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Abstract. We consider a multi component gas mixture with translational and internal energy
degrees of freedom assuming that the number of particles of each species remains constant. We will
illustrate the derived model in the case of two species, but the model can be easily generalized to multiple
species. The two species are allowed to have different degrees of freedom in internal energy and are
modelled by a system of kinetic ES-BGK equations featuring two interaction terms to account for
momentum and energy transfer between the species. We prove consistency of our model: conservation
properties, positivity of the temperature, H-theorem and convergence to a global equilibrium in the
form of a global Maxwell distribution. Thus, we are able to derive the usual macroscopic conservation
laws. For numerical purposes we apply the Chu reduction to the developed model for polyatomic gases
and give an application for a gas consisting of a mono atomic and a diatomic species.
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1. Introduction
In this paper we shall concern ourselves with a kinetic description of gas mixtures

for polyatomic molecules. In the case of mono atomic molecules and two species this is
traditionally done via the Boltzmann equation for the density distributions f1 and f2,
see for example [9,10]. Under certain assumptions the complicated interaction terms of
the Boltzmann equation can be simplified by a so called BGK approximation, consist-
ing of a collision frequency multiplied by the deviation of the distributions from local
Maxwellians. This approximation should be constructed in a way such that it has the
same main properties of the Boltzmann equation namely conservation of mass, momen-
tum and energy, further it should have an H-theorem with its entropy inequality and
the equilibrium must still be Maxwellian. BGK models give rise to efficient numerical
computations, which are asymptotic preserving, that is they remain efficient even ap-
proaching the hydrodynamic regime [3, 4, 11–13, 20]. Evolution of a polyatomic gas is
very important in applications, for instance air consists of a gas mixture of polyatomic
molecules. But, most kinetic models modelling air deal with the case of a mono atomic
gas consisting of only one species.

In the literature one can find two types of models for polyatomic molecules. There
are models which contain a sum of collision terms on the right-hand side corresponding
to the elastic and inelastic collisions. Examples are the models of Rykov [21], Hol-
way [14] and Morse [19]. The other type of models contain only one collision term on
the right-hand side taking into account both elastic and inelastic interactions. Examples
for this are Bernard, Iollo, Puppo [5] or the model by Bisi and Caceres [6] modelling
chemical interactions. In this paper we want to extend the model of Bernard, Iollo and
Puppo [5] from one species of molecules to a gas mixture of polyatomic molecules. In
contrast to mono atomic molecules, in a polyatomic gas energy is not entirely stored in
the kinetic energy of its molecules but also in their rotational and vibrational modes.
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2 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

For simplification we present the model in the case of two species. We allow the two
species to have different degrees of freedom in internal energy. For example, we may
consider a mixture consisting of a mono atomic and a diatomic gas. In addition, we
want to model it via an ES-BGK approach in order to reproduce the correct Boltzmann
hydrodynamic regime close to the asymptotic continuum limit. The ES-BGK approxi-
mation was suggested by Holway in the case of one species [14]. The H-Theorem of this
model then was proven in [2]. Brull and Schneider relate this model to a minimization
problem in [7].

The outline of the paper is as follows: in section 2 we will present the extension of the
BGK model for polyatomic molecules from [5] to two species of polyatomic molecules.
In section 3, we extend it to an ES-BGK model and check if it is well-defined. In
sections 3.1 to 3.4 we prove the conservation properties and the H-theorem. We show the
positivity of all temperatures and quantify the structure of the equilibrium. In section
4, we compare our model with an other model presented in the literature from [2] which
considers an ES-BGK model for one species of polyatomic molecules. In section 5.1 we
apply the method of Chu reduction to our model in order to reduce the complexity of
the variables for the rotational and vibrational energy degrees of freedom for numerical
purposes. In section 5.2 we give an application in the case of a mono atomic and a
diatomic molecule.

2. The BGK approximation For simplicity in the following we consider a
mixture composed of two different species. Let x∈Rd and v∈Rd,d∈N be the phase
space variables and t≥0 the time. Let M be the total number of different rotational
and vibrational degrees of freedom and lk the number of internal degrees of freedom
of species k, k= 1,2. Note that the sum l1 + l2 is not necessarily equal to M , because
the two species could both have the same internal degree of freedom. Then η∈RM is
the variable for the internal energy degrees of freedom, ηlk ∈RM coincides with η in the
components corresponding to the internal degrees of freedom of species k and is zero
in the other components. For example, we can consider two species both composed of
molecules consisting of two atoms, such that the molecules have rotational degrees of
freedom in addition to the three translational degrees of freedom. In general, a molecule
consisting of two atoms has three possible axes around which it can rotate. But since
the energy needed to rotate the molecule around the axes parallel to the line connecting
the two atoms is very high (see for example [15]), this does not occur, so we have two
rotational degrees of freedom. In this example we have M = l1 = l2 = 2.
Since we want to describe two different species, our kinetic model has two distribution
functions f1(x,v,ηl1 ,t)>0 and f2(x,v,ηl2 ,t)>0. Furthermore we relate the distribution
functions to macroscopic quantities by mean-values of fk, k= 1,2 as follows

∫
fk(v,ηlk)


1
v
ηlk

mk|v−uk|2
mk|ηlk− η̄k|2

mk(v−uk(x,t))⊗(v−uk(x,t))

dvdηlk =:


nk
nkuk
nkη̄k
dnkT

t
k

lknkT
r
k

Pk

 , k= 1,2 (2.1)

where nk is the number density, uk the mean velocity, T tk the mean temperature of
the translation, T rk the mean temperature of the internal energy degrees of freedom for
example rotation or vibration and Pk the pressure tensor of species k, k= 1,2. Note
that in this paper we shall write T tk and T rk instead of kBT

t
k and kBT

r
k , where kB is

Boltzmann’s constant. In the following, we will require η̄k = 0, which means that the
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CHRISTIAN KLINGENBERG, MARLIES PIRNER, GABRIELLA PUPPO 3

energy in rotations clockwise is the same as in rotations counter clockwise. Similar for
vibrations.

The distribution functions are determined by two equations to describe their time
evolution. Furthermore we only consider binary interactions. So the particles of one
species can interact with either themselves or with particles of the other species. In
the model this is accounted for by introducing two interaction terms in both equations.
These considerations allow us to write formally the system of equations for the evolution
of the mixture. The following structure containing a sum of the collision operators is
also given in [9, 10].
We are interested in a BGK approximation of the interaction terms. This leads us
to define equilibrium distributions not only for each species itself but also for the two
interspecies distributions. Choose the collision terms as BGK operators and denote
them for future reference by Q11,Q12,Q21 and Q22. Then the model can be written as:

∂tf1 +∇x ·(vf1) =ν11n1(M1−f1)+ν12n2(M12−f1)

∂tf2 +∇x ·(vf2) =ν22n2(M2−f2)+ν21n1(M21−f2)
(2.2)

with the Maxwell distributions

Mk(x,v,ηlk ,t) =
nk√

2π Λk
mk

d

1√
2π Θk

mk

lk
exp(−|v−uk|

2

2 Λk
mk

− |ηlk |
2

2 Θk
mk

),

Mkj(x,v,ηlk ,t) =
nkj√

2π
Λkj
mk

d

1√
2π

Θkj
mk

lk
exp(−|v−ukj |

2

2
Λkj
mk

− |ηlk |
2

2
Θkj
mk

),

(2.3)

for j,k= 1,2,j 6=k, where ν11n1 and ν22n2 are the collision frequencies of the particles of
each species with itself, while ν12n2 and ν21n1 are related to interspecies collisions. To
be flexible in choosing the relationship between the collision frequencies, we now assume
the relationship

ν12 =εν21, 0<
l1

l1 + l2
ε≤1 (2.4)

The restriction l1
l1+l2

ε≤1 is without loss of generality. If l1
l1+l2

ε>1, exchange the no-

tation 1 and 2 and choose 1
ε . In addition, we assume that all collision frequencies are

positive.
Since rotational/vibrational and translational degrees of freedom relax at a differ-

ent rate, T tk and T rk will first relax to partial temperatures Λk and Θk respectively.
Conservation of internal energy then requires that at each time

d

2
nkΛk =

d

2
nkT

t
k+

lk
2
nkT

r
k −

lk
2
nkΘk, k= 1,2. (2.5)

Thus, Λk can be written as a function of Θk. In equilibrium we expect the two temper-
atures Λk and Θk to coincide, so we close the system by adding the equations

∂tMk+v ·∇xMk =
νkknk
Zkr

d+ lk
d

(M̃k−Mk)+νkknk(Mk−fk)

+νkjnj(Mkj−fk),

(2.6)
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4 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

for j,k= 1,2,j 6=k, where Zkr are given parameters corresponding to the different rates
of decays of translational and rotational/vibrational degrees of freedom. Here Mk is
given by

Mk(x,v,ηlk ,t) =
nk√

2π Λk
mk

d

1√
2π Θk

mk

lk
exp(−|v−uk|

2

2 Λk
mk

− |ηlk |
2

2 Θk
mk

), k= 1,2 (2.7)

and M̃k is given by

M̃k =
nk√

2π Tk
mk

d+lk
exp

(
−mk|v−uk|2

2Tk
−mk|ηlk |2

2Tk

)
, k= 1,2. (2.8)

where Tk is the total equilibrium temperature and is given by

Tk :=
dΛk+ lkΘk

d+ lk
=
dT tk+ lkT

r
k

d+ lk
. (2.9)

The second equality follows from (2.5). If we multiply (2.6) by |ηlk |2, integrate with
respect to v and ηlk and use (2.9), we obtain

∂tΘk+uk ·∇xΘk =
νkknk
Zkr

(Λk−Θk)+νkknk(Θk−T rk )

+νkjnj(Θkj−T rk ), k= 1,2.
(2.10)

We obtained a macroscopic equation which describes the relaxation of the temperature
Θk towards the temperature Λk and the relaxation of Θk towards the rotational and
vibrational temperature T rk and of T rk relaxing towards the mixture temperature Θkj in
accordance with equation (2.2). Note that equation (2.10) together with mass, momen-
tum and total energy conservation, is equivalent to (2.6). In addition, (2.2) and (2.6)
are consistent. If we multiply the equations for species k of (2.2) and (2.6) by v and
integrate with respect to v and ηlk , we get in both cases for the right-hand side

νkjnjnk(ujk−uk)

and if we compute the total internal energy of both equations, we obtain in both cases

1

2
νkjnknj [dΛjk+ ljΘjk−(dΛj+ ljΘj)].

We will see this in section 2.2 in theorem 3.2.

We recall that we assume that the mean values of the momentum due to the in-
ternal degrees of freedom η̄1, η̄2, η̄12 and η̄21 are zero. The structure of the collision
terms ensures that at equilibrium or when νkj→∞ the distribution functions become
Maxwell distributions. With this choice of the Maxwell distributions M1 and M2 have
the same densities, mean velocities and internal energies as f1 respective f2. This
guarantees the conservation of mass, momentum and energy in interactions of one
species with itself. The remaining parameters n12,n21,u12,u21,Λ12 , Λ21, Θ12 and Θ21

will be determined further down using conservation of the number of particles, total
momentum and total energy, together with some symmetry considerations.
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CHRISTIAN KLINGENBERG, MARLIES PIRNER, GABRIELLA PUPPO 5

3. Extension to an ES-BGK model It is well known that a drawback of
the BGK approximation is its incapability of reproducing the correct Boltzmann hy-
drodynamic regime in the asymptotic continuum limit. Therefore, a modified version
called ES-BGK model was suggested by Holway in the case of one species [14]. In this
standard ES-BGK model, in the Maxwellian Mk, the scalar temperature T tk related to
the distribution function fk will be replaced by a linear combination of the tempera-
ture T tk and the pressure tensor Pk. In the polyatomic case described in this paper the
translational temperature T tk is different from the temperature Λk of the Maxwellian
Mk given by (2.7). Now, we want to extend this temperature Λk to a tensor Λtenk with
trace(Λtenk ) =nkΛk such that again we can consider a linear combination of the temper-
ature Λk and the tensor Λtenk . In the BGK case described in the previous section we
determined the time evolution of Θk by considering equation (2.6) with the Maxwellian

Mk given by (2.7) and the Maxwellian M̃k given by (3.2) with the total equilibrium
temperature Tk given by (2.9)which leads to a time evolution of Θk given by (2.10). Λk
is then obtained by (2.5). Now, in the ES-BGK case we determine the time evolution
of Λtenk by considering equation

∂tĜk+v ·∇xĜk =
νkknk
Zkr

d+ lk
d

(G̃k−Ĝk)+νkknk(Gk−fk)+νkjnj(Mkj−fk), k= 1,2

(3.1)

with the extended Maxwellian Ĝk given by

Ĝk =
nk√

det(2π
Λtenk
mk

)

1√
2π

T rk
mk

lk
exp

(
−1

2
(v−uk) ·

(
Λtenk
mk

)−1

·(v−uk)−mk|ηlk |2

2T rk

)
, k= 1,2.

(3.2)

and the extended Maxwellian G̃k given by

G̃k =
nk√

det(2π
T tenk

mk
)

1√
2π Tk

mk

lk
exp

(
−1

2
(v−uk) ·

(
T tenk

mk

)−1

·(v−uk)− 1

2

mk|ηlk |2

Tk

)
(3.3)

The function G̃k has the total equilibrium temperature Tk and the pressure tensor of
fk on the off-diagonals, namely

(T tenk )ii=Tk for i= 1,. ..d

(T tenk )ij =
d

d+ lk

(
Pk
nk

)
ij

for i,j= 1,. ..d,i 6= j
(3.4)

The factor d
d+lk

in front of Pk in the definition of T tenk has the following reason. The

temperature TK given by (2.9) is a convex combination of T tk and T rk . Now, the off-
diagonal elements of T tenk have the same structure. It is a convex combination of the
pressure tensor Pk and the tensor corresponding to the rotational and vibrational tem-
perature. But since the rotational effects are diagonal, we have (T tenk )ij = d

d+lk
P+ lk

d+lk
0

for i 6= j.
We only extended Λk to a tensor and keep Θk as it is. This has the following reason.

Since we assumed η̄lk = 0, the microscopic velocities related to the internal degrees of
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6 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

freedom are symmetric and then we do not distinguish different directions as we do in
the translational degrees of freedom.

Equation (3.1) leads to a time evolution of Λtenk given by

∂t(Λ
ten
k )+uk ·∇x(Λtenk ) =

νkknk
Zkr

d+ lk
d

(T tenk −Λtenk )+νkknk(ΛESk −Pk)

+νkjnj(Θkj−T rk )

(3.5)

The evolution of Θk is then obtained from (2.5). Then we can define a function Gk with
a linear combination ΛESk given by

ΛESk = (1−µk)Λk1n+µk
Λtenk
nk

, k= 1,2.

with µk ∈R, k= 1,2 being free parameters which we can choose in a way to fit physical
parameters in the Navier-Stokes equations like the viscosity coefficient, analogously as
in the standard ES-BGK model given by

Gk(fk)(x,v,ηlk ,t) =
nk√

det(2π
ΛES
k
mk

)

1√
2π Θk

mk

lk
exp

−1

2
(v−uk) ·

(
ΛESk
mk

)−1

·(v−uk)−
1

2

mk|ηlk |
2

Θk

,
(3.6)

for k= 1,2, and we determine the time evolution of fk in the ES-BGK case by

∂tfk+∇x ·(vfk) =νkknk(Gk(fk)−fk)+νkjnj(Mkj(fk,fj)−fk), (3.7)

for k,j= 1,2,k 6= j. To keep it as simple as possible we only replace the collision operators
which represent the collisions of a species with itself by the ES-BGK collision operator
for one species suggested in [1]. Other possible extensions are illustrated in the mono
atomic case for gas mixtures in [18]. For further references we denote the relaxation
operators by Q11,Q12,Q21 and Q22.

Since Gk involves the term (ΛESk )−1 and G̃k involves the term (T tenk )−1 we have to
check if ΛESk and T tenk are invertible.

Lemma 3.1. Assume that fk and Ĝk are positive solutions to (3.7) and (3.1). Then
Λtenk and T tenk have strictly positive eigenvalues. Especially T tenk is invertible.

Proof. Let y∈Rd \{0}, then

〈y,Λtenk y〉=
d∑

i,j=1

yi(Λ
ten
k )ijyj =

d∑
i,j=1

yi

∫
(vi−uk,i)(vj−uk,j)Ĝkyjdv

=

∫  d∑
i,j=1

yi(vi−uk,i)

2

Ĝkdv≥0

The inequality is true since we assumed that Ĝ is a positive solution to (2.6).
If we use equation (2.9) and (2.5)

〈y,T tenk y〉=
d∑

i,j=1

yi(T
ten
k )ijyj =

d∑
i,j=1

i 6=j

yi

∫
(vi−uk,i)(vj−uk,j)fkyjdv+

d∑
i=1

yiTkyj

=

d∑
i,j=1

yi

∫
(vi−uk,i)(vj−uk,j)fkyjdv−

d∑
i=1

yiT
t
kyi+

d∑
i=1

yi
dΛk+ lkΘk

d+ lk
yi
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=

∫  d∑
i,j=1

yi(vi−uk,i)

2

fkdv+

d∑
i=1

yiT
r
k yi≥0

where T rk >0 because T rk is defined via a positive integral of fk, see the definition in
(2.1). We even have strict inequality since {yi(v−u)i}di=1 are linearly independent.

With the previous lemma, we can prove that ΛESk is positive. This is the next
theorem. Positivity is also proven in [1] for the one species case, but for a different
variant of an ES-BGK model.
Theorem 3.1. Assume that fk>0 and − 1

2 ≤µk≤1. Then ΛESk has strictly positive
eigenvalues. Especially ΛESk is invertible.

Proof. Since Λtenk is symmetric there exist an invertible matrix Sk such that Λ̃tenk =

SkΛtenk S−1
k with a diagonal matrix Λ̃tenk . Then Λ̃ESk :=SkΛESk S−1

k is also diagonal since

Λ̃ESk =SkΛESk S−1
k = (1−µk)Λk1+µkΛ̃tenk .

Here we can see that the eigenvalues of Λ̃ESk are a linear combination of Λk and the

eigenvalues of Λ̃tenk which coincide with the eigenvalues of Λtenk . We denote the eigen-
values of Λtenk by λk,1,λk,2,. ..,λk,d. Then by definition of Λk and Λtenk we have

dΛk =Tr(Λtenk ) =λk,1 +λk,2 + ·· ·+λk,d.

This means for the eigenvalues of ΛESk denoted by τk,i:

τk,i=
1−µk
d

d∑
j=1

λk,j+µkλk,i=
1+2µk
d

λk,i+
1−µk
d

d∑
j=1,j 6=i

λk,j , i= 1,2,3.

Since λk,1,λk,2,. ..,λk,d are strictly positive, the eigenvalues of ΛESk are strictly positive,
when 1+2µk and 1−µk are positive. Since we restricted µk to − 1

2 ≤µk≤1, ΛESk is
strictly positive.

3.1. Conservation properties Conservation of the number of particles and
total momentum of the model for mixtures described in subsection 1.1 are shown in
the same way as in the case of mono atomic molecules. In the extension described in
subsection 1.2 these conservation properties are still satisfied since G1 and G2 have the
same density, mean velocity and internal energy as f1 respective f2. Conservation of
the number of particles and of total momentum are guaranteed by the following choice
of the mixture parameters:

If we assume that

n12 =n1 and n21 =n2, (3.8)

we have conservation of the number of particles, see Theorem 2.1 in [17]. If we further
assume that u12 is a linear combination of u1 and u2

u12 = δu1 +(1−δ)u2, δ∈R, (3.9)

then we have conservation of total momentum provided that

u21 =u2−
m1

m2
ε(1−δ)(u2−u1), (3.10)
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8 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

see Theorem 2.2 in [17].
In the case of total energy we have a difference for the polyatomic case compared

to the monoatomic one. So we explicitly consider this in the following theorem.
Theorem 3.2 (Conservation of total energy). Assume (2.4), conditions (3.8), (3.9)
and (3.10) and assume that Λ12 and Θ12 are of the following form

Λ12 =αΛ1 +(1−α)Λ2 +γ|u1−u2|2, 0≤α≤1,γ≥0

Θ12 =
l1Θ1 + l2Θ2

l1 + l2

(3.11)

Then we have conservation of total energy∫
m1

2
(|v|2 + |ηl1 |2)(Q11(f1,f1)+Q12(f1,f2))dvdηl1

+

∫
m2

2
(|v|2 + |ηl2 |2)(Q22(f2,f2)+Q21(f2,f1))dvdηl2 = 0,

provided that

Λ21 +
l2
d

Θ21 =

[
1

d
εm1(1−δ)

(
m1

m2
ε(δ−1)+δ+1

)
−εγ

]
|u1−u2|2

+ε(1−α)Λ1 +(1−ε(1−α))Λ2 +
1

d
ε
l1l2
l1 + l2

Θ1 +
1

d
(l2−ε

l1l2
l1 + l2

)Θ2

(3.12)

Proof. Using the definition of the energy exchange of species 1 and equation (2.5),
we obtain

FE1,2
: =

∫
m1

2
(|v|2 + |ηl1 |2)[Q11(f1,f2)+Q12(f1,f2)]dvdηl1

=εν21
1

2
n2n1m1(|u12|2−|u1|2)+

d

2
εν21n1n2(Λ12−T t1)+

l1
2
εν21n1n2(Θ12−T r1 )

=εν21
1

2
n2n1m1(|u12|2−|u1|2)+

d

2
εν21n1n2(Λ12−Λ1)+

l1
2
εν21n1n2(Θ12−Θ1)

Next, we will insert the definitions of u12, Λ12 and Θ12 given by (3.9) and (3.11).
Analogously the energy exchange of species 2 towards 1 is

FE2,1 =ν21
1

2
n2n1m2(|u21|2−|u2|2)+

d

2
ν21n1n2(Λ21−Λ2)+

l2
2
ν21n1n2(Θ21−Θ2).

Substitute u21 with (3.10) and Λ21 + l2
d Θ21 from (3.12). This permits to rewrite the

energy exchange as

FE1,2
=εν21

1

2
n2n1m1(1−δ)[(u1 +u2)−δ(u2−u1)](u1−u2)

+
1

2
εν21n1n2

[
(1−α)d(Λ2−Λ1)+

l1l2
l1 + l2

(Θ2−Θ1)+γd|u1−u2|2
] (3.13)

FE2,1 =εν21
1

2
n2n1m1(1−δ)[(u1 +u2)−δ(u2−u1)](u1−u2)

+2(1−m1

m2
ε(1−δ))m1

m2
ε(1−δ)u1 ·u2

]
+

1

2
ν21n1n2

[
ε(1−α)d(Λ1−Λ2)+ε

l1l2
l1 + l2

(Θ1−Θ2)

+

(
εm1(1−δ)

(
m1

m2
ε(δ−1)+δ+1

)
−εγd

)
|u1−u2|2

]
(3.14)
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Adding these two terms, we see that the total energy is conserved.

Remark 3.1. The energy flux between the two species is zero if and only if u1 =u2,
Λ1 = Λ2, Θ1 = Θ2 provided that α,δ<1 and γ>0. From conservation of total energy
we get only one condition on Λ21 + l2

nΘ21 given by (3.12), but not an explicit formula for
Λ21 and Θ21. In order to keep the model symmetric we again separate the temperatures
corresponding to the translational part and the one corresponding to the rotational and
vibrational part and choose

Λ21 =ε(1−α)Λ1 +(1−ε(1−α))Λ2

+

[
1

d
εm1(1−δ)

(
m1

m2
ε(δ−1)+δ+1

)
−εγ

]
|u1−u2|2,

(3.15)

Θ21 =

(
1−ε l1

l1 + l2

)
Θ2 +ε

l1
l1 + l2

Θ1. (3.16)

Remark 3.2. If l1 = l2, we have Θ12 = 1
2 (Θ1 +Θ2). We then find Θ21 = Θ12 if the two

species have the same interspecies collision frequency (ε= 1).

3.2. Positivity of the temperatures

Theorem 3.3. Assume that f1(x,v,ηl1 ,t),f2(x,v,ηl2 ,t)>0. Then all temperatures Λ1,
Λ2, Θ1, Θ2,and Λ12, Θ12 given by (3.11), and Λ21, Θ21 determined by (3.15), (3.16)
are positive provided that

0≤γ≤m1

d
(1−δ)

[
(1+

m1

m2
ε)δ+1−m1

m2
ε

]
(3.17)

Proof. The temperatures Λ1,Λ2,Θ1,Θ2,Λ12,Θ12 and Θ21 are positive by definition
because they are integrals or convex combinations of positive functions. So the only
thing to check is when the temperature Λ21 in (3.15) is positive. This is done in [17] for
d= 3, so we skip the proof here. The resulting condition is given by (3.17).

Remark 3.3. Since γ≥0 is a non-negative number, so the right-hand side of the
inequality in (3.17) must be non-negative. This condition is equivalent to

m1

m2
ε−1

1+ m1

m2
ε
≤ δ≤1. (3.18)

Note that we have to assume that the distribution function f1 and f2 are positive.
In [16], positivity of the distribution function for the model described in [17] for mono
atomic molecules is proven. This method can be extended to the model described in
this paper for polyatomic molecules.

3.3. The structure of equilibrium

Theorem 3.4 (Equilibrium). Assume f1,f2>0 with f1 and f2 independent of x and
t. Assume the conditions (3.8), (3.9), (3.10), (3.11) and (3.12), δ 6= 1,α 6= 1,l1,l2 6= 0, so
that all temperatures are positive.

Then f1 and f2 are Maxwell distributions with equal mean velocities u1 =u2 =u12 =
u21 and temperatures T r1 =T r2 =T t1 =T t2 = Λ1 = Λ2 = Θ1 = Θ2 = Θ12 = Θ21 = Λ12 = Λ21.

Proof.
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10 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

Equilibrium means that f1,f2,Λ1,Λ2,Θ1,Θ2 are independent of x and t. Thus in
equilibrium the right-hand side of the equations (3.7) and (3.1) have to be zero. In
particular,

(ν11n1 +ν12n2)f1 =ν11n1G1 +ν12n2M12 (3.19)

(ν22n2 +ν21n1)f2 =ν22n2G2 +ν21n1M21 (3.20)

Since the right-hand side of (3.7) and the right-hand side of (3.1) have to be zero, the
difference of the right-hand side of (3.7) and the right-hand side of (3.1) has to be equal
to zero. If we compute the translational temperature of this difference, we obtain

Λten1 =T ten1 (3.21)

Λten2 =T ten2 (3.22)

Especially, from the diagonal part of (3.21) and (3.22) we can deduce

Λ1 = Θ1, (3.23)

Λ2 = Θ2. (3.24)

When we consider the moment of the velocity of (3.19), we get

(ν11n1 +ν12n2)u1 =ν11n1u1 +ν12n2u12.

Substituting u12 = δu1 +(1−δ)u2, we have

u1 =u2 (3.25)

for δ 6= 1.
Using (3.23), (3.24) and (3.25), the temperatures of the mixture Maxwellians (3.11) and
(3.15), (3.16) simplify to

Λ12 =αΛ1 +(1−α)Λ2, Θ12 =
l1

l1 + l2
Λ1 +

l2
l1 + l2

Λ2 (3.26)

Λ21 =ε(1−α)Λ1 +(1−ε(1−α))Λ2, Θ21 =ε
l1

l1 + l2
Λ1 +(1−ε l1

l1 + l2
)Λ2 (3.27)

When we consider the moments of the translational and the rotational and vibrational
temperatures of (3.19) and (3.20), we get

(ν11n1 +ν12n2)T t1 = (ν11n1 +ν12n2α)Λ1 +ν12n2(1−α)Λ2 (3.28)

(ν11n1 +ν12n2)T r1 = (ν11n1 +ν12n2
l1

l1 + l2
)Λ1 +ν12n2

l2
l1 + l2

Λ2 (3.29)

(ν22n2 +ν21n1)T t2 =ν22n2Λ2 +ν21n1Λ21 (3.30)

(ν22n2 +ν21n1)T r2 =ν22n2Λ2 +ν21n1Θ21 (3.31)

where we used the definitions of the mixture velocities and temperatures (3.8), (3.9),
(3.10), (3.11) and equations (3.23), (3.24) and (3.25). Analogue, equations (2.5) simplify
to

d+ l1
2

Λ1 =
d

2
T t1 +

l1
2
T r1 (3.32)
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d+ l2
2

Λ2 =
d

2
T t2 +

l2
2
T r2 (3.33)

Inserting (3.28) and (3.29) in (3.32), we obtain

d

2
(
ν11n1 +ν12n2α

ν11n1 +ν12n2
Λ1 +

ν12n2(1−α)

ν11n1 +ν12n2
Λ2)+

l1
2

(
ν11n1 +ν12n2

l1
l1+l2

ν11n1 +ν12n2
Λ1 +

ν12n2
l2

l1+l2

ν11n1 +ν12n2
Λ2)

=
d+ l1

2
Λ1

which, provided dα+ l1
l1

l1+l2
6=d+ l1, is equivalent to

Λ1 = Λ2 (3.34)

This condition is equivalent to d(1−α)+ l1l2
l1+l2

6= 0 which is satisfied since α 6= 1,l1,l2 6= 0.
With (3.34) we can deduce from (3.28) and (3.29) that

T t1 = Λ1 and T r1 = Λ1. (3.35)

Condition (3.27) together with (3.34) leads to

Λ21 = Θ21 = Λ1. (3.36)

Inserting (3.34) and (3.36) in (3.30) and (3.31) leads to

T t2 =T r2 = Λ1. (3.37)

If we compute the pressure tensor of (3.19) using that all temperatures are equal to Λ1

we obtain

(ν11n1 +ν12n2)
P1

n1
=ν11n1(1−µ1)Λ11+ν11n1µ1Λten1 +ν12n2Λ11.

Using (3.4), (3.21) and (3.35), we have that
(

P1

n1

)
ij

= (Λten1 )ij = (T ten1 )ij , i 6= j and there-

fore

(ν11n1(1−µ1)+ν12n2)

(
d

d+ l1

P1

n1

)
ij

= (ν11n1(1−µ1)+ν12n2)(Λ11)ij

for j 6= i, which shows that the pressure tensor of f1 is diagonal since µ1≤1. Similar for
P2

n2
using (3.20), (3.22) and (3.35).
So all in all, in equilibrium we get that f1 and f2 are Maxwell distributions with

equal mean velocities u1 =u2 =u12 =u21 and temperatures T r1 =T r2 =T t1 =T t2 = Λ1 =
Λ2 = Θ1 = Θ2 = Θ12 = Θ21 = Λ12 = Λ21.
Definition 3.1. If f1 and f2 are Maxwell distributions with equal mean velocities
u=u1 =u2 and temperatures T =T r1 =T r2 =T t1 =T t2 = Λ1 = Λ2 = Θ1 = Θ2, then we say
that f1 and f2 are in local equilibrium. Note that for α= 1 or δ= 1, we have no
exchange of momentum and energy of the tow species, so we do not expect a relaxation
towards a common equilibrium. So in the following, we always assume α,δ 6= 1.

3.4. H-Theorem In this section we will prove that our model admits an en-
tropy with an entropy inequality. For this, we have to prove an inequality on the
term

∫
lnfk(Gk−fk)dvdηlk coupled with the right-hand side of equation (3.1) and an

inequality on ν12n2

∫
(M12−f1)lnf1dvdηl1 +ν21n1

∫
(M21−f2)lnf2dvdηl2 coupled with

the right-hand side of equation (3.1). We prove the first one in subsection 3.4.1 and the
second one in subsection 3.4.2.
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12 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

3.4.1. H-Theorem for the one species relaxation terms
Remark 3.4. From the definition of the moments of fk,k= 1,2 in (2.1) and the defini-
tions of the extended Maxwellians Gk,k= 1,2 in (3.6), we see that the second moments,
the temperatures, do not coincide. Now, we consider extended Maxwellians Ḡk,k= 1,2
which have the same moments as fk,k= 1,2. Then from the case of one species ES-BGK
model we know that ∫

Ḡk lnḠkdvdηlk ≤
∫
fk lnfkdvdηlk

for k= 1,2, see equations (20) and (21) in [1] in the mono atomic case. The polyatomic
case is analogously to the mono atomic case.
Lemma 3.2. Assume that f1,f2>0. As in remark 3.4 let Ḡk be the extended
Maxwellians with the same moments as fk,k= 1,2 and G̃k the Maxwellians defined by
(3.2). Then we have∫

G̃k lnG̃kdvdηlk ≤
∫
Ḡk lnḠkdvdηlk , k= 1,2∫

Ĝk lnĜkdvdηlk ≥
∫
Gk lnGkdvηlk , k= 1,2∫

Gk lnGkdvdηlk ≥
∫
Mk lnMkdvηlk , k= 1,2

Proof. The proof of the second inequality is analogously to the proof in the mono
atomic case of equation (21) in [1]. So we only prove the first and the third one. Using
that

lnMk = ln

 nk√
2π

Λk
mk

d
1√

2π
Θk
mk

lk

− |v−uk|
2

2
Λk
mk

− |ηlk |
2

2
Θk
mk

,

lnḠk = ln

 nk√
det
(
2π

Pk
mk

) 1√
2π

Tr
k

mk

lk

− 1
2

(v−uk) ·
(

Pk
mk

)−1

·(v−uk)− |ηlk |
2

2
Tr
k

mk

,

lnG̃k = ln

 nk√
det

(
2π

Tten
k
mk

)
− 1

2
(v−uk) ·

(
T tenk
mk

)−1

·(v−uk)− |ηlk |
2

2
Tk
mk

and

lnGk = ln

 nk√√√√det

(
2π

ΛES
k
mk

) 1√
2π

Θk
mk

lk

− 1
2
mk (v−uk) ·

(
ΛESk

)−1 ·(v−uk)− |ηlk |
2

2
Θk
mk

,

we compute the integrals and obtain that the required inequalities are equivalent to

ln

 nk√
det(2π

T tenk

mk
)

1√
2π Tk

mk

lk

≤ ln

 nk√
det(2π Pk

mk
)

1√
2π

T rk
mk

lk


ln

 nk√
det(2π

ΛESk
mk

)

≥ ln

 nk√
2π Λk

mk

d


This is equivalent to the conditions

lndet(T tenk )+ lk lnTk≥ lndetPk+ lk lnT rk

(Λk)d≥det(ΛESk )
(3.38)
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We first look at the first inequality. If we insert the expression for Tk given by (2.9) and
use the concavity of ln, we obtain

lndet(T tenk )+ lk
lk

d+ lk
lnT rk + lk

d

d+ lk
lnT tk≥ lndetPk+ lk lnT rk . (3.39)

Now we use the Brunn-Minkowsky inequality (inequality (27) in [1]) given by

det(aA+(1−a)B)≥ (detA)a(detB)1−a

for 0≤a≤1 and A,B positive symmetric matrices. Since we can write T tenk as

T tenk =
d

d+ lk
Pk+

lk
d+ lk

T rk1d,

we can apply the Brunn-Minkowsky inequality on (3.39) and obtain

d

d+ lk
lndetPk+d

lk
d+ lk

lnT rk + lk
lk

d+ lk
lnT rk + lk

d

d+ lk
lnT tk

≥ lndetPk+ lk lnT rk

So it remains to show that

(T tk)d≥detPk.

This inequality has the same structure as the second inequality in (3.38). So we prove
only the second inequality in (3.38). We observe that trace(ΛESk ) =dΛk, so we have to
show (

trace(ΛESk )

d

)d
≥det(ΛESk ).

Let λ1,. ..,λd the eigenvalues of the symmetric positive matrix ΛESk , then this inequality
is equivalent to (

λ1 + ·· ·+λd
d

)d
≥λ1 ·· ·λd.

This is true since it is the inequality of arithmetic and geometric means.
Lemma 3.3 (Contribution to the H-theorem from the one species relaxation terms).
Assume f1,f2>0. Then∫

lnfk(Gk−fk)dvdηlk +

∫
lnĜk(G̃k−Ĝk)dvdηlk ≤0, k= 1,2

with equality if and only if Mk =fk and Λk = Θk =T rk =T tk.
Proof. Since the function H(x) =x lnx−x is strictly convex for x>0, we have

H ′(f)(g−f)≤H(g)−H(f) with equality if and only if g=f . So

(g−f)lnf ≤g lng−f lnf+f−g (3.40)

Apply (3.40) on both terms of

Sk(fk) :=

∫
lnfk(Gk−fk)dvdηlk +

∫
lnĜk(G̃k−Ĝk)dvdηlk
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14 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

Then we obtain

Sk(fk)≤
∫
Gk lnGkdvdηlk−

∫
fk lnfkdvdηlk−

∫
Gkdvdηlk +

∫
fkdvdηlk

+[

∫
G̃k lnG̃kdvdηlk−

∫
Ĝk lnĜkdvdηlk−

∫
G̃kdvdηlk +

∫
Ĝkdvdηlk ]

with equality if and only if fk =Gk and Gk = G̃k from which we can deduce fk =Mk by
computing macroscopic quantities of fk =Gk and Gk = G̃k. Since fk, Gk, Ĝk and G̃k
have the same density, we obtain

S(fk)≤
∫
Gk lnGkdvdηlk−

∫
fk lnfkdvdηlk +[

∫
G̃k lnG̃kdvdηlk−

∫
Ĝk lnĜkdvdηlk ]

(3.41)

According to the second part of lemma 3.2, we obtain

S(fk)≤
∫
G̃k lnG̃kdvdηlk−

∫
fk lnfkdvdηlk (3.42)

Here we have equality if and only if Gk = G̃k, which means Λk = Θk. Now, using the first
part of lemma 3.2 and remark 3.4, we can estimate

∫
G̃k lnG̃kdvdηlk by

∫
fk lnfkdvdηlk .

So, all in all, we obtain Sk(fk)≤0 with equality if and only if fk =Mk and Λk = Θk =
T rk =T tk.

3.4.2. H-Theorem for mixtures of polyatomic molecules
Lemma 3.4. Assume f1,f2>0. Assume the relationship between the collision frequen-
cies (2.4) , the conditions for the interspecies Maxwellians (3.8), (3.9), (3.10), (3.11)
and (3.12) and the positivity of all temperatures, then

ε
d

2
lnΛ12 +ε

l1
2

lnΘ12 +
d

2
lnΛ21 +

l2
2

lnΘ21≥
d

2
ε lnΛ1 +

d

2
lnΛ2 +

l1
2
ε lnΘ1 +

l2
2

lnΘ2

(3.43)

Proof. First we consider the part E1 := d
2 lnΛ12 + l1

2 lnΘ12. We insert the definitions
of Λ12 and Θ12 into E1 and use the monotonicity of ln to drop the velocity term. Then
we obtain

E1≥
d

2
ln(αΛ1 +(1−α)Λ2)+

l1
2

ln(
l1

l1 + l2
Θ1 +

l2
l1 + l2

Θ2).

Now we use that ln is concave and get

E1≥
d

2
α lnΛ1 +

d

2
(1−α)lnΛ2 +

l1
2

l1
l1 + l2

lnΘ1 +
l1
2

l2
l1 + l2

lnΘ2 (3.44)

Doing the same with the second part E2 := d
2 lnΛ21 + l2

2 lnΘ21 using that l1
l1+l2

ε≤1, we
obtain

E2≥
d

2
ε(1−α)lnΛ1 +

d

2
(1−ε(1−α))lnΛ2 +

l2
2
ε

l1
l1 + l2

lnΘ1 +
l2
2

(1−ε l1
l1 + l2

)lnΘ2

(3.45)
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Multiplying (3.44) by ε and adding (3.45), we get

εE1 +E2≥
d

2
ε lnΛ1 +

d

2
lnΛ2 +

l1
2
ε lnΘ1 +

l2
2

lnΘ2

which is the required inequality.

Lemma 3.5. Assume f1,f2>0. Assume the relationship between the collision frequen-
cies (2.4), the conditions for the interspecies Maxwellians (3.8), (3.9), (3.10), (3.11)
and (3.12) and the positivity of all temperatures. Then

ν12n2

∫
M12 lnM12dvdηl1 +ν21n1

∫
M21 lnM21dvdηl2

≤ν12n2

∫
M1 lnM1dvdηl1 +ν21n1

∫
M2 lnM2dvdηl2

Proof. Using that lnM12 = ln( n2√
2π

Λ12
m1

d
1√

2π
Θ12
m1

l1
)− |v−u12|2

2
Λ12
m1

− |ηl1 |
2

2
Θ12
m1

),

lnM21 = ln( n1√
2π

Λ21
m2

d
1√

2π
Θ21
m2

l2
)− |v−u21|2

2
Λ21
m2

− |ηl2 |
2

2
Θ21
m2

)

lnMk = ln( nk√
2π

Λk
mk

d
1√

2π
Θk
mk

lk
)− |v−uk|

2

2
Λk
mk

)− |ηlk |
2

2
Θk
mk

, k= 1,2, we compute the integrals and

obtain that the required inequalities are equivalent to

ε ln(
n1√

2πΛ12

m1

d

1√
2πΘ12

m1

l1
)+ln(

n2√
2πΛ21

m2

d

1√
2πΘ21

m2

l2
)

≤ε ln(
n1√

2π Λ1

m1

d

1√
2π Θ1

m1

l1
)+ln(

n2√
2π Λ2

m2

d

1√
2π Θ2

m2

l2
)

which is equivalent to the condition proven in Lemma 3.4.

Theorem 3.5 (H-theorem for mixture). Assume f1,f2>0. Assume ν11n1≥ν12n2,
ν22n2≥ν21n1, α,δ 6= 1,l1,l2 6= 0. Assume the relationship between the collision frequen-
cies (2.4), the conditions for the interspecies Maxwellians (3.8), (3.9), (3.10), (3.11)
and (3.12) and the positivity of all temperatures, then

2∑
k=1

[νkknk

∫
(Gk−fk)lnfkdvdηlk +νkknk

∫
(G̃k−Ĝk)lnĜkdvdηlk ]

+ν11n1

∫
(G̃1−Ĝ1)lnĜ1dvdηl1 +ν22n2

∫
(G̃2−Ĝ2)lnĜ2dvdηl2

+ν12n2

∫
(M12−f1)lnf1dvdηl1 +ν21n1

∫
(M21−f2)lnf2dvdηl2 ≤0

with equality if and only if f1 and f2 are in local equilibrium (see definition 3.1).

Remark 3.5. The inequality in the H-Theorem is still true if l1 = 0 or l2 = 0 which
means that one species is mono atomic. In this case only the equalities with Θ1 and Θ2,
respectively in the local equilibrium vanish.

Proof. The fact that νkknk
∫

(Gk−fk)lnfkdvdηlk +νkknk
∫

(G̃k−Ĝk)lnĜkdvdηlk ≤
0,k= 1,2 is shown in Lemma 3.3. In both cases we have equality if and only if f1 =G1
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16 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

with Λ1 = Θ1 =T t1 =T r1 and f2 =G2 with Λ2 = Θ2 =T t2 =T r2 .
Let us define

S(f1,f2) :=ν11n1

∫
(G̃1−Ĝ1)lnĜ1dvdηl1 +ν22n2

∫
(G̃2−Ĝ2)lnĜ2dvdηl2

+ν12n2

∫
(M12−f1)lnf1dvdηl1 +ν21n1

∫
(M21−f2)lnf2dvdηl2

The task is to prove that S(f1,f2)≤0. Since the function H(x) =x lnx−x is strictly
convex for x>0, we have H ′(f)(g−f)≤H(g)−H(f) with equality if and only if g=f .
So

(g−f)lnf ≤g lng−f lnf+f−g (3.46)

Consider now S(f1,f2) and apply the inequality (3.46) to each of the terms in S.

S≤ν11n1[

∫
G̃1 lnG̃1dvdηl1−

∫
Ĝ1 lnĜ1dvdηl1 +

∫
Ĝ1dvdηl1−

∫
G̃1dvdηl1 ]

+ν12n2[

∫
M12 lnM12dvdηl1−

∫
f1 lnf1dvdηl1 +

∫
f1dvη−

∫
M12dvdηl1 ]

+ν21n1[

∫
M21 lnM21dvdηl2−

∫
f2 lnf2dvdηl2 +

∫
f2dvdη−

∫
M21dvdηl2 ]

+ν22n2[

∫
G̃2 lnG̃2dvdηl2−

∫
Ĝ2 lnĜ2dvdηl2 +

∫
Ĝ2dvdηl2−

∫
G̃2dvdηl2 ]

with equality if and only if f1 =M12, f2 =M21, G̃1 = Ĝ1 and G̃2 = Ĝ2. Combining this
with the condition for equality of the single collision term f1 =G1 with Λ1 = Θ1 =T t1 =T r1
and f2 =G2 with Λ2 = Θ2 =T t2 =T r2 , we get that we have equality if and only if we are

in local equilibrium (see definition 3.1). Since Ĝ1,G̃1,f1 and M12 have the same density

and Ĝ2,G̃2,M21 and f2 have the same density, too, the right-hand side reduces to

S≤ν11n1[

∫
G̃1 lnG̃1dvdηl1−

∫
Ĝ1 lnĜ1dvdηl1 ]

+ν12n2[

∫
M12 lnM12dvdηl1−

∫
f1 lnf1dvdηl1 ]

+ν21n1[

∫
M21 lnM21dvdηl2−

∫
f2 lnf2dvdηl2 ]

+ν22n2[

∫
G̃2 lnG̃2dvdηl2−

∫
Ĝ2 lnĜ2dvdηl2 ]

According to the second part of lemma 3.2, we obtain

S≤ν11n1[

∫
G̃1 lnG̃1dvdηl1−

∫
G1 lnG1dvdηl1 ]

+ν12n2[

∫
M12 lnM12dvdηl1−

∫
f1 lnf1dvdηl1 ]

+ν21n1[

∫
M21 lnM21dvdηl2−

∫
f2 lnf2dvdηl2 ]

+ν22n2[

∫
G̃2 lnG̃2dvdηl2−

∫
G2 lnG2dvdηl2 ]
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According to lemma 3.5, the last part of lemma 3.2 and the assumption that νkknk≥
νkjnj , k,j= 1,2,k 6= j, we get

S≤ν11n1[

∫
G̃1 lnG̃1dvdηl1−

∫
G1 lnG1dvdηl1 ]

+ν12n2[

∫
G1 lnG1dvdηl1−

∫
f1 lnf1dvdηl1 ]

+ν21n1[

∫
G2 lnG2dvdηl2−

∫
f2 lnf2dvdηl2 ]

+ν22n2[

∫
G̃2 lnG̃2dvdηl2−

∫
G2 lnG2dvdηl2 ]

≤ν12n2[

∫
G̃1 lnG̃1dvdηl1−

∫
f1 lnf1dvdηl1 ]

+ν21n1[

∫
G̃2 lnG̃2dvdηl2−

∫
f2 lnf2dvdηl2 ]

which leads to S≤0 using the second part of lemma 3.2 and remark 3.4.

Define 1
zk

:= 1
Zrk

d+lk
d , k= 1,2 and total entropy H(f1,f2) =

∫
(f1 lnf1 +

2z1Ĝ1 lnĜ1)dvdηl1 +
∫

(f2 lnf2 +2z2Ĝ2 lnĜ2)dvdηl2 . We can compute

∂tH(f1,f2)+∇x ·
∫

(f1 lnf1 +2z1Ĝ1 lnĜ1)vdvdηl1

+∇x ·
∫

(f2 lnf2 +2z2Ĝ2 lnĜ2)vdvdηl2 =S(f1,f2)

by multiplying the BGK equation for species 1 by lnf1, the BGK equation for the
species 2 by lnf2, equations (3.1) by 2zk lnGk and sum the integrals with respect to v
and ηl1 and ηl2 , respectively.
Corollary 3.1 (Entropy inequality for mixtures). Assume f1,f2>0. Assume rela-
tionship (2.4), the conditions (3.8), (3.9), (3.10), (3.11) and (3.12) and the positivity of
all temperatures (3.17), then we have the following entropy inequality

∂t (H(f1,f2))

+∇x ·
(∫

v(f1 lnf1 +2z1Ĝ1 lnĜ1)dvdηl1 +

∫
(f2 lnf2 +2z2Ĝ2 lnĜ2)dvdηl2

)
≤0

with equality if and only if f1 and f2 are in local equilibrium (see definition 3.1).

Remark 3.6. By computing the integrals
∫
Ĝk lnĜkdvdηlk for k= 1,2, and∫

vĜk lnĜkdvdηlk , we see that ∂t[
∫
Ĝ1 lnĜ1dvdηl1 +

∫
Ĝ2 lnĜ2dvdηl2 ]+∇x ·

[
∫
vĜ1 lnĜ1dvdηl1 +

∫
vĜ2 lnĜ2dvdηl2 ]≤0 is equivalent to ∂t(det(Λten1 )Θl1

1 +

det(Λten2 )Θl2
2 )+∇x ·((det(Λten1 )Θl1

1 +det(Λten2 )Θl2
2 )uk)≤0, we could also consider

the entropy H(f1,f2) =
∑2
k=1

∫
fk lnfkdvdηlk +z1 det(Λten1 )Θl1

1 +z2 det(Λten2 )Θl2
2

4. Comparison with the ES-BGK model for one species of polyatomic
molecules by Andries, Le Tallec, Perlat and Perthame We will now consider
a different ES-BGK model for a single species ES-BGK model of polyatomic molecules.
In [2], they consider a distribution function f(t,x,v,I) depending on the position x∈R3,

the velocity v∈R3 and internal energy ε(I) = I
2
δ , I ∈R+ at time t. δ denotes the number
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18 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

of degrees of freedom in internal energy. The mass density ρ and mean velocity u are
defined as in the model described in the previous subsection integrating with respect to
v and I. The energy is defined as

E(x,t) =

∫ ∫
(
1

2
|v|2 +I

δ
2 )fdvdI=

1

2
ρ|u|2 +ρe

The specific internal energy can be divided into

etr =
1

ρ

∫ ∫
1

2
|v−u|2fdvdI

eint=
1

ρ

∫ ∫
I

2
δ fdvdI

and associate with this the corresponding temperatures

e=etr+eint=
3+δ

2
RTequ

etr =
3

2
RTtr

eint=
δ

2
RTint

and define Trel=θTequ+(1−θ)Tint. They consider the generalized Gaussian for the
single species ES-BGK model

G̃[f ] =
ρΛδ√

det(2πT )

1

RT
δ
2

rel

exp(−1

2
(v−u) ·T −1 ·(v−u)+

I
δ
2

RTrel
)

with the tensor T = (1−θ)((1−ν)RTtr1+νΘ)+θRTequ1 where only the translational
part is replaced by a tensor. Θ denotes the pressure tensor, Λδ is a constant ensuring
that the integral of G̃[f ] with respect to v and I is equal to the density ρ and R is the
gas constant. The convex combination in θ takes into account that Ttr and Tint relaxes
towards the common value Tequ. In the space-homogeneous case we see that we get the
following macroscopic equations

∂tTtr =C(Ttr(1−θ)+θTequ)−Ttr) =Cθ(Tequ−Ttr)
∂tTint=Cθ(Tequ−Tint)

with some coefficient C. These macroscopic equations describe a relaxation of Ttr and
Tint towards Tequ.

In this paper, we took [5] as basis to extend it to mixtures. The main differences
of the model in [2] and the model in [5] are the following. The model in [2] has one
variable I ∈R+ for all degrees of freedom in internal energy and the model in [5] has one
variable η∈RM to each degree of freedom in internal energy. Moreover, the relaxation
of the translational and rotational/vibrational temperatures to a common value is done
in [2] by introducing a relaxation temperature Trel and in the model [5] it is done by
the additional relaxation equation (3.1).
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5. Applications

5.1. Chu reduction In order to reduce the complexity of the variable for rota-
tional and vibrational energy degrees of freedom µ1,....µlk we apply the Chu reduction
proposed in [8]. It is possible to apply the Chu reduction since η1,...ηlk do not appear
in the transport operators in (3.7). We consider the system of equations

∂tf1 +v ·∇xf1 =ν11n1(G1−f1)+ν12n2(M12−f1)

∂tf2 +v ·∇xf2 =ν22n2(G2−f2)+ν21n1(M21−f2)
(5.1)

Now, consider the reduced functions

g1 =

∫
f1dηl1 , g2 =

∫
f2dηl2 .

Then they satisfy the equations

∂tg1 +v ·∇xg1 =ν11n1(G̃1−g1)+ν12n2(M̃12−g1)

∂tg2 +v ·∇xg2 =ν22n2(G̃2−g2)+ν21n1(M̃21−g2)
(5.2)

where G̃1,G̃2,M̃12 and M̃21 are given by

G̃1 =

∫
G1dηl1 , M̃12 =

∫
M12dηl1

G̃2 =

∫
G2dηl2 , M̃21 =

∫
M21dηl2 .

It is possible to compute the densities

n1 =

∫ ∫
f1dηl1dv=

∫
g1dv

n2 =

∫ ∫ ∫
f2dηl2dv=

∫
g2dv,

the velocities

u1 =

∫ ∫ ∫
vf1dηl1dv=

∫
vg1dv

u2 =

∫ ∫ ∫
vf2dηl2dv=

∫
vg2dv,

the temperatures

Λ1 =
1

n1

∫ ∫
|v−u1|2f1dηl1dv=

1

n1

∫
|v−u1|2g1dv

Λ2 =
1

n2

∫
|v−u2|2g2dv

Θ1 =
1

n1

∫ ∫
|ηl1 |2f1dηl1dv=

1

n1

∫
|ηl1 |2h1dv
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20 A TWO- SPECIES MODEL FOR POLYATOMIC MOLECULES

Θ2 =
1

n2

∫
|ηl2 |2h2dv

if we define the reduced functions

h1 =

∫
|ηl1 |2f1dηl1 , h2 =

∫
|ηl2 |2f2dηl2

which solve the equations

∂th1 +v ·∇xh1 =ν11n1(
˜̃
G1−h1)+ν12n2(

˜̃
M12−h1)

∂th2 +v ·∇xh2 =ν22n2(
˜̃
G2−h2)+ν21n1(

˜̃
M21−h2)

(5.3)

where
˜̃
G1,

˜̃
G2,

˜̃
M12 and

˜̃
M21 are given by

˜̃
G1 =

∫
|ηl1 |2G1dηl1 ,

˜̃
M12 =

∫
|ηl1 |2M12dη

˜̃
G2 =

∫
|ηl2 |2G2dηl2 ,

˜̃
M21 =

∫
|ηl2 |2M21dηl2 .

If we compute G̃k, M̃12, M̃21,
˜̃
Gk, M̃12, M̃21 for k= 1,2, we get

G̃k(x,v,t) =
nk√

det(2π
ΛESk
mk

)
exp(−mk(v−uk)(ΛESk )−1 ·(v−uk)), k= 1,2

M̃12(x,v,t) =
n1√

2πΛ12

m1

n exp(−|v−u12|2

2Λ12

m1

)

M̃21(x,v,t) =
n2√

2πΛ21

m2

n exp(−|v−u21|2

2Λ21

m2

)

(5.4)

˜̃
Gk(x,v,t) =

nk√
det(2π

ΛESk
mk

)
exp(−mk(v−uk)(ΛESk )−1 ·(v−uk))Θk, k= 1,2

˜̃
M12(x,v,t) =

n1√
2πΛ12

m1

n exp(−|v−u12|2

2Λ12

m1

)Θ12

˜̃
M21(x,v,t) =

n2√
2πΛ21

m2

n exp(−|v−u21|2

2Λ21

m2

)Θ21

(5.5)

We are able to compute all the six Maxwellians because we can compute all moments
by the previous computation.

5.2. A mixture consisting of a mono and a diatomic gas We consider now
the special case of two species, one species is mono-atomic and has only translational
degrees of freedom l1 = 0, the other one is diatomic and has in addition two rotational
degrees of freedom l2 = 2 and both have the number of degrees of freedom in translations
given by d with d∈N. In this case the total number of rotational degrees of freedom
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is M = l1 + l2 = 2 since in sum we have two possible rotations. Our variables for the

rotational energy degrees of freedom are η∈R2, ηl1 =

(
0
0

)
, ηl2 =η, since ηlk coincides

with η in the components corresponding to the rotational degrees of freedom of species
k and is zero in the other components. So our distribution function f1(x,v,t) of species
1 depends on x,v, and t and our distribution function f2(x,v,η,t) of species 2 depends
on x,v,η and t. The moments of f1 are given by

∫
f1(v)


1
v

m1|v−u1|2
m1(v−u1(x,t))⊗(v−u1(x,t))

dv=:


n1

n1u1

dn1T
t
1

P1

 (5.6)

and the moments of species 2 are given by

∫
f2(v,η)


1
v
η

m2|v−u2|2
m2|η|2

m2(v−u2(x,t))⊗(v−u2(x,t))

dvdη=:


n2

n2u2

0
dn2T

t
2

l2n2T
r
k

P2

 . (5.7)

The third equality is an assumption. We could also consider a general η̄. Our model
reduces to

∂tf1 +∇x ·(vf1) =ν11n1(G1(f1)−f1)+ν12n2(M12(f1,f2)−f1)

∂tf2 +∇x ·(vf2) =ν22n2(G2(f2)−f2)+ν21n1(M21(f1,f2)−f2)
(5.8)

with the modified Maxwellians

G1(f1)(x,v,t) =
n1√

det(2π
ΛES1
m1

)

exp

−1

2
(v−u1) ·

(
ΛES1

m1

)−1

·(v−u1)



G2(f2)(x,v,η,t) =
n2√

det(2π
ΛES2
m2

)

1√
2π Θ2

m2

l2
exp

−1

2
(v−u2) ·

(
ΛES2

m2

)−1

·(v−u2)−
1

2

m2|η|2

Θ2



M12(x,v,t) =
n12√

2πΛ12
m1

d
exp

−|v−u12|2

2 Λ12
m1



M21(x,v,η,t) =
n21√

2πΛ21
m2

d

1√
2πΘ21

m2

l2
exp

−|v−u21|2

2 Λ21
m2

−
|η|2

2 Θ21
m2


(5.9)

where

ΛES1 = (1−µ1)T t11n+µ1
P1

n1

ΛES2 = (1−µ2)Λ21n+µ2
Λten2

n2
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with µk ∈R, k= 1,2. For Λten2 we use the additional relaxation equation

∂tĜ2 +v ·∇xĜ2 =
ν22n2

Z2
r

d+2

d
(G̃2−Ĝ2)+ν22n2(G2−f2)+ν21n1(M21−f2), (5.10)

Here Ĝ2 is given by

Ĝ2 =
n2√

det(2π
Λten2

m2
)

exp

(
−1

2
(v−u2) ·

(
Λten2

m2

)−1

·(v−u2)−m2|η|2

2T r2

)
, k= 1,2.

(5.11)

and G̃2 is given by

G̃2 =
n2√

det(2π
T ten2

m2
)

1√
2π T2

m2

2 exp

(
−1

2
(v−u2) ·

(
T ten2

m2

)−1

·(v−u2)− 1

2

m2|η|2

T2

)
(5.12)

where the components of T ten2 are defined in the following way.

(T ten2 )ii=T2 :=
d

d+2
Λ2 +

2

d+2
Θ2 for i= 1,. ..d

(T ten2 )ij =
d

d+2
(P2)ij for i,j= 1,. ..d,i 6= j

(5.13)

We couple this with conservation of internal energy of species 2

d

2
n2Λ2 =

d

2
n2T

t
2 +

l2
2
n2T

r
2 −

l2
2
n2Θ2. (5.14)

If we multiply (5.10) by |η|2 and integrate with respect to v and η, this leads to the
following macroscopic equation

∂t(Λ
ten
2 )+u2 ·∇x(Λten2 ) =

ν22n2

Z2
r

d+2

d
(T ten2 −Λten2 )+ν22n2(ΛES2 −P2)

+ν21n1(Θ12−T r2 ).

(5.15)

If we assume that

n12 =n1 and n21 =n2,

u12 = δu1 +(1−δ)u2, δ∈R,

and

Λ12 =αT t1 +(1−α)Λ2 +γ|u1−u2|2, 0≤α≤1,γ≥0 (5.16)

we have conservation of mass, total momentum and total energy provided that

u21 =u2−
m1

m2
ε(1−δ)(u2−u1), (5.17)

Λ21 +
l2
d

Θ21 =

[
1

d
εm1(1−δ)

(
m1

m2
ε(δ−1)+δ+1

)
−εγ

]
|u1−u2|2

+ε(1−α)T t1 +(1−ε(1−α))Λ2 +
l2
d

Θ2.

(5.18)
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We take into account the symmetry of the temperatures and choose

Λ21 =ε(1−α)Λ1 +(1−ε(1−α))Λ2

+

[
1

d
εm1(1−δ)

(
m1

m2
ε(δ−1)+δ+1

)
−εγ

]
|u1−u2|2

(5.19)

Θ21 = Θ2 (5.20)
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[6] M.Bisi, M. Cáceres, A BGK relaxation model for polyatomic gas mixtures, Communication in

Mathematical Sciences, 14, 297-325, 2016 1
[7] S.Brull, J.Schneider, On the ellipsoidal statistical model for polyatomic gases, Continuum Me-

chanics and Thermodynamics, 20, 489-508, 2009 1
[8] C. K. Chu, Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8, 12?22,

1965 5.1
[9] C. Cercignani, Rarefied Gas Dynamics, From Basic Concepts to Actual Calculations, Cambridge

University Press, 2000 1, 2
[10] C. Cercignani, The Boltzmann equation and its applications, Springer, 1975 1, 2
[11] A. Crestetto, N. Crouseilles and M. Lemou, Kinetic/fluid micro-macro numerical schemes for

Vlasov-Poisson-BGK equation using particles, Kinetic and Related Models, 5, 787-816, 2012
1

[12] G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numerica, 23, 369-
520, 2014 1

[13] F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related
problems with stiff sources, Journal of Computational Physics, 20, 7625-7648, 2010 1

[14] L.H.Holway, New statistical models for kinetic theory: methods of construction, The physics of
fluids, 9, 1658-1673, 1966 1, 3

[15] J.Kelly, Semiclassical Statistically Mechanics, lecture notes, 2002 2
[16] C. Klingenberg, M. Pirner, Existence, Uniqueness and Positivity of solutions for BGK models

for mixtures, submitted to Journal of Differential equations, 2017 3.2
[17] C. Klingenberg, M.Pirner, G.Puppo, A consistent kinetic model for a two-component mixture

with an application to plasma, Kinetic and related Models, 10, 445-465, 2017 3.1, 3.1, 3.2,
3.2

[18] C.Klingenberg, M.Pirner, G.Puppo, Kinetic ES-BGK models for a multicomponent gas mixture,
Springer Proceedings in Mathematics and Statistics of the International Conference on Hy-
perbolic Problems: Theory, Numeric and Applications in Aachen 2016, 2017 3

[19] T.F.Morse, Kinetic Model for Gases with Internal Degrees of Freedom, The Physics of Fluids, ,
159-169, 1964 1

[20] S. Pieraccini and G. Puppo, Implicit-explicit schemes for BGK kinetic equations, Journal of
Scientific Computing, 32, 1-28, 2007 1

[21] V.A.Rykov, A model kinetic equation for a gas with rotational degrees of freedom, Fluid Dynam-
ics, 10, 959-966, 1975 1

3 Aug 2017 23:41:26 PDT
Version 1 - Submitted to Comm. Math. Sci.


