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Abstract

In this paper, we study the global L∞ entropy solutions for the Cauchy
problem of system of isentropic gas dynamics in a divergent nozzle with
a friction (1.1) with bounded initial date (1.2). Especially when the adia-
batic exponent γ = 3, we apply for the maximum principle to obtain the
L∞ estimates w(ρδ,ε, uδ,ε) ≤ B(t) and z(ρδ,ε, uδ,ε) ≤ B(t) for the viscosity
solutions (ρδ,ε, uδ,ε) of the Cauchy problem (1.9) and (1.10), where w and
z are the Riemann invariants of (1.1), and B(t) is a nonnegative bound-
ed function for any finite time t. This work, in the special case γ ≥ 3,
extends the previous works [Lu, Nonlinear Analysis, Real World Applica-
tions, 39: 418-423, 2018], which provided the global entropy solutions for
the Cauchy problem (1.1) and (1.2) with the restriction w(ρδ,ε, uδ,ε) ≤ 0 or
z(ρδ,ε, uδ,ε) ≤ 0.
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1 Introduction

The following system of isentropic gas dynamics in a divergent nozzle with a

friction, whose physical phenomena called ”choking or choked flow”, occurs in
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the nozzle (see [Sh, Ts4] for the details),
ρt + (ρu)x = −a′(x)

a(x)
ρu

(ρu)t + (ρu2 + P (ρ))x = −a′(x)
a(x)

ρu2 − αρu|u|,
(1.1)

where ρ is the density of gas, u the velocity, P = P (ρ) the pressure, a(x) is

a slowly variable cross section area at x in the nozzle and α denotes a friction

constant. For the polytropic gas, P takes the special form P (ρ) = 1
γ
ργ, where

γ > 1 is the adiabatic exponent.

The golobal entropy solutions for the Cauchy problem (1.1) with bounded

initial data

(ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)), ρ0(x) ≥ 0, (1.2)

was first studied in [Ts4] for the usual gases 1 < γ ≤ 5
3
, and later, by the author

in [Lu4] for any adiabatic exponent γ > 1, provided that the initial data are

bounded and satisfy the strong restriction condition z0(ρ0(x), u0(x)) ≤ 0.

It is well-known that after we have a method to obtain the global existence

of solutions for the Cauchy problem of the following homogeneous system
ρt + (ρu)x = 0

(ρu)t + (ρu2 + P (ρ))x = 0
(1.3)

with the bounded initial data (1.2), the unique difficulty to treat the inhomoge-

neous system (1.1) is to obtain the a-priori L∞ estimate of the approximation

solutions of (1.1), for instance, the a-priori L∞ estimate of the viscosity solutions

for the Cauchy problem of the parabolic system
ρt + +(ρu)x = −a′(x)

a(x)
ρu+ ερxx

(ρu)t + (ρu2 + P (ρ))x = −a′(x)
a(x)

ρu2 − αρu|u|+ ε(ρu)xx

(1.4)

with the initial data (1.2).

When a′(x) = 0, (1.1) is the river flow equations, a shallow-water model

describing the vertical depth ρ and mean velocity u, where αρu|u| corresponds

physically to a friction term and α is a nonnegative constant. This kind of

inhomogeneous systems is simple since the source terms have, in some senses, the

2



symmetric behavior. We may introduce the Riemann invariants (w, z) of system

(1.3) to rewrite (1.1) as the following symmetric, coupled system
wt + λ2wx = εwxx + 2ε

ρ
ρxwx − ε

2ρ2
√
P ′(ρ)

(2P ′ + ρP ′′)ρ2x − 1
2
α(w − z)|u|

zt + λ1zx = εzxx + 2ε
ρ
ρxzx − ε

2ρ2
√
P ′(ρ)

(2P ′ + ρP ′′)ρ2x − 1
2
α(z − w)|u|,

(1.5)

where

z(ρ, u) =
∫ ρ

c

√
P ′(s)

s
ds− u, w(ρ, u) =

∫ ρ

c

√
P ′(s)

s
ds+ u (1.6)

and c is a constant. We can apply for the maximum principle directly to (1.5) to

obtain the necessary a-priori L∞ estimates w(ρε, uε) ≤M and z(ρε, uε) ≤ N , for

two suitable constants M,N (see ([KL]) for the details).

When α = 0, i.e., the nozzle flow without friction, system (1.1) was well stud-

ied in ([Ts1, Ts2, Ts4, Lu3, LG]). Roughly speaking, the technique, introduced

in these papers, is to control the super-linear source terms a′(x)
a(x)

ρu and a′(x)
a(x)

ρu2

by the flux functions ρu and ρu2 +P (ρ) in (1.1) and to deduce a upper bound of

w or z by a bounded nonegative function B(x), which depends on the function

a(x).

When a′(x) 6≡ 0 and α 6= 0, both the above techniques do not work because

the flux functions can not be used to control the super-linear friction source

terms αρu|u|, and the functions a′(x)
a(x)

ρu destroyed the symmetry of the Riemann

invariants (w, z). In fact, we may copy the method given in ([Ts4, Lu4]) to obtain

the following process.

First, to avoid the singularity of the flux function ρu2 near the vacuum ρ = 0,

we still use the technique of the δ-flux-approximation given in [Lu2] and introduce

the sequence of systems
ρt + (−2δu+ ρu)x = A(x)(ρ− 2δ)u

(ρu)t + (ρu2 − δu2 + P1(ρ, δ))x = A(x)(ρ− 2δ)u2 − αρu|u|
(1.7)

to approximate system (1.1), where A(x) = −a′(x)
a(x)

, δ > 0 denotes a regular per-

turbation constant and the perturbation pressure

P1(ρ, δ) =
∫ ρ

2δ

t− 2δ

t
P ′(t)dt. (1.8)
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Second, we add the viscosity terms to the right-hand side of (1.7) to obtain the

following parabolic system
ρt + ((ρ− 2δ)u)x = A(x)(ρ− 2δ)u+ ερxx

(ρu)t + (ρu2 − δu2 + P1(ρ, δ))x = A(x)(ρ− 2δ)u2 − αρu|u|+ ε(ρu)xx

(1.9)

with initial data

(ρδ,ε(x, 0), uδ,ε(x, 0)) = (ρ0(x) + 2δ, u0(x)), (1.10)

where (ρ0(x), u0(x)) are given in (1.2).

Now we multiply (1.9) by (wρ, wm) and (zρ, zm), respectively, where (w, z) are

given in (1.6), to obtain

wt + λδ2wx

= εwxx + 2ε
ρ
ρxwx − ε

2ρ2
√
P ′(ρ)

(2P ′ + ρP ′′)ρ2x

+A(x)(ρ− 2δ)u

√
P ′(ρ)

ρ
− αu|u|

(1.11)

and
zt + λδ1zx

= εzxx + 2ε
ρ
ρxzx − ε

2ρ2
√
P ′(ρ)

(2P ′ + ρP ′′)ρ2x

+A(x)(ρ− 2δ)u

√
P ′(ρ)

ρ
+ αu|u|,

(1.12)

where

λδ1 =
m

ρ
− ρ− 2δ

ρ

√
P ′(ρ), λδ2 =

m

ρ
+
ρ− 2δ

ρ

√
P ′(ρ) (1.13)

are two eigenvalues of the approximation system (1.7).

It is obvious that the terms A(x)(ρ− 2δ)u

√
P ′(ρ)

ρ
in (1.11) and (1.12) are not

symmetric with respect to the Riemann invariants w, z. However, with the strong

restriction z0(ρ0(x), u0(x)) ≤ 0 on the initial data, in ([Ts4, Lu4]), we may obtain

the uniformly upper bounds of z and w by using the maximum principle. In some

senses, it is similar to obtain the estimate u ≤ 0 for the following scalar equation

ut + f(u)x + S(u, x, t)u = εuxx (1.14)

for any local bounded function S(u, x, t) when the initial data u0(x) ≤ 0.
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In this paper, we will remove the condition z0(ρ0(x), u0(x)) ≤ 0, and prove the

uniformly upper bound of z and w by a bounded nonnegative function B(t) of t,

and obtain the global existence theorem of the entropy solutions for the Cauchy

problem (1.1) and (1.2) as follows:

Theorem 1 (I). Let P (ρ) = 1
γ
ργ, γ ≥ 3, the function A(x) ≤ 0 (or A(x) ≥ 0

) be bounded. Then there exists a bounded, nonegative function B(t) such that

w(ρδ,ε, uδ,ε) ≤ B(t), z(ρδ,ε, uδ,ε) ≤ B(t), where B(t) depends only on the bound of

the initial data.

(II). Under the conditions in (I), there exists a subsequence of (ρδ,ε(x, t), uδ,ε(x, t)),

which converges pointwisely to a pair of bounded functions (ρ(x, t), u(x, t)) as δ, ε

tend to zero, and the limit is a weak entropy solution of the Cauchy problem

(1.1)-(1.2)

2 Proof of Theorem 1.

In this section, we shall prove Theorem 1.

When A(x) ≤ 0, we rewrite systems (1.11) and (1.12) as follows:

wt + λδ2wx + 1
2
(−A(x)(ρ− 2δ)

√
P ′(ρ)

ρ
+ α|u|)(w − z)

= εwxx + 2ε
ρ
ρxwx − ε

2ρ2
√
P ′(ρ)

(2P ′ + ρP ′′)ρ2x

(2.1)

and

zt + λδ1zx + 1
2
α|u|(z − w)− A(x)(ρ− 2δ)

√
P ′(ρ)

ρ
(
∫ ρ
c

√
P ′(s)

s
ds− z)

= εzxx + 2ε
ρ
ρxzx − ε

2ρ2
√
P ′(ρ)

(2P ′ + ρP ′′)ρ2x.

(2.2)

Letting v1 = w −B(t), v2 = z −B(t), we have from (2.1) and (2.2) that

v1t +B′(t) + λδ2v1x + 1
2
(−A(x)(ρ− 2δ)

√
P ′(ρ)

ρ
+ α|u|)(v1 − v2)

= εv1xx + 2ε
ρ
ρxv1x − ε

2ρ2
√
P ′(ρ)

(2P ′ + ρP ′′)ρ2x

(2.3)

5



and

v2t +B′(t) + λδ1v2x + 1
2
α|u|(v2 − v1) + A(x)(ρ− 2δ)

√
P ′(ρ)

ρ
v2

−A(x)(ρ− 2δ)

√
P ′(ρ)

ρ

∫ ρ
c

√
P ′(s)

s
ds+B(t)A(x)(ρ− 2δ)

√
P ′(ρ)

ρ

= εv2xx + 2ε
ρ
ρxv2x − ε

2ρ2
√
P ′(ρ)

(2P ′ + ρP ′′)ρ2x.

(2.4)

Choose B(t) such that B′(t) ≥ 0, 0 ≤ B(t) ≤ β, where β be a positive constant.

Then when
∫ ρ
2δ

√
P ′(s)

s
ds ≥ β or ρ is large since γ ≥ 3, we have

B′(t)−A(x)(ρ−2δ)

√
P ′(ρ)

ρ

∫ ρ

c

√
P ′(s)

s
ds+B(t)A(x)(ρ−2δ)

√
P ′(ρ)

ρ
≥ 0. (2.5)

When
∫ ρ
c

√
P ′(s)

s
ds < β or ρ is small, we can always choose a B(t), where B′(t)

is suitable large, such that (2.5) is also true. Therefore, we have the following

inequalities from (2.3) and (2.4)

v1t + λδ2v1x + 1
2
(−A(x)(ρ− 2δ)

√
P ′(ρ)

ρ
+ α|u|)(v1 − v2) ≤ εv1xx + 2ε

ρ
ρxv1x (2.6)

and

v2t + λδ1v2x + 1
2
α|u|(v2 − v1) + A(x)(ρ− 2δ)

√
P ′(ρ)

ρ
v2 ≤ εv2xx + 2ε

ρ
ρxv2x. (2.7)

If the initial data satisfy z0(ρ0(x), u0(x)) ≤ B(0), w0(ρ0(x), u0(x)) ≤ B(0), then

vi0(ρ0(x), u0(x)) ≤ 0, i = 1, 2, we can apply for the maximum principle given in

([Lu5]) to (2.6) and (2.7) to obtain vi(ρ
δ,ε(x, t), uδ,ε(x, t)) ≤ 0, i = 1, 2, where the

coefficient A(x)(ρ− 2δ)

√
P ′(ρ)

ρ
before v2 is only necessary to be local bounded.

In fact, we rewrite inequalities (2.6) and (2.7) as follows:

v1t + λδ2v1x + c1(x, t)(v1 − v2) ≤ εv1xx + 2ε
ρ
ρxv1x (2.8)

and

v2t + λδ1v2x + c2(x, t)(v2 − v1) + c3(x, t)v2 ≤ εv2xx + 2ε
ρ
ρxv2x. (2.9)

where c1(x, t) = 1
2
(−A(x)(ρ−2δ)

√
P ′(ρ)

ρ
+α|u|) ≥ 0, c2(x, t) = 1

2
α|u| ≥ 0, c3(x, t) =

A(x)(ρ− 2δ)

√
P ′(ρ)

ρ
.

Make a transformation

v1 = (v̄1 +
N(x2 + cLet)

L2
)eβt, v2 = (v̄2 +

N(x2 + cLet)

L2
)eβt, (2.10)
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where L, c,N, β are positive constants and N is the upper bound (locally) of

v1, v2, and β the upper bound (locally) of c3(x, t) on R × [0, T ] (N, β can be

obtained by the local existence). The function v̄1, v̄1, as are easily seen, satisfy

the inequalities

v̄1t + λδ2v̄1x + c1(x, t)(v̄1 − v̄2) + β(v̄1 +
N(x2 + cLet)

L2
)

+(cLet + 2λδ2x− 2ε)
N

L2
≤ εv̄1xx +

2ε

ρ
ρxv̄1x,

v̄2t + λδ1v̄2x + c2(x, t)(v̄2 − v̄1) + (β + c3(x, t))(v̄2 +
N(x2 + cLet)

L2
)

+(cLet + 2λδ1x− 2ε)
N

L2
≤ εv̄2xx +

2ε

ρ
ρxv̄2x

(2.11)

resulting from (2.8) and (2.9). Moreover
v̄1(x, 0) = w(x, 0)−B(0)− N(x2 + cL)

L2
< 0,

v̄2(x, 0) = z(x, 0)−B(0)− N(x2 + cL)

L2
< 0,

(2.12)

v̄1(+L, t) < 0, v̄1(−L, t) < 0, v̄2(+L, t) < 0, v̄2(−L, t) < 0. (2.13)

From (2.11),(2.12) and (2.13), we have

v̄1(x, t) < 0, v̄1(x, t) < 0, on (−L,L)× (0, T ). (2.14)

If (2.14) is violated at a point (x, t) ∈ (−L,L) × (0, T ), let t̄ be the least upper

bound of values of t at which v̄1 < 0 (or v̄2 < 0); then by the continuity we see

that v̄1 = 0, v̄2 ≤ 0 at some points (x̄, t̄) ∈ (−L,L)× (0, T ). So

v̄1t ≥ 0, v̄1x = 0, εv̄1xx ≥ 0, at (x̄, t̄). (2.15)

If we choose sufficiently large constant c, which may depend on , εδ, such that

cLet + λδ2x− 2ε > 0 on (−L,L)× (0, T ), (2.16)

the first equation in (2.11) gives a conclusion contradicting (2.15). So (2.14) is

proved. Therefore, for any point (x0, t0) ∈ (−L,L)× (0, T ),

v̄1(x0, t0) <
N(x20 + cLet0)

L2
, v̄2(x0, t0) <

N(x20 + cLet0)

L2
, (2.17)
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which gives the desired estimates

w(ρδ,ε, uδ,ε) ≤ B(t), z(ρδ,ε, uδ,ε) ≤ B(t), (2.18)

if we let L go to infinity. Similiarly, we can obtain the same result for the case of

A(x) ≥ 0, so Part (I) in Theorem 1 is proved.

From the upper estimates given in (2.18), we deduce the estimates 2δρδ,ε ≤
C(t) and |uδ,ε| ≤ C(t) for a suitable nonnegative, bound function C(t). Since

γ ≥ 3, the pointwise convergence of a subsequence of ρδ,ε and uδ,ε, as δ, ε tend to

zero, follows directly by using the compact results given in ([LPT]). Theorem 1

is proved.
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