Symmetric Hyperbolic Thermodynamically Compatible (SHTC) equations: structure, constraints, asymptotic limits

E. Romenski

Sobolev Institute of Mathematics

Class of

Symmetric Hyperbolic Thermodynamically Compatible (SHTC) systems

- Each system is hyperbolic and can be transformed to a symmetric hyperbolic system in the sense of Friedrichs
- Solution satisfies thermodynamic laws (conservation of energy and entropy growth)

Many well-posed systems of mathematical physics and continuum mechanics can be written in the form of thermodynamically compatible system.

Examples: gas dynamics, magneto-hydrodynamics, nonlinear and linear elasticity, hyperbolic heat conduction, electrodynamics of moving media, etc.

Symmetric hyperbolic systems (Friedrichs 1954)

$U=\left(U_{1}, U_{2}, \ldots, U_{N}\right)^{T} \quad$ - unknown variables depending on time and spatial coordinates $\left(t, x_{i}\right)$

$$
\begin{gathered}
A\left(t, x_{i}\right) \frac{\partial U}{\partial t}+B_{k}\left(t, x_{i}\right) \frac{\partial U}{\partial x_{k}}=S\left(t, x_{i}\right) U \quad \text { - Linear symmetric system } \\
A=A^{T}, B_{k}=B_{k}^{T}
\end{gathered}
$$

The system is hyperbolic if $A>0$
It means that the roots λ of the equation $\operatorname{det}\left(\lambda A+\xi_{k} B_{k}\right)=0$ are real

The Cauchy problem for such a system well-posed, i.e. the solution exists and unique

Quasilinear symmetric hyperbolic systems

Governing PDEs of many models of continuum mechanics can be written as a system of conservation laws:

$$
\frac{\partial F^{0}(U)}{\partial t}+\frac{\partial F^{k}(U)}{\partial x_{k}}=S(U)
$$

and can also be written in a quasilinear form

$$
F_{U}^{0} \frac{\partial U}{\partial t}+F_{U}^{k} \frac{\partial U}{\partial x_{k}}=S(U)
$$

The question is: how to write the system in a hyperbolic symmetric form?

$$
A(q) \frac{\partial q}{\partial t}+B_{k}(q) \frac{\partial q}{\partial x_{k}}=S(q) \quad \begin{gathered}
\text { - quasilinear symmetric system } \\
A(q)=A^{T}(q)>0, \quad B_{k}(q)=B_{k}^{T}(q)
\end{gathered}
$$

Godunov's form (L-q formulation) of gas dynamics equations

$$
\begin{aligned}
& q_{0}=\left(E+\rho E_{\rho}-S E_{S}-u_{i} u_{i} / 2\right), q_{i}=u_{i}(i=1,2,3), q_{4}=T=E_{S} \\
& \frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{k}}{\partial x_{k}}=0 \\
& \frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial L_{q_{0}}^{k}}{\partial x_{k}}=0 \\
& \frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}+p \delta_{i k}\right)}{\partial x_{k}}=0 \\
& \frac{\partial \rho S}{\partial t}+\frac{\partial \rho S u_{k}}{\partial x_{k}}=0 \\
& \frac{\partial L_{q_{i}}}{\partial t}+\frac{\partial L_{q_{i}}^{k}}{\partial x_{k}}=0 \\
& \frac{\partial L_{q_{i}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{q_{i}}}{\partial x_{k}}=0 \\
& \frac{\partial L_{q_{4}}}{\partial t}+\frac{\partial L_{q_{4}}^{k}}{\partial x_{k}}=0 \\
& \rho=L_{q_{0}}, \quad \rho u_{i}=L_{q_{i}}, \quad \rho S=L_{q_{4}} \\
& \frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{q_{0}}}{\partial x_{k}}=0 \\
& \frac{\partial L_{q_{4}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{q_{4}}}{\partial x_{k}}=0 \\
& \text { Original Godunov's form. } \\
& \text { Four potentials } L, L^{1}, L^{2}, L^{3} \\
& \text { Energy conservation law } \\
& \frac{\partial \rho\left(E+u_{i} u_{i} / 2\right)}{\partial t}+\frac{\partial\left(\rho u_{k}\left(E+u_{i} u_{i} / 2\right)+p u_{k}\right)}{\partial x_{k}}=0 \\
& \text { takes the form } \frac{\partial\left(q_{0} L_{q_{0}}+q_{i} L_{q_{i}}+q_{4} L_{q_{4}}-L\right)}{\partial t}+\frac{\partial\left(q_{0}\left(u_{k} L\right)_{q_{0}}+q_{i}\left(u_{k} L\right)_{q_{i}}+q_{4}\left(u_{k} L\right)_{q_{4}}-\left(u_{k} L\right)\right)}{\partial x_{k}}=0 \\
& L \text { - generating potential } \\
& q_{\alpha} \text { - generating variables }
\end{aligned}
$$

Symmetric L-q form of gas dynamics equations

$$
\begin{array}{ll}
\frac{\partial L_{q_{0}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{q_{0}}}{\partial x_{k}}=0 \\
\frac{\partial L_{q_{k}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{q_{t}}}{\partial x_{k}}=0 & \frac{\partial L_{q_{m}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{q_{m}}}{\partial x_{k}}=0, \quad m=0,1,2,3,4 \\
\frac{\partial L_{q_{4}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{q_{4}}}{\partial x_{k}}=0 &
\end{array}
$$

Quasilinear form

$$
L_{q_{m} q_{n}} \frac{\partial q_{n}}{\partial t}+\left(u_{k} L\right)_{q_{m} q_{n}} \frac{\partial q_{n}}{\partial x_{k}}=0
$$

$A(U) \frac{\partial U}{\partial t}+B_{k}(U) \frac{\partial U}{\partial x_{k}}=0, \quad U=\left(q_{1}, \ldots, q_{4}\right)^{T}, \quad A=A^{T}=\left(L_{q_{m} q_{n}}\right), \quad B_{k}=B^{T}=\left(\left(u_{k} L\right)_{q_{m} q_{n}}\right)$
The system is symmetric and hyperbolic if $A>0$

In terms of internal energy (Equation of state) $E(V, S), \mathrm{V}=1 / \rho$ must be a convex function:

$$
\left(\begin{array}{ll}
E_{V V} & E_{V S} \\
E_{S V} & E_{S S}
\end{array}\right)>0
$$

General L-q formulation of Symmetric Hyperbolic Thermodynamically Compatible systems

It was first derived as a result of analysis of various models of continuum mechanics
(nonlinear elasticity, electrodynamics of a moving medium, superfluid helium, and so on)

$$
\begin{aligned}
& \frac{\partial L_{r_{i}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{r_{i}}\right]}{\partial x_{k}}=0 \\
& \frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{v_{i}}+\alpha_{m k} L_{\alpha_{m i}}-d_{i} L_{d_{k}}-b_{i} L_{b_{k}}+\eta_{k} L_{\eta_{i}}-\delta_{i k} \eta_{m} L_{\eta_{m}}\right]}{\partial x_{k}}=0 \\
& \frac{\partial L_{\alpha_{i_{k}}}}{\partial t}+\frac{\partial\left[\left(u_{m} L\right)_{\alpha_{i n}}\right]}{\partial x_{k}}+u_{j}\left(\frac{\partial L_{\alpha_{i_{k}}}}{\partial x_{j}}-\frac{\partial L_{\alpha_{i_{j}}}}{\partial x_{k}}\right)=0 \\
& \frac{\partial L_{d_{i}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{d_{i}}-v_{i} L_{d_{k}}-\varepsilon_{i k l} b_{l}\right]}{\partial x_{k}}+u_{i} \frac{\partial L_{d_{k}}}{\partial x_{k}}=0 \\
& \frac{\partial L_{b_{i}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{b_{i}}-u_{i} L_{b_{k}}-\varepsilon_{i k l} d_{l}\right]}{\partial x_{k}}+u_{i} \frac{\partial L_{b_{k}}}{\partial x_{k}}=0 \\
& \frac{\partial L_{\eta_{k}}}{\partial t}+\frac{\partial\left[u_{m} L_{\eta_{m}}+n\right]}{\partial x_{k}}+u_{l}\left(\frac{\partial L_{\eta_{k}}}{\partial x_{l}}-\frac{\partial L_{\eta_{l}}}{\partial x_{k}}\right)=0 \\
& \frac{\partial L_{n}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{n}+\eta_{k}\right]}{\partial x_{k}}=0
\end{aligned}
$$

The system can be written in a symmetric form and is symmetric hyperbolic if
L is a convex function

Integrability conditions

$$
\begin{gathered}
\frac{\partial L_{\alpha_{i j}}}{\partial x_{k}}-\frac{\partial L_{\alpha_{i k}}}{\partial x_{j}}=0 \\
\frac{\partial L_{d_{k}}}{\partial x_{k}}=0, \quad \frac{\partial L_{b_{k}}}{\partial x_{k}}=0 \\
\frac{\partial L_{\eta_{j}}}{\partial x_{k}}-\frac{\partial L_{\eta_{k}}}{\partial x_{j}}=0
\end{gathered}
$$

Energy conservation law holds

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(r_{i} L_{r_{i}}+v_{i} L_{v_{i}}+\alpha_{i k} L_{\alpha_{i_{k}}}+d_{i} L_{d_{i}}+b_{i} L_{b_{i}}+\eta_{k} L_{\eta_{k}}+n L_{n}-L\right)+ \\
& \frac{\partial}{\partial x_{k}}\left[v_{k}\left(r_{i} L_{r_{i}}+v_{i} L_{v_{i}}+\alpha_{i k} L_{\alpha_{i_{k}}}+d_{i} L_{d_{i}}+b_{i} L_{b_{i}}+\eta_{k} L_{\eta_{k}}+n L_{n}\right)\right]+ \\
& \frac{\partial}{\partial x_{k}}\left[v_{m}\left(\alpha_{m k} L_{\alpha_{m i}}-d_{i} L_{d_{k}}-b_{i} L_{b_{k}}+\eta_{k} L_{\eta_{i}}-\delta_{i k} \eta_{m} L_{\eta_{m}}\right)\right]
\end{aligned}
$$

Elasticity equations

Moving medium

Velocity $\quad u_{i}=\frac{d x_{i}}{d t}$
Deformation (stretch and rotation) is characterized by the Deformation Gradient

$$
F_{i j}=\frac{\partial x_{i}}{\partial \xi_{j}}
$$

We also use the inverse matrix (Distortion)

$$
A_{i j}=\frac{\partial \xi_{i}}{\partial x_{j}} \quad\left(A_{i j} F_{j k}=\delta_{i k}\right)
$$

Compatibility conditions:

$$
\text { Kinematics: } \quad \frac{\partial F_{i j}}{\partial t}-\frac{\partial u_{i}}{\partial \xi_{j}}=0 \quad \text { Steady constraints: } \quad \frac{\partial F_{i j}}{\partial \xi_{k}}-\frac{\partial F_{i k}}{\partial \xi_{j}}=0
$$

Elasticity equations derived via variational principle

(H. Goldstein "Classical Mechanics")

$$
\text { Action } \quad \mathcal{L}=\int \Lambda d \xi d t
$$

Lagrangian $\quad \Lambda=\Lambda\left(\frac{\partial x_{i}}{\partial t}, \frac{\partial x_{i}}{\partial \xi_{j}}\right)=\rho_{0} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{i}}{\partial t}-\rho_{0} E\left(\frac{\partial x_{i}}{\partial \xi_{j}}, S\right)$
$\rho_{0}=$ const - initial density E - internal energy S - entropy

Minimization gives us Euler-Lagrange equations

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{\partial x_{i}}{\partial t}\right)-\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial E}{\partial\left(\partial x_{i} / \partial \xi_{k}\right)}\right)=0 \tag{1}
\end{equation*}
$$

This equation can be considered as the $2^{\text {nd }}$ order equation for displacement vector $w_{i}=x_{i}-\xi_{i}$ (classical formulation):

$$
\frac{\partial^{2} w_{i}}{\partial t^{2}}-C_{i k j l} \frac{\partial^{2} w_{j}}{\partial \xi_{k} \partial \xi_{l}}=0, \quad C_{i k j l}=\frac{\partial^{2} E}{\partial\left(\partial x_{i} / \partial \xi_{k}\right) \partial\left(\partial x_{j} / \partial \xi_{l}\right)}
$$

Since we interested in the $1^{\text {st }}$ order equations, we write (1) in terms of velocity and deformation gradient:

$$
\frac{\partial u_{i}}{\partial t}-\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial E}{\partial F_{i k}}\right)=0
$$

Elasticity equations in Lagrangian coordinates

$$
\begin{array}{lll}
\frac{\partial u_{i}}{\partial t}-\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial E}{\partial F_{i k}}\right)=0 & \times u_{i} & E=E\left(F_{i k}, S\right) \\
\frac{\partial F_{i k}}{\partial t}-\frac{\partial u_{i}}{\partial \xi_{k}}=0 & \times E_{F_{i k}} & \frac{\partial E}{\partial F_{i k}} \\
\frac{\partial S}{\partial t}=0 & \times E_{S} & \\
& & \frac{\partial}{\partial t}\left(E+\frac{u_{i} u_{i}}{2}\right)+\frac{\partial}{\partial \xi_{k}}\left(-u_{i} \frac{\partial E}{\partial F_{i k}}\right)=0
\end{array}
$$

For an isotropic media energy depends on three independent invariants of any deformation tensor

We usually take the Finger (or metric) tensor and as its three invariants one can take

$$
\begin{aligned}
& G=F^{-T} F^{-1}, G_{i j}=A_{\alpha i} A_{\alpha j}, A=F^{-1} \\
& \operatorname{tr} G, \operatorname{tr}\left(G^{2}\right), \operatorname{tr}\left(G^{3}\right)
\end{aligned}
$$

Symmetric form of elasticity equations

$\frac{\partial u_{i}}{\partial t}-\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial E}{\partial F_{i k}}\right)=0$
$\frac{\partial F_{i k}}{\partial t}-\frac{\partial u_{i}}{\partial \xi_{k}}=0$
$\frac{\partial S}{\partial t}=0$

It is easy to find a vector of generating variables that are factors in deriving the law of conservation of energy

$$
p=\left(p_{i}, p_{i k}, p_{0}\right)^{T}=\left(u_{i}, E_{F_{i k}}, E_{S}\right)^{T}
$$

Then we know that

$$
u_{i}=M_{p_{i}}, F_{i k}=M_{p_{i k}}, S=M_{p_{0}}
$$

One can find the generating potential

$$
M\left(p_{i}, p_{i k}, p_{0}\right)=\frac{1}{2} u_{i} u_{i}+F_{i k} E_{F_{i k}}+S E_{S}-E
$$

The system is clearly symmetric.
It is symmetric hyperbolic if the generating potential M is convex.
$\frac{\partial M_{p_{i k}}}{\partial t}-\frac{\partial p_{i}}{\partial \xi_{k}}=0$
$\frac{\partial M_{p_{0}}}{\partial t}=0$

Elasticity equations in Eulerian coordinates I

Transformation to Eulerian coordinates consists of the transformation of coordinates: spatial derivatives $\quad \frac{\partial}{\partial \xi_{k}} \rightarrow \frac{\partial x_{j}}{\partial \xi_{k}} \frac{\partial}{\partial x_{j}}=F_{j k} \frac{\partial}{\partial x_{j}}$ and time derivative $\quad \frac{\partial}{\partial t} \rightarrow \frac{\partial}{\partial t}+u_{k} \frac{\partial}{\partial x_{k}}$

$$
\begin{array}{ll}
\frac{\partial u_{i}}{\partial t}-\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial E}{\partial F_{i k}}\right)=0 & \frac{\partial u_{i}}{\partial t}+u_{k} \frac{\partial u_{i}}{\partial x_{k}}-F_{j k} \frac{\partial}{\partial x_{j}}\left(\frac{\partial E}{\partial F_{i k}}\right)=0 \\
\frac{\partial F_{i k}}{\partial t}-\frac{\partial u_{i}}{\partial \xi_{k}}=0 & \frac{\partial F_{i j}}{\partial t}+u_{k} \frac{\partial F_{i j}}{\partial x_{k}}-F_{k j} \frac{\partial u_{i}}{\partial x_{k}}=0 \\
\frac{\partial S}{\partial t}=0 & \frac{\partial S}{\partial t}+u_{k} \frac{\partial S}{\partial x_{k}}=0
\end{array}
$$

$$
\text { Useful identity } \quad \frac{\partial}{\partial x_{j}}\left(\frac{F_{j k}}{\operatorname{det} F}\right)=0, \quad k=1,2,3
$$

This is a consequence of $\frac{\partial A_{i j}}{\partial x_{k}}-\frac{\partial A_{i k}}{\partial x_{j}}=0$ where $A_{i j}=\frac{\partial \xi_{i}}{\partial x_{j}}$ is the distortion $\quad\left(A=F^{-1}\right)$

Elasticity equations in terms of distortion A

$$
\begin{aligned}
& \frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}+p \delta_{i k}-\sigma_{i k}\right)}{\partial x_{k}}=0 \\
& \frac{\partial A_{i k}}{\partial t}+\frac{\partial\left(A_{i \alpha} u_{\alpha}\right)}{\partial x_{k}}=0
\end{aligned}
$$

Involution constraint

$$
p=\rho^{2} \frac{\partial E}{\partial \rho}
$$

- pressure

$$
\frac{\partial A_{i j}}{\partial x_{k}}-\frac{\partial A_{i k}}{\partial x_{j}}=0
$$

$\sigma_{i k}=-\rho A_{\alpha i} \frac{\partial E}{\partial A_{\alpha k}}$ - shear stress
$E=E\left(\rho, A_{i j}, S\right) \quad$ - internal energy (equation of state)

Energy conservation

$$
\frac{\partial \rho\left(E+u_{i} u_{i} / 2\right)}{\partial t}+\frac{\partial\left(\rho u_{i}\left(E+u_{i} u_{i} / 2\right)+u_{i}\left(p \delta_{i k}-\sigma_{i k}\right)\right)}{\partial x_{k}}=0
$$

Equation of state

$$
E\left(\rho, S, A_{i j}\right)=E_{1}(\rho, S)+E_{2}\left(\rho, S, A_{i j}\right) \quad E_{1}(\rho, S) \text {-Hydrodynamic EOS }
$$

$$
E_{2}(\rho, A, S)=\frac{c_{s h}^{2}}{8}\left(\operatorname{tr}\left(g^{2}\right)-3\right) \quad-\text { Shear strain energy (Gavrilyuk et al) } \quad c_{s h}(\rho, S) \text { - Shear sound velocity }
$$

$$
g=G /(\operatorname{det} G)^{1 / 3} \quad \text { - Normalized Finger tensor } \quad G=A^{T} A
$$

Shear stress is trace free $\quad \sigma=-\rho \frac{c_{s h}^{2}}{2}\left(g^{2}-\frac{\operatorname{tr}\left(g^{2}\right)}{3} I\right), \quad \operatorname{tr}(\sigma)=0$

Unified model with strain relaxation

$$
\frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}+p \delta_{i k}-\sigma_{i k}\right)}{\partial x_{k}}=0
$$

$\frac{\partial A_{i k}}{\partial t}+\frac{\partial\left(A_{i \alpha} u_{\alpha}\right)}{\partial x_{k}}+u_{j}\left(\frac{\partial A_{i k}}{\partial x_{j}}-\frac{\partial A_{i j}}{\partial x_{k}}\right)=-\frac{\psi_{i k}}{\theta(\tau)}$

$$
p=\rho^{2} \frac{\partial E}{\partial \rho}
$$

$$
\frac{\partial \rho S}{\partial t}+\frac{\partial \rho S u_{k}}{\partial x_{k}}=\frac{\rho}{T \theta(\tau)} \psi_{i k} \psi_{i k} \geq 0
$$

$\frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{k}}{\partial x_{k}}=0$

$$
\Psi_{i k}=\frac{\partial E}{\partial A_{i k}}
$$

Energy conservation $\frac{\partial \rho\left(E+u_{i} u_{i} / 2\right)}{\partial t}+\frac{\partial\left(\rho u_{i}\left(E+u_{i} u_{i} / 2\right)+u_{i}\left(p \delta_{i k}-\sigma_{i k}\right)\right)}{\partial x_{k}}=0$

Equation of state

$$
E\left(\rho, S, A_{i j}\right)=E_{1}(\rho, S)+E_{2}\left(\rho, S, A_{i j}\right) \quad E_{1}(\rho, S) \text {-Hydrodynamic EOS }
$$

$E_{2}(\rho, A, S)=\frac{c_{s h}^{2}}{8}\left(\operatorname{tr}\left(g^{2}\right)-3\right) \quad$ - Shear strain energy (Gavrilyuk et al) $\quad c_{s h}(\rho, S)$ - Shear sound velocity

$$
g=G /(\operatorname{det} G)^{1 / 3} \quad \text { - Normalized Finger tensor } \quad G=A^{T} A
$$

Shear stress is trace free $\quad \sigma=-\rho \frac{c_{s h}^{2}}{2}\left(g^{2}-\frac{\operatorname{tr}\left(g^{2}\right)}{3} I\right), \quad \operatorname{tr}(\sigma)=0$

L-q formulation of elasticity equations (symmetric form) I

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{k}}{\partial x_{k}}=0 \\
& \frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}+p \delta_{i k}-\sigma_{i k}\right)}{\partial x_{k}}=0 \\
& \frac{\partial A_{i k}}{\partial t}+\frac{\partial\left(A_{i \alpha} u_{\alpha}\right)}{\partial x_{k}}+u_{j}\left(\frac{\partial A_{i k}}{\partial x_{j}}-\frac{\partial A_{i j}}{\partial x_{k}}\right)=0 \\
& \frac{\partial \rho S}{\partial t}+\frac{\partial \rho S u_{k}}{\partial x_{k}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial L_{r}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{r}}{\partial x_{k}}=0 \\
& \frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left(\left(u_{k} L\right)_{u_{i}}+\alpha_{m k} L_{\alpha_{m i}}-\delta_{i k} \alpha_{m n} L_{\alpha_{m n}}\right)}{\partial x_{k}}=0 \\
& \frac{\partial L_{\alpha_{i k}}}{\partial t}+\frac{\partial\left(u_{m} L\right)_{\alpha_{i m}}}{\partial x_{k}}+u_{m}\left(\frac{\partial L_{\alpha_{i k}}}{\partial x_{m}}-\frac{\partial L_{\alpha_{i m}}}{\partial x_{k}}\right)=0 \\
& \frac{\partial L_{\theta}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{\theta}}{\partial x_{k}}=0
\end{aligned}
$$

Multipliers - generating variables

$$
r=E-V E_{V}-S E_{S}, u_{i}, \alpha_{i k}=\rho E_{\alpha_{i k}}, E_{S}
$$

Generating potential

$$
L=-E_{V}=p \quad-\text { pressure }
$$

L-q formulation of elasticity equations (symmetric form)

$$
\begin{aligned}
& \frac{\partial L_{r}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{r}}{\partial x_{k}}=0 \\
& \frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left(\left(u_{k} L\right)_{u_{i}}+\alpha_{m k} L_{\alpha_{m i}}-\delta_{i k} \alpha_{m n} L_{\alpha_{m n}}\right)}{\partial x_{k}}=0 \\
& \frac{\partial L_{\alpha_{i k}}}{\partial t}+\frac{\partial\left(u_{m} L\right)_{\alpha_{i m}}}{\partial x_{k}}+u_{m}\left(\frac{\partial L_{\alpha_{i k}}}{\partial x_{m}}-\frac{\partial L_{\alpha_{i m}}}{\partial x_{k}}\right)=0 \\
& \frac{\partial L_{\theta}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{\theta}}{\partial x_{k}}=0
\end{aligned}
$$

multipliers

$$
r=E-V E_{V}-S E_{S}, u_{i}, \alpha_{i k}=\rho E_{\alpha_{i k}}, E_{S}
$$

generating potential

$$
L=-E_{V}=p \quad \text { - pressure }
$$

energy conservation law

$$
\frac{\partial\left(r L_{r}+u_{i} L_{u_{i}}+\alpha_{i j} L_{\alpha_{i j}}+\theta L_{\theta}-L\right)}{\partial t}+\frac{\partial\left(u_{k}\left(r L_{r}+u_{i} L_{u_{i}}+\alpha_{i j} L_{\alpha_{i j}}+\theta L_{\theta}-L\right)+u_{i}\left(L-\alpha_{m n} L_{\alpha_{m n}}\right) \delta_{i k}+\alpha_{n k} L_{\alpha_{n i}}\right)}{\partial x_{k}}=0
$$

$$
\begin{aligned}
& \frac{\partial L_{r}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{r}}{\partial x_{k}}=0 \\
& \frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{u_{i}}}{\partial x_{k}}+L_{\alpha_{i m}} \frac{\partial \alpha_{k m}}{\partial x_{k}}-L_{\alpha_{m k}} \frac{\partial \alpha_{m k}}{\partial x_{i}}=0 \\
& \frac{\partial L_{\alpha_{i l}}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{\alpha_{i i}}}{\partial x_{k}}+L_{\alpha_{m i}} \frac{\partial u_{m}}{\partial x_{i}}-L_{\alpha_{m i}} \frac{\partial u_{k}}{\partial x_{k}}=0 \\
& \frac{\partial L_{\theta}}{\partial t}+\frac{\partial\left(u_{k} L\right)_{\theta}}{\partial x_{k}}=0
\end{aligned}
$$

- symmetric form

Equations of elastic heat conductive medium derived from the variational principle

$$
\text { Action } \mathcal{L}=\int \Lambda d \xi d t \quad \Lambda \text { - Lagrangian }
$$

$$
\Lambda=\Lambda\left(\frac{\partial x_{i}}{\partial t}, \frac{\partial x_{i}}{\partial \xi_{j}}, \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial \xi_{j}}, S\right)=\rho_{0} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{i}}{\partial t}-\rho_{0} E\left(\frac{\partial x_{i}}{\partial \xi_{j}}, \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial \xi_{j}}, S\right)
$$

scalar potential φ
for substance flow through the element of the medium is introduced

Minimization gives us the
Euler-Lagrange equations

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\frac{\partial \Lambda}{\partial\left(\partial x_{i} / \partial t\right)}\right)+\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial \Lambda}{\partial\left(\partial x_{i} / \partial \xi_{k}\right)}\right)=0 \\
& \frac{\partial}{\partial t}\left(\frac{\partial \Lambda}{\partial(\partial \varphi / \partial t)}\right)+\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial \Lambda}{\partial\left(\partial \varphi / \partial \xi_{k}\right)}\right)=0
\end{aligned}
$$

Since we interested in the $1^{\text {st }}$ order equations, we define as a variables

$$
u_{i}=\frac{\partial x_{i}}{\partial t} \quad \text { - velocity, } \quad F_{i j}=\frac{\partial x_{i}}{\partial \xi_{j}} \quad \text {-deformation gradient, } \quad \frac{\partial \varphi}{\partial t}=n \quad \text { - substance density, } \quad \frac{\partial \varphi}{\partial \xi_{j}}=\eta_{j} \quad \text {-substance flux }
$$

Then Euler-Lagrange equations read as

$$
\frac{\partial}{\partial t}\left(\frac{\partial \Lambda}{\partial u_{i}}\right)+\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial \Lambda}{\partial F_{i k}}\right)=0 \quad \frac{\partial}{\partial t}\left(\frac{\partial \Lambda}{\partial n}\right)+\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial \Lambda}{\partial \eta_{k}}\right)=0
$$

Lagrangian equations of elastic heat conductive medium as a first order system

$$
\left.\begin{array}{ll}
\frac{\partial}{\partial t}\left(\frac{\partial \Lambda}{\partial u_{i}}\right)+\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial \Lambda}{\partial F_{i k}}\right)=0 \\
\frac{\partial}{\partial t}\left(\frac{\partial \Lambda}{\partial n}\right)+\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial \Lambda}{\partial \eta_{k}}\right)=0
\end{array}\right\} \text { Euler - Lagrange equations } \quad \frac{\partial F_{i j}}{\partial t}-\frac{\partial u_{i}}{\partial \xi_{j}}=0, ~\left(\frac{\partial \eta_{j}}{\partial t}-\frac{\partial n}{\partial \xi_{j}}=0, ~\right\}
$$

Integrability conditions
$\begin{aligned} & \text { Lagrangian is a difference of } \\ & \text { kinetic energy and potential energy: }\end{aligned} \Lambda=\frac{1}{2} u_{i} u_{i}-U\left(F_{i j}, n, \eta_{k}\right)$
It is convenient to introduce a Generalized Internal Energy $E=U-n U_{n}$
and new variable $\theta=U_{n}$
T.hen $U_{F_{i j}}=E_{F_{i j}}, n=-E_{\theta}$

$$
\left.\left.\begin{array}{ll}
\frac{\partial u_{i}}{\partial t}-\frac{\partial}{\partial \xi_{j}}\left(\frac{\partial E}{\partial F_{i j}}\right)=0 \\
\frac{\partial \theta}{\partial t}+\frac{\partial}{\partial \xi_{m}}\left(\frac{\partial E}{\partial \eta_{m}}\right)=0
\end{array}\right\} \quad \begin{array}{l}
\frac{\partial F_{i j}}{\partial t}-\frac{\partial u_{i}}{\partial \xi_{j}}=0 \\
\end{array} \quad \frac{\partial \eta_{m}}{\partial t}+\frac{\partial}{\partial \xi_{m}}\left(\frac{\partial E}{\partial \theta}\right)=0\right\}
$$

Arbitrary number of equations $\frac{\partial q_{i}}{\partial t}=0 \quad$ can be added to the system

The system in terms of generalized internal energy

$$
\begin{aligned}
& \frac{\partial u_{i}}{\partial t}-\frac{\partial}{\partial \xi_{j}}\left(\frac{\partial E}{\partial F_{i j}}\right)=0 \\
& \frac{\partial F_{i j}}{\partial t}-\frac{\partial u_{i}}{\partial \xi_{j}}=0 \\
& \frac{\partial \theta}{\partial t}+\frac{\partial}{\partial \xi_{m}}\left(\frac{\partial E}{\partial \eta_{m}}\right)=0 \\
& \frac{\partial \eta_{m}}{\partial t}+\frac{\partial}{\partial \xi_{m}}\left(\frac{\partial E}{\partial \theta}\right)=0 \\
& \frac{\partial q_{i}}{\partial t}=0
\end{aligned}
$$

$$
\begin{aligned}
& \times u_{i} \\
& \times \frac{\partial E}{\partial F_{i j}} \\
& \times \frac{\partial E}{\partial \theta} \\
& \times \frac{\partial E}{\partial \eta_{m}} \\
& \times \frac{\partial E}{\partial q_{i}}
\end{aligned}
$$

integrability conditions involution constraints

$$
\begin{aligned}
& \frac{\partial F_{i j}}{\partial \xi_{k}}-\frac{\partial F_{i k}}{\partial \xi_{j}}=0 \\
& \frac{\partial \eta_{m}}{\partial \xi_{k}}-\frac{\partial \eta_{k}}{\partial \xi_{m}}=0
\end{aligned}
$$

Additional energy conservation law holds

$$
\frac{\partial}{\partial t}\left(E+\frac{u_{i} u_{i}}{2}\right)+\frac{\partial}{\partial \xi_{j}}\left(-u_{i} \frac{\partial E}{\partial F_{i j}}+\frac{\partial E}{\partial \theta} \frac{\partial E}{\partial \eta_{m}}\right)=0
$$

The above system is appropriate for physical consideration, but for the proof of symmetric hyperbolicity the $\mathrm{L}-\mathrm{q}$ formulation is preferable.

The system in terms of generating potential L

$$
\begin{aligned}
& \frac{\partial L_{u_{i}}}{\partial t}-\frac{\partial p_{i j}}{\partial \xi_{j}}=0 \\
& \frac{\partial L_{p_{i j}}}{\partial t}-\frac{\partial u_{i}}{\partial \xi_{j}}=0 \\
& \frac{\partial L_{n}}{\partial t}+\frac{\partial j_{m}}{\partial \xi_{m}}=0 \\
& \frac{\partial L_{j_{m}}}{\partial t}+\frac{\partial n}{\partial \xi_{m}}=0 \\
& \frac{\partial L_{s_{i}}}{\partial t}=0
\end{aligned}
$$

$$
\begin{aligned}
& \times \boldsymbol{u}_{\boldsymbol{i}} \\
& \times p_{i j}=\frac{\partial E}{\partial F_{i j}} \\
& \times n=\frac{\partial E}{\partial \theta}
\end{aligned}
$$

The system is obviously symmetric

Additional energy conservation law is fulfilled

$$
\frac{\partial}{\partial t}\left(L-u_{i} L_{u_{i}}-p_{i j} L_{p_{i j}}-n L_{n}-j_{m} L_{j_{m}}-s_{i} L_{s_{i}}\right)+\frac{\partial}{\partial \xi_{k}}\left(-u_{i} p_{i k}+n j_{k}\right)=0
$$

Integrabilty conditions (involution constraints):

$$
\frac{\partial L_{p_{i j}}}{\partial \xi_{k}}-\frac{\partial L_{p_{i k}}}{\partial \xi_{j}}=0 \quad \frac{\partial L_{j_{m}}}{\partial \xi_{k}}-\frac{\partial L_{j_{k}}}{\partial \xi_{m}}=0
$$

One can prove that if these equalities hold at $t=0$, then they hold for $\mathrm{t}>0$

Elastic heat conductive medium equations in Eulerian coordinates I

Transformation to Eulerian coordinates consists of the transformation of coordinates:
spatial derivatives $\quad \frac{\partial}{\partial \xi_{k}} \rightarrow \frac{\partial x_{j}}{\partial \xi_{k}} \frac{\partial}{\partial x_{j}}=F_{j k} \frac{\partial}{\partial x_{j}} \quad$ and time derivative $\quad \frac{\partial}{\partial t} \rightarrow \frac{\partial}{\partial t}+u_{k} \frac{\partial}{\partial x_{k}}$

$$
\begin{array}{rlll}
\frac{\partial u_{i}}{\partial t}-\frac{\partial}{\partial \xi_{k}}\left(\frac{\partial E}{\partial F_{i k}}\right)=0 & \longrightarrow & \frac{\partial u_{i}}{\partial t}+u_{k} \frac{\partial u_{i}}{\partial x_{k}}-F_{j k} \frac{\partial}{\partial x_{j}}\left(\frac{\partial E}{\partial F_{i k}}\right)=0 & \longrightarrow \\
\frac{\partial F_{i k}}{\partial t}-\frac{\partial u_{i}}{\partial \xi_{k}}=0 & \longrightarrow \frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}-\rho F_{j l} E_{F_{i k}}\right)}{\partial x_{k}}=0 \\
\frac{\partial S}{\partial t}=0 & \longrightarrow & \\
\frac{\partial F_{i j}}{\partial t}+u_{k} \frac{\partial F_{i j}}{\partial x_{k}}-F_{k j} \frac{\partial u_{i}}{\partial x_{k}}=0 \\
\frac{\partial S}{\partial t}+u_{k} \frac{\partial S}{\partial x_{k}}=0 \\
\frac{\partial \theta}{\partial t}+\frac{\partial}{\partial \xi_{m}}\left(\frac{\partial E}{\partial \eta_{m}}\right)=0 & \longrightarrow & \\
\frac{\partial \theta}{\partial t}+u_{k} \frac{\partial \theta}{\partial x_{k}}+F_{j m} \frac{\partial}{\partial x_{j}}\left(\frac{\partial E}{\partial \eta_{m}}\right)=0 \\
\partial t \\
+\frac{\partial}{\partial \xi_{m}}\left(\frac{\partial E}{\partial \theta}\right)=0 & \longrightarrow \frac{\partial \rho S}{\partial t}+\frac{\partial \rho u_{k} S}{\partial x_{k}}=0 \\
& \longrightarrow \eta_{m}+u_{k} \frac{\partial \eta_{m}}{\partial x_{k}}+F_{j m} \frac{\partial}{\partial x_{j}}\left(\frac{\partial E}{\partial \theta}\right)=0
\end{array}
$$

We know that the first three equations can be written in a conservative form with the use of identity $\frac{\partial}{\partial x_{j}}\left(\frac{F_{j k}}{\operatorname{det} F}\right)=0$ and continuity equation $\quad \frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{k}}{\partial x_{k}}=0, \quad \rho=\frac{\rho_{0}}{\operatorname{det} F}$

Elastic heat conductive medium equations in Eulerian coordinates II

$$
\begin{array}{ll}
\frac{\partial \theta}{\partial t}+u_{k} \frac{\partial \theta}{\partial x_{k}}+F_{j m} \frac{\partial}{\partial x_{j}}\left(\frac{\partial E}{\partial \eta_{m}}\right)=0 \quad & \frac{\rho_{0}}{\operatorname{det} F}\left(\frac{\partial \theta}{\partial t}+u_{k} \frac{\partial \theta}{\partial x_{k}}\right)+\frac{\rho_{0} F_{j m}}{\operatorname{det} F} \frac{\partial}{\partial x_{j}}\left(\frac{\partial E}{\partial \eta_{m}}\right)=0 \\
\left(\frac{\partial \rho \theta}{\partial t}+\frac{\partial \rho u_{k} \theta}{\partial x_{k}}\right)+\frac{\partial}{\partial x_{j}}\left(\rho F_{j m} \frac{\partial E}{\partial \eta_{m}}\right)=0 &
\end{array}
$$

$$
\frac{\partial \eta_{m}}{\partial t}+u_{k} \frac{\partial \eta_{m}}{\partial x_{k}}+F_{j m} \frac{\partial}{\partial x_{j}}\left(\frac{\partial E}{\partial \theta}\right)=0
$$

Let us introduce new variable $w_{k}=\eta_{m} A_{m k} \quad$ and use equation for $\quad A_{i k}: \quad \frac{\partial A_{i k}}{\partial t}+u_{\alpha} \frac{\partial A_{i k}}{\partial x_{\alpha}}+A_{i \alpha} \frac{\partial u_{\alpha}}{\partial x_{k}}=0$

$$
\begin{gathered}
A_{m k}\left(\frac{\partial \eta_{m}}{\partial t}+u_{k} \frac{\partial \eta_{m}}{\partial x_{k}}\right)+A_{m k} F_{j m} \frac{\partial}{\partial x_{j}}\left(\frac{\partial E}{\partial \theta}\right)=0 \\
\frac{\partial w_{k}}{\partial t}+u_{l} \frac{\partial w_{k}}{\partial x_{l}}-\eta_{m}\left(\frac{\partial A_{i k}}{\partial t}+u_{l} \frac{\partial A_{i k}}{\partial x_{l}}\right)+\frac{\partial}{\partial x_{k}}\left(\frac{\partial E}{\partial \theta}\right)=0 \\
\frac{\partial w_{k}}{\partial t}+u_{l} \frac{\partial w_{k}}{\partial x_{l}}+w_{l} \frac{\partial u_{l}}{\partial x_{k}}+\frac{\partial}{\partial x_{k}}\left(\frac{\partial E}{\partial \theta}\right)=0 \\
\frac{\partial w_{k}}{\partial t}+\frac{\partial w_{l} u_{l}}{\partial x_{k}}+\frac{\partial}{\partial x_{k}}\left(\frac{\partial E}{\partial \theta}\right)+u_{l}\left(\frac{\partial w_{k}}{\partial x_{l}}-\frac{\partial w_{l}}{\partial x_{k}}\right)=0 \quad \text { One can prove that }
\end{gathered}
$$

$$
\left(\frac{\partial \rho \theta}{\partial t}+\frac{\partial \rho u_{k} \theta}{\partial x_{k}}\right)+\frac{\partial}{\partial x_{j}}\left(\rho F_{j m} \frac{\partial E}{\partial \eta_{m}}\right)=0 \quad \longrightarrow \quad \frac{\partial \rho \theta}{\partial t}+\frac{\partial \rho u_{k} \theta}{\partial x_{k}}+\frac{\partial}{\partial x_{k}}\left(\rho \frac{\partial E}{\partial w_{k}}\right)=0
$$

Elastic heat conductive medium equations in Eulerian coordinates III

Consider equations in terms of distortion A

Note, that since we do the change of state variables $\quad w_{k}=\eta_{m} A_{m k}, E\left(\rho, A_{i j}, S, \theta, \eta_{m}\right) \rightarrow E\left(\rho, A_{i j}, S, \theta, w_{k}\right)$ the derivative of energy with respect to distortion changes:

$$
\frac{\partial E}{\partial A_{\alpha k}} \rightarrow \frac{\partial E}{\partial A_{\alpha k}}+\frac{\partial E}{\partial w_{k}} \eta_{\alpha}
$$

Momentum equation reads as

$$
\frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}+p \delta_{i k}+\rho A_{\alpha i} E_{A_{\alpha k}}+\rho w_{i} E_{w_{k}}\right)}{\partial x_{k}}=0
$$

Elastic heat conductive medium equations in Eulerian coordinates IV

Final formulation applicable for design of heat conduction in the elastic medium

$$
\begin{aligned}
& \frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}+p \delta_{i k}+\rho A_{\alpha i} E_{A_{\alpha k}}+\rho w_{i} E_{w_{k}}\right)}{\partial x_{k}}=0 \\
& \frac{\partial A_{i k}}{\partial t}+\frac{\partial\left(A_{i \alpha} u_{\alpha}\right)}{\partial x_{k}}+u_{j}\left(\frac{\partial A_{i k}}{\partial x_{j}}-\frac{\partial A_{i j}}{\partial x_{k}}\right)=0 \\
& \frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{k}}{\partial x_{k}}=0 \\
& \frac{\partial w_{k}}{\partial t}+\frac{\partial\left(w_{l} u_{l}+E_{\theta}\right)}{\partial x_{k}}+u_{l}\left(\frac{\partial w_{k}}{\partial x_{l}}-\frac{\partial w_{l}}{\partial x_{k}}\right)=0 \\
& \frac{\partial \rho \theta}{\partial t}+\frac{\partial\left(\rho u_{k} \theta+\rho E_{w_{k}}\right)}{\partial x_{k}}=0
\end{aligned}
$$

Variables θ, w_{k} should be identified with physical variables and the generalized internal energy E should be defined as a function of state variables

This system can be applied for the design of two-phase compressible flow.
In this case the entropy equation should be added

$$
\frac{\partial \rho S}{\partial t}+\frac{\partial \rho u_{k} S}{\partial x_{k}}=0
$$

Elastic heat conductive medium equations in Eulerian coordinates V

For the heat conductive medium we take $\theta=S$-entropy, $\quad w_{k}=J_{k}$ - thermal impulse

Generalized energy can be taken as

$$
\begin{aligned}
& E\left(\rho, S, A_{i j}\right)=E_{1}(\rho, S)+E_{2}\left(\rho, S, A_{i j}\right)+\frac{c_{h}^{2}}{2} J_{i} J_{i} \\
& E_{2}(\rho, A, S)=\frac{c_{s h}^{2}}{8}\left(\operatorname{tr}\left(g^{2}\right)-3\right)-\text { Shear strain energy } \\
& g=G /(\operatorname{det} G)^{1 / 3} \text { - Normalized Finger tensor } \quad G=A^{T} A \\
& E_{1}(\rho, S) \text { - Hydrodynamic EOS } \\
& c_{s h}(\rho, S) \text { - Shear sound velocity } \\
& c_{h} \quad \text { relates to heat wave propagation } \\
& \frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}+p \delta_{i k}+\rho A_{\alpha k} E_{\omega_{k}}+\rho J_{i} E_{J_{k}}\right)}{\partial x_{k}}=0 \\
& \frac{\partial A_{i k}}{\partial t}+\frac{\partial\left(A_{i j} u_{a}\right)}{\partial x_{k}}+u_{j}\left(\frac{\partial A_{i k}}{\partial x_{j}}-\frac{\partial A_{i_{j}}}{\partial x_{k}}\right)=0 \\
& \frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{k}}{\partial x_{k}}=0 \\
& \frac{\partial J_{k}}{\partial t}+\frac{\partial\left(J_{l} u_{l}+E_{s}\right)}{\partial x_{k}}+u_{l}\left(\frac{\partial J_{k}}{\partial x_{k}}-\frac{\partial J_{t}}{\partial x_{k}}\right)=0 \\
& \frac{\partial \rho S}{\partial t}+\frac{\partial\left(\rho u_{k} S+\rho E_{J_{k}}\right)}{\partial x_{k}}=0 \\
& E_{S} \text {-temperature }
\end{aligned}
$$

$$
\frac{\partial \rho\left(E+u_{i} u_{i} / 2\right)}{\partial t}+\frac{\partial\left(\rho u_{k}\left(E+u_{i} u_{i} / 2\right)+u_{i}\left(p \delta_{i k}+\rho A_{\alpha i} E_{A_{\alpha k}}+J_{i} E_{J_{k}}\right)+E_{S} E_{J_{k}}\right)}{\partial x_{k}}=0 \quad \text { - Conservation of energy }
$$

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{k}}{\partial x_{k}}=0 \\
& \frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}+p \delta_{i k}-\sigma_{i k}+\rho J_{i} E_{J_{k}}\right)}{\partial x_{k}}=0 \\
& \frac{\partial A_{i k}}{\partial t}+\frac{\partial\left(A_{i \alpha} u_{\alpha}\right)}{\partial x_{k}}+u_{j}\left(\frac{\partial A_{i k}}{\partial x_{j}}-\frac{\partial A_{i j}}{\partial x_{k}}\right)=-\frac{\psi_{i k}}{\theta_{1}\left(\tau_{1}\right)} \quad \text { Strain relaxation (shear stress relaxation) } \\
& \frac{\partial J_{k}}{\partial t}+\frac{\partial\left(J_{l} u_{l}+E_{S}\right)}{\partial x_{k}}+u_{l}\left(\frac{\partial J_{k}}{\partial x_{l}}-\frac{\partial J_{l}}{\partial x_{k}}\right)=-\frac{H_{k}}{\theta_{2}\left(\tau_{2}\right)} \quad \text { Heat flux relaxation } \\
& \frac{\partial \rho S}{\partial t}+\frac{\partial\left(\rho u_{k} S+\rho E_{J_{k}}\right)}{\partial x_{k}}=\frac{\rho}{T \theta_{1}\left(\tau_{1}\right)} \psi_{i k} \psi_{i k}+\frac{\rho}{T \theta_{2}\left(\tau_{2}\right)} H_{i k} H_{i} \geq 0 \quad \text { Entropy production } \quad \text { (2nd law of thermodynamics) }
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{i k}=\frac{\partial E}{\partial A_{i k}}, \quad \theta_{1}\left(\tau_{1}\right)=\tau_{1} \frac{2 c_{s}^{2}}{\rho(\operatorname{det} G)^{1 / 3}} \\
& H_{k}=\frac{\partial E}{\partial J_{k}}, \quad \theta_{2}\left(\tau_{2}\right)=\frac{1}{3} \tau_{2} \frac{c_{h}^{2}}{\rho T}
\end{aligned}
$$

Unified model of continuum mechanics, asymptotic limits

$\tau_{1}=\infty$ corresponds to elastic medium
$\tau_{1} \longrightarrow 0 \quad$ formal asymptotic expansion $\quad G=G^{0}+\tau_{1} G^{1}+\ldots \quad G \quad$-the Finger tensor gives us the Navier-Stokes equations for compressible viscous flow with the viscosity $\mu=\tau_{1} c_{s}^{2}$:

$$
\frac{\partial \rho u_{i}}{\partial t}+\frac{\partial\left(\rho u_{i} u_{k}+p \delta_{i k}-\sigma_{i j}\right)}{\partial x_{k}}=0 \quad \sigma_{i j}=\tau_{1} c_{s}^{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{j}}-\frac{2}{3}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}\right)\right)
$$

$$
0<\tau(\sigma, T)<\infty \quad \text { allows one to model strain-rate and temperature dependent inelastic deformations }
$$

$$
\tau_{2} \rightarrow 0 \quad \text { gives us the Fourier heat conduction law }
$$

$$
\begin{gathered}
\frac{\partial \rho\left(E+u_{i} u_{i} / 2\right)}{\partial t}+\frac{\partial\left(\rho u_{k}\left(E+u_{i} u_{i} / 2\right)+u_{i}\left(p \delta_{i k}+\rho A_{\alpha i} E_{A_{\alpha k}}+J_{i} E_{J_{k}}\right)+q_{k}\right)}{\partial x_{k}}=0 \\
q_{k}=E_{S} E_{J_{k}}=c_{h}^{2} \tau_{2} \frac{\partial T}{\partial x_{k}}
\end{gathered}
$$

Steady laminar Hagen-Poiseuille flow, Re=50

Blasius boundary layer, Re=1000

Elasticity: Seismic wave propagation

Elastic-plastic deformation of material with hardening. Taylor test problem

Equations of elastic heat conductive medium in the presence of electromagnetic field

Action $\quad \mathcal{L}=\int \Lambda d \xi d t \quad$ with Lagrangian
$\Lambda=\Lambda\left(\frac{\partial x_{i}}{\partial t}, \frac{\partial x_{i}}{\partial \xi_{j}}, \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial \xi_{j}}, S\right)=\rho_{0} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{i}}{\partial t}-\rho_{0} E\left(\frac{\partial x_{i}}{\partial \xi_{j}}, \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial \xi_{j}},-\frac{\partial a_{i}}{\partial t}-\frac{\partial \psi}{\partial \xi_{j}}, \varepsilon_{i j k} \frac{\partial a_{k}}{\partial \xi_{j}}, S\right)$

If to introduce variables defined by the potentials as:
x_{i}, ξ_{j} - Eulerian and Lagrangian coordinates, $a_{i}, \varphi, \vartheta$ - potentials
$\frac{\partial x_{i}}{\partial \xi_{j}}=F_{i j}, \quad d_{i}=-\frac{\partial a_{i}}{\partial t}-\frac{\partial \psi}{\partial \xi_{j}}, \quad h_{i}=\varepsilon_{i j k} \frac{\partial a_{k}}{\partial \xi_{j}}, \quad \theta=\frac{\partial \varphi}{\partial t}, \quad \eta_{j}=\frac{\partial \varphi}{\partial \xi_{j}}$
and introduce the energy potential as $U=v_{i} \Lambda_{v_{i}}+d_{i} \Lambda_{d_{i}}-\Lambda ; u_{i}=\Lambda_{v_{i}}, e_{i}=\Lambda_{d_{i}}$
then the Euler-Lagrange equations can be formulated as the first order system
supplemented by the integrability conditions

Lagrangian thermodynamically compatible $1^{\text {st }}$ order system equivalent to Euler-Lagrange equations

Euler-Lagrange equations can be reformulated as the first order system supplemented by the integrability conditions (involution costraints)

$$
\begin{aligned}
& \frac{\partial u_{i}}{\partial t}-\frac{\partial U_{F_{i j}}}{\partial \xi_{j}}=0 \\
& \frac{\partial F_{i j}}{\partial t}-\frac{\partial U_{u_{i}}}{\partial \xi_{j}}=0 \\
& \frac{\partial e_{i}}{\partial t}-\varepsilon_{i j k} \frac{\partial U_{h_{k}}}{\partial \xi_{j}}=0 \\
& \frac{\partial h_{i}}{\partial t}+\varepsilon_{i j k} \frac{\partial U_{e_{k}}}{\partial \xi_{j}}=0 \\
& \frac{\partial \theta}{\partial t}-\frac{\partial U_{n_{j}}}{\partial \xi_{j}}=0 \\
& \frac{\partial \eta_{j}}{\partial t}-\frac{\partial U_{\theta}}{\partial \xi_{j}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial F_{i j}}{\partial \xi_{k}}-\frac{\partial F_{i k}}{\partial \xi_{j}}=0 \\
& \frac{\partial e_{j}}{\partial \xi_{j}}=0 \\
& \frac{\partial h_{j}}{\partial \xi_{j}}=0 \\
& \frac{\partial \eta_{j}}{\partial \xi_{k}}-\frac{\partial \eta_{k}}{\partial \xi_{j}}=0
\end{aligned}
$$

$$
\begin{gathered}
\text { Conservation of energy } \\
\frac{\partial U}{\partial t}-\frac{\partial\left(U_{u_{i}} U_{F_{i j}}+\varepsilon_{i j k} U_{e_{i}} U_{h_{k}}-U_{\theta} U_{\eta_{j}}\right)}{\partial \xi_{j}}=0
\end{gathered}
$$

System is symmetric and hyperbolic if U is a convex function

Eulerian SHTC system can be obtained from the Lagrangian one by the cumbersome transformations of coordinates and variables

After passing to Euler coordinates, changing of unknowns and Legendre
transformations of potential we arrive to L-q formulation of SHTC system (next slide)

L-q formulation of general

Symmetric Hyperbolic Thermodynamically Compatible System

It was first derived as a result of analysis of various models of continuum mechanics
(nonlinear elasticity, electrodynamics of a moving medium, superfluid helium, and so on)

$$
\begin{aligned}
& \frac{\partial L_{r_{i}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{r_{i}}\right]}{\partial x_{k}}=0 \\
& \frac{\partial L_{u_{i}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{v_{i}}+\alpha_{m k} L_{\alpha_{m i}}-d_{i} L_{d_{k}}-b_{i} L_{b_{k}}+\eta_{k} L_{\eta_{i}}-\delta_{i k} \eta_{m} L_{\eta_{\eta_{m}}}\right]}{\partial x_{k}}=0 \\
& \frac{\partial L_{\alpha_{x_{k}}}}{\partial t}+\frac{\partial\left[\left(u_{m} L\right)_{\alpha_{i n}}\right]}{\partial x_{k}}+u_{j}\left(\frac{\partial L_{\alpha_{k_{k}}}}{\partial x_{j}}-\frac{\partial L_{\alpha_{d_{i j}}}}{\partial x_{k}}\right)=0 \\
& \frac{\partial L_{d_{i}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{d_{i}}-v_{i} L_{d_{k}}-\varepsilon_{i k l} b_{l}\right]}{\partial x_{k}}+u_{i} \frac{\partial L_{d_{k}}}{\partial x_{k}}=0 \\
& \frac{\partial L_{b_{i}}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{b_{i}}-u_{i} L_{b_{k}}-\varepsilon_{i k l} d_{l}\right]}{\partial x_{k}}+u_{i} \frac{\partial L_{b_{k}}}{\partial x_{k}}=0 \\
& \frac{\partial L_{\eta_{k}}}{\partial t}+\frac{\partial\left[u_{m} L_{\eta_{m}}+n\right]}{\partial x_{k}}+u_{l}\left(\frac{\partial L_{\eta_{k}}}{\partial x_{l}}-\frac{\partial L_{\eta_{l}}}{\partial x_{k}}\right)=0 \\
& \frac{\partial L_{n}}{\partial t}+\frac{\partial\left[\left(u_{k} L\right)_{n}+\eta_{k}\right]}{\partial x_{k}}=0
\end{aligned}
$$

Involution constraints

$$
\begin{aligned}
& \frac{\partial L_{\alpha_{i j}}}{\partial x_{k}}-\frac{\partial L_{\alpha_{k}}}{\partial x_{j}}=0 \\
& \frac{\partial L_{d_{k}}}{\partial x_{k}}=0, \quad \frac{\partial L_{b_{k}}}{\partial x_{k}}=0 \\
& \frac{\partial L_{n_{j}}}{\partial x_{k}}-\frac{\partial L_{n_{k}}}{\partial x_{j}}=0
\end{aligned}
$$

Energy conservation law holds

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(r_{i} L_{r_{i}}+v_{i} L_{v_{i}}+\alpha_{i k} L_{\alpha_{k_{k}}}+d_{i} L_{d_{i}}+b_{i} L_{b_{i}}+\eta_{k} L_{\eta_{k}}+n L_{n}-L\right)+ \\
& \frac{\partial}{\partial x_{k}}\left[v_{k}\left(r_{i} L_{r_{i}}+v_{i} L_{v_{i}}+\alpha_{i k} L_{\alpha_{i_{k}}}+d_{i} L_{d_{i}}+b_{i} L_{b_{i}}+\eta_{k} L_{\eta_{k}}+n L_{n}\right)\right]+ \\
& \frac{\partial}{\partial x_{k}}\left[v_{m}\left(\alpha_{m k} L_{\alpha_{m i}}-d_{i} L_{d_{k}}-b_{i} L_{b_{k}}+\eta_{k} L_{\eta_{i}}-\delta_{i k} \eta_{m} L_{\eta_{m}}\right)\right]=0
\end{aligned}
$$

The system can be written in a symmetric form and is symmetric hyperbolic if L is a convex function

Legendre transformation $\quad d L=L_{r_{i}} d r_{i}+\ldots .+L_{n} d n=d\left(L_{r_{i}} r_{i}+\ldots .+L_{n} n\right)-r_{i} d L_{r_{i}}-\ldots-n d L_{n}=d\left(L_{r_{i}} r_{i}+\ldots .+L_{n} n\right)-L_{q_{i}} d q_{i}-\ldots .-L_{\theta} d \theta$
can be used for the definition of the generalized energy potential $\quad d E=d\left(L_{r_{i}} r_{i}+\ldots+L_{n} n-L\right)=r_{i} d L_{r_{i}}+\ldots+n d L_{n}$

Symmetric hyperbolic thermodynamically compatible system in terms of generalized energy

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial \rho u_{k}}{\partial x_{k}}=0 \\
& \frac{\partial \rho m_{i}}{\partial t}+\frac{\partial\left(\rho m_{i} u_{k}+\rho^{2} E_{\rho} \delta_{i k}+\rho A_{k} E_{A_{i}}+\rho J_{i} E_{J_{k}}-\rho e\right.}{\partial x_{k}} \\
& \frac{\partial A_{i k}}{\partial t}+\frac{\partial\left(A_{i m} u_{m}\right)}{\partial x_{k}}+u_{j}\left(\frac{\partial A_{i k}}{\partial x_{j}}-\frac{\partial A_{i j}}{\partial x_{k}}\right)=-\frac{E_{A_{k}}}{\theta_{1}\left(\tau_{1}\right)} \\
& \frac{\partial e_{i}}{\partial t}+\frac{\partial\left(u_{i} e_{i}-u_{i} e_{k}-\varepsilon_{i k l} E_{h_{k}}\right)}{\partial x_{k}}+u_{i} \frac{\partial e_{k}}{\partial x_{k}}=-\frac{E_{e_{i}}}{\eta} \\
& \frac{\partial h_{i}}{\partial t}+\frac{\partial\left(u_{i} h_{i}-u_{i} h_{k}+\varepsilon_{i k l} E_{e_{i}}\right)}{\partial x_{k}}+u_{i} \frac{\partial h_{k}}{\partial x_{k}}=0 \\
& \frac{\partial J_{k}}{\partial t}+\frac{\partial\left[u_{m} J_{m}+\rho E_{\theta}\right]}{\partial x_{k}}+u_{j}\left(\frac{\partial J_{k}}{\partial x_{m}}-\frac{\partial J_{m}}{\partial x_{k}}\right)=-\frac{E_{J_{k}}}{\theta_{2}\left(\tau_{2}\right)} \\
& \frac{\partial \rho \theta}{\partial t}+\frac{\partial\left[\rho u_{k} \theta+\rho E_{J_{k}}\right]}{\partial x_{k}}=0 \\
& \frac{\partial \rho S}{\partial t}+\frac{\partial \rho S u_{k}}{\partial x_{k}}=Q \geq 0
\end{aligned}
$$

$$
\frac{\partial \rho m_{i}}{\partial t}+\frac{\partial\left(\rho m_{i} u_{k}+\rho^{2} E_{\rho} \delta_{i k}+\rho A_{k k} E_{A_{i}}+\rho J_{i} E_{J_{k}}-\rho e_{k} E_{e_{i}}-\rho h_{k} E_{h_{i}} \rho A_{m i} E_{A_{m k}}+\rho J_{i} E_{J_{k}}\right)}{\partial x_{k}}=0
$$

E - generalized energy, $\rho-$ density,
m_{i} - momentum
$\boldsymbol{A}_{i k} \quad$ - distortion

$\boldsymbol{e}_{i}, h_{i} \quad$| are associated with the electromagnetic field |
| :--- |
| J_{k}, θ |\quad| are associated with the flow of any substance |
| :--- |
| through an element of the medium |

S - entropy
Involution constraints

$$
\frac{\partial A_{i j}}{\partial x_{k}}-\frac{\partial A_{i k}}{\partial x_{j}}=0 \quad \frac{\partial e_{k}}{\partial x_{k}}=0, \quad \frac{\partial h_{k}}{\partial x_{k}}=0 \quad \frac{\partial J_{i}}{\partial x_{k}}-\frac{\partial J_{k}}{\partial x_{j}}=0
$$

Conservation of energy

$$
\begin{gathered}
\frac{\partial}{\partial t} \mathbf{E}+\frac{\partial}{\partial x_{k}}\left[u_{k} \mathbf{E}+\rho u_{i} \delta_{i k}\left(\rho E_{\rho}+e_{m} E_{e_{m}}+h_{m} E_{h_{m}}\right)+u_{i}\left(A_{m i} E_{A_{m k}}-e_{k} E_{e_{i}}-h_{k} E_{h_{i}}\right)+\varepsilon_{i j k} E_{e_{i}} E_{h_{j}}+\rho E_{\theta} E_{J_{k}}\right]=0 \\
\mathbf{E}=\rho\left(E+u_{i} u_{i} / 2\right)-\text { total energy }
\end{gathered}
$$

More pictures and theory can be found in
M. Dumbser, I. Peshkov, E. Romenski, O. Zanotti, Journal of Computational Physics, 2016, 2017
I. Peshkov, M. Pavelka, E. Romenski, M. Grmela, Continuum Mechanics and Thermodynamics, 2018
and references therein

Summary

Class of hyperbolic thermodynamically compatible systems with involution constraints can be formulated from the first principles
Many well-known equations of continuum mechanics belong to this class

New well-posed models of complex physical processes can be formulated with the use of SHTC theory by the proper choice of equations, variables and thermodynamic potential such as: unified model of continuum with hyperbolic heat conduction, multiphase compressible flow, Including flow of immisible fluids flow with surface tension.....

