Christian Klingenberg,

Dept. of Mathematics, University of Würzburg cooperation partner in France: Wasilij Barsukow,

CNRS, University of Bordeaux

A Structure-Preserving **Compact High-Order Method for Multi-Dimensional Hyperbolic Conservation Laws**

Key Science Drivers

- simulation of turbulent flow faithful and efficient
- genuinely multi-dim. numerical method no directional bias

Generalized Active Flux — an Innovative Method

- multi-dimensional by conception
- adapts its stabilizing num. viscosity to multi-dim. structures
- reflects directions of information propagation
- avoids need for grid refinement
- large potential for saving computational cost

Advantages of This Approach

- works well in both the super- and subsonic regime
- structure preserving for linearized Euler: low Mach, vorticity preserving, stationarity preserving
- ideally suitable for turbulence even on coarse grids
- compact stencil highly parallelizable

Current Status of This Approach

- in 2-d the method is 3rd order
- in 1-d the method is arbitrary order
- no proofs for properties of the method for 2-d non-lin. Euler

Previous Work

semi-discretization of $q_t + \nabla \cdot f(q) = 0$ in one space dimension

R. Abgrall, W. Barsukow: "Extensions of active flux to arbitrary order of accuracy" ESAIM: M2AN (2023

degrees of freedom: point values $\{q_{i+1}\}_{i\in\mathbb{Z}}$ and moments $\{q_i^{(k)}\}_{i\in\mathbb{Z}_0}$ k=0,...

example: point values + up to 2^{nd} moments = 5^{th} order in space update of moments:

$$\begin{array}{c} 1^{st} \ \text{moment} \ \ \, \overset{\Lambda}{ } \\ 2^{nd} \ \text{moment} \ \ \, \overset{\Lambda}{ } \\ \text{etc.} \end{array} \quad 0 = \frac{d}{dt} q_i^{(k)} - \frac{1}{\Delta x^{k+1}} \int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}} k x^{k-1} f(q) dx + \frac{f(q_{i+\frac{1}{2}}) - (-1)^k f(q_{i-\frac{1}{2}})}{2^k \Delta x} \text{ update of higher momentum problem}$$

$$\text{update of point values:} \quad \frac{d}{dt} q_{i+\frac{1}{2}} = -f'(q_{i+\frac{1}{2}})^+ (D^+ q)_{i+\frac{1}{2}} - f'(q_{i+\frac{1}{2}})^- (D^- q)_{i+\frac{1}{2}}$$

 $\text{use upwind discretization involving both point values and moments, e.g.} \\ (D^+q)_{i+\frac{1}{2}} = \left(15\bar{q}_i - 15q_i^{(1)} - 35q_i^{(2)} + 4q_{i-\frac{1}{2}} + 16q_{i+\frac{1}{2}}\right) / \Delta x + 16q_{i+\frac{1}{2}} + 16q_{i+\frac$

stabilization of this scheme is via upwinding of the point updates

We Shall Extend This to 2 and 3 Space Dimensions

• semi-discrete — free to choose time integrator

- arbitrary order on compact stencil (high order moments)

Novelty of this Project

applicable for systems of cons. laws (not just Euler)

The Work Packages

- · show structure preservation for linear and non-linear Euler
- comparison with other high order compact methods
- show entropy inequality, positivity preservation
- generalize to unstructured grids
- generalize to other systems of conservation laws

The Project's Research in the Context of SPP 2410

This numerical approach is ideally suited to simulate turbulent flow

We plan to cooperate within SPP 2410 with

- Project-Helzel/Lukacova (no. 15), the low Mach property
- Project-Abgrall/Gassner (no. 11), the extension to unstructured grids
- Project-Krause/Mishra (no. 21), providing high order reference solutions in the low Mach limit
- Project-Fantuzzi (no. 7), a priori estimate to validate 2D flow simulations

