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Abstract We consider a multi component mixture of inert gas in the kinetic regime
by assuming that the total number of particles of each species remains constant. In
this article we shall illustrate our model for the case of two species. To account for
thermal effects, we extend a BGK model based on the presence of a collision term
for each possible interaction [19] by including ES-BGK effects. We prove consis-
tency of the extended model like conservation properties, positivity of all tempera-
tures, H-theorem and convergence to a global equilibrium in the shape of a global
Maxwell distribution.

Introduction

In this paper we shall concern ourselves with a kinetic description of gases. This
is traditionally done via the Boltzmann equation for the density distributions f1
and f2. Under certain assumptions the complicated interaction terms of the Boltz-
mann equation can be simplified by a so called BGK approximation, consisting
of a collision frequency multiplied by the deviation of the distributions from local
Maxwellians. This approximation should be constructed in a way such that it has the
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same main properties of the Boltzmann equation namely conservation of mass, mo-
mentum and energy, further it should have an H-theorem with its entropy inequality
and the equilibrium must still be Maxwellian. BGK models give rise to efficient nu-
merical computations, which are asymptotic preserving, that is they remain efficient
even approaching the hydrodynamic regime [20, 12, 11, 5, 6, 10]. However, the
drawback of the BGK approximation is its incapability of reproducing the correct
Boltzmann hydrodynamic regime in the asymptotic continuum limit. Therefore, a
modified version called ES-BGK approximation was suggested by Holway in the
case of one species [16]. The H-Theorem of this model then was proven in [3] and
existence and uniqueness of solutions in [21].

Here we shall focus on gas mixtures modelled via an ES-BGK approach. In the
literature there is a BGK model for gas mixtures suggested by Andries, Aoki and
Perthame in [2] which contains only one collision term on the right-hand side. Ex-
tensions of this model to an ES-BGK model for gas mixtures are given by Groppi in
[13] or the model by Brull [7] with an extension leading to a correct Prandtl number
in the Navier Stokes equation, adapting the ES-BGK model for mixtures.

In this paper we are interested in an extension to an ES-BGK model of a BGK
model for gas mixtures [19] which just like the Boltzmann equation for gas mixtures
contains a sum of collision terms on the right-hand side. Other examples of ES-
BGK models for gas mixtures are the models of Gross and Krook [14], Hamel [15],
Asinari [4]. The advantage of this extended model is that we have free parameters
to possibly being able to determine macroscopic physical constants like viscosity or
heat conductivity when taking the limit to the Navier-Stokes equations.

The outline of the paper is as follows: in section 1.1 we will present the BGK
model for two species developed in [19]. In section 1.2, we suggest extensions to an
ES-BGK model for mixtures and prove the corresponding H-Theorem.

1 The BGK approximation

In this section we will present the BGK model for a mixture of two species and men-
tion its fundamental properties like the conservation properties and the H-theorem.

For simplicity in the following we consider a mixture composed of two differ-
ent species, but the discussion can be generalized to multi species mixtures. Thus,
our kinetic model has two distribution functions f1(x,v, t) > 0 and f2(x,v, t) > 0
where x ∈ Λ ⊂ R3 and v ∈ R3 are the phase space variables and t ≥ 0 the time.
The distribution functions are determined by two equations to describe their time
evolution. Furthermore we only consider binary interactions. So the particles of one
species can interact with either themselves or with particles of the other species. In
the model this is accounted for introducing two interaction terms in both equations.
These considerations allow us to write formally the system of equations for the
evolution of the mixture. The following structure containing a sum of the collision
operator is also given in [8, 9].
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Furthermore, for any f1, f2 : Λ ⊂ R3 ×R3 ×R+
0 → R with (1 + |v|2) f1,(1 +

|v|2) f2 ∈ L1(R3), f1, f2≥ 0 we relate the distribution functions to macroscopic quan-
tities by mean-values of fk, k = 1,2

∫
fk(v)


1
v

mk|v−uk|2
mk(v−uk(x, t))⊗ (v−uk(x, t))

dv =:


nk

nkuk
3nkTk
Pk

 , k = 1,2, (1)

where nk is the number density, uk the mean velocity and Tk the mean temperature
of species k, k = 1,2. Note that in this paper we shall write Tk instead of kBTk, where
kB is Boltzmann’s constant.

We are interested in a BGK approximation of the interaction terms. This leads
us to define equilibrium distributions not only for each species itself but also for the
two interspecies equilibrium distributions. We choose the collision terms as BGK
operators and denote them for future references by Q11,Q12,Q21 and Q22. Then the
model can be written as:

∂t f1 +∇x · (v f1) = ν11n1(M1− f1)+ν12n2(M12− f1),

∂t f2 +∇x · (v f2) = ν22n2(M2− f2)+ν21n1(M21− f2),
(2)

with the Maxwell distributions

Mk(x,v, t) =
nk√

2π
Tk
mk

3 exp(−|v−uk|2

2 Tk
mk

), k = 1,2,

Mk j(x,v, t) =
nk j√

2π
Tk j
mk

3 exp(−
|v−uk j|2

2 Tk j
mk

), k, j = 1,2, k 6= j,

(3)

where ν11n1 and ν22n2 are the collision frequencies of the particles of each species
with itself, while ν12 and ν21 are related to interspecies collisions. To be flexible
in choosing the relationship between the collision frequencies, we now assume the
relationship

ν12 = εν21, 0 < ε ≤ 1, (4)
ν11 = β1ν12, ν22 = β2ν21, β1,β2 > 0. (5)

The restriction ε ≤ 1 is without loss of generality. If ε > 1, exchange the notation
1 and 2 and choose 1

ε
. In addition, we assume that all collision frequencies are

positive.
The structure of the collision terms ensures that if one collision frequency

νkl→∞, the corresponding distribution function becomes a Maxwell distribution. In
addition at global equilibrium, the distribution functions become Maxwell distribu-
tions with the same velocity and temperature (see section 2.8 in [19]). The Maxwell
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distributions M1 and M2 in (3) have the same moments as f1 and f2, respectively.
With this choice, we guarantee the conservation of mass, momentum and energy in
interactions of one species with itself (see section 2.2 in [19]). The remaining pa-
rameters n12,n21,u12,u21,T12 and T21 will be determined using conservation of total
momentum and energy, together with some symmetry considerations.

If we assume that

n12 = n1 and n21 = n2, (6)

u12 = δu1 +(1−δ )u2, δ ∈ R, (7)

and

T12 = αT1 +(1−α)T2 + γ|u1−u2|2, 0≤ α ≤ 1,γ ≥ 0, (8)

we have conservation of the number of particles, of total momentum and total energy
provided that

u21 = u2−
m1

m2
ε(1−δ )(u2−u1), (9)

and

T21 =

[
1
3

εm1(1−δ )

(
m1

m2
ε(δ −1)+δ +1

)
− εγ

]
|u1−u2|2

+ε(1−α)T1 +(1− ε(1−α))T2,

(10)

see Theorem 2.1, Theorem 2.2 and Theorem 2.3 in [19].
We see that without using an ES-BGK extension, we already have three free

parameters in (7) and (8) in order to match coefficients like the Fick’s constant or the
heat conductivity in the Navier-Stokes equations. But when we derive the Navier-
Stokes equations by a Chapman-Enskog expansion fk = f 0

k + ε̃ f 1
k + ε̃2 f 2

k + · · · , one
can show that |u1−u2|2 is of order ε̃2, so γ from (8) does not appear in the first order
Navier-Stokes equations and therefore cannot be used to match parameters there.
In order to ensure the positivity of all temperatures, we need to impose restrictions
on δ and γ ,

0≤ γ ≤ m1

3
(1−δ )

[
(1+

m1

m2
ε)δ +1− m1

m2
ε

]
, (11)

and
m1
m2

ε−1

1+ m1
m2

ε
≤ δ ≤ 1, (12)

see Theorem 2.5 in [19].
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This summarizes our kinetic model (2) in of two species that contains three free
parameters. More details can be found in [19].

2 Extensions to an ES-BGK approximation

2.1 Extension of the single relaxation terms

Motivated by the need to find a two species kinetic model that allows us to
model physical parameters better we extend the above model by generalizing the
Maxwellians. The simplest choice is to only replace the collision operators which
represent the collisions of a species with itself by the ES-BGK collision operator for
one species suggested in [1]. Then the model can be written as:

∂t fk +∇x · (v fk) = νkknk(Gk− fk)+νk jn j(Mk j− fk), k, j = 1,2, j 6= k, (13)

with the modified Maxwell distributions

Gk(x,v, t) =
nk√

det(2π
Tk
mk
)

exp(−1
2
(v−uk) · (

Tk

mk
)−1 · (v−uk)), k = 1,2, (14)

and M12,M21 the Maxwellians described in the previous section. G1 and G2 have
the same densities, velocities and pressure tensors as f1 respective f2, so we still
guarantee the conservation of mass, momentum and energy in interactions of one
species with itself. Since the first term describes the interactions of a species with
itself, it should correspond to the single ES-BGK collision operator suggested in
[1]. So we choose T1 and T2 as

Tk = (1−µk)Tk1+µk
Pk

nk
, (15)

with µk ∈ R, k = 1,2 being free parameters which we can choose in a way to fix
physical parameters in the Navier-Stokes equations. So, all in all, together with the
parameters in the mixture Maxwellians (7) and (8) we now have five free parameters.

Since we wrote T −1
k we have to check if Tk is invertible. Otherwise the model

is not well-posed. For the one species tensor this is done by the following Theorem
proven in [1].

Theorem 1. Assume that fk > 0. Then Pk
nk

has strictly positive eigenvalues. If we

further assume that − 1
2 ≤ µk ≤ 1, then Tk has strictly positive eigenvalues and

therefore Tk is invertible.
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2.1.1 Equilibrium and entropy inequality

In global equilibrium when f1 and f2 are independent of x and t, the right- hand side
of (13) has to be zero. In this case we get

f1 =
1

ν11n1 +ν12n2
(ν11n1G1 +ν12n2M12).

If we compute the velocities of this expression, we can deduce u1 = u2 for δ 6= 1. If
we compute the temperatures of this expression using u1 = u2, we get

T1 =
1

ν11n1 +ν12n2
(ν11n1T1 +ν12n2(αT1 +(1−α)T2)),

which is equivalent to T1 = T2 for α 6= 1. So let T := T1 = T2 and use u1 = u2. If we
compute pressure tensors, we get

(ν11n1 +ν12n2)P1 = ν11n1T1 +ν12n2T12

= ν11n1(1−µ1)T 1+ν11n1µ1P1 +ν12n2T 1,

which is equivalent to

(ν11n1 +ν12n2−ν11n1µ1)P1 = (ν11n1 +ν12n2−ν11n1µ1)T 1,

which is P1 = T 1 for δ ,α 6= 1, µ1 ≤ 1. This means that the pressure tensor of f1
and f2 is diagonal and f1, f2 are Maxwellian distributions with equal mean velocity
and temperature. δ = 1 or α = 1 are cases in which the mixture Maxwellians do not
contain the velocity or the temperature of the other species, see (7) and (8). In this
case the two gases do not exchange information and a global equilibrium cannot be
reached.

Theorem 2 (H-theorem for the mixture). Assume that f1, f2 > 0 are solutions to
(2). Assume the relationship between the collision frequencies (5) , the conditions
for the interspecies Maxwellians (7), (9), (8) and (10) and the positivity of the tem-
peratures (11), then∫

(ln f1) Q11( f1, f1)+(ln f1) Q12( f1, f2)dv+
∫
(ln f2) Q22( f2, f2)+(ln f2) Q21( f2, f1)dv≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal velocity
and temperature.

Proof. The fact that
∫

ln fkQkk( fk, fk)dv ≤ 0, k = 1,2 with a criteria for equality
follows from the H-Theorem of the ES-BGK model for one species, see [1]. The fact
that

∫
ln f1Q12( f1, f2)dv+

∫
ln f2Q21( f1, f2)dv≤ 0 with a corresponding criteria for

equality follows from the H-Theorem of the BGK model for mixtures, see Theorem
2.7 in [19].
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2.2 Alternative extensions to an ES-BGK model

In this subsection we also want to replace the scalar temperatures in the mixture
Maxwellians by a tensor. In the first model the terms (v j−uk j) fk(vi−uki) for i 6= j
do not appear in the relaxation operator. To obtain a more detailed description of
the viscous effects in the mixture we take into account these cross terms during the
relaxation process. Then the model can be written as:

∂t fk +∇x · (v fk) = νkknk(Gk− fk)+νk jn j(Gk j− fk), k = 1,2,k 6= j, (16)

with the modified Maxwell distributions

Gk(x,v, t) =
nk√

det(2π
Tk
mk
)

exp(−1
2
(v−uk) · (

Tk

mk
)−1 · (v−uk)) k = 1,2,

Gk j(x,v, t) =
nk√

det(2π
Tk j
mk

)
exp(−1

2
(v−uk j) · (

Tk j

mk
)−1 · (v−uk j)) k = 1,2,k 6= j.

(17)

Again, the conservation of mass, momentum and energy in interactions of one
species with itself is ensured by this choice of the modified Maxwell distributions
G1 and G2 which have the same densities, velocities and pressure tensor as f1 and
f2, respectively. In addition, the choice of the densities in G12 and G21, we also
guarantee conservation of mass in interactions of one species with the other one.

If we extend T12 and T21 in the same fashion to a tensor as in the case of one
species, we obtain

T12 = (1−µ12)(αT1 +(1−α)T2)1+µ12
αP1 +(1−α)P2

n1
+ γ|u1−u2|21, (18)

T21 = (1−µ21)((1− ε(1−α))T2 + ε(1−α)T1)1

+µ21
(1− ε(1−α))P2 + ε(1−α)P1

n2
+((

m1

m2
ε(δ −1)+δ +1)− εγ)|u1−u2|21.

(19)

If we check the equilibrium distributions as in section 1.2.1.1, we obtain the fol-
lowing restrictions on µ12 and µ21 given by

µ12 = 1+(1−µ1)
n1

n2

ν11

ν12
, (20)

and

1
n2

1
[−(α−1)2

µ
2
12n2

2ν
2
12 +

n1

n2
2
((

µ21

ε
−µ21 +αµ21)n1ν12 +(µ2−1)n2ν22)

·(n1((α−1)µ21n1 +
1
ε
(µ21−1)n2)ν12 +(µ2−1)n2

2ν22)] = 0,
(21)

An alternative choice to (18),(19), which is less complicated, is given by
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T12 = α
P1

n1
+(1−α)T21+ γ|u1−u2|21, (22)

T21 = (1− ε(1−α))
P2

n2
+ ε(1−α)T11+(

m1

m2
ε(δ −1)+δ +1)− εγ)|u1−u2|21.

(23)

This choice still contains the temperature of gas 1, since the trace of the pressure
tensor is the temperature.

In (22) compared to (18) we replace only the temperature T1 of species 1 by the
pressure tensor P1 while we keep the temperature T2. This asymmetric choice can
be motivated by the theory of ”persistence of velocity” described by Jeans in [17]
and [18]. He argues that in the post-collisional speed of particle 1 there is a memory
of the pre-collisional speed of particle 1. In the single species BGK equation this
yields to the choice of

T = (1−µ)T 1+µP, −1
2
≤ µ ≤ 1,

the tensor chosen in the well-known ES-BGK model, where µP preserves the mem-
ory of the off-equilibrium content of the pre-collisional velocity. This can be rewrit-
ten as

T = T 1+µtraceless[P],

where traceless[P] denotes the traceless part of P. So the off-equilibrium part is
contained in µtraceless[P]. Doing this analogously for two species we arrive at

T12 = T121+
α

n1
traceless[P1].

If we plug in the definition of T12 given by (8), we end up with (22).
With the second choice the model is well-defined, because T12 and T21 are in-

vertible as a combination of strictly positive matrices as soon as all coefficients in
front of these matrices are positive, which is the case due to (11) and (12). The
first choice needs additional conditions coming from the restrictions on µ12 and µ21
given by (20) and (21). The first one leads to

µ1 ≤
n2

n1

ν12

ν11
+1,

such that µ12 given by (20) is positive. The requirement of positivity of µ21 leads to
a corresponding restriction on µ2 using (21).

2.2.1 Equilibrium and entropy inequality

The aim of this subsection is to discuss the property of equilibrium and the entropy
inequality for the alternative extensions described in subsection 2.2 with the tensors
(18), (19) respective (22), (23). For the tensors (18), (19) we proved the property of
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equilibrium and the H-Theorem in subsection 2.1.1 in the particular case for µ12 =
µ21 = 0 for simplicity, but we can also prove it in the general case. In this section
we will prove an entropy inequality for the alternative model (22),(23). First we
will check that the equilibrium distributions are Maxwellians. In global equilibrium
when f1 and f2 are independent of x and t, the right- hand side of (16) has to be
zero. In this case we get

f1 =
1

1+ 1
β 2

1

n2
n1

(G1 +
1

β 2
1

n2

n1
G12).

If we compute the temperatures of this expression, we get

T1 =
1

1+ 1
β 2

1

n2
n1

(T1 +
1

β 2
1

n2

n1
(αT1 +(1−α)T2)),

which is equivalent to T1 = T2 for α 6= 1. So denote T := T1 = T2. If we compute
pressure tensors, we get

(1+
1

β 2
1

n2

n1
)P1 = T1 +

1
β 2

1

n2

n1
T12

= (1−ν1)T +ν1P1 +
1

β 2
1

n2

n1
αP1 +

1
β 2

1

n2

n1
(1−α)T 1

which is equivalent to

((1−ν1)+
1

β 2
1

n2

n1
(1−α))P1 = ((1−ν1)+

1
β 2

1

n2

n1
(1−α))T 1,

which is P1 = T 1 for ν1,α 6= 1. That means that the pressure tensors of f1 and f2
are diagonal and they are Maxwellian distributions with equal mean velocity and
temperature.

Next, we want to prove the H-Theorem of the simpler model (22) and (23). For
this proof, we need the following lemmas.

Lemma 1 (Brunn-Minkowski inequality). Let 0 ≤ a ≤ 1 and A,B positive sym-
metric matrices, then

det(aA+(1−a)B)≥ (detA)a(detB)1−a.

Proof. The proof is given in [1].

Lemma 2. Assuming (22) and (23) and the positivity of all temperatures and pres-
sure tensors (11), we have the following inequality

S := (detT12)
ε(detT21)≥ (det

P1

n1
)ε det

P2

n2
.
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Proof. Using the definition of T12 we get

detT12 = det(α
P1

n1
+(1−α)T21+ γ|u1−u2|21).

Since γ is non-negative, we can estimate the expression by dropping the positive
term on the diagonal γ|u1−u2|21

detT12 ≥ det(α
P1

n1
+(1−α)T21).

With the Brunn-Minkowski-inequality we obtain

detT12 ≥ (det
P1

n1
)α(detT21)1−α .

In a similar way, we can show it for T21, so all in all we get

S≥ (det
P1

n1
)αε(detT21)ε(1−α)(det

P2

n2
)1−ε(1−α)(detT11)ε(1−α).

Consider the logarithm of this equation

lnS≥ εα ln
(

det
(
P1

n1

))
+ ε(1−α) ln(det(T21))

+(1− ε(1−α)) ln
(

det
(
P2

n2

))
+ ε(1−α) ln(det(T11)) .

We use that ln(det(Ti1)) = Tr(ln(Ti1)), Ti = Tr Pi
3ni

and denote the eigenvalues of Pi
ni

by λi,1,λi,2 and λi,3. Since the pressure tensors are symmetric, we can diagonalize
them and use that Ti = Tr P

3ni
= λi,1 +λi,2 +λi,3.

lnS≥ εα(lnλ1,1 + lnλ1,2 + lnλ1,3)+ ε(1−α)3ln
1
3
(λ1,1 +λ1,2 +λ1,3)

+(1− ε(1−α))(lnλ2,1 + lnλ2,2 + lnλ2,3)+ ε(1−α)3ln
1
3
(λ2,1 +λ2,2 +λ2,3).

Since ln is concave, we can estimate ln 1
3 (λ1,1 +λ1,2 +λ1,3) from below by

1
3 (lnλ1,1 + lnλ1,2 + lnλ1,3) and obtain

lnS≥ ε ln
(

det
(
P1

n1

))
+ ε(1−α) ln

(
det
(
P2

n2

))
.

This is equivalent to the required inequality.

Remark 1. From the case of one species ES-BGK model we know that



Kinetic ES-BGK models for a multi-component gas mixture 11∫
Gk lnGkdv≤

∫
Gk,µk=1 lnGk,µk=1dv≤

∫
fk ln fkdv,

for k = 1,2, see [1], where Gk,µk=1 denotes the modified Maxwellian where µk = 1
in the tensor (15).

Theorem 3 (H-theorem for mixture). Assume f1, f2 > 0. Assume the relationship
between the collision frequencies (5), the conditions for the interspecies Maxwellians
(7), (9), (22) and (23) and the positivity of the temperatures (11), then∫

(ln f1) Q11( f1, f1)+(ln f1) Q12( f1, f2)dv+
∫
(ln f2) Q22( f2, f2)+(ln f2) Q21( f2, f1)dv≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean
velocity and temperature.

Proof. The fact that
∫

ln fkQkk( fk, fk)dv ≤ 0, k = 1,2 is shown in proofs of the H-
theorem of the single ES-BGK-model, for example in [1]. In both cases we have
equality if and only if f1 = M1 and f2 = M2.
Let us define

S( f1, f2) := ν12n2

∫
ln f1(G12− f1)dv+ν21n1

∫
ln f2(G21− f2)dv.

The task is to prove that S( f1, f2)≤ 0. Since the function H(x) = x lnx−x is strictly
convex for x > 0, we have H ′( f )(g− f )≤H(g)−H( f ) with equality if and only if
g = f . So

(g− f ) ln f ≤ g lng− f ln f + f −g. (24)

Consider now S( f1, f2) and apply the inequality (24) to each of the two terms in S.

S( f1, f2)≤ ν12n2

[∫
G12 lnG12dv−

∫
f1 ln f1dv−

∫
G12dv+

∫
f1dv

]

+ν21n1

[∫
G21 lnG21dv−

∫
f2 ln f2dv−

∫
G21dv+

∫
f2dv

]
,

with equality if and only if f1 = G12 and f2 = G21. If we compute the velocities of
f1 = G12 and f2 = G21, we can deduce u1 = u12 and u2 = u21 which lead to u1 = u2
using the definitions of u12,u21 given by (7) and (9). Analogously, computing the
temperatures, we get T12 = T21 = T1 = T2 =: T . Finally, computing the pressure
tensors, we obtain P1

n1
= P2

n2
= T 1, which means that we have equality if and only if

f1 and f2 are Maxwellians with equal temperatures and velocities.
Since G12 and f1 have the same density and G21 and f2 have the same density too,
the right-hand side reduces to

ν12n2(
∫

G12 lnG12dv−
∫

f1 ln f1dv)+ν21n1(
∫

G21 lnG21dv−
∫

f2 ln f2dv).



12 Christian Klingenberg, Marlies Pirner and Gabriella Puppo

Since
∫

G lnGdv = n ln( n√
det( 2πT

m )
)− 3

2 n for G = n√
det( 2πT

m )
3 e−(v−u)·(T

m )−1·(v−u), we

will have that
ν12n2

∫
G12 lnG12dv+ν21n1

∫
G21 lnG21dv

≤ ν21n1

∫
G2,µ2=1 lnM2,µ2=1dv+ν12n2

∫
G1,µ1=1 lnG1,µ1=1dv,

provided that

ν12n2n1 ln
n1√

det(2π
T12
m1

)
+ν21n2n1 ln

n2√
det(2π

T21)
m2

≤ ν12n2n1 ln
n1√

det(2π
P1
m1

)
+ν21n2n1 ln

n2√
det(2π

P2
m2

)
,

which is equivalent to the condition

(detT12)
ε(detT21)≥ (det

P1

n1
)ε det

P2

n2
,

proven in Lemma 2.
With this inequality we get

S( f1, f2)≤ν12n2[
∫

G1,µ1=1 lnG1,µ1=1dv−
∫

f1 ln f1dv]

+ν21n1[G2,µ2=1 lnG2,µ2=1dv−
∫

f2 ln f2dv]≤ 0.

The last inequality follows from remark 1. Here we also have equality if and only
if f1 = M1 and f2 = M2, but since we already noticed that equality also implies
f1 = G12 and f2 = G21.

Define the total entropy H( f1, f2) =
∫
( f1 ln f1 + f2 ln f2)dv. We can compute

∂tH( f1, f2)+∇x ·
∫
( f1 ln f1 + f2 ln f2)vdv = S( f1, f2),

by multiplying the BGK equation for the species 1 by ln f1, the BGK equation for
the species 2 by ln f2 and integrating the sum with respect to v.

Corollary 1 (Entropy inequality for mixtures). Assume f1, f2 > 0. Assume a fast
enough decay of f to zero for v→ ∞. Assume relationship (5), the conditions (7),
(9), (22) and (23) and the positivity of the temperatures (11) , then we have the
following entropy inequality

∂t

(∫
f1 ln f1dv+

∫
f2 ln f2dv

)
+∇x ·

(∫
v f1 ln f1dv+

∫
v f2 ln f2dv

)
≤ 0,
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with equality if and only if f1 and f2 are Maxwell distributions with equal bulk
velocity and temperature.

In summary the ES-BGK models (13), (16) have five free parameters. We expect
this will aid in determining macroscopic physical constants, analogously to how it
is done in [13].

References

1. P.Andries, B.Perthame, The ES-BGK model equation with correct Prandtl number, AIP con-
ference proceedings, 30 (2001)

2. P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, Journal
of Statistical Physics, 106 (2002), 993-1018

3. P.Andries, P: Le Tallec, J. Perlat, B:Perthame, The Gaussian -BGK model of Boltzmann equa-
tion with small Prandtl number, Eur. J. Mech. B - Fluids 19 (2000) 813-830

4. P. Asinari, Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for
mixture modeling , Computers and Mathematics with Applications, 55 (2008), 1392-1407

5. M. Bennoune, M. Lemou and L. Mieussens, Uniformly stable numerical schemes for the
Boltzmann equation preserving the compressible Navier-Stokes asymptotics, Journal of Com-
putational Physics, 227 (2008), 3781-3803

6. F. Bernard, A. Iollo and G. Puppo, Accurate asymptotic preserving boundary conditions for
kinetic equations on Cartesian grids, Journal of Scientific Computing, 65 (2015), 735-766

7. S. Brull, An ellipsoidal statistical model for gas mixtures, Communications in Mathematical
Sciences, 8 (2015), 1-13

8. C. Cercignani, Rarefied Gas Dynamics, From Basic Concepts to Actual Calculations, Cam-
bridge University Press (2000)

9. C. Cercignani, The Boltzmann Equation and its Applications, Springer, 1975
10. A. Crestetto, N. Crouseilles and M. Lemou, Kinetic/fluid micro-macro numerical schemes

for Vlasov-Poisson-BGK equation using particles, Kinetic and Related Models, 5 (2012),
787-816

11. G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numerica, 23
(2014), 369-520

12. F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and re-
lated problems with stiff sources, Journal of Computational Physics, 20 (2010), 7625-7648

13. M. Groppi, S. Monica and G. Spiga, A kinetic ellipsoidal BGK model for a binary gas mix-
ture, epljournal, 96 (2011), 64002

14. E. P. Gross and M. Krook, Model for collision processes in gases: small-amplitude oscillations
of charged two-component systems, Physical Review, 3 (1956), 593

15. B. Hamel, Kinetic model for binary gas mixtures, Physics of Fluids, 8 (1965), 418-425
16. L.Holway, New Statistical Models for Kinetic Theory: Methods of Construction, The Physics

of Fluids, Volume 9 (1966)
17. J.H. Jeans, The persistence of molecular velocities in the kinetic theory of gases, Philosophi-

cal Magazine 6, 8:48 (1904), 700-703
18. J.H. Jeans, The Dynamical Theory of Gases, Cambridge University Press (1916)
19. C. Klingenberg, M.Pirner, G.Puppo, A consistent kinetic model for a two-component mixture

with an application to plasma, Kinetic and related Models, 10 (2017)
20. S. Pieraccini and G. Puppo, Implicit-explicit schemes for BGK kinetic equations, Journal of

Scientific Computing, 32 (2007), 1-28
21. Seok-Bae Yun, Classical solutions for the ellipsoidal BGK model with fixed collision fre-

quency, Journal of Differential Equations, 259 (2015)


