(n− 1)ρ
2(n−2)
n−1

∂a det(gcd,Sn−2)
det(gcd,Sn−2)

n
n−1

(E.33)

D̂cab = −a
1

n−1ρ
2

n−1

2

gab,Sn−2

n− 1
∂c det(gcd,Sn−2)
det(gcd,Sn−2)

n
n−1
− ∂cgab,Sn−2
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1

n−1

 (E.34)

hDρρρ = qn−2

2(n− 1)
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1
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`
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)
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Then,

2ˆ̃γρρ ˆ̃γρρD̂ρρρ = −n− 2
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4ˆ̃γρρD̂ρρρhγ̃ρρ = 4ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1a

n−2
n−1

×− 1
2 det(gcd,Sn−2)

1
n−1

n− 2
n− 1

a 3−2n
n−1

(
2ρ
L2 − 2q

`

)
ρ

2(n−2)
n−1

+ 2 a
2−n
n−1

ρ
3n−5
n−1


×−det(gab,Sn−2)

1
n−1

a−
n−2
n−1ρ−

2(n−2)
n−1

(
aqn−2h̄ρρ −

qn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

))

= 2n− 2
n− 1ρ

2(n−2)
n−1 a

n−2
n−1a

n−2
n−1ρ

2(n−2)
n−1 det(gab,Sn−2)

1
n−1

×

a 3−2n
n−1

(
2ρ
L2 − 2q

`

)
ρ

2(n−2)
n−1

+ 2 a
2−n
n−1

ρ
3n−5
n−1

(aqn−2h̄ρρ −
qn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

))

= 2(n− 2)
(n− 1)2 q

n−2ρ
2(n−2)
n−1

a
1

n−1
∂ρa det(gab,Sn−2)

1
n−1

(
(n− 2)ah̄ρρ −

n−2∑
i=1

h̄θiθi

)

+ 4(n− 2)
(n− 1)2

qn−2ρ
n−3
n−1a

n−2
n−1

det(gab,Sn−2)
1

1−n

(
(n− 2)ah̄ρρ −

n−2∑
i=1

h̄θiθi

)
(E.37b)

2ˆ̃γρρ ˆ̃γρρhDρρρ = 2ρ
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×
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and

Γ̃ρ = −n− 2
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Furthermore,

Γ̃a = 2γ̃aρ
(
γ̃ρρDρρρ + γ̃ρbDbρρ + γ̃bρDρρb + γ̃bcDcρb

)
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Let us now calculate the individual terms of the latter equation by using the following
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Then,
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2ˆ̃γab ˆ̃γcdhDdbc =2det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gabSn−2

det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gcdSn−2

×

 qn−2

n− 1
a

1
n−1ρ

2
n−1

2

gbc,Sn−2

n− 1
∂d det(gef,Sn−2)
det(gef,Sn−2)

n
n−1
− ∂dgbc,Sn−2

det(gef,Sn−2)
1

n−1


×
(
ah̄ρρ +

n−2∑
i=1

h̄θiθi + (n− 1)h̄bc
)
− a

1
n−1ρ

2
n−1 q2gbc,Sn−2

2(n− 1) det(gef,Sn−2)
1

n−1

×

a∂dh̄ρρ +
n−2∑
i=1

∂dh̄θiθi − (n− 1)∂dh̄bc


=2det(gef,Sn−2)

1
n−1

a
1

n−1ρ
2

n−1
gabSn−2

det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gcdSn−2

× qn−2

n− 1
a

1
n−1ρ

2
n−1

2

gbc,Sn−2

n− 1
∂d det(gef,Sn−2)
det(gef,Sn−2)

n
n−1
− ∂dgbc,Sn−2

det(gef,Sn−2)
1

n−1


×
(
ah̄ρρ +

n−2∑
i=1

h̄θiθi − (n− 1)h̄bc
)

− 2det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gabSn−2

det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gcdSn−2

a
1

n−1ρ
2

n−1 q2gbc,Sn−2

2(n− 1) det(gef,Sn−2)
1

n−1

×

a∂dh̄ρρ +
n−2∑
i=1

∂dh̄θiθi − (n− 1)∂dh̄bc


= 1

(n− 1)2
qn−2

a
1

n−1ρ
2

n−1

∂d det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

gabSn−2gcdSn−2gbc,Sn−2

×
(
ah̄ρρ +

n−2∑
i=1

h̄θiθi − (n− 1)h̄bc
)

− qn−2

n− 1
det(gef,Sn−2)

1
n−1

a
1

n−1ρ
2

n−1
gabSn−2gcdSn−2∂dgbc,Sn−2

×
(
ah̄ρρ +

n−2∑
i=1

h̄θiθi − (n− 1)h̄bc
)



E.7. The Γ̃ equations 149

− det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1

qn−2

n− 1g
ab
Sn−2gcdSn−2gbc,Sn−2

×

a∂dh̄ρρ +
n−2∑
i=1

∂dh̄θiθi − (n− 1)∂dh̄bc


(E.53)

2hγ̃ab ˆ̃γcdD̂dbc =2 det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1 q2−n

[
−gacSn−2gbdSn−2gcd,Sn−2h̄cd + 1

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
gabSn−2

]

× det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gcdSn−2

×−a
1

n−1ρ
2

n−1

2

gbc,Sn−2

n− 1
∂d det(gef,Sn−2)
det(gef,Sn−2)

n
n−1
− ∂dgbc,Sn−2

det(gef,Sn−2)
1

n−1


=
(
qn−2gaeSn−2g

bf
Sn−2gef,Sn−2h̄ef −

qn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
gabSn−2

)

× det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gcdSn−2

×
(
gbc,Sn−2

n− 1
∂d det(gef,Sn−2)

det(gef,Sn−2) − ∂dgbc,S
n−2

)

=
(
qn−2gaeSn−2g

bf
Sn−2gef,Sn−2h̄ef −

qn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
gabSn−2

)

×

 1
n− 1

1
a

1
n−1ρ

2
n−1

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1
− det(gef,Sn−2)

1
n−1

a
1

n−1ρ
2

n−1
gcdSn−2∂dgbc,Sn−2


=qn−2gaeSn−2g

bf
Sn−2gef,Sn−2h̄ef

×

 1
n− 1

1
a

1
n−1ρ

2
n−1

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1
− det(gef,Sn−2)

1
n−1

a
1

n−1ρ
2

n−1
gcdSn−2∂dgbc,Sn−2


− qn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
gabSn−2

×

 1
n− 1

1
a

1
n−1ρ

2
n−1

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1
− det(gef,Sn−2)

1
n−1

a
1

n−1ρ
2

n−1
gcdSn−2∂dgbc,Sn−2


= 1
n− 1

qn−2

a
1

n−1ρ
2

n−1

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

gaeSn−2g
bf
Sn−2gef,Sn−2h̄ef

− qn−2 det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gcdSn−2∂dgbc,Sn−2gaeSn−2g

bf
Sn−2gef,Sn−2h̄ef

− qn−2

(n− 1)2
1

a
1

n−1ρ
2

n−1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
gabSn−2

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1



150 Appendix E. Calculations for the Boundary Behaviour

+ qn−2

n− 1
det(gef,Sn−2)

1
n−1

a
1

n−1ρ
2

n−1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
gabSn−2gcdSn−2∂dgbc,Sn−2

(E.54)

and

Γ̃a = − 1
a

1
n−1ρ

2
n−1

1
n− 1

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

gabSn−2 + a
n−2
n−1

ρ
2

n−1
gabSn−2 det(gef,Sn−2)

1
n−1 qn−1∂ρh̄ρbε

− a
n−2
n−1

ρ
2

n−1
gabSn−2 det(gef,Sn−2)

1
n−1 qn−1

(
2

n− 1
1
ρ

+ n− 1
q`
− n− 2
n− 1

∂ρa

a

)
h̄ρbε

− det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
qn−2

=0︷ ︸︸ ︷
gabSn−2gceSn−2g

df
Sn−2gef,Sn−2∂dgbc,Sn−2h̄ef ε

+ 1
(n− 1)2

qn−2

a
1

n−1ρ
2

n−1

∂d det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

gabSn−2gcdSn−2gbc,Sn−2

×
(
ah̄ρρ +

n−2∑
i=1

h̄θiθi − (n− 1)h̄bc
)
ε

− qn−2

n− 1
det(gef,Sn−2)

1
n−1

a
1

n−1ρ
2

n−1

=0︷ ︸︸ ︷
gabSn−2gcdSn−2∂dgbc,Sn−2

×
(
ah̄ρρ +

n−2∑
i=1

h̄θiθi − (n− 1)h̄bc
)
ε

− det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1

qn−2

n− 1g
ab
Sn−2gcdSn−2gbc,Sn−2

×

a∂dh̄ρρ +
n−2∑
i=1

∂dh̄θiθi − (n− 1)∂dh̄bc

ε
+ 2
n− 1

qn−2

a
1

n−1ρ
2

n−1

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

gaeSn−2g
bf
Sn−2gef,Sn−2h̄efε

− qn−2 det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1

=0︷ ︸︸ ︷
gcdSn−2∂dgbc,Sn−2gaeSn−2g

bf
Sn−2gef,Sn−2h̄efε

− 2qn−2

(n− 1)2
1

a
1

n−1ρ
2

n−1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
gabSn−2

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

ε

+ 2qn−2

n− 1
det(gef,Sn−2)

1
n−1

a
1

n−1ρ
2

n−1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

) =0︷ ︸︸ ︷
gabSn−2gcdSn−2∂dgbc,Sn−2ε+O(ε2)

= − 1
a

1
n−1ρ

2
n−1

1
n− 1

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

gabSn−2 + a
n−2
n−1

ρ
2

n−1
gabSn−2 det(gef,Sn−2)

1
n−1 qn−1∂ρh̄ρbε

− a
n−2
n−1

ρ
2

n−1
gabSn−2 det(gef,Sn−2)

1
n−1 qn−1

(
2

n− 1
1
ρ

+ n− 1
q`
− n− 2
n− 1

∂ρa

a

)
h̄ρbε
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+ 1
(n− 1)2

qn−2

a
1

n−1ρ
2

n−1

∂d det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

gabSn−2gcdSn−2gbc,Sn−2

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi − (n− 1)h̄bc
)
ε

− det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1

qn−2

n− 1g
ab
Sn−2gcdSn−2gbc,Sn−2

a∂dh̄ρρ +
n−2∑
i=1

∂dh̄θiθi − (n− 1)∂dh̄bc

ε
+ 2
n− 1

qn−2

a
1

n−1ρ
2

n−1

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

gaeSn−2g
bf
Sn−2gef,Sn−2h̄efε

− 2qn−2

(n− 1)2
1

a
1

n−1ρ
2

n−1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
gabSn−2

∂b det(gef,Sn−2)
det(gef,Sn−2)

n−2
n−1

ε+O(ε2)

(E.55)

E.8 The algebraic constraint vector Zµ and Zµ

The covariant components of the algebraic constraint Zµ can be split into purely
AdS and a perturbated part by using

Zµ = gνµZ
ν . (E.56)

Then,

Zt = ĝttZ
t + qn−4h̄ttZ

tε+ qn−3h̄tρZ
ρε+ qn−4h̄taZ

aε+O(ε2),
Zρ = qn−3h̄tρZ

tε+ ĝρρZ
ρ + qn−4h̄ρρZ

ρε+ qn−3h̄ρaZ
aε+O(ε2),

Za = qn−4h̄taZ
tε+ qn−3h̄ρaZ

ρε+ ĝabZ
b + qn−4ρ2gab,Sn−2h̄abZ

b +O(ε2). (E.57)

By defining the purely AdS part

Ẑt = ĝttZ
t, Ẑρ = ĝρρZ

ρ and Ẑa = ĝabZ
b (E.58)

and the deviation

hZt = qn−4h̄ttZ
t + qn−3h̄tρZ

ρ + qn−4h̄taZ
a

hZρ = qn−3h̄tρZ
t + qn−4h̄ρρZ

ρ + qn−3h̄ρaZ
a

hZa = qn−4h̄taZ
t + qn−3h̄ρaZ

ρ + qn−4ρ2gab,Sn−2h̄abZ
b, (E.59)

we can decompose the boundary behaviour of the algebraic constraint vector Zµ into

Zµ = Ẑµ + hZµε+O(ε2). (E.60)

Here we can see that the algebraic constraint behaves near the boundary as the
purely AdSn part plus a small perturbation εhZµ .

E.9 The Γ̂ variables

The ρ-component of the Γ̂-variable is given by

Γ̂ρ = Γ̃ρ + 2γ̃ρρZρ + 2γ̃ρaZa
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= Γ̃ρ + 2
(
ˆ̃γρρ + εhγ̃ρρ

) (
Ẑρ + εhZρ

)
+ 2εhγ̃ρaẐa +O(ε2)

= Γ̃ρ + 2ˆ̃γρρẐρ + 2ˆ̃γρρhZρε+ 2hγ̃ρρẐρε+ 2hγ̃ρaẐaε+O(ε2) (E.61)

Now, let us calculate the terms of the latter equations individually

2ˆ̃γρρẐρ = 2ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1

a
1

n−1 q2
Zρ (E.62a)

2ˆ̃γρρhZρ = 2ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1a

n−2
n−1 qn−3h̄tρZ

t

((((
((((

(((
((((

(((
(((

+2ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1a

n−2
n−1 qn−4h̄ρρZ

ρ

(((
((((

(((
((((

(((
((((

+2ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1a

n−2
n−1 qn−3h̄ρaZ

a (E.62b)

2hγ̃ρρẐρ =
((((

((((
(((

((((
(((

(((

−2ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1a

n−2
n−1 qn−4h̄ρρZ

ρ

+ 2ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1

a
1

n−1 q2

qn−2

n− 1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
Zρ (E.62c)

2hγ̃ρaẐa =
((((

(((
((((

(((
((((

(((

−2 det(gab,Sn−2)
1

n−1a
n−2
n−1ρ

2(n−2)
n−1 qn−3h̄ρaZ

a (E.62d)

Therefore,

Γ̂ρ = Γ̃ρ + 2ρ
2(n−2)
n−1 det(gab,Sn−2)

1
n−1

a
1

n−1 q2
Zρ + 2ρ

2(n−2)
n−1 det(gab,Sn−2)

1
n−1a

n−2
n−1 qn−3h̄tρZ

tε

+ 2qn−4

n− 1
ρ

2(n−2)
n−1 det(gab,Sn−2)

1
n−1

a
1

n−1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
Zρε+O(ε2). (E.63)

Now, the angle components are given by

Γ̂a = Γ̃a + 2γ̃aρZρ + 2γ̃abZb
= Γ̃a + 2εhγ̃aρẐρ + 2

(
ˆ̃γab + εhγ̃ab

) (
Ẑb + εhZb

)
+O(ε2)

= Γ̃a + 2εhγ̃aρẐρ + 2ˆ̃γabẐb + 2εˆ̃γabhZb + 2εhγ̃abẐb +O(ε2), (E.64)

where the individual terms are given by

2hγ̃aρẐρ =
(((

((((
(((

((((
((((

−2det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
qn−3gabSn−2h̄ρbZ

ρ (E.65a)

2ˆ̃γabẐb = 2det(gef,Sn−2)
1

n−1

a
1

n−1

ρ
2(n−2)
n−1

q2 Za (E.65b)

2ˆ̃γabhZb = 2det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gabSn−2qn−4h̄tbZ

t

+
���

���
���

���
���

��

2det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gabSn−2qn−3h̄ρbZ

ρ
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+
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1
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2(n−2)
n−1
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1

n−1
gabSn−2qn−4gbc,Sn−2h̄bcZ

c (E.65c)

2hγ̃abẐb =
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−2det(gef,Sn−2)
1

n−1ρ
2(n−2)
n−1
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n−1
qn−4gacSn−2gcd,Sn−2h̄cdZ
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= 2qn−4
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det(gef,Sn−2)
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(
ah̄ρρ +
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h̄θiθi

)
Za (E.65d)

Therefore,

Γ̂a = Γ̃a + 2det(gef,Sn−2)
1

n−1

a
1

n−1

ρ
2(n−2)
n−1

q2 Za + 2det(gef,Sn−2)
1

n−1

a
1

n−1ρ
2

n−1
gabSn−2qn−4h̄tbZ

tε

+ 2qn−4

n− 1
det(gef,Sn−2)

1
n−1ρ

2(n−2)
n−1

a
1

n−1

(
ah̄ρρ +

n−2∑
i=1

h̄θiθi

)
Zaε+O(ε2). (E.66)

E.10 Auxiliary Field for the Gamma-driver shift
condition

Let us Eq. (2.88a), i.e.
bi = 1

k

[
∂tβ

i − βkB i
k

]
, (E.67)

to calculate the asymptotic behaviour of the auxiliary field bi. The individual terms
of the latter are given by

∂tβ
ρ = qn−1a∂th̄tρε+O(ε2), (E.68a)

∂tβ
a = qn−4γ̂aa∂th̄taε+O(ε2), (E.68b)

βρB ρ
ρ =

(
qn−1ah̄tρε+O(ε2)

)
qn−2

(
− (n−1)

`
ah̄tρε+ q∂ρah̄tρε+ qa∂ρh̄tρε+O(ε2)

)
= 0 +O(ε2), (E.68c)

βaB ρ
a =

(
qn−4γ̂aah̄taε+O(ε2)

) (
qn−1a∂ah̄tρε+O(ε2)

)
= 0 +O(ε2), (E.68d)

βρB a
ρ =

(
qn−1ah̄tρε+O(ε2)

)
qn−5

(
− (n−4)

`
γ̂aah̄taε+ q∂ργ̂

aah̄taε+ qγ̂aa∂ρh̄taε+O(ε2)
)

= 0 +O(ε2), (E.68e)
βaB b

a =
(
qn−4γ̂aah̄taε+O(ε2)

) (
qn−4∂aγ̂

bbh̄tbε+ qn−4γ̂bb∂ah̄tbε+O(ε2)
)

= 0 +O(ε2). (E.68f)

Therefore,

bρ = 1
k

[
∂tβ

ρ − βρB ρ
ρ − βaB ρ

a

]
= 1
k
∂thβρε+O(ε2) = qn−1a

k
∂th̄tρε+O(ε2), (E.69a)
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ba = 1
k

[
∂tβ

a − βρB a
ρ − βbB a

b

]
= 1
k
∂thβaε+O(ε2) = qn−4γ̂aa

k
∂th̄taε+O(ε2). (E.69b)
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Jupyter Notebook for the Initial
Data Calculation

This will be a simple jupyter notebook to write down the Christoffel symbols
Γµνσ, the Riemannian tensor Rµ

νσρ, the Ricci tensor Rµν and the Ricci scalar
R, as well as the spatial Christoffel symbols Γ̂klm, the spatial Riemannian

tensor R̂k
lmn, the spatial Ricci tensor R̂ij and the spatial Ricci scalar R̂ for the AdS3

spacetime. We will need the spatial Ricci scalar R̂ and some of the spatial Christoffel
symbols Γ̂klm to derive the initial value problem.

F.1 AdS3 spacetime

[116]: from gravipy.tensorial import *
from sympy import init_printing
init_printing()

The AdS3 metric in globale coordinates

xµ = (t, r, χ) (F.1)

is given by

gµν =

−g(r) 0 0
0 1

g(r) 0
0 0 r2

 , (F.2)

where g(r) = 1 + r2/L2. By compactifying the “radial” coordiante r to a finite value
ρ by using the transformation

r = ρ

1− ρ/`, (F.3)

we get the metric

gµν =


− f(ρ)

(1−ρ/`)2 0 0
0 1

f(ρ)(1−ρ/`)2 0
0 0 ρ2

(1−ρ/`)2

 , (F.4)

where f(ρ) = (1− ρ/`)2 + ρ2/L2.

155
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[117]: t, rho, chi, L, l = symbols('t, rho, chi, L, l')
f = Function('f')(rho)
# create a coordinate four-vector object instantiating
# the Coordinates class
x = Coordinates('x', [t, rho, chi])
# define a matrix of a metric tensor components
#Metric = diag((1-2*M/r), -1/(1-2*M/r), -r**2,␣
↪→-r**2*sin(theta)**2)

Metric = diag( - (1 + rho**2 / ((1-rho/l)**2*L**2) ), 1 / ( (1-rho/
↪→l)**4 + (1-rho/l)**2 * rho**2 / L**2), rho**2 / (1-rho/l)**2 )

# create a metric tensor object instantiating the MetricTensor␣
↪→class

g = MetricTensor('g', x, Metric)

The metric gµν is given by
[118]: g(All, All)

[118]:

−1− ρ2

L2(1− ρ
l )

2 0 0

0 1

(1− ρ
l )

4
+
ρ2(1− ρ

l )2

L2

0

0 0 ρ2

(1− ρ
l )

2


while the inverse metric gµν is given by g(-All,-All). Let us next calculate the
Christoffel symbols defined by

Γµνσ = gρσΓρµν = 1
2 (∂µgνσ + ∂νgµσ − ∂σgµν) (F.5)

This can be done in jupyter by
[119]: Ga = Christoffel('Ga',g)

Ga(All,All,All)

[119]:


0 − l3ρ
L2(l−ρ)3 0

− l3ρ
L2(l−ρ)3 0 0

0 0 0

 ,


l3ρ
L2(l−ρ)3 0 0

0 L2l4(2L2(l−ρ)2+l2ρ2−l2ρ(l−ρ))
(l−ρ)3(L2(l−ρ)2+l2ρ2)2 0

0 0 − l3ρ
(l−ρ)3




0 0 0
0 0 l3ρ

(l−ρ)3

0 l3ρ
(l−ρ)3 0

 (F.6)

The Riemannian tensor of the AdS3 metric can be, respectively, calculated and
displayed in jupyter by

Rµνρσ = ∂ρΓµνσ − ∂σΓµνρ + ΓανσΓµσα − ΓανρΓµσα − ∂ρgµαΓανσ + ∂σgµαΓανρ (F.7)

and
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[120]: Rm = Riemann('Rm',g)

The Ricci tensor Rµν can be, respectively, calculated and displayed in jupyter by
Rαβ = Rµ

µαβ (F.8)
and

[121]: Ri = Ricci('Ri', g)

and the Ricci scalar R can be, respectively, calculated and displayed in jupyter by
R = Rµ

µ (F.9)
and

[122]: Ri.scalar()

[122]: − 6
L2

Let us calculate the spatial Ricci scalar:
R̂ = γijR̂ij (F.10)

For this, we need to redefine the spatial γ matrix and calculate the same objects as
above.

[123]: rho, chi, L, l = symbols('rho, chi, L, l')
g = Function('g')(rho)
# create a coordinate four-vector object instantiating
# the Coordinates class
x = Coordinates('x', [rho, chi])
# define a matrix of a metric tensor components
#Metric = diag((1-2*M/r), -1/(1-2*M/r), -r**2,␣
↪→-r**2*sin(theta)**2)

Metric = diag( 1 / ( (1-rho/l)**4 + (1-rho/l)**2 * rho**2 / L**2),␣
↪→rho**2 / (1-rho/l)**2 )

# create a metric tensor object instantiating the MetricTensor␣
↪→class

h = MetricTensor('h', x, Metric)

[124]: h(All, All)

[124]:


1

(1− ρ
l )

4
+
ρ2(1− ρ

l )2

L2

0

0 ρ2

(1− ρ
l )

2


[125]: Ga_spatial = Christoffel('Ga_spatial',h)

Rm_spatial = Riemann('Rm_spatial',h)
Ri_spatial = Ricci('Ri_spatial', h)

The Christoffel symbols can be calculated as above, where
Ga(k, l,m) = Γ̂klm (F.11)

Ga(−k, l,m) = Γ̂klm (F.12)
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[126]: Ga_spatial(-1,All,All)

[126]:
2L2(l−ρ)2+l2ρ2−l2ρ(l−ρ)

(l−ρ)(L2(l−ρ)2+l2ρ2) 0

0 −ρ(L2(l−ρ)2+l2ρ2)
L2l(l−ρ)


In this way, Γ̂ρρρ and Γ̂χχχ can be written in terms of q = 1 − ρ/` and a = q2 + ρ2

L2

by

Γ̂ρρρ = q

a`
+ 1
q`
− ρ

L2a
(F.13)

Γ̂ρχχ = −ρa
q

(F.14)

and, thus

γ̂ρρΓ̂ρρρ = q3

`
+ qa

`
− q2ρ

L2 (F.15)

γ̂χχΓ̂ρχχ = −qa
ρ
. (F.16)

[127]: Ga_spatial(-2,All,All)

[127]:
[

0 l
ρ(l−ρ)

l
ρ(l−ρ) 0

]
The spatial Ricci scalar R̂ is given by

[128]: Ri_spatial.scalar()

[128]: − 2
L2

F.2 AdS4 spacetime

[129]: from gravipy.tensorial import *
from sympy import init_printing
init_printing()

The AdS4 metric in globale coordinates

xµ = (t, r, χ, θ) (F.17)

is given by

gµν =


−g(r) 0 0 0

0 1
g(r) 0 0

0 0 r2 0
0 0 0 r2 sin2 χ

 , (F.18)

where g(r) = 1 + r2/L2. By compactifying the “radial” coordiante r to a finite value
ρ by using the transformation

r = ρ

1− ρ/`, (F.19)
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we get the metric

gµν =


− f(ρ)

(1−ρ/`)2 0 0 0
0 1

f(ρ)(1−ρ/`)2 0 0
0 0 ρ2

(1−ρ/`)2 0
0 0 0 ρ2 sin2 χ

(1−ρ/`)2

 , (F.20)

where f(ρ) = (1− ρ/`)2 + ρ2/L2.

[130]: t, rho, chi, theta, L, l = symbols('t, rho, chi, theta, L, l')
f = Function('f')(rho)
# create a coordinate four-vector object instantiating
# the Coordinates class
x = Coordinates('x', [t, rho, chi, theta])
# define a matrix of a metric tensor components
#Metric = diag((1-2*M/r), -1/(1-2*M/r), -r**2,␣
↪→-r**2*sin(theta)**2)

Metric = diag( - (1 + rho**2 / ((1-rho/l)**2*L**2) ), 1 / ( (1-rho/
↪→l)**4 + (1-rho/l)**2 * rho**2 / L**2), rho**2 / (1-rho/l)**2,␣
↪→rho**2*sin(chi)**2/ (1-rho/l)**2 )

# create a metric tensor object instantiating the MetricTensor␣
↪→class

g = MetricTensor('g', x, Metric)

The metric gµν is given by
[131]: g(All, All)

[131]:


−1− ρ2

L2(1− ρ
l )

2 0 0 0

0 1

(1− ρ
l )

4
+
ρ2(1− ρ

l )2

L2

0 0

0 0 ρ2

(1− ρ
l )

2 0

0 0 0 ρ2 sin2 (χ)
(1− ρ

l )
2


Let us next calculate the Christoffel symbols defined by

Γµνσ = gρσΓρµν = 1
2 (∂µgνσ + ∂νgµσ − ∂σgµν) (F.21)

They can be displayed in jupyter by
[132]: Ga = Christoffel('Ga',g)

Ga(1,All,All),Ga(2,All,All)

[132]: 
0 − l3ρ

L2(l−ρ)3 0 0
− l3ρ
L2(l−ρ)3 0 0 0

0 0 0 0
0 0 0 0

 ,


l3ρ
L2(l−ρ)3 0 0 0

0 L2l4(2L2(l−ρ)2+l2ρ2−l2ρ(l−ρ))
(l−ρ)3(L2(l−ρ)2+l2ρ2)2 0 0

0 0 − l3ρ
(l−ρ)3 0

0 0 0 − l3ρ sin2 (χ)
(l−ρ)3


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[133]: Ga(3,All,All),Ga(4,All,All)

[133]:


0 0 0 0
0 0 l3ρ

(l−ρ)3 0
0 l3ρ

(l−ρ)3 0 0
0 0 0 − l2ρ2 sin (2χ)

2(l−ρ)2

 ,


0 0 0 0
0 0 0 l3ρ sin2 (χ)

(l−ρ)3

0 0 0 l2ρ2 sin (2χ)
2(l−ρ)2

0 l3ρ sin2 (χ)
(l−ρ)3

l2ρ2 sin (2χ)
2(l−ρ)2 0


The Riemannian tensor of the AdS4 metric can be, respectively, calculated and
displayed in jupyter by

Rµνρσ = ∂ρΓµνσ − ∂σΓµνρ + ΓανσΓµσα − ΓανρΓµσα − ∂ρgµαΓανσ + ∂σgµαΓανρ (F.22)

and
[134]: Rm = Riemann('Rm',g)

The Ricci tensor Rµν can be, respectively, calculated and displayed in jupyter by

Rαβ = Rµ
µαβ (F.23)

and
[135]: Ri = Ricci('Ri', g)

Ri(All, All)

[135]:


3(L2l2−2L2lρ+L2ρ2+l2ρ2)
L4(l2−2lρ+ρ2) 0 0 0

0 − 3l4
L2l4−4L2l3ρ+6L2l2ρ2−4L2lρ3+L2ρ4+l4ρ2−2l3ρ3+l2ρ4 0 0

0 0 − 3l2ρ2

L2(l2−2lρ+ρ2) 0

0 0 0 − 3l2ρ2 sin2 (χ)
L2(l2−2lρ+ρ2)


while the Ricci scalar R can be, respectively, calculated and displayed in jupyter by

R = Rµ
µ (F.24)

and
[136]: Ri.scalar()

[136]: −12
L2

Let us calculate the spatial Ricci scalar:

R̂ = γijR̂ij (F.25)

For this, we need to redefine the spatial γ matrix and calculate the same objects as
above.

[137]: rho, chi, theta, L, l = symbols('rho, chi, theta, L, l')
g = Function('g')(rho)
# create a coordinate four-vector object instantiating
# the Coordinates class
x = Coordinates('x', [rho, chi, theta])
# define a matrix of a metric tensor components
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#Metric = diag((1-2*M/r), -1/(1-2*M/r), -r**2,␣
↪→-r**2*sin(theta)**2)

Metric = diag( 1 / ( (1-rho/l)**4 + (1-rho/l)**2 * rho**2 / L**2),␣
↪→rho**2 / (1-rho/l)**2, rho**2*sin(chi)**2/ (1-rho/l)**2 )

# create a metric tensor object instantiating the MetricTensor␣
↪→class

h = MetricTensor('h', x, Metric)

[138]: h(All, All)

[138]:


1

(1− ρ
l )

4
+
ρ2(1− ρ

l )2

L2

0 0

0 ρ2

(1− ρ
l )

2 0

0 0 ρ2 sin2 (χ)
(1− ρ

l )
2


[139]: Ga_spatial = Christoffel('Ga_spatial',h)

Rm_spatial = Riemann('Rm_spatial',h)
Ri_spatial = Ricci('Ri_spatial', h)

The Christoffel symbols can be calcualted as above where

Ga(k, l,m) = Γ̂klm (F.26)
Ga(−k, l,m) = Γ̂klm (F.27)

[140]: Ga_spatial(-1,All,All)

[140]:


2L2(l−ρ)2+l2ρ2−l2ρ(l−ρ)
(l−ρ)(L2(l−ρ)2+l2ρ2) 0 0

0 −ρ(L2(l−ρ)2+l2ρ2)
L2l(l−ρ) 0

0 0 −ρ(L2(l−ρ)2+l2ρ2) sin2 (χ)
L2l(l−ρ)


In this way, Γ̂ρρρ, Γ̂ρχχ, Γ̂

ρ
θθ can be written in terms of q = 1− ρ/` and a = q2 + ρ2

L2 by

Γ̂ρρρ = q

a`
+ 1
q`
− ρ

L2a
(F.28)

Γ̂ρχχ = −ρa
q

(F.29)

Γ̂ρθθ = −ρa sin2 χ

q
(F.30)

and thus

γ̂ρρΓ̂ρρρ = q3

`
+ qa

`
− q2ρ

L2 (F.31)

γ̂χχΓ̂ρχχ = −qa
ρ

(F.32)

γ̂θθΓ̂ρθθ = −aq
ρ

(F.33)



162 Appendix F. Jupyter Notebook for the Initial Data Calculation

[141]: Ga_spatial(-2,All,All)

[141]:


0 l
ρ(l−ρ) 0

l
ρ(l−ρ) 0 0

0 0 − sin (2χ)
2


Using the latter, we can simplify

γ̂θθΓ̂χθθ = − q2

ρ2 sin2 χ

sin 2χ
2 = −q

2 cotχ
ρ2 (F.34)

[142]: Ga_spatial(-3,All,All)

[142]:


0 0 l
ρ(l−ρ)

0 0 sin (2χ)
2 sin2 (χ)

l
ρ(l−ρ)

sin (2χ)
2 sin2 (χ) 0


The spatial Ricci scalar R̂ is given by

[143]: Ri_spatial.scalar()

[143]: − 6
L2
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